
Building Cloud Applications
for Challenged Networks

Yehia Elkhatib(B)

School of Computing and Communications, Lancaster University, Lancaster, UK
y.elkhatib@lancaster.ac.uk

Abstract. Cloud computing has seen vast advancements and uptake
in many parts of the world. However, many of the design patterns
and deployment models are not very suitable for locations with chal-
lenged networks such as countries with no nearby datacenters. This paper
describes the problem and discusses the options available for such loca-
tions, focusing specifically on community clouds as a short-term solution.
The paper highlights the impact of recent trends in the development of
cloud applications and how changing these could better help deployment
in challenged networks. The paper also outlines the consequent chal-
lenges in bridging different cloud deployments, also known as cross-cloud
computing.

1 Introduction

Cloud computing is yet another step on the quest for holy grail of computing as
described by John MacCarthy whilst addressing the MIT Centennial in 1961:

If computers of the kind I have advocated become the computers of the
future, then computing may someday be organized as a public utility just
as the telephone system is a public utility... The computer utility could
become the basis of a new and important industry.

Indeed, the cloud computing market is a vast and rapidly expanding one, worth
$58bn in 2013 and expected to grow to $191bn by 2020 [19]. It offers its users
unparallaled flexibility and scalability, allowing them to easily and feasibly scale
a system up and down to meet changing business targets (e.g. customer demand),
to dynamically mitigate system failures through the spawning of new servers, and
to expeditiously and seamlessly roll out new capabilities. This allows businesses
to curb computing expenses whilst still supporting agile business progress. For
researchers, it imposes much lower resource provisioning barriers that the closest
alternatives (HPC or grid): virtually immediate resource provisioning, huge scale
to store and process vast observational datasets, and less restrictions on location.
This enables researchers using the cloud to focus on their processes rather than
on the computing infrastructure, and to run computations and access data when
and where they require.
c© Springer International Publishing Switzerland 2015
R. Horne (Ed.): EGC 2015, CCIS 514, pp. 1–10, 2015.
DOI: 10.1007/978-3-319-25043-4 1

2 Y. Elkhatib

2 Problem Space

First, one needs to define the term emerging economies in order to add some
clarity, albeit in the boundaries of this work, to such usually loosely defined
term. An emerging economy (EE) is one with a relatively stable government,
growing investment in public infrastructure, and a prospering consumer market
typically manifested by an expanding middle class with increasing levels of dis-
posable income. Under such definition, example os EEs include countries like
Kazakhstan, Malaysia and Turkey.

In EEs, access to resources is not the main obstacle in the way to encour-
age uptake of the cloud. On the contrary, both infrastructure provisions and
end user devices are fairly affordable for a large fraction of the local popula-
tion. The main problem is to do with the network connection. This is a problem
because currently all applications are distributed [7]. This is partly due to an
ever increasing reliance on communication between applications to carry out
transactions, and on interaction between users for social and productivity pur-
poses. This is also due to a shift in application provisioning: most applications
are now hosted remotely and delivered remotely to the end users. Gone are the
days of shrink-wrapped software.

Such shift introduces an increasing expectation on good network perfor-
mance, which many locations do not have. In this paper, I focus on such locations
with challenged network connections.

3 Latency Is High, So What?

Making more bandwidth is easy [8], which is why Internet Service Providers
(ISPs) all around the world will always market their services based on bandwidth.
However, having more bandwidth does not always translate to better network
performance [4]. On the other hand, decreasing network latency is much more
effective in increasing application throughput [12]. In this regard, significant
efforts in the network research community specifically target the issue of inflated
network latency. A recent example of this is SPDY [2], a web protocol that
multiplexes HTTP connections to reduce the number of round trips between
client and server. This, however, is only effective in reducing the bursty nature
of HTTP for certain network connections [10].

High network latency has an obvious detrimental effect on latency-sensitive
applications. In the gaming industry, 100 ms is considered to be the thresh-
old between an interactive and unresponsive experience [9,17]. For Voice over IP
(VoIP), the threshold is between 100 ms [27] and 150 ms [15] for acceptable audio
transmission. On e-commerce websites, increments of just 100 ms can decrease
sales by 1 % [18]. Similarly, it is reported that most web users would not toler-
ate beyond 2 s “for simple information retrieval tasks on the Web” [22], which
demands significantly low latency between the client and the different servers
serving different pieces of content on a typical webpage.

Even bandwidth-hungry applications, such as video streaming, can be
adversely affected by relatively high delay levels. Tuning TCP send and receive

Building Cloud Applications for Challenged Networks 3

buffers ensures that the amount of data in transit at any time is the maximum
that the link between the sender and receiver could accommodate. Untuned TCP
buffers fails to attain the maximum achievable throughput. Despite the knowl-
edge of this fact in the networking community for many years (cf. [20]), manually
optimising TCP buffers requires good technical nous [11]. Various efforts over
the years attempt to move away from the black art of manual TCP tuning to
automatically adjusted TCP buffer sizes and other networking parameters based
on connection characteristics [28,33,34]. Nonetheless, such solutions are still not
included by default in modern operating systems.

4 Design Principles

In this section, I revisit some of the fundamental design principles of modern day
distributed systems in light of the constraints imposed by challenged networks.
I propose alternative design choices for each principle, giving examples where
possible.

4.1 Application Signalling

One of the unintentional products of the easy integration facilitated by cloud
computing services is a move towards building chatty applications. These are
applications that interact with each other at a high network cost manifested as
a very high number of messages and/or large message sizes.

Such verbosity is partly due to a high skewness in the cloud application
space. I conjecture that this a by-product of the startup culture, where most
applications are built in order to be sold to a much larger company or get
funds from a venture capitalist. Under such conditions services are engineered
to demonstrate high impact and revenue. Hence, the majority of applications
emanating from the silicon valleys of the world are developed for the highly
connected metropolises in the industrialised world where they originate; e.g.
San Francisco, New York, London, etc.

Hidden within this context is an obvious assumption of relative proximity to
industrial-scale data centers. At the same time, cloud service providers (CSPs)
over provision their services to be able to handle a thick and fast stream of
incoming API calls. Hence, the only cost for verbose API interactions is mon-
etary. The cost models of major CSPs make this relatively affordable for most
applications anyway. This is the root of the recent emergence of chatty applica-
tions. Loose-coupling is only really considered when it starts to be too expensive
to shift large data sets or when it becomes difficult (or impossible) to handle
large volumes of updates.

However, this is not suitable for EEs with relatively high RTT where net-
work communication has to be rationed. Therefore, it is important to design
applications that can cope with high latency, i.e. have low signalling or “less
chatty” as a design requirement. In this light, the communication style of the
application is expected to lean more towards asynchronicity. For example, ‘fire

4 Y. Elkhatib

and forget’ asynchronous remote procedure calls (RPC) is much more suitable
than the currently common trend of blocking whilst an API call is completed.
Similarly, message oriented middleware (MOM) solutions offer loosely-coupled
communications with little time guarantees.

4.2 Data Exchange

One result of the assumption of proximity to data centres is diminishing the third
tier in the classical 3-tier distributed systems model: the data tier. Instead, a
lot of the data is constantly being sent over the network back and forth between
machines and clients as and when required. The data tier, typically a relational
or a NoSQL database, is only used for huge bulks of data. This trend if facilitated
by the Representational State Transfer (REST) architectural design principles
[13]. Indeed, it suits the cloud as we now know it: Web services are completely
stateless and hence have less load on them. Clients invoke services with the data
required to transition between different states. Virtual machines (VMs) hosting
the web services are easily replaceable and replicatable. This vastly improves
scalability and simplifies infrastructure management tasks such as load balancing
and failure recovery.

For EEs, the data tier needs to be reinstated at least for deployments in
challenged network conditions. This is manifested as separate replicas that are
more geared towards the users it serves, perhaps based on geographical location.
Restricting write updates based on domain is an obvious policy to minimise
write-write conflicts between different replicas. Lazy updates with remote repli-
cas would be sufficient for most applications, however this is discussed in more
detail in the following subsection. Such setup still preserves the ability to create
large application platforms that are made up of stateless VMs that are easy to
spin up or stop as and when required, whilst also maintaining a certain degree
of independence on data exchange over WAN links of relatively low performance
levels.

4.3 Data Repositories

The famous Brewer’s (or CAP) theorem states that a database system can attain
a maximum of two of the following three objectives: consistency, availability, and
partition tolerance [5]. In traditional distributed database systems, consistency
and partition tolerance were valued more than availability. In contrast, the state-
less nature of many cloud applications forsakes consistency, and instead priori-
tises availability and partition tolerance. We see this reflected in the popularity
of many ‘eventually consistent’ NoSQL systems such as Cassandra, Couchbase,
Dynamo, MongoDB, Riak, and more.

For applications in network challenged areas, partition tolerance has to be
the highest priority. This is to allow the system to continue operation if network
connectivity is lost or is of poor quality. The trade-off, then, becomes between
availability and consistency. This is dependent on the application in hand. For
some applications, such as social networks and multimedia systems, availability

Building Cloud Applications for Challenged Networks 5

is perhaps more important than consistency with the rest of the remote system.
On the other hand, applications such as e-commerce and customer relationship
management would place consistency as a higher priority as asynchronous trans-
action could cost more than a missed one. As such, data repositories need to be
engineered in such a way to cater for both the needs of the application and the
restrictions imposed by the deployment environment.

4.4 Communication Protocols

The TCP/IP stack has become an entrenched part of most distributed systems
we have today. On top of this, HTTP and HTTPS have also become a de facto
communication standards for the majority of cloud applications and APIs [25].
However, this protocol stack needs to be reconsidered to confirm suitability for
the target deployment environment, alongside TCP optimisations discussed in
Sect. 3. Note that networking stack used to interconnect system elements could
be different from that enabling user access.

For instance, SPDY (and more recently HTTP/2.0) offer better performance
by multiplexing different data streams between two hosts (such as a client and a
server) onto one TCP connection. This saves significant amount of unnecessary
connection establishment time, which brings considerable improvements espe-
cially over network links with high latency [10]. However, it is also susceptible
to performance degradation on links with relatively high loss rate [ibid].

The IP protocol is the default choice for traditional host address-oriented
network architectures. However, alternative network addressing paradigms could
offer alternative solutions that might be more suitable for challenged networks.
An example of this is information-centric networking (ICN) [16,31]. To date,
only one large-scale simulation study is available as evidence of ICN’s promise
[30] but is focused on caching content in a peer-to-peer information exchange
network. Studies tailored specifically for the conditions of challenged networks
would be very useful.

5 Discussion

In this section, I discuss two main approaches to solving the challenges high-
lighted in the paper thus far.

5.1 Top-Down Approach

An answer to the challenges to distributed systems in EEs as highlighted above
is to build local or regional data centers. This is indeed a comprehensive solution
that is worth investigating, especially with the special context of many EEs that
dictates possible innovations such as using alternative energy sources. However,
such solution involves huge long-term projects that require large budgets, sig-
nificant depth and range of expertise, and long-term geopolitical planning. In
other words, it will not bring instant solutions to people needing to access cloud
resources in the short term.

6 Y. Elkhatib

5.2 Bottom-Up Approach

An alternative strategy is to provide relatively low-cost systems that are rapidly
realisable, even if they only offer partial solutions. The concept of community
clouds offers a rewarding option in this regard.

Community clouds is a cooperative model for deploying clouds driven by
certain restrictions. In the context discussed here, the constraint is limited con-
nectivity. The model relies on using free open source software solutions and
affordable hardware to provide a self-service infrastructure. It is similar in spirit
to the cooperative models of wireless mesh networks and volunteer computing
(e.g. SETI@Home, BOINC). A typical setup would use OpenStack over a small
set of commodity hardware machines. This brings relatively rapid access to cloud
resources as well as active involvement in assembly and operation.

Examples of innovative community cloud solutions are starting to emerge.
Of these, I present only three for illustration purposes.

Cloud&Heat Technologies1 [1] is a German company offering mini-clouds
that recycle the heat they emitted. A mini-cloud is a set of self-contained fire-
proof cabinets that are installed in the basements of residential and commercial
buildings. They comprise of between one and six cabinets that operate as a sin-
gle OpenStack deployment connected by broadband to the wider Internet. The
deployment is capable of operating a range of cloud appliances obtained via the
Bitnami open source marketplace. The heat produced by the cabinets is used
to warm a water buffer tank for domestic purposes (e.g. washing) and central
heating radiators.

Another example linked to energy efficiency in domestic environments comes
from Qarnot2. This French company designed a domestic central heating radi-
ator module that is in fact a multi-processor HPC cluster. The objective is to
attract intensive computing jobs to locations where heat is needed. When the
user turns up the thermostat, enough extra computation is directed from cor-
porate clients to increase the emitted heat at the user’s location. Additional
electricity costs required for carrying out the computation are refunded to the
user. The Qarnot cluster supports different job types of scientific applications,
such as AutoDock, Blender, Gromacs, NAMD, NWChem, OpenFOAM, Python,
Quantum Espresso, and R.

A third example targets ad hoc cloud deployments in order to make them
reliable enough for executing demanding applications. SCADAMAR [6] uses dif-
ferent network overlays to run MapReduce jobs over volunteer clouds. The Berke-
ley Open Infrastructure for Network Computing (BOINC) [3] is used to access
underused resources on different devices in the volunteer cloud. BitTorrent is
used as a substrate to distribute input, intermediate and output data between
the nodes in the system (mappers and reducers). A bespoke scheduler is used
to tolerate node failures, enabling the system to be resilient and to achieve job
throughput over a potentially high number of nodes.

1 http://www.cloudandheat.com/.
2 http://www.qarnot-computing.com/.

http://www.cloudandheat.com/
http://www.qarnot-computing.com/

Building Cloud Applications for Challenged Networks 7

6 Cross-Cloud Computing

The subsequent challenge is to piece the different cloud blocks together to form
a larger pool of resources without barriers and with minimum gravity to any of
the blocks in particular. In other words, solutions must be developed in order to
enable applications to easily straddle different cloud infrastructures in a hybrid
fashion, and to ease difficulties of moving between different imputing infrastruc-
tures. I refer to this challenge as ‘cross-cloud computing’.

The difficulty of cross-cloud computing arises from a number of sources.
There is the classical interoperability problem, manifested here in the form of
APIs that are divergent both semantically and syntactically. There is also a
significant obstacle in porting applications between cloud infrastructures due to
the different formats used to capture the state of running and idle VMs, as well
as due to the high network overhead associated with such migration practices.
In the following, I give an overview of the migration options as they currently
stand and the possible improvements that could be delivered to alleviate some
of the problems in this area.

6.1 Entry

Developers wishing to enter the cloud market are faced with an array of ques-
tions that are in some cases quite difficult to answer: (a)Which provider? (b)
Which instance type(s)? (c) Which availability zone? (d) What time? This is
complicated with an overwhelmingly large range of options for each question.
Moreover, the answers to these questions are quite subjective but would greatly
determine the incurred cost and performance of the application. Hence, work
is required to aid developers decide the best deployment environment for their
application and to re-evaluate such decisions as the application requirements and
the cloud market offerings change. Some work is already starting to happen in
this area, e.g. [23,26,32].

The concern of divergent APIs could be sufficiently addressed for many use
cases by employing any of the number of multi-cloud common programming
models or libraries available for such purpose. These include jclouds3, Brooklyn4,
Scalr5, SeaClouds [24], and others. They provide a ‘least common denominator’
between the different APIs which, as already mentioned, is sufficient for many
cloud application developers whose intent does not exceed starting and stopping
instances. However, any need outside the least common denominator API, e.g.
billing, is not supported and needs to be addressed individually by the developer.
This obviously detracts from the value of such solutions.

3 http://jclouds.apache.org/.
4 https://brooklyn.incubator.apache.org/.
5 http://www.scalr.com/.

http://jclouds.apache.org/
https://brooklyn.incubator.apache.org/
http://www.scalr.com/

8 Y. Elkhatib

6.2 Migration

To port a workload between different cloud infrastructures, the options are cur-
rently as follows. One could package memory and disk state along with associ-
ated metadata onto a virtual disk image and transfer that across. This is the
most network expensive method as such ‘pre-baked VM images’ could be a few
gigabytes in size. In addition, different cloud providers accept different sets of
machine image formats.

An alternative is to use configuration management tools (CMTs), such as
Chef6 and Ansible7. These allow a developer to express in code what their appli-
cation needs in terms of number of instances and the software that needs to be
set on each instance. Despite quite promising in theory, they are not as deter-
ministic as one would want them to be as there are non-reconcilable differences
in the results achieved over varying operating systems [35]. Another hidden cost
is developer time: CMTs offer no error diagnosis or remediation support if the
desired execution environment is not produced. Instead, the developer has to
revert to manual modifications.

A third approach is to replace reliance on VMs by employing containers as
lightweight isolated execution environments. Despite being established in the
Linux community for years (cf. [29]), containers as a concept have gained signifi-
cant attention in recent months due to the rise of technologies such as Docker [21]
and Rocket8. These provide developers with very accessible and controlled means
of packaging and distributing software over lightweight OS-supported containers.
This is indeed very useful for testing and rolling out new services. However, they
are designed for immutable appliances and as such are not suitable for migrating
stateful appliances that are in operation. An alternative is MultiBox [14] which
utilises only Linux-native features to support minimalist containers to decouple
guest processes from the host machine. This offers a migration vehicle that is
completely independent of the CSP as long as they provide Linux VMs on top
of which MultiBox could operate.

7 Conclusion

Cloud computing offers great potential for building elastic and agile applications
in different sectors. There are additional challenges to capitalising on this poten-
tial for those wanting to deploy cloud applications under challenged network con-
ditions. In this paper, I focused specifically on the case of emerging economies.
I highlighted network latency as the main problem with such environments, and
I discussed how the design and implementation of cloud applications need to
be consequently changed. I then presented an overview of community clouds as
a feasible short-term solution for founding cloud infrastructures in a grassroots
fashion. Finally, I identified cross-cloud computing as the key future challenge in

6 https://www.chef.io/.
7 http://www.ansible.com/.
8 https://coreos.com/blog/rocket/.

https://www.chef.io/
http://www.ansible.com/
https://coreos.com/blog/rocket/

Building Cloud Applications for Challenged Networks 9

terms of breaking down the barriers between such grassroots deployments, and
also to open then up to the rest of the global cloud ecosystem.

Acknowledgments. The author is grateful for the organisers of the International
Workshop on Embracing Global Computing in Emerging Economies, and in particular
Dr. Ross Horne, for their invitation to present and discuss an earlier version of this
work. This work was supported in part by the CHIST-ERA Dionasys project grant
reference EP/M015734/1.

References

1. Cloud&Heat - the efficient cloud service. http://www.cloudandheat.com/
2. SPDY: An experimental protocol for a faster web. http://www.chromium.org/

spdy/spdy-whitepaper
3. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In:

Fifth IEEE/ACM International Workshop on Grid Computing, pp. 4–10, Novem-
ber 2004

4. Belshe, M.: More bandwidth doesn’t matter (much). Google Inc. (2010)
5. Brewer, E.: CAP twelve years later: how the “rules” have changed. Computer

45(2), 23–29 (2012)
6. Bruno, R., Ferreira, P.: SCADAMAR: Scalable and data-efficient internet mapre-

duce. In: Proceedings of the CrossCloud Brokers International Workshop, pp. 2:1–
2:6. ACM, December 2014

7. Cavage, M.: There’s just no getting around it: You’re building a distributed system.
Queue 11(4), 30–41 (2013)

8. Cheshire, S.: It’s the latency, stupid, May 1996. http://www.stuartcheshire.org/
rants/Latency.html

9. Claypool, M., Claypool, K.: Latency and player actions in online games. Commun.
ACM 49(11), 40–45 (2006)

10. Elkhatib, Y., Tyson, G., Welzl, M.: Can SPDY really make the web faster?. In:
Proceedings of IFIP International Conference on Networking, June 2014

11. Mahdavi, J., et al.: Enabling high performance data transfers. http://www.psc.
edu/index.php/networking/641-tcp-tune

12. Fall, K., McCanne, S.: You don’t know jack about network performance. Queue
3(4), 54–59 (2005)

13. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis. University of California, Irvine (2000)

14. Hadley, J., Elkhatib, Y., Blair, G.S., Roedig, U.: Multibox: lightweight containers
for vendor-independent multi-cloud deployments. In: Horne, R. (ed.): EGC 2015,
CCIS 514, pp. 1–12 (2015)

15. International Telecommunication Union. Recommendation G.114: One-way trans-
mission time, May 2003

16. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard,
R.L.: Networking named content. In: Proceedings of the 5th International Confer-
ence on Emerging Networking Experiments and Technologies, CoNEXT 2009, pp.
1–12. ACM (2009)

17. Jarschel, M., Schlosser, D., Scheuring, S., Hossfeld, T.: An evaluation of QoE in
cloud gaming based on subjective tests. In: International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 330–335, June
2011

http://www.cloudandheat.com/
http://www.chromium.org/spdy/spdy-whitepaper
http://www.chromium.org/spdy/spdy-whitepaper
http://www.stuartcheshire.org/rants/Latency.html
http://www.stuartcheshire.org/rants/Latency.html
http://www.psc.edu/index.php/networking/641-tcp-tune
http://www.psc.edu/index.php/networking/641-tcp-tune

10 Y. Elkhatib

18. Kohavi, R., Longbotham, R.: Online experiments: lessons learned. Computer
40(9), 103–105 (2007)

19. KPMG. Cloud survey report: Elevating business in the cloud, Octo-
ber 2014. http://www.kpmginfo.com/EnablingBusinessInTheCloud/downloads/
2014%20KPMG%20Cloud%20Survey%20Report%20-%20Final%2012-10-14.pdf

20. Lakshman, T., Madhow, U.: The performance of TCP/IP for networks with high
bandwidth-delay products and random loss. IEEE/ACM Trans. Netw. 5(3), 336–
350 (1997)

21. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)

22. Nah, F.F.-H.: A study on tolerable waiting time: how long are web users willing
to wait? Behav. Inf. Technol. 23(3), 153–163 (2004)

23. Papakos, P., Capra, L., Rosenblum, D.S.: VOLARE: Context-aware adaptive cloud
service discovery for mobile systems. In: Proceedings of the 9th International Work-
shop on Adaptive and Reflective Middleware, ARM 2010, pp. 32–38. ACM (2010)

24. Petcu, D., Di Nitto, E., Ardagna, D., Solberg, A., Casale, G.: Towards multi-clouds
engineering. In: 2014 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), April 2014

25. Popa, L., Ghodsi, A., Stoica, I.: HTTP as the narrow waist of the future internet.
In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
Hotnets-IX, pp. 6:1–6:6. ACM (2010)

26. Samreen, F., Blair, G.S., Rowe, M.: Adaptive decision making in multi-cloud man-
agement. In: Proceedings of the CrossCloud Brokers International Workshop, pp.
4:1–4:6. ACM, December 2014

27. Sat, B., Wah, B.W.: Analyzing voice quality in popular VoIP applications. IEEE
Multimed. 16(1), 46–59 (2009)

28. Semke, J., Mahdavi, J., Mathis, M.: Automatic TCP buffer tuning. ACM SIG-
COMM Comput. Commun. Rev. 28(4), 315–323 (1998)

29. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based
operating system virtualization: a scalable, high-performance alternative to hyper-
visors. ACM SIGOPS Operating Syst. Rev. 41(3), 275–287 (2007)

30. Tyson, G., Kaune, S., Miles, S., Elkhatib, Y., Mauthe, A., Taweel, A.: A trace-
driven analysis of caching in content-centric networks. In: Proceedings of the 21st
International Conference on Computer Communications and Networks (ICCCN
2012). IEEE, August 2012

31. Tyson, G., Sastry, N., Rimac, I., Cuevas, R., Mauthe, A.: A survey of mobility in
information-centric networks: Challenges and research directions. In: Proceedings
of the 1st ACM Workshop on Emerging Name-Oriented Mobile Networking Design
- Architecture, Algorithms, and Applications, NoM 2012, pp. 1–6. ACM (2012)

32. Vanbrabant, B., Joosen, W.: Configuration management as a multi-cloud enabler.
In: Proceedings of the CrossCloud Brokers International Workshop, pp. 1:1–1:3.
ACM, December 2014

33. Weigle, E., chun Feng, W.: A comparison of TCP automatic tuning techniques for
distributed computing. In: Proceedings of the IEEE HPDC, pp. 265–272 (2002)

34. Winstein, K., Balakrishnan, H.: TCP ex machina: Computer-generated congestion
control. ACM SIGCOMM Comput. Commun. Rev. 43(4), 123–134 (2013)

35. Zhu, L., Xu, D., Xu, X.S., Tran, A.B., Weber, I., Bass, L.: Challenges in practicing
high frequency releases in cloud environments. In: Secnd International Workshop
on Release Engineering, Mountain View, USA, pp. 21–24, April 2014

http://www.kpmginfo.com/EnablingBusinessInTheCloud/downloads/2014%20KPMG%20Cloud%20Survey%20Report%20-%20Final%2012-10-14.pdf
http://www.kpmginfo.com/EnablingBusinessInTheCloud/downloads/2014%20KPMG%20Cloud%20Survey%20Report%20-%20Final%2012-10-14.pdf

	Building Cloud Applications for Challenged Networks
	1 Introduction
	2 Problem Space
	3 Latency Is High, So What?
	4 Design Principles
	4.1 Application Signalling
	4.2 Data Exchange
	4.3 Data Repositories
	4.4 Communication Protocols

	5 Discussion
	5.1 Top-Down Approach
	5.2 Bottom-Up Approach

	6 Cross-Cloud Computing
	6.1 Entry
	6.2 Migration

	7 Conclusion
	References

