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Abstract A fundamental theorem of Laman characterises when a bar-joint framework
realised generically in the Euclidean plane admits a non-trivial continuous deformation of its
vertices. This has recently been extended in twoways. Firstly to frameworks that are symmet-
ric with respect to some point group but are otherwise generic, and secondly to frameworks in
Euclidean 3-space that are constrained to lie on 2-dimensional algebraic varieties. We com-
bine these two settings and consider the rigidity of symmetric frameworks realised on such
surfaces. First we establish necessary conditions for a framework to be symmetry-forced
rigid for any group and any surface by setting up a symmetry-adapted rigidity matrix for
such frameworks and by extending the methods in Jordán et al. (2012) to this new context.
This gives rise to several new symmetry-adapted rigidity matroids on group-labelled quotient
graphs. In the cases when the surface is a sphere, a cylinder or a cone we then also provide
combinatorial characterisations of generic symmetry-forced rigid frameworks for a number
of symmetry groups, including rotation, reflection, inversion and dihedral symmetry. The
proofs of these results are based on some new Henneberg-type inductive constructions on
the group-labelled quotient graphs that correspond to the bases of the matroids in question.
For the remaining symmetry groups in 3-space—as well as for other types of surfaces—we
provide some observations and conjectures.
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1 Introduction

A finite simple graph embedded into Euclidean space R
d with vertices interpreted as uni-

versal joints and edges as stiff bars is known as a bar-joint framework. We are interested in
establishing from the combinatorics of the graph when it is possible to deform such frame-
works. A framework is rigid if there is no edge-length preserving continuous motion of the
vertices which changes the distance between a pair of unconnected joints [2,7,36]. Deciding
the rigidity of a framework is typically an NP-hard problem [1]. One way around this is to
restrict attention to generic frameworks; that is, frameworkswhose vertex coordinates forman
algebraically independent set overQ. A fundamental result in rigidity theory is Laman’s the-
orem which gives a combinatorial characterisation of generic rigid frameworks in Euclidean
2-space [13]. Finding combinatorial characterisations of generic rigid bar-joint frameworks
in dimensions 3 and higher remains a key open problem in discrete geometry (see [36], for
example). However, very recently, Laman-type characterisations have been established for
generic rigid bar-joint frameworks in 3D whose joints are constrained to concentric spheres
or cylinders or to surfaces which have a one-dimensional space of tangential motions (e.g.,
the torus or surfaces of revolution) [17–19] (see also Theorem 3).

Over the last decade, a number of papers have studied when symmetry causes frameworks
on a graph to become infinitesimally flexible, or stressed, and when it has no impact. These
questions not only lead to many interesting and appealing mathematical results (see [10,
15,16,21,27,30,32,34], for example) but they also have a number of important practical
applications in biochemistry and engineering, sincemanynatural structures such asmolecules
and proteins, as well as many human-built structures such as linkages and other mechanical
machines, exhibit non-trivial symmetries (see [6,28,36], for example).

Of particular interest are symmetry-induced infinitesimalmotionswhich are fully symmet-
ric (in the sense that the velocity vectors are invariant under all symmetries of the framework),
because for symmetry-generic configurations (i.e., configurations which are as generic as
possible subject to the given symmetry constraints), the existence of a fully-symmetric infin-
itesimal motion guarantees the existence of a finite (i.e., continuous) motion which preserves
the symmetry of the framework throughout the path [11,26]. A symmetric framework which
has no non-trivial fully symmetric motion is said to be symmetry-forced rigid [10,15,16,32].

To detect fully symmetric infinitesimal motions in a symmetric framework, a symmetric
analog of the rigidity matrix, called the orbit rigidity matrix, has recently been constructed in
[30]. The orbit rigidity matrix of a framework with symmetry group S has one row for each
edge orbit, and one set of columns for each vertex orbit under the group action of S, and its
entries can explicitly be derived in a very simple and transparent fashion (see [30] for details).
The key properties of the orbit rigiditymatrix are that its kernel is isomorphic to the space of S-
symmetric infinitesimalmotions of the framework, and its co-kernel is isomorphic to the space
of S-symmetric self-stresses of the framework. Using the orbit rigidity matrix, combinatorial
characterisations of symmetry-forced rigid symmetry-generic frameworks have recently been
established for a number of symmetry groups in the plane (under the assumption that the
symmetry group acts freely on the framework joints) [10,15,16].

In this paper, we extend these concepts and some of these combinatorial results to sym-
metric frameworks in 3D whose joints are constrained to surfaces. The type of a surface
(see Definition 2) is the dimension of the space of tangential isometries. The combinatorial
descriptions, with or without symmetry, depend on this type.

In Sect. 5, we first establish an orbit rigidity matrix for such frameworks. We then adopt
the methods recently described in [10] and use this newmatrix to derive necessary conditions
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for symmetric frameworks on surfaces to be symmetry-forced rigid for any point groupwhich
is compatible with the given surface.

Furthermore, in Sects. 6, 7, 8 and 9 we use the orbit-surface rigidity matrix to derive
combinatorial characterisations of symmetry-forced rigid frameworks which are embedded
generically with inversive or certain improper-rotational (where an improper rotation is a
rotation followed by a reflection in a plane perpendicular to the rotation axis) or dihedral
symmetry on the sphere, with rotational, reflective or inversive symmetry on the cylinder
or with rotational, reflective, inversive or certain improper-rotational symmetry on the cone.
We prove the sufficiency of these combinatorial counts by first showing that a short list of
Henneberg-type inductive operations is sufficient to recursively generate all of the appropriate
classes of group-labeled quotient graphs (Sect. 7). Then we adapt results from [18,19,35] to
show that each of these operations preserves the maximality of the rank of the orbit-surface
rigidity matrix (Sect. 8). A summary of the results is given in Sect. 6. (See also the tables in
Sect. 10.)

We finish by providing a number of conjectures for some other groups and surfaces
(Sect. 10). In particular, we briefly discuss an alternative twofold rotational symmetry on the
cylinder: half turn symmetry with axis perpendicular to the cylinder. This situation induces
a symmetry-preserving motion in a framework that counts to be minimally rigid without
symmetry! For this case and some others we conjecture that the necessary counts we derived
here are sufficient.

2 Frameworks on surfaces

In [18,19] frameworks supported on surfaces were considered. In particular, attention was
paid to classical surfaces such as spheres, cylinders and cones. Formally, let M be a
2-dimensional irreducible algebraic variety embedded inR3.We expect that withminormod-
ifications our theorems and arguments can almost certainly be extended to certain reducible
varieties. However these varieties must have the special property (parallel planes, concentric
cylinders, etc.) that the dimension of the space of tangential isometries of M is the same as
in each irreducible component.

A framework on a surfaceM ⊆ R
3 is a pair (G, p), where G is a finite simple graph and

p : V (G) → M is amap such that p(i) �= p( j) for all {i, j} ∈ E(G).We also say that (G, p)
is a realisation of the underlying graph G in R

3 which is supported on M. For i ∈ V (G),
we say that p(i) is the joint of (G, p) corresponding to i , and for e = {i, j} ∈ E(G), we
say that the line segment between p(i) and p( j) is the bar of (G, p) corresponding to e. For
simplicity, we denote p(i) by pi for i ∈ V (G).

An infinitesimal motion of a framework (G, p) on a surfaceM is a sequence u of velocity
vectors u1, . . . , u|V (G)|, considered as acting at the framework joints, which are tangential
to the surface and satisfy the infinitesimal flex requirement in R

3, (ui − u j ) · (pi − p j ) = 0,
for each edge {i, j}. It is elementary to show that u is an infinitesimal motion if and only
if u lies in the nullspace (kernel) of the rigidity matrix RM(G, p) given in the following
definition. The submatrix of RM(G, p) given by the first |E(G)| rows provides the usual
rigidity matrix, R3(G, p) say, for the unrestricted framework (G, p) (see [36], for example).
The tangentiality condition corresponds to u lying in the nullspace of the matrix formed by
the last |V (G)| rows.

Definition 1 The rigidity matrix RM(G, p) of (G, p) on M is an |E(G)| + |V (G)| by
3|V (G)| matrix of the form
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[
R3(G, p)
N (p)

]
.

Consecutive triples of columns in RM(G, p) correspond to framework joints. R3(G, p) is the
usual rigidity matrix of (G, p), that is, the first |E(G)| rows of RM(G, p) correspond to the
bars of (G, p) and the entries in row e = {i, j} are zero except possibly in the column triples
for pi and p j , where the entries are the coordinates of pi − p j and p j − pi respectively. The
final |V (G)| rows of RM(G, p) (i.e. the rows of N (p)) correspond to the joints of (G, p)
and the entries in the row for vertex i are zero except in the columns for i where the entries
are the coordinates of a normal vector N (pi ) to M at pi .

An infinitesimal motion of a framework (G, p) onM is called trivial if it lies in the kernel
of RM(Kn, p), where Kn is the complete graph on the vertex set of G. If every infinitesimal
motion of (G, p) is trivial, then (G, p) is called infinitesimally rigid. Otherwise (G, p) is
called infinitesimally flexible.

Let Q(p) denote the field extension of Q formed by adjoining the coordinates of p. A
framework (G, p) on M is said to be generic for M if td [Q(p) : Q] = 2|V (G)|. This
implies, [8, Corollary 3.2], that any rational polynomial h(x) in 3|V (G)| variables that
satisfies h(p) = 0 satisfies h(q) = 0 for all points q ∈ M3|V (G)|.

A framework (G, p) supported on M is called regular if rank RM(G, p) = max{rank
RM(G, q) : q ∈ M|V (G)|}. If a framework on M is generic, then it is clearly also regular.
Moreover, if some realisation of a graph G on M is infinitesimally rigid, then the same is
true for every regular (and hence every generic) realisation of G on M.

Theorem 1 ([19]) A regular framework (G, p) on an algebraic surfaceM is infinitesimally
rigid if and only if it is continuously rigid on M.

Note that the complete graphs K2 and K3 provide curiosities when M is a cylinder in
that they are continuously rigid but have non-trivial vectors in their nullspaces which are not
tangential isometries. For graphswith |V (G)| ≥ 6−k on a surface of type k (see Definition 2)
such worries disappear and both possible definitions of infinitesimal rigidity are equivalent.

Definition 2 A surfaceM is said to be of type k if dim ker RM(Kn, p) ≥ k for all complete
graph frameworks (Kn, p) on M and k is the largest such number.

In other words k is the dimension of the groupΓ of Euclidean isometries supported byM.
A framework on a surfaceM is called isostatic if it is minimally infinitesimally rigid, that

is, if it is infinitesimally rigid and the removal of any bar results in an infinitesimally flexible
framework. The following three results concerning generic isostatic frameworks on surfaces
were recently established in [18,19].

Theorem 2 Let (G, p) be an isostatic generic framework on the algebraic surface M of
type k, 0 ≤ k ≤ 3, with G not equal to K1, K2, K3 or K4. Then |E(G)| = 2|V (G)| − k and
for every subgraph H of G with at least one edge, |E(H)| ≤ 2|V (H)| − k.

Lemma 1 Let (G, p) be a regular framework on a surface M of type k. Then (G, p) is
isostatic on M if and only if

1. rank RM(G, p) = 3|V (G)| − k and
2. 2|V (G)| − |E(G)| = k.

A graph G is called (2, k)-sparse if for every subgraph H of G, with at least one edge,
we have |E(H)| ≤ 2|V (H)| − k. A (2, k)-sparse graph satisfying |E(G)| = 2|V (G)| − k is
called (2, k)-tight.
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Theorem 3 Let G be a simple graph, let M be an irreducible algebraic surface in R
3 of

type k ∈ {1, 2} and let (G, p) be a generic framework onM. Then (G, p) is isostatic onM
if and only if G is K1, K2, K3, K4 or is (2, k)-tight.

We remark that for type k = 3, it was shown in [23,31] that Laman’s theorem [13] applies
to the sphere. It is an open problem to characterise generic isostatic frameworks on surfaces
of type k = 0. In particular, the natural analogue of Theorem 3 is known to be false. The graph
formed from K5 by adding a degree 2 vertex gives an example of a (2, 0)-tight simple graph
that is flexible on any such surface. Due to this complication, we will consider symmetric
analogues of Laman’s theorem for surfaces of type k > 0 only in this paper.

We finish this section by defining a stress for a framework on M. Stresses and stress
matrices have been used to some effect in a variety of aspects of rigidity theory (e.g. [4,5,35]).
Very recently the analogous properties of stresses for frameworks on surfaces have been
developed [9]. We record the definition here as it will be useful for us in what follows.

Definition 3 A (self)-stress for (G, p) on M is a pair (ω, λ) such that (ω, λ) ∈
coker RM(G, p), that is, a vector (ω, λ) ∈ R

|E(G)|+|V (G)| such that (ω, λ)T RM(G, p) = 0.
Equivalently, ω is a stress if for all 1 ≤ i ≤ |V (G)|

∑
{i, j}∈E(G)

ωi j (pi − p j ) + λi N (pi ) = 0.

3 Symmetric graphs

In this section we review some basic properties of symmetric graphs. In particular, we
introduce the notion of a ‘gain graph’ which is a useful tool to describe the underlying
combinatorics of symmetric frameworks (see also [10,22,29], for example).

3.1 Quotient gain graphs

Given a group S, an S-gain graph is a pair (H, ψ), where H is a directed multi-graph (which
may contain |S| − 1 loops at each vertex and up to |S| multiple edges between any pair
of vertices) and ψ : E(H) → S is a map which assigns an element of S to each edge of
H . The map ψ is also called the gain function of (H, ψ) (see Fig. 1b, d) for examples of
C2-gain graphs). A gain graph is a directed graph, but its orientation is only used as a reference
orientation, and may be changed, provided that we also modify ψ so that if an edge has gain
x in one orientation, then it has gain x−1 in the other direction. Note that if S is a group of
order 2, then the orientation is irrelevant. For simplicity, we omit the labels of edges with
identity gain in the figures.

Let G be a finite simple graph. An automorphism of G is a permutation π of the vertex
set V (G) of G such that {i, j} ∈ E(G) if and only if {π(i), π( j)} ∈ E(G). The set of
all automorphisms of G forms a group, called the automorphism group Aut(G) of G. An
action of a group S on G is a group homomorphism θ : S → Aut(G). If θ(x)(i) �= i for all
i ∈ V (G) and all non-trivial elements x of the group S, then the action θ is called free. If S
acts on G by θ , then we say that the graph G is S-symmetric (with respect to θ ). Throughout
this paper, we only consider free actions, and we will omit to specify the action θ if it is clear
from the context. In that case, we write xv instead of θ(x)(v).
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Fig. 1 C2-symmetric graphs (a, c) and their quotient gain graphs (b, d), where C2 denotes half-turn symmetry

For an S-symmetric graph G, the quotient graph G/S is the multi-graph which has the
set V (G)/S of vertex orbits as its vertex set and the set E(G)/S of edge orbits as its edge
set. Note that an edge orbit may be represented by a loop in G/S.

While several distinct graphs may have the same quotient graph, a gain labeling makes
the relation one-to-one, up to equivalence for the gain function (see Sect. 3.2), provided that
the underlying action is free. To see this, choose an arbitrary representative vertex i for each
vertex orbit, so that each vertex orbit has the form Si = {xi |x ∈ S}. If the action is free, an
edge orbit connecting Si and Sj can be written as {{xi, xx ′ j}|x ∈ S} for a unique x ′ in S.
We then orient the edge orbit from Si to Sj in G/S and assign it the gain x ′. This gives the
quotient S-gain graph (G/S, ψ).

Conversely, let (H, ψ) be an S-gain graph. For x ∈ S and i ∈ V (H), we denote the pair
(x, i) by xi . The covering graph (or lifted graph) of (H, ψ) is the simple graphwith vertex set
S × V (H) = {xi |x ∈ S, i ∈ V (H)} and edge set {{xi, xψ(e) j}|x ∈ S, e = (i, j) ∈ V (H)}.
Clearly, S acts freely on the covering graph with the action θ defined by θ(x) : i 	→ xi for
x ∈ S under which the quotient comes back to (H, ψ).

The map c : G → H defined by c(xi) = i and c({xi, xψ(e) j}) = (i, j) is called
a covering map. The fiber c−1(i) of a vertex i ∈ V (H) and the fiber c−1(e) of an edge
e ∈ E(H) coincide with a vertex orbit and edge orbit of G, respectively.

3.2 Balanced gain graphs and the switching operation

Let (H, ψ) be an S-gain graph, and let W = e1, e2, . . . , ek, e1 be a closed walk in (H, ψ),
where ei ∈ E(H) for all i . We define the gain of W as ψ(W ) = ψ(e1) · ψ(e2) · · · ψ(ek) if
each edge is oriented in the forward direction, and if an edge ei is directed backwards, then
we replace ψ(ei ) by ψ(ei )−1 in the product. (If S is an additive group, then we replace the
product by the sum.) Note that for abelian groups, the gain of a closed walk is independent
of the choice of the starting vertex. However, this is of course not the case for non-abelian
groups.

For v ∈ (H, ψ), we denote byW(H, v) the set of closed walks starting at v. Similarly, if
F ⊆ E(H) and v ∈ V (H), then W(F, v) denotes the set of closed walks starting at v and
using only edges of F , where W(F, v) = ∅ if v is not incident to an edge of F .

For F ⊆ E(H), the subgroup induced by F relative to v is defined as 〈F〉ψ,v =
{ψ(W )|W ∈ W(F, v)}. We will sometimes omit the subscript ψ of 〈F〉ψ,v if it is clear
from the context.

For any connected F ⊆ E(H), we say that F is balanced if 〈F〉v = {id} for some
v ∈ V (F), and unbalanced otherwise. By [10, Proposition 2.1], this property is invariant
under the choice of the base vertex v ∈ V (F), and F is unbalanced if and only if F contains an
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unbalanced cycle. So we may extend this notion to any (possibly disconnected) F ⊆ E(H),
and call F unbalanced if F contains an unbalanced cycle.

If S is of order 2, then we will think of S as the group Z2 = {0, 1} with addition as the
group operation. So a subgraph of a Z2-gain graph (H, ψ) will be unbalanced if and only if
it contains a cycle with gain 1. Note that a Z2-gain graph is commonly known as a signed
graph in the literature [37,38]. Let v be a vertex in an S-gain graph (H, ψ). To switch v with
x ∈ S means to change the gain function ψ on E(H) as follows:

ψ ′(e) =

⎧⎪⎪⎨
⎪⎪⎩

x · ψ(e) · x−1 if e is a loop incident with v;
x · ψ(e) if e is a non-loop incident from v;
ψ(e) · x−1 if e is a non-loop incident to v;
ψ(e) otherwise.

In particular, if we switch a vertex v in a Z2-gain graph (H, ψ) with 0, then the gain function
ψ remains unchanged, and if we switch v with 1, then the gain of every non-loop edge that
is incident with v changes its gain from 0 to 1 or vice versa, and the gains of all other edges
remain the same.

We say that a gain function ψ ′ is equivalent to another gain function ψ on the same edge
set if ψ ′ can be obtained from ψ by a sequence of switching operations.

In the following, we summarise some key properties of the switching operation. Detailed
proofs of these results for an arbitrary discrete symmetry group S can be found in [10]. For
the special case of signed graphs, these theorems were first proved by Zaslavsky in the 1980s
[38].

Proposition 1 ([10, Prop. 2.2]) Switching a vertex of an S-gain graph (H, ψ) does not alter
the balance of (H, ψ).

Proposition 2 ([10, Prop. 2.3 and Lemma 2.4]) An S-gain graph (H, ψ) is balanced if and
only if the vertices in V (H) can be switched so that every edge in the resulting S-gain graph
(H, ψ ′) has the identity element of S as its gain.

Lemma 2 ([10, Lemma 2.5]) Let (G, ψ) be an S-gain graph, and let U ⊆ V (G) and
W ⊆ V (G) be subsets of V (G). Further, let H be the signed subgraph of (G, ψ) induced by
U, and let K be the signed subgraph of (G, ψ) induced by W, and suppose that H, K and
H ∩ K is connected. If H and K are balanced, then H ∪ K is also balanced.

4 Symmetric frameworks on surfaces

Let M ⊆ R
3 be a surface, let G be a finite simple graph, and let p : V (G) → M. A

symmetry operation of the framework (G, p) on M is an isometry x of R3 which maps M
onto itself (i.e., x is a symmetry of M) such that for some αx ∈ Aut(G), we have

x(pi ) = pαx (i) for all i ∈ V (G).

The set of all symmetry operations of a framework (G, p) on M forms a group under
composition, called the point group of (G, p). Clearly, we may assume w.l.o.g. that the point
group of a framework is always a symmetry group, i.e., a subgroup of the orthogonal group
O(Rd).

We use the Schoenflies notation for the symmetry operations and symmetry groups con-
sidered in this paper, as this is one of the standard notations in the literature about symmetric
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p1 p4

p2 p3
s

(a)

p1 p3

p2 p4
s

(b)

Fig. 2 Realisations of the cycle graph C4 in RM
(C4,Cs ) of different types, where M is the Euclidean plane

and Cs = {id, s} is the reflection group. The framework in (a) is of type θa , where θa : Cs → Aut(C4) is
the homomorphism defined by θa(s) = (1 4)(2 3), and the framework in (b) is of type θb , where θb : Cs →
Aut(C4) is the homomorphism defined by θb(s) = (1 3)(2 4)

structures (see [3,6,11,12,26,29], for example). In particular, Cs is a group of order 2 gen-
erated by a single reflection s, and Cm , m ≥ 1, is a cyclic group generated by a rotation Cm

about an axis through the origin by an angle of 2π
m . (See also Sect. 6.)

Given a surface M, a symmetry group S and a graph G, we let RM
(G,S) denote the set of

all realisations of G onMwhose point group is either equal to S or contains S as a subgroup
[24,25]. In other words, the set RM

(G,S) consists of all realisations (G, p) of G in R
3 which

are supported on M and for which there exists an action θ : S → Aut(G) so that

x
(
p(i)

) = p(θ(x)(i)) for all i ∈ V (G) and all x ∈ S. (4.1)

A framework (G, p) ∈ RM
(G,S) satisfying the equations in (4.1) for the map θ : S → Aut(G)

is said to be of type θ , and the set of all realisations inRM
(G,S) which are of type θ is denoted

by RM
(G,S,θ) (see again [24,25]; Fig. 2). It is shown in [25] that if p is injective, then (G, p)

is of a unique type θ and θ is necessarily also a homomorphism (see Fig. 3 for an example).
Let S be an abstract group, and G be an S-symmetric graph with respect to a free action

θ : S → Aut(G). Suppose also that S acts on R
d via a homomorphism τ : S → O(Rd).

Then we say that a framework (G, p) on a surfaceM is S-symmetric (with respect to θ and
τ ) if (G, p) ∈ RM

(G,τ (S),θ), that is, if

τ(x)(p(i)) = p(θ(x)i) for all x ∈ S and all i ∈ V (G).

For simplicity, we will assume throughout this paper that a framework (G, p) ∈ RM
(G,S,θ)

has no joint that is ‘fixed’ by a non-trivial symmetry operation in S (i.e., (G, p) has no joint
pi with x(pi ) = pi for some x ∈ S, x �= id). In particular, this will simplify the construction
of the orbit-surface rigidity matrix in the next section, since in this case this matrix has a set
of 3 columns for each orbit of vertices under the action θ .

Let QS denote the field extension of Q formed by adjoining the entries of all the matrices
in S toQ. We say that a framework (G, p) inRM

(G,S,θ) with quotient S-gain graph (G0, ψ) is
S-generic if td [QS(p) : QS] = 2|V (G0)|. This implies that the only polynomial equations
in 3|V (G)| variables that evaluate to zero at p are those that define S orM. This is the natural
extension of the definitions of generic seen in the literature [8,10,19].

4.1 Symmetry-forced rigidity and the orbit-surface rigidity matrix

Given an S-symmetric framework (G, p) on a surface M, we are interested in non-trivial
motions of (G, p) on M which preserve the symmetry group S of (G, p) throughout the
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(a) (b)

Fig. 3 Realisations of the cube graph Q3 in RM
(Q3,S)

where M is a cylinder and S is (a) Cs with mirror
orthogonal to the axis of the cylinder and (b) C4 with the 4-fold rotation around the axis of the cylinder. The
grey joints are at the ‘back’ of the cylinder

path. Infinitesimal motions corresponding to such symmetry-preserving continuous motions
are ‘S-symmetric infinitesimal motions’ (see also [10,29,30]):

An infinitesimal motion u of a framework (G, p) in RM
(G,S,θ) is S-symmetric if

x
(
ui

) = uθ(x)(i) for all i ∈ V (G) and all x ∈ S,

i.e., if u is unchanged under all symmetry operations in S (Fig. 4). Note that all the velocity
vectors ui , considered as acting at the framework joints, are of course tangential to the surface
M.

We say that (G, p) ∈ RM
(G,S,θ) is S-symmetric infinitesimally rigid if every S-symmetric

infinitesimal motion is trivial. Note that the dimension of the space of trivial S-symmetric
infinitesimal motions, denoted by kS , can easily be read off from the character table for S
(see [3], for example).

Recall that the type k of a surface M is the dimension of the group of isometries of
R
3 acting tangentially to M. Analogously, we call the dimension of the space of trivial

S-symmetric infinitesimal motions, kS , the symmetric type of M.
A self-stress (ω, λ) ∈ R

|E(G)|+|V (G)| of (G, p) is S-symmetric if ωe = ω f whenever e
and f belong to the same edge orbit Se = {xe| x ∈ S} of G, and λi = λ j whenever i and j
belong to the same vertex orbit Si = {xi | x ∈ S} of G.

In Euclidean space, a key tool to study symmetric infinitesimal motions is the orbit rigidity
matrix. This matrix is defined as follows (see also [30]):

Definition 4 Let (G, p) be an S-symmetric framework (with respect to θ and τ ) in Euclidean
3-space which has no joint that is ‘fixed’ by a non-trivial symmetry operation in S. Further, let
(G0, ψ) be the quotient S-gain graph of (G, p). For each edge e ∈ E(G0), the orbit rigidity
matrix O(G, p, S) of (G, p) has the following corresponding (3|V (G0)|-dimensional) row
vector.

123



Geom Dedicata

p4

p1 p2

p3

(a)

p1 p4

p2 p3

(b)

p1 p4

p2 p3

(c)

Fig. 4 Infinitesimal motions of frameworks in the Euclidean plane: a a C2-symmetric non-trivial infinitesimal
motion; b a Cs -symmetric trivial infinitesimal motion; c a non-trivial infinitesimal motion which is not Cs -
symmetric

Case 1 Suppose e = (i, j), where i �= j . Then the corresponding row in O(G, p, S) is:

( i j

0 . . . 0
(
pi − τ(ψ(e))(p j )

)
0 . . . 0

(
p j − τ(ψ(e))−1(pi )

)
0 . . . 0

)
.

Case 2 Suppose e = (i, i) is a loop in (G0, ψ). Then ψ(e) �= id and the corresponding row
in O(G, p, S) is:

( i

0 . . . 0
(
2pi − τ(ψ(e))(pi ) − τ(ψ(e))−1(pi )

)
0 . . . 0

)
.

Using the above definition of the orbit rigiditymatrix for frameworks in Euclidean 3-space,
we can easily set up the orbit-surface rigidity matrix as follows.

Definition 5 Let (G, p) be a framework inRM
(G,S,θ) with quotient S-gain graph (G0, ψ). The

orbit-surface rigidity matrix OM(G, p, S) of (G, p) is the (|E(G0)|+|V (G0)|)×3|V (G0)|
block matrix [

O(G, p, S)

N0(p0)

]

where O(G, p, S) is the standard orbit rigiditymatrix for the framework and symmetry group
considered in R

3 (see Definition 4) and N0(p0) represents the block-diagonalised matrix of
surface normals to the framework joints corresponding to the vertices of G0.

A framework (G, p) ∈ RM
(G,S,θ) is S-regular if OM(G, p, S) has maximal rank among

all realisations inRM
(G,S,θ). Note that if a framework onM is S-generic, then it is clearly also

S-regular, and if some S-symmetric realisation of a graph G is S-symmetric infinitesimally
rigid, then the same is true for every S-regular realisation of G.

An S-gain graph (G0, ψ) is S-independent if OM(G, p, S) has linearly independent rows
and S-dependent otherwise. Clearly, if (G, p) is S-isostatic (i.e., minimally S-symmetric
infinitesimally rigid) then (G0, ψ) is S-independent. The following lemma is an easy exercise.

Lemma 3 Let M be a surface with symmetric type kS with respect to a symmetry group S.
Let NM(G, p, S) be the nullspace of OM(G, p, S). Then dim NM(G, p, S) ≥ kS.

The following result summarises the key properties of the orbit-surface rigidity matrix:

123



Geom Dedicata

Theorem 4 Let (G, p) be a framework inRM
(G,S,θ). Then the solutions to OM(G, p, S)u = 0

are isomorphic to the space of S-symmetric infinitesimal motions of (G, p). Moreover, the
solutions to (ω, λ)T OM(G, p, S) = 0 are isomorphic to the space of S-symmetric self-
stresses of (G, p).

Proof This follows immediately from the corresponding result for the orbit rigidity matrix
in Euclidean 3-space [30, Theorem 6.1 and Theorem 8.3].

For example, it was shown in [30, Theorem 6.1] that a vector u lies in the kernel of the orbit
rigidity matrix O(G, p, S) if and only if u is the restriction of an S-symmetric infinitesimal
motion of (G, p) to the joints corresponding to the vertices of the quotient S-gain graph of
G. Therefore, a vector u lies in the kernel of the orbit-surface rigidity matrix OM(G, p, S)

if and only if u is in the kernel of O(G, p, S) and the velocity vectors of u are tangential
to the surface M. Moreover this holds if and only if u is the restriction of an S-symmetric
infinitesimal motion of (G, p) onM to the joints corresponding to the vertices of the quotient
S-gain graph of G.

Similarly, the proof of [30, Theorem 8.3] can easily be adapted to show that the solutions
to (ω, λ)T OM(G, p, S) = 0 are isomorphic to the space of S-symmetric self-stresses of
(G, p). ��

An S-symmetric framework (G, p) is S-symmetric rigid if every S-symmetric continuous
motion is a rigid motion of M.

It is an easy extension of [2] (see also [19,26]) to show that for S-regular realisations, a
symmetric infinitesimal motion implies a continuous symmetry preserving motion. Thus we
have the following.

Theorem 5 Let (G, p) be an S-regular framework inRM
(G,S,θ). Then (G, p) is S-symmetric

infinitesimally rigid on M if and only if (G, p) is S-symmetric rigid on M.

5 Necessary conditions for symmetry-forced rigidity

We now establish analogues of Maxwell’s theorem, showing combinatorial counts that must
be satisfied by any S-regular S-isostatic framework in RM

(G,S,θ). We need the following
definition (see also [10,29]).

Definition 6 Let (H, ψ) be an S-gain graph and let k, 
,m be nonnegative integers with
m ≤ 
. Then (H, ψ) is called (k, 
,m)-gain-sparse if

– |F | ≤ k|V (F)| − 
 for any nonempty balanced F ⊆ E(H);
– |F | ≤ k|V (F)| − m for any nonempty F ⊆ E(H).

A (k, 
,m)-gain-sparse graph (H, ψ) satisfying |F | = k|V (F)| − m is called (k, 
,m)-
gain-tight. Similarly, an edge set E is called (k, 
,m)-gain-sparse ((k, 
,m)-gain-tight) if it
induces a (k, 
,m)-gain-sparse ((k, 
,m)-gain-tight) graph.

We first establish a necessary condition for a framework in RM
(G,S,θ) to be S-isostatic.

Theorem 6 LetM be an irreducible algebraic surface of type k. Let S be a symmetry group
ofR3 acting onM such that under S,M has type kS. Let (G, p) be an S-isostatic framework
in RM

(G,S,θ) with quotient S-gain graph (G0, ψ). Then (G0, ψ) is (2, k, kS)-gain-tight.
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Proof First observe that if there exists an unbalanced subgraph (H, ψ) of (G0, ψ) with
|E(H)| > 2|V (H)| − kS , then Lemma 3 implies that there is a row dependence in the orbit-
surface matrix for that subgraph. Similarly, we must have |E(G0)| = 2|V (G0)| − kS . So it
remains to check that if F ⊆ E(G0) is balanced, then |F | ≤ 2|V (F)| − k.

Claim Switching a vertex does not change the rank of the orbit-surface matrix.

Proof Let v be the vertex we will switch with gain α, let e = (u, v) be an edge, oriented
into v, with gain ψ(e) and let f = (v, v) be a loop on v with gain ψ( f ). Define p′

i = pi for
all v ∈ V (G0) − v and p′

v = τ(α)pv , and let ψ ′ be the gain function obtained from ψ by
switching v with α.

To prove the claim it suffices to show that the submatrix corresponding to the rows for
e, f and the row for v has the same rank in OM(G, p′, S) and in OM(G, p, S).

In OM(G, p′, S) we have
⎡
⎣0 . . . 0 p′

u − τ(ψ ′(e))p′
v 0 . . . 0 p′

v − τ(ψ ′(e))−1 p′
u 0 . . . 0

0 . . . 0 2p′
v − τ(ψ ′( f ))p′

v − τ(ψ ′( f ))−1 p′
v 0 . . . 0

0 . . . 0 N0(p
′
v) 0 . . . 0

⎤
⎦ .

Since ψ ′(e) = ψ(e)α−1 and ψ ′( f ) = αψ( f )α−1 this is
⎡
⎢⎣
0 . . . 0 pu − τ(ψ(e)α−1)τ (α)pv 0 . . . 0 τ(α)pv − τ(ψ(e)α−1)−1 pu 0 . . . 0
0 . . . 0 2τ(α)pv − τ(αψ( f )α−1)τ (α)pv − τ(αψ( f )α−1)−1τ(α)pv 0 . . . 0
0 . . . 0 N0(τ (α)(pv)) 0 . . . 0

⎤
⎥⎦ ,

which simplifies (after scaling the third row if necessary) to
⎡
⎣0 . . . 0 pu − τ(ψ(e))pv 0 . . . 0 τ(α)(pv − τ(ψ(e))−1 pu) 0 . . . 0
0 . . . 0 τ(α)(2pv − τ(ψ( f ))pv − τ(ψ( f ))−1 pv) 0 . . . 0
0 . . . 0 τ(α)(N0(pv)) 0 . . . 0

⎤
⎦ ,

since N0(τ (α)(pv)) is equal to a scalar multiple of τ(α)(N0(pv)). To see this, recall that
N0(pv) is a normal vector to M at the point pv . Since τ(α) is an isometry of R

3, and
τ(α) maps M onto itself, it maps the tangent plane to M at pv to the tangent plane to
τ(α)(M) = M at τ(α)(pv). Thus, τ(α)(N0(pv)) is again a normal vector to M (with a
possibly different magnitude), namely at the point τ(α)(pv).

By applying column operations to the triple for pv we turn this matrix into the submatrix
of OM(G, p, S) and hence the ranks are indeed the same. ��

Now suppose there exists a balanced edge set F ⊆ E(G0)with |F | > 2|V (F)|−k. Then,
by the above Claim, we may switch the vertices of the graph induced by F so that every edge
gain in this subgraph is the identity element of S. The submatrix of OM(G, p, S) consisting
of all those rows which correspond to the edges and vertices of the subgraph induced by F is
a standard surface rigidity matrix. Since |F | > 2|V (F)| − k, it follows from Lemma 1 that
this matrix has a row dependence, a contradiction. ��

We remark that the sparsity condition for unbalanced subgraphs is simpler than the reader
mayhave anticipated. Formost non-cyclic groupswe canderive stronger necessary conditions
by taking greater care to deal with the different possible subgroups 〈F〉ψ,v induced by F
(recall Sect. 3.2).

For example, if M is the unit sphere and S is a dihedral group Dm , then it is possible
that for some subset of edges F of the Dm-gain graph, the group 〈F〉v is neither trivial nor
the entire group Dm , but the cyclic subgroup Cm of Dm . In that case, we need to adjust the
number kDm = 0 to k〈F〉v = 1 in the sparsity count for F , where k〈F〉v is the dimension of
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the space of isometries of R3 which act tangentially on the unit sphere and are symmetric
with respect to the group 〈F〉v = Cm . With this in mind, the following is proved similarly to
Theorem 6 (see, also, [10, Lemma 5.2]).

Theorem 7 Let M be an irreducible algebraic surface of type k. Let S be a non-cyclic
symmetry group of R3 acting on M such that M has type kS under S. Let (G, p) be an S-
isostatic framework in RM

(G,S,θ) with quotient S-gain graph (G0, ψ). Then (G0, ψ) satisfies

1. |E(G0)| = 2|V (G0)| − kS,
2. |F | ≤ 2|V (F)| − k〈F〉v for all F ⊆ E(G0) and all v ∈ V (F).

6 Combinatorial characterisations of generic rigidity

In the rest of this paper we will consider the more substantial problem of proving these counts
are sufficient to guarantee that a symmetric framework supported on a surface is symmetry-
forced isostatic. We will focus on three classical surfaces in 3-space, namely the sphere, the
cylinder and the cone. That is

– the unit sphere S centered at the origin, defined by the equation x2 + y2 + z2 = 1;
– the unit cylinder Y = S1 × R about the z-axis, defined by the equation x2 + y2 = 1;
– the unit cone C about the z-axis, defined by the equation x2 + y2 = z2.

In the Schoenflies notation, the relevant symmetry groups which are compatible with each
of these surfaces are Cs , Cm , Ci , Cmv , Cmh ,Dm ,Dmh ,Dmd and S2m . As defined in Sect. 4, Cs is
generated by a single reflection s, and Cm , m ≥ 1, is a group generated by an m-fold rotation
Cm . Ci is the group generated by an inversion, Cmv is a dihedral group that is generated by a
rotation Cm and a reflection whose reflectional plane contains the rotational axis of Cm , and
Cmh is generated by a rotationCm and the reflection whose reflectional plane is perpendicular
to the axis of Cm . Further, Dm denotes a symmetry group that is generated by a rotation Cm

and another 2-fold rotation C2 whose rotational axis is perpendicular to the one of Cm . Dmh

and Dmd are generated by the generators Cm and C2 of a group Dm and by a reflection s. In
the case ofDmh , the mirror of s is the plane that is perpendicular to the Cm axis and contains
the origin (and hence contains the rotational axis of C2), whereas in the case of Dmd , the
mirror of s is a plane that contains the Cm axis and forms an angle of π

m with the C2 axis.
Finally, S2m is a symmetry group which is generated by a 2m-fold improper rotation (i.e., a
rotation by π

m followed by a reflection in the plane which is perpendicular to the rotational
axis).

6.1 The sphere

Although it has not previously been stated, by combining results of [10,31], the following
theorem is immediate.

Theorem 8 (Rotation, reflection or dihedral symmetry on the sphere) Let S be the group Cm
representing m-fold rotational symmetry or the group Cs representing reflectional symmetry
about a plane through the origin. Let (G, p) be an S-generic framework in RS

(G,S,θ) with
quotient S-gain graph (G0, ψ). Then (G, p) is S-isostatic if and only if (G0, ψ) is (2, 3, 1)-
gain-tight.

Moreover, if S is a dihedral group Cmv , where m is odd, then (G, p) is S-isostatic if and
only if G0 is ‘maximum D-tight’ (as defined in [10, Def. 7.1]), i.e., if G0 satisfies conditions
1 and 2 in Theorem 7.
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Proof Let S be one of the groups listed above. We may think of an S-symmetric framework
(G, p) supported on the unit sphere as the ‘coned framework’ (G ∗0, p∗), where (G ∗0, p∗)
is the framework obtained from (G, p) by adding a new joint p0 at the origin (i.e., the centre
of the sphere) which is linked to every joint of (G, p) by a bar. We may now invert vertex
orbits (under the symmetry group S of (G ∗ 0, p∗)) so that we obtain a framework on the
upper half-sphere, and then project (gnomonically) the resulting framework from the origin
to the plane z = 1. Note that this yields a framework (G, q) in the plane which also has
symmetry S. Moreover, as shown in [30], the S-symmetric infinitesimal rigidity properties
of (G ∗ 0, p∗) and (G, q) are the same. Therefore, the result follows directly from [10,
Theorems 6.3 and 8.2] and [31, Theorems 3.7 and 6.2]. ��

We note that in the cases of rotation and reflection symmetry groups, the proof techniques
we employ below can easily be adapted to give direct inductive proofs of these results (see
also [29]). We leave the details to the reader. We also point out that for these non-dihedral
groups, we could also prove the theorem using [15, Theorems 3 and 4].

Note that for dihedral groups of the form Cmv , where m is even, there does not exist a
combinatorial characterisation of symmetry-generic symmetry-forced rigid frameworks in
the plane. For example, it was shown in [10] that Bottema’s mechanism (a realisation of
the complete bipartite graph K4,4 with C2v symmetry in the plane) is falsely predicted to be
C2v-symmetric infinitesimally rigid by the sparsity counts for the orbit rigidity matrix. Thus,
the corresponding results for the sphere also remain open.

In general, for any point group S of a framework on the sphere, except for the groups
Cm , Cs , Ci , Cmh and S2m there are no tangential isometries (i.e., no rotations) which are S-
symmetric. Thus, for those groups, we need to cope with the (2, 3, 0)-gain-sparsity count to
establish characterisations for symmetry-forced rigidity on the sphere. This is a significant
obstacle, as it was recently observed that this gain-sparsity count is in general not matroidal
[10].

For the group Ci , we will prove the following theorem in the subsequent sections.

Theorem 9 (Inversion symmetry on the sphere) Let S be the group Ci representing inversion
symmetry. Let (G, p) be an S-generic framework in RS

(G,S,θ) with quotient S-gain graph
(G0, ψ). Then (G, p) is S-isostatic if and only if (G0, ψ) is (2, 3, 3)-gain-tight.

Note that the covering graph of a (2, 3, 3)-gain-tight graph is not (2, 3)-tight. For example,
for the group Ci , a triangle whose edges all have trivial gains lifts to the disjoint union of two
triangles. By Theorem 9, a Ci -generic realisation of this graph on the sphere is Ci -isostatic.

For the groups Cmh , wherem is odd, and S2m , wherem is even, wewill prove the following
theorem in the subsequent sections.

Theorem 10 (Improper rotational symmetry on the sphere) Let S be the group Cmh, where
m is odd, or S2m, where m is even. Let (G, p) be an S-generic framework in RS

(G,S,θ) with
quotient S-gain graph (G0, ψ). Then (G, p) is S-isostatic if and only if (G0, ψ) is (2, 3, 1)-
gain-tight.

For the remaining groups Cmh , wherem is even, and S2m , wherem is odd, we will provide
the corresponding conjectures in Sect. 10. (See also Table 1.) Note that these groups contain
the group Ci as a subgroup (whereas Cmh , wherem is odd, and S2m , wherem is even, do not).
Thus, we need to consider gain-sparsity counts which depend on the groups 〈F〉v induced by
edge subsets F of the gain graph G0, since there is only a 1-dimensional space of rotations
which is symmetric with respect to the subgroups Cs , Cm , Cm′h , or S2m′ , but there is a 3-
dimensional space of rotations which is symmetric with respect to the inversion subgroup Ci .
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Table 1 Summary of counts for the various symmetry groups on the sphere S

Group Necessary count Sufficient?

Cs (2, 3, 1)-gain-tight Theorem 8

Cm (2, 3, 1)-gain-tight Theorem 8

Ci (2, 3, 3)-gain-tight Theorem 9

Cmv , m odd maximum D-tight Theorem 8

Cmv , m even maximum D-tight No, see [10]

Cmh , m odd (2, 3, 1)-gain-tight Theorem 10

Cmh , m even (2, 3, 1)i -gain-tight Conjecture 1

S2m , m odd (2, 3, 1)i -gain-tight Conjecture 1

S2m , m even (2, 3, 1)-gain-tight Theorem 10

Dm (2, 3, 0)r -gain-tight ?

Dmh Theorem 7 ?

Dmd Theorem 7 ?

T ,Th ,Td ,O,Oh ,I,Ih , Theorem 7 ?

6.2 The cylinder

We now consider the case of the surface being a cylinder. Note that the cylinder has point
group symmetry D∞h , and hence the possible point groups of frameworks on the cylinder
are Cs , Cm (with the rotational axis being the axis of the cylinder for m > 2), Ci , Cmv , Cmh ,
Dm , Dmh , Dmd and S2m .

Wewill prove the following twomain theorems for the cylinder in the subsequent sections.

Theorem 11 (Rotation symmetry on the cylinder) Let S be the symmetry group Cm repre-
senting m-fold rotational symmetry around the z-axis. Let (G, p) be an S-generic framework
in RY

(G,S,θ) with quotient S-gain graph (G0, ψ). Then (G, p) is S-isostatic if and only if
(G0, ψ) is (2, 2, 2)-gain-tight.

Theorem 12 (Reflection or inversion symmetry on the cylinder) Let S be the group Cs
(where the mirror plane of the reflection either contains the z-axis or is equal to the plane
z = 0) or the inversion group Ci . Let (G, p) be an S-generic framework in RY

(G,S,θ) with
quotient S-gain graph (G0, ψ). Then (G, p) is S-isostatic if and only if G0 is (2, 2, 1)-gain-
tight.

We will discuss the remaining groups and provide some conjectures in Sect. 10. (See
Table 2.)

6.3 The cone

Note that the cone defined by the polynomial x2+y2 = z2 has the same point group symmetry
D∞h as the cylinder, and hence the possible point groups of frameworks on the cone are the
same as the ones for the cylinder.

We will prove the following main theorem for the cone in the subsequent sections.

Theorem 13 (Reflection, rotation, inversion or improper rotational symmetry on the cone)
Let S be the group Cm representing m-fold rotation around the z-axis, or the group Cs (where
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Table 2 Summary of counts for the various symmetry groups on the cylinder Y

Group Rotation axis Reflection plane Necessary count Sufficient?

Cs – Containing (2, 2, 1)-gain-tight Theorem 12

Cs – z = 0 (2, 2, 1)-gain-tight Theorem 12

Cm z-axis - (2, 2, 2)-gain-tight Theorem 11

C2 Perpendicular – (2, 2, 0)-gain-tight Conjecture 2

Ci – – (2, 2, 1)-gain-tight Theorem 12

Cmv z-axis Containing (2, 2, 1)r -gain-tight Conjecture 3

Cmh z-axis z = 0 (2, 2, 1)r -gain-tight Conjecture 3

S2m z-axis z = 0 (2, 2, 1)r -gain-tight Conjecture 3

Dm z-axis z = 0 Theorem 7 ?

Dmh z-axis z = 0 Theorem 7 ?

Dmd z-axis z = 0 Theorem 7 ?

We use ‘containing’ as short hand for a plane containing the z-axis and ‘perpendicular’ for a line perpendicular
to the z-axis

Table 3 Summary of counts for the various symmetry groups on the cone C

Group Rotation axis Reflection plane Necessary count Sufficient?

Cs – Containing (2, 1, 0)-gain-tight Conjecture 4

Cs – z = 0 (2, 1, 1)-gain-tight Theorem 13

Cm z-axis – (2, 1, 1)-gain-tight Theorem 13

C2 Perpendicular – (2, 1, 0)-gain-tight Conjecture 4

Ci – – (2, 1, 1)-gain-tight Theorem 13

Cmv z-axis Containing (2, 1, 0)r -gain-tight ?

Cmh z-axis z = 0 (2, 1, 1)-gain-tight Theorem 13

S2m z-axis z = 0 (2, 1, 1)-gain-tight Theorem 13

Dm z-axis z = 0 (2, 1, 0)r -gain-tight ?

Dmh z-axis z = 0 Theorem 7 ?

Dmd z-axis z = 0 Theorem 7 ?

We use ‘containing’ as short hand for a plane containing the z-axis and ‘perpendicular’ for a line perpendicular
to the z-axis

the mirror plane of the reflection is perpendicular to the z-axis), or the inversion group Ci , or
the group Cmh, or the improper rotational group S2m. Let (G, p) be an S-generic framework
in RC

(G,S,θ) with quotient S-gain graph (G0, ψ). Then (G, p) is S-isostatic if and only if
(G0, ψ) is (2, 1, 1)-gain-tight.

Again we will return to the remaining groups in Sect. 10. (See Table 3.)

6.4 A note on (2, 2, 1)-gain-tight graphs

Wefinish this section by observing a corollary to Theorem 12which points out that for certain
types of graphs, groups and surfaces, generic rigidity (without symmetry) is equivalent to
symmetry-generic symmetry-forced rigidity. We will need the following result.
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Proposition 3 Let S be the group Z2 = {0, 1}, and let G be a simple S-symmetric graph,
where the action θ : S → Aut(G) is free on both V (G) and E(G). Then G is (2, 2)-tight if
and only if its quotient S-gain graph G0 is (2, 2, 1)-gain-tight.

Proof Suppose first that G is (2, 2)-tight, and G0 is not (2, 2, 1)-gain-tight. If |E(G0)| �=
2|V (G0)| − 1, then |E(G)| �= 2|V (G)| − 2, a contradiction. If |F | > 2|V (F)| − 1 for some
F ⊆ E(G0), then |c−1(F)| > 2|c−1(V (F))| − 2, where c : G → G0 is the covering map.
This is a again a contradiction to G being (2, 2)-tight. Similarly, if |F | > 2|V (F)| − 2 for
some balanced F ⊆ E(G0), then, by Proposition 2, we may switch the vertices in V (F) so
that each edge of F has trivial gain. But then E(G) contains a copy of F as a subset, which
again violates the (2, 2)-tightness of G.

Conversely, suppose that G0 is (2, 2, 1)-gain-tight, but G is not (2, 2)-tight. Clearly,
if |E(G)| �= 2|V (G)| − 2, then |E(G0)| �= 2|V (G0)| − 1, a contradiction. Thus, there
exists a subgraph H of G with |E(H)| > 2|V (H)| − 2. Note that H is not S-symmetric,
for otherwise c(H) violates the (2, 2, 1)-gain-sparsity count. Clearly, we may choose H
so that it has a minimal number of vertices, and we may then remove edges if necessary
so that |E(H)| = 2|V (H)| − 1. Let H ′ be the symmetric copy of H , i.e., H ′ has the
vertex set {θ(1)(v)| v ∈ V (H)} and edge set {θ(1)(e)| e ∈ E(H)}. By symmetry, we have
|E(H ′)| = 2|V (H ′)| − 1.

Claim If V (H ∩ H ′) = ∅, then c(H ∪ H ′) is balanced.

Proof Suppose V (H ∩ H ′) = ∅ and c(H ∪ H ′) is unbalanced. Then there exists an unbal-
anced cycle C in c(H ∪ H ′) and we may switch the vertices of C so that all edges of
C have gain 0, except for a single edge, say (v,w). Then in H ∪ H ′ we have the edges
{v, θ(1)(w)} and {θ(1)(v), w}, as well as paths from v to w and from θ(1)(v) to θ(1)(w).
If {v, θ(1)(w)} and {θ(1)(v), w} are both in E(H), then they are also both in E(H ′),
a contradiction. Analogously, we obtain a contradiction if {v, θ(1)(w)}, {θ(1)(v), w} ∈
E(H ′).

Thus, w.l.o.g. we may assume that {v, θ(1)(w)} ∈ E(H) \ E(H ′) and {θ(1)(v), w} ∈
E(H ′)\E(H). Consider a path v, v1, v2, . . . , vk, w from v tow in H∪H ′. Clearly, {v, v1} ∈
E(H) \ E(H ′) for otherwise v ∈ V (H ∩ H ′). Continuing in this fashion, we deduce that
{vk, w} ∈ E(H) \ E(H ′). Thus, w ∈ V (H). However, w is also a vertex of H ′ since
{θ(1)(v), w} ∈ E(H ′) \ E(H). This contradicts V (H ∩ H ′) = ∅, and the proof of the claim
is complete. ��

Now, suppose first that V (H ∩ H ′) = ∅. Then we have |E(H ∪ H ′)| = 2|V (H)| − 1 +
2|V (H ′)| − 1 = 2|V (H ∪ H ′)| − 2, and hence |c(E(H ∪ H ′))| = 2|c(V (H ∪ H ′))| − 1.
Thus, c(H ∪ H ′) violates the (2, 2, 1)-gain-sparsity count since c(H ∪ H ′) is balanced (by
the claim).

So it remains to consider the case V (H ∩ H ′) �= ∅. Since H is not S-symmetric, we have
H �= H ′. Thus, by theminimality of H , we have |E(H∩H ′)| ≤ 2|V (H∩H ′)|−2. It follows
that |E(H∪H ′)| ≥ 2|V (H)|−1+2|V (H ′)|−1−(2|V (H∩H ′)|−2) = 2|V (H∪H ′)|. Thus,
|c(E(H∪H ′))| ≥ 2|c(V (H∪H ′))|, and hence c(H∪H ′) violates the (2, 2, 1)-gain-sparsity
count. ��

Thus, by combining Theorem 3 with Theorem 12, it follows that for a graph G, satisfying
the conditions of Proposition 3, a generic realisation of G on the cylinder Y is isostatic if
and only if an S-generic realisation of G on Y is S-isostatic, where S = Cs or Ci (see also
Conjecture 5).
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(a) (b) (c)

Fig. 5 H1a, H1b and H1c moves. Directions and gain labels of the edges are omitted in the figure

7 Inductive constructions

To prove Theorems 9–13 we will make use of a celebrated proof technique in rigidity theory:
an inductive proof using Henneberg-type graph constructions [10,18,20,22,29,36]. This
comes in two steps. First we prove a characterisation of (2, k, kS)-gain-tight graphs, for the
relevant choices of k and kS , showing that all such graphs can be generated from the smallest
such graph, or graphs, by simple operations. Then we apply these operations to frameworks
and show that they preserve the dimension of the nullspace of the orbit-surface rigiditymatrix.

7.1 Admissible operations

Let (H, ψ) be an S-gain graph with a simple covering graph. The Henneberg 1 move is the
addition of a new vertex v and two edges e1 and e2 to H such that the new edges are incident
with v and are not both loops at v. The three possible ways this can be done are illustrated in
Fig. 5. (Note thatwe require the covering graph to remain simple, and hence some possibilities
may not be available for a given group S.) If e1 and e2 are not loops and not parallel edges,
then their labels can be arbitrary. This move is called H1a and is depicted in Fig. 5a. If they are
non-loops, but parallel edges, then the labels are assigned so that ψ(e1) �= ψ(e2), assuming
that e1 and e2 are directed to v. This move is called H1b and is depicted in Fig. 5b. Finally,
if one of the edges, say e1, is a loop at v, then we set ψ(e1) �= id . This move is called H1c
and is depicted in Fig. 5c.

The Henneberg 2 move deletes an edge of (H, ψ) and adds a new vertex and three new
edges to (H, ψ). First, one chooses an edge e of H (which will be deleted) and a vertex z
of H which may be an end-vertex of e. Then one subdivides e, with a new vertex v and new
edges e1 and e2, such that the tail of e1 is the tail of e and the tail of e2 is the head of e. The
gains of the new edges are assigned so that ψ(e1) · ψ(e2)−1 = ψ(e). Finally, we add a third
new edge, e3, to H . This edge is oriented from z to v and its gain is such that every 2-cycle
ei e j , if it exists, is unbalanced. There are four possible ways this can be done, as illustrated
in Fig. 6. (Since the covering graph must again remain simple, some possibilities may not be
available for a given group S.)

Suppose first that the edge e is not a loop. If none of the edges ei is a loop or a parallel
edge, then the move is called H2a (see Fig. 6a). If none of the edges ei is a loop, but exactly
two of the edges are parallel edges (i.e., z is an end-vertex of e), then the move is called H2b
(see Fig. 6b). If the edge e is a loop, then the moves corresponding to H2a and H2b are called
H2c and H2d, respectively (see Fig. 6c, d).
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(a) (b) (c) (d)

Fig. 6 H2a, H2b, H2c and H2d moves. Directions and gain labels of the edges are omitted in the figure

Fig. 7 The vertex-to-K4
operation (in this case expanding
a degree 4 vertex which is not
incident to any loop). Directions
and gain labels of the edges are
omitted

For a (2, k, kS)-gain-tight S-gain graph (H, ψ), an inverse Henneberg 1 or 2 move on
v ∈ V (G0) is admissible if the resulting S-gain graph H ′ is (2, k, kS)-gain-tight and the
covering graph of H ′ is simple.

A vertex-to-K4 operation on an S-gain graph (H, ψ) removes a vertex v (of arbitrary
degree) and all the edges incident with v, and adds in a copy of K4 with only trivial gains
(see also Fig. 7). Without loss of generality we may assume that all edges incident with v are
directed to v, i.e., are of the form (x, v) for some x ∈ V (H). Each removed edge (x, v) is
replaced by an edge (x, y) for some y in the new K4, where the gain is preserved, that is,
ψ((x, v)) = ψ((x, y)).

For a (2, k, kS)-gain-tight S-gain graph (H, ψ), the inverse move, a K4-contraction on a
copy of K4 with only trivial gains is admissible if the resulting graph H ′ is (2, k, kS)-gain-
tight and the covering graph is simple. Note that we only apply the K4-contraction when
there are no additional edges induced by the vertices of the K4.

In the following, an edge e = (x, v)with gainψ(e) in (H, ψ)will be denoted by (x, v)ψ(e).
A vertex-to-4-cycle operation on an S-gain graph (H, ψ) removes a vertex v and all the
edges incident with v, adds in two new vertices v1, v2, and chooses two neighbours a, b
of v (w.l.o.g. with edges (a, v)α and (b, v)β ) and creates a 4-cycle a, v1, b, v2 with edges
(a, v1)α, (a, v2)α, (b, v1)β, (b, v2)β (see also Fig. 8). Each of the removed edges (x, v), x �=
a, b, is replaced by an edge (x, vi ) for some i = 1, 2, where the gain is preserved, that is,
ψ((x, v)) = ψ((x, vi )). If the deleted vertex v is incident to a loop (v, v) in H (this may be
the case if H is (2, k, kS)-gain tight for kS = 1, for example), then this loop is replaced by a
loop (vi , vi ) (with the same gain) for some i = 1, 2.

The inverse operation, a 4-cycle contraction, on a (2, k, kS)-gain-tight S-gain graph is
admissible if the resulting graph H ′ is (2, k, kS)-gain-tight and the covering graph of H ′ is
simple. It will suffice for our purposes to contract only 4-cycles in which each edge has trivial
gain. Thus, we may restrict to α and β above both equaling the identity, so it is easy to see
that if H is (2, k, kS)-gain-tight, then applying a vertex-to-4-cycle operation to H results in
a (2, k, kS)-gain-tight graph.
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Fig. 8 The vertex-to-4-cycle
operation. Directions and gain
labels of the edges are omitted

An edge joining operation takes two (2, k, 1)-gain-tight S-gain graphs H0, H1 and creates
the graph H0 ⊕ H1 which has vertex set the disjoint union of V (H0) and V (H1) and edge set
E(H0) ∪ E(H1) ∪ {(a, b)} where a ∈ V (H0) and b ∈ V (H1) is an edge with arbitrary gain.
It is clear that H0⊕H1 is (2, k, 1)-gain-tight if and only if H0 and H1 are (2, k, 1)-gain-tight.

Note that in the covering graph, each of the above operations is a graph operation
that preserves the underlying symmetry. Some of them can be recognised as performing
standard—non-symmetric—Henneberg operations [27,36] simultaneously.

7.2 Recursive characterisations

We now derive inductive constructions for (2, i, i)-gain-tight graphs, where i = 1, 2, 3, and
for (2, 2, 1)-gain-tight graphs. Inductive constructions of (2, 3, 1)-gain tight graphs were
established in [10, Theorem 4.4] (using Henneberg 1 and Henneberg 2 moves only). Note
that as the balanced and unbalanced subgraph conditions are the same for (2, i, i)-gain-tight
graphs, i = 1, 2, 3, we do not need to worry about preserving cycles with non-trivial gain in
the first three theorems.

For a vertex v of a directed multi-graph G0, we will denote the set of vertices which are
adjacent to v (in the underlying undirected multi-graph) by N (v). Each of the vertices in
N (v) is called a neighbour of v in G0.

In the following 4 theorems it is easy to establish that the operations under consideration
preserve (2, 
,m)-gain-sparsity. We concentrate on the converse where in all 4 cases it is
clear that the minimum degree is 2 or 3.

Theorem 14 Let S be a group, G be a simple graph and (G0, ψ) be its quotient S-gain graph.
Then (G0, ψ) is (2, 3, 3)-gain-tight if and only if (G0, ψ) can be constructed sequentially
from K2 by H1a and H2a operations.

Proof Note that ifG0 is (2, 3, 3)-gain-tight, then it cannot contain any loop ormultiple edges.
It is easy to see that if there exists a vertex v ∈ V (G0) of degree 2, then the removal of v yields
another (2, 3, 3)-gain-tight graph. Thus, we may assume that G0 has no vertex of degree 2.
Since G0 is (2, 3, 3)-gain-tight, every vertex of degree 3 must have three distinct neighbors.
But now, standard arguments can be used to show that an inverse H2a operation (performed
on one of the degree 3 vertices and one pair of its neighbors) preserves (2, 3, 3)-gain-tightness
[13,27]. ��

The next two theorems are reminiscent of [18, Theorems 3.1 and 1.2]. The new difficulty
being the existence of loops andmultiple edges with certain gains.Wewill need the following
lemma.

Lemma 4 Let G0 be a (2, i, i)-gain-tight gain graph whose covering graph is simple, for
i = 1, 2, with a degree 3 vertex v with N (v) = {a, b, c}. Then either v is contained in a copy
of K4 whose gain labelling is equivalent to the trivial gain labelling or there is an inverse
H2a move on v that results in a (2, i, i)-gain-tight gain graph G ′

0 whose covering graph is
simple.
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Proof Let α, β, γ be the gains on (v, a), (v, b), (v, c) respectively. If the edges (a, b), (a, c),
(b, c) are all present with gains β − α, γ − α and γ − β respectively, then any inverse H2a
move will give a gain graph whose covering graph is not simple. In this case, though, the K4

defined by these vertices and edges is balanced so Propositions 1 and 2 show the labelling is
equivalent to the trivial gain labelling.

Thus we may suppose that not all 3 of these edges (with the specified gains) are present.
Now we can forget the gains and argue exactly as in [17, Lemma 3.1]. That is, by pure
counting arguments, we deduce that, if (a, b)β−α is not present then either there is an inverse
H2a move adding (a, b)β−α or another of the edges, say (a, c)γ−α , is not present and either
we can add that edge or the third edge (b, c)γ−β is not present and we can add at least one
of the edges. ��
Theorem 15 Let S be a group, G be a simple graph and (G0, ψ) be its quotient S-gain graph.
Then (G0, ψ) is (2, 2, 2)-gain-tight if and only if (G0, ψ) can be constructed sequentially
from K1 by H1a, H1b, H2a, H2b, vertex-to-K4 and vertex-to-4-cycle operations.

Proof Note that if G0 is (2, 2, 2)-gain-tight, then it cannot contain any loop. If there is
no inverse H1a or H1b move then G0 has minimum degree 3. It is elementary to show
that a degree 3 vertex with exactly two neighbours can always be reduced using an inverse
H2b move. So we may suppose that every degree 3 vertex v has 3 distinct neighbours. By
Lemma 4, we may assume that v is contained in a K4 whose gain labelling is equivalent
to the trivial gain labelling. The vertices of this K4 can induce no additional edges since
G0 is (2, 2, 2)-gain-tight. Denote this copy of K4 as K . K is admissible for a K4-to-vertex
contraction unless there is a vertex x /∈ K and edges (x, a), (x, b) for a, b ∈ K with equal
gains. Since the final vertex c ∈ K is not adjacent to x , simple counting [18] shows there is
a 4-cycle contraction merging v and x which results in a (2, 2, 2)-gain-tight graph contrary
to our assumption. ��
Theorem 16 Let S be a group, G be a simple graph, and (G0, ψ) be its quotient S-gain
graph. Then (G0, ψ) is (2, 1, 1)-gain-tight if and only if (G0, ψ) can be constructed sequen-
tially from either a single vertex with an unbalanced loop, K4 + e (with trivial gains on the
K4 and a non-trivial gain on e) or K5 − e (with trivial gain on every edge) by H1a, H1b,
H1c, H2a, H2b, H2c, H2d, vertex-to-K4, vertex-to-4-cycle and edge joining operations.

In the proof we use the terminology 2G to refer to the graph with vertex set V (G)

and 2 copies of each edge in E(G). Of course we will be referring to gain graphs,
so some appropriate gain assignment is assumed. It will also be convenient to define
f (G) := 2|V (G)| − |E(G)|.
Proof Note that G0 may contain loops. If there is no inverse H1a, H1b or H1c move then
the minimum degree in G0 is 3 and any such vertex has no self-loop. If there is no inverse
H2d move then any such vertex v has at least two neighbours.

Suppose N (v) = {a, b} and there are two edges from a to v. If there is at most one edge
between a and b then any H0 ⊂ G0 containing a and b has f (H0) ≥ 2. Since the two edges
from a to v have different gains (since G is simple) it is easy to see that we can choose a gain
for a new edge ab that makes H0 + ab unbalanced. Thus we may assume v is contained in
a copy of 2K3 − e. However, now there is an inverse H2c move.

Therefore, wemay suppose that v has 3 distinct neighbours. By Lemma 4, wemay assume
that v is contained in a K4 whose gain labelling is equivalent to the trivial gain labelling.
Denote this copy as K and suppose, for now, that the vertices of K induce no additional
edges.
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K admits an admissible K4-to-vertex contraction unless there is a vertex x /∈ K and
edges (x, a), (x, b) for a, b ∈ K with equal gains. By switching, we may assume that the
edges of K and the edges (x, a), (x, b) have all trivial gain. In such case there is a 4-cycle
contraction merging v and x which results in a (2, 1, 1)-gain-tight graph unless for the final
vertex c ∈ K the edge (x, c) ∈ E(G0) with ψ((x, c)) = id . (Note that if ψ((x, c)) = id ,
then ψ((x, c)) = ψ((v, c)) = id so that a 4-cycle-contraction would not result in a simple
covering graph.)

Now, the graph induced by v, a, b, c and x is a copy of K5 − e. Repeat the whole process
for every degree 3 vertex. This gives us copies of K5 − e or, if the vertices of K did induce
additional edges, copies of K4 + e (with non-zero gain on e).

We now argue as in [17, Lemma 4.10]. Let Y = {Y1, . . . , Yn} be the subgraphs which
are copies of K5 − e or K4 + e. They are necessarily vertex disjoint since f (Yi ∪ Y j ) =
2− f (Yi ∩ Y j ) and every proper subgraph X of K5 − e or K4 + e has f (X) ≥ 2. Let V0 and
E0 be the sets of vertices and edges of G0 which are in none of the Yi . Then

f (G0) =
n∑

i=1

f (Yi ) + 2|V0| − |E0|

so |E0| = 2|V0| + n − 1. Each vertex in V0 is incident to at least 4 edges. If every Yi is
incident to at least 2 edges in E0, then there are at least 4|V0| + 2n edge/vertex incidences
in E0. This implies |E0| ≥ 2|V0| + n, a contradiction. Thus, either there is a copy Yi with
no incidences, which would imply G0 = Yi = K5 − e or G0 = Yi = K4 + e, since G0 is
connected, or there is a copy with one incidence, i.e., G0 contains a bridge and there is an
edge separation move on this bridge contrary to our assumption. ��

For the following we have to be more careful to preserve the gain-sparsity of subgraphs.

Theorem 17 Let S be a group of order 2, G be a simple graph and (G0, ψ) be its quotient
S-gain graph. Then (G0, ψ) is (2, 2, 1)-gain-tight if and only if (G0, ψ) can be constructed
sequentially from a single vertex with an unbalanced loop or from K4 + e (where the K4 has
trivial gains and e has a non-trivial gain) by H1a, H1b, H1c, H2a, H2b, H2c, vertex-to-K4,
vertex-to-4-cycle and edge joining operations.

Proof We will think of S as the group Z2 = {0, 1} with addition as the group operation. If
there is no inverse H1a, H1b or H1c move then the minimum degree in G is 3 and any such
vertex has no self-loop. Since S has order 2, any such vertex v has at least two neighbours.

First, suppose N (v) = {a, b}. Suppose that v is not contained in a copy of 2K3 − e.
It suffices to check the case when a and b are not joined by an edge in G0. If there is no
admissible H2b move, then it is straightforward to deduce that there are distinct subgraphs
H1, H2 of G0 − v with a, b ∈ V (Hi ), f (Hi ) = 2 for i = 1, 2 and all paths in Hi from a to b
have gain αi where α1 �= α2. (The gain of a path in a gain graph is defined analogously to the
gain of a closed walk (recall Sect. 3.2).) Then H1 ∩ H2 is connected since f (H1 ∩ H2) = 2,
which implies that all paths from a to b in H1 ∩ H2 have 2 distinct gains, a contradiction.
Thus, there is a choice of gain for the edge (a, b) so that the corresponding inverse H2b move
is admissible. Thus v is contained in a copy of 2K3 − e (with appropriate gains). However,
now there is an inverse H2c move.

Now let N (v) = {a, b, c}.
Claim v is contained in a copy of K4 in which every edge has gain 0 (after appropriate gain
switching).
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Fig. 9 The first two cases in the proof of the claim. Directions and labels omitted

Proof We will show that if v is not contained in a copy of K4 with gain 0 on every edge,
then there is an admissible H2a move.

Let αav, αbv, αcv be the gains on the edges (a, v), (b, v), (c, v). Suppose first that
(a, b)αav−αbv and (b, c)αbv−αcv /∈ E(G0) (the edges (a, b) and (b, c) with other gains, or the
edge (a, c) with any gain may or may not be in E(G0)). See Fig. 9. If there is no admissible
H2a move, then there must exist balanced subgraphs Hab of G0 −v such that a, b ∈ V (Hab)

and f (Hab) = 2 and Hbc such that b, c ∈ V (Hbc) and f (Hbc) = 2. If c ∈ V (Hab) then let
H = Hab and adding v and its 3 incident edges to H gives a graph H∗ with f (H∗) = 1.
Similarly if a ∈ V (Hbc) then we can let H = Hbc. If c /∈ V (Hab) and a /∈ V (Hbc) then we
still must have f (Hab ∪ Hbc) = 2. Thus we can let H = Hab ∪ Hbc and adding v and its 3
incident edges to H gives a graph H∗ with f (H∗) = 1. Hab ∩Hbc is connected, so Lemma 2
implies H is balanced.

Since H is balanced we may apply gain switches to make every edge have identity gain.
Now, consider the three edges va, vb and vc. If they all have 0 gains, then H∗ is balanced,
contrary to the fact that f (H∗) = 1. If they all have gain 1, then we can switch v using
Proposition 1 and again H∗ is balanced, a contradiction.

By switching v now, we may assume w.l.o.g. that va has gain 1 and vb and vc have gain
0. Since Hab is connected, there is a path P (with gain 0 on each edge) from a to b. Now, P
together with va and vb is an unbalanced cycle. Thus, if we do an inverse H2a move (adding
the edge ab with gain 1), then Hab ∪ ab is unbalanced with the correct count so the move
was valid.

Now suppose that (a, b)αav−αbv /∈ E(G0) but (a, c)αav−αcv and (b, c)αbv−αcv ∈ E(G0).
By Proposition 1, wemay then assume that the gains of (v, a), (v, b), (v, c), (a, c), (b, c) are
all 0. See Fig. 9. If Hab is a subgraph of G0 − v containing a, b but not c, then f (Hab) ≥ 2.
We are done unless equality holds and Hab is balanced. Now consider paths from a to b in
Hab. If all such paths have 0 gain then all cycles in Hab ∪ v ∪ c (along with the relevant
edges) have gain 0, but f (Hab ∪ v ∪ c) = 1. Thus, there must be a path from a to b with gain
1 and adding (a, b) with gain 0 during the inverse H2a move gives an unbalanced subgraph,
as required.

Finally, suppose (a, b)αav−αbv , (a, c)αav−αcv and (b, c)αbv−αcv ∈ E(G0). ByProposition 1,
we may switch vertices to make a copy of K4 with gain 0 on each edge. ��

Let K denote the copy of K4 containing v. As in the previous proof, we suppose first
that v belongs to a K4 whose vertices induce no additional edge. Since we cannot apply a
K4-contraction, there are vertices a, b ∈ K and a vertex x /∈ K such that (a, x)α, (b, x)α ∈
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E(G0). To see this, note that any unbalanced subgraph containing K is still unbalanced as a
subgraph of the contracted graph. Now let c be the final vertex in K .

Claim (c, x) ∈ E(G0).

Proof Suppose (c, x) /∈ E(G0). By applyingProposition 1 to x (if necessary)wemay assume
that the 4-cycle C induced by v, a, b, x has label 0 on each edge. Apply 4-cycle contraction
to C merging v and x . It is routine, as in the previous proofs, to check that the counts hold
for unbalanced subgraphs. The sparsity conditions for balanced subgraphs hold since every
edge of C (and K ) has gain 0. ��

We have shown that the subgraph induced by K and x is (2, 1)-tight. When the vertices
of K induce an additional edge we have a K4 + e. Finally, we may show, exactly as in the
proof of the previous theorem, that G0 contains a bridge. Note that this time the copies of
K5 − e must have edges with non-zero gain since G0 is (2, 2, 1)-gain-tight so the case when
G0 = Yi = K5 − e cannot happen (an inverse H2a move would have been possible by the
first claim). ��

We will briefly discuss extensions to (k, l,m)-gain-tight graphs for other triples in the
final section.

8 Operations on frameworks supported on surfaces

We now consider the geometric question of how these inductive operations behave as oper-
ations on frameworks rather than on graphs. We pursue this by a combination of limiting
arguments andmatrix techniques using the orbit-surface rigiditymatrix andmaking extensive
use of results in [18,19,35].

8.1 Henneberg moves

Our first lemma is simple linear algebra.

Lemma 5 Let M ∈ {S,Y, C} and let S be any possible point group. Let (G, p) be an S-
regular S-isostatic framework inRM

(G,S,θ) with quotient S-gain graph (G0, ψ). Let (G ′
0, ψ

′)
be formed from (G0, ψ) by a Henneberg 1 move and let G ′ be the corresponding covering
graph. Then any S-regular realisation of G ′ is S-isostatic.

Proof Let (G ′, p′) be an S-regular realisation of G ′. Then simply note that by the block
structure of OM(G ′, p′, S) and the regularity of (G ′, p′), we have

rank OM(G ′, p′, S) = rank OM(G, p, S) + 3.

��
Our second lemma ismore involved but by utilising the proof technique of [18, Lemma4.2]

we can still argue for any group and surface simultaneously.

Lemma 6 Let M ∈ {S,Y, C} and let S be any possible point group. Let (G, p) be an S-
generic S-isostatic framework inRM

(G,S,θ) with quotient S-gain graph (G0, ψ). Let (G ′
0, ψ

′)
be formed from (G0, ψ) by a Henneberg 2 move and let G ′ be the corresponding covering
graph. Then any S-generic realisation of G ′ is S-isostatic.
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px1◦α(2)

px3◦α(2)

px2◦α(2)

Fig. 10 An illustration of the specialisation in the case S = C3

Proof Let S = {x1 = id, x2, . . . , x|S|}. For an edge e0 = (1, 2) (with gain α ∈ S) in G0 we
apply the argument in [18, Lemma 4.2] simultaneously to each edge in the edge orbit c−1(e0),
where c : G → G0 is the covering map. (Note that if e0 is a loop, then the proof follows
analogously.) Suppose V (G ′

0) = V (G0) ∪ {0} and let p′ = (px1(0), px2(0), . . . , px|S|(0), p),
where (G ′, p′) is S-generic. Suppose that (G ′, p′) is not S-symmetric infinitesimally rigid.
Then it follows that every specialised framework inRM

(G ′,S,θ)
is S-symmetric infinitesimally

flexible. Let xi (a) and xi (b) be orthogonal tangent vectors at pxi◦α(2) where xi (b) is orthog-
onal to pxi◦α(2) − pxi (1). Consider a sequence of specialisations (G ′, pk) in which only the
joints px1(0), . . . , px|S|(0) are specialised to the joints pkx1(0), . . . , p

k
x|S|(0), respectively, and

for each i = 1, . . . , |S|, pkxi (0) tends to pxi◦α(2) in the direction xi (a). See Fig. 10. More

precisely, the normalised vector (pxi◦α(2) − pkxi (0))/‖pxi◦α(2) − pkxi (0)‖ converges to xi (a),
as k → ∞.

Each of the S-symmetric frameworks (G ′, pk) has a unit norm non-trivial S-symmetric
infinitesimal motion uk which is orthogonal to the space of S-symmetric trivial infinites-
imal motions of its framework, (G ′, pk). By the Bolzano–Weierstrass theorem there is
a subsequence of the sequence uk which converges to a vector, u∞ say, of unit norm.
Discarding framework points and relabeling we may assume this holds for the origi-
nal sequence. The S-symmetric limit motion of the degenerate S-symmetric framework
(G ′, p∞) is denoted by u∞ = (u∞

x1(0)
, u∞

x2(0)
, . . . , u∞

x|S|(0), u). Also, we have p∞ =
(px1◦α(2), px2◦α(2), . . . , px|S|◦α(2), p).

We claim that the velocities uxi (1), uxi◦α(2) give an S-symmetric infinitesimal motion of
the framework on M consisting of the bars joining pxi (1) and pxi◦α(2), i = 1, . . . , |S|. To
see this note that in view of the well-behaved convergence of pkxi (0) to pxi◦α(2) (in the xi (a)

direction) it follows that the velocities uxi◦α(2) and u∞
xi (0)

have the same component in the
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xi (a) direction, and so (uxi◦α(2) − u∞
xi (0)

) · xi (a) = 0. Since uxi◦α(2) − u∞
xi (0)

is tangential to
M it follows from the choice of xi (a) that uxi◦α(2) −u∞

xi (0)
is orthogonal to pxi◦α(2) − pxi (1).

On the other hand uxi (1) − u∞
xi (0)

is orthogonal to pxi◦α(2) − pxi (1) and so taking differences
uxi◦α(2) − uxi (1) is orthogonal to px2◦α(2) − pxi (1), as desired.

It now follows, by the symmetry-forced rigidity of (G, p) and (hence) the symmetry-
forced rigidity of the degenerate framework (G ′, p∞), that the restriction motion u∞

res = u,
and hence u∞ itself, is a trivial S-symmetric infinitesimalmotion. This is a contradiction since
the motion has unit norm and is orthogonal to the space of trivial S-symmetric infinitesimal
motions. ��
8.2 Vertex surgery moves

We now consider the vertex-to-K4 move. For rotational symmetry on the cylinder we present
a direct matrix argument.

Lemma 7 Let S be Cm with the z-axis as the rotational axis. Let (G, p) be an S-generic
S-isostatic framework in RY

(G,S,θ) with quotient S-gain graph (G0, ψ) and let (G ′
0, ψ

′) be
formed from (G0, ψ) by a vertex-to-K4 move. Then any S-generic realisation of the covering
graph G ′ of (G ′

0, ψ
′) is S-isostatic.

Proof The proof is similar to [19, Lemma 5.2] with K4 replacing H . Let n = |V (G ′
0)|. Let

v∗ be a fixed vertex of K4. Let (G ′, p′) be S-generic. Consider the orbit-surface rigidity
matrix OY (G ′, p′, S) with column triples in the order of v1, v2, v3, v∗, v5, . . . , vn where
v1, v2, v3, v4 = v∗ are the vertices of K4. Order the rows of OY (G ′, p′, S) in the order of the
edges e1, . . . , e6 for K4 followed by the n rows of the block diagonal matrix whose diagonal
entries are the respective normal vectors to Y at p′

1, . . . , p
′
n , followed by the remaining rows

for the edges of E(G ′
0) \ E(K4). Note that the submatrix formed by the first 10 rows is the

1 by 2 block matrix [
OY (c−1(K4), p′, S) 0

]
,

where c : G ′ → G ′
0 is the covering map. Suppose, by way of contradiction, that G ′

0 is not
S-isostatic. Then, there is a vector u in the kernel of OY (G ′, p′, S) which corresponds to an
S-symmetric non-trivial infinitesimal motion.

Claim W.l.o.g. we may assume that uK4 = 0.

Proof We will identify an S-symmetric infinitesimal motion of a framework (G, p) with its
restriction to the vertices of the quotient S-gain graph G0 of G.

By adding to u some trivial S-symmetric infinitesimal motion, we may assume that
u4 = 0. Write u = (uK4 , uG ′

0\K4
) where uK4 = (ux1, u

y
1, u

z
1, . . . , u

x
4, u

y
4, u

z
4). The matrix

OY (G ′, p′, S) has the block form

OY (G ′, p′, S) =
[
OY (c−1(K4), p′, S) 0

X1 X2

]

where X = [X1 X2] is the matrix formed by the last |E(G ′)| − 6 + n − 4 rows. Since K4

is S-isostatic on Y and OY (c−1(K4), p′, S)uK4 = 0 it follows that uK4 is an S-symmetric
trivial infinitesimal motion. But u4 = 0 and so uK4 = 0. ��

Consider now the framework vector p̃ = (p4, p4, p4, p4, p5, . . . , pn) in which the first
4 framework joints are specialised to p4 and let p∗ = (p4, p5, . . . , pn) be the restricted
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vector with associated S-generic framework (G, p∗). By the hypotheses, this framework is
S-symmetric infinitesimally rigid.

Note that the matrix X2 = X2(p′) is square. Moreover, it has the vector uG ′\K4 in the
kernel, and uG ′\K4 is clearly non-zero (since u is non-zero and uK4 = 0 by the claim above).

Thus the determinant as a polynomial in the coordinates of the p′
i vanishes identically

because of genericity. It follows that det X2( p̃) vanishes identically and that there is a nonzero
vector, wG ′

0\K4
say, in the kernel. But now we obtain the contradiction

[
OY (G, p∗, S)

] [
0

wG ′
0\K4

]
=

[
a 0
∗ X2( p̃)

] [
0

wG ′
0\K4

]
= 0,

where a = (0, 1, 0). ��
For combinations of surfaces and symmetry groups with kS = 1 the above argument

breaks down. Instead we adapt a limiting argument from [18, Section 5.2].
Let M ∈ {Y, C} and let S be chosen so that kS = 1. Take the complete graph on four

vertices with identity gain on each edge as an S-gain graph and denote the covering graph
by H . For j = 1, 2, . . . , |S| and i = 1, 2, 3, 4, let px j (i) be the joints for some S-symmetric
realisation of H . Further, let p| j = (px j (1), px j (2), px j (3), px j (4)) for j = 1, . . . , |S|, and let
(H, p) = (H, (p|1, p|2, . . . , p||S|)). Since k < 3,Mhas distinct principal curvaturesκs j , κt j
with associated orthonormal vectors ŝ j , t̂ j in the tangent plane at px j (1) for j = 1, . . . , |S|.
Recall that, in a neighbourhood U of px j (1) on M, we can use Taylor’s theorem to express
points on M as a function of s j and t j :

f j (s j , t j ) = px j (1) + (s j ŝ j + t j t̂ j ) + 1

2
(κs j s

2
j + κt j t

2
j )n̂ j + r(s j , t j )

where n̂ j is the unit normal at px j (1), the vectors ŝ j , t̂ j , n̂ j form a right-handed orthonor-
mal triple and r(s j , t j ) denotes the higher-order terms. Let px j (i) = f j (sx j (i), tx j (i)), so
px j (2), px j (3), px j (4) ∈ U , and let pεk

x j (i)
= f j (εksx j (i), εk tx j (i)) for i = 2, 3, 4. We say that

a sequence of frameworks (H, p j,εk ) with

p j,εk = (p|1, . . . , p| j−1, px j (1), p
εk
x j (2)

, pεk
x j (3)

, pεk
x j (4)

, p| j+1, . . . , p||S|)

where εk → 0 as k → ∞ is a well-behaved K4 contraction if the local coordinates
sx j (2), tx j (2), sx j (3),
tx j (3), sx j (4), tx j (4) satisfy

det

⎛
⎝sx j (2) tx j (2) sx j (2)tx j (2)
sx j (3) tx j (3) sx j (3)tx j (3)
sx j (4) tx j (4) sx j (4)tx j (4)

⎞
⎠ �= 0.

Note that, by symmetry, (H, p j,εk ) is a well-behaved K4 contraction for some j ∈ {1, . . . |S|}
if and only if it is for all j = 1, . . . , |S|.
Lemma 8 Let M ∈ {Y, C} and let S be chosen so that kS = 1. Take the complete graph on
four vertices with identity gain on each edge as an S-gain graph and denote the covering
graph by H. Let px j (i), for j = 1, 2, . . . , |S| and for i = 1, 2, 3, 4, be the joints for some
S-symmetric realisation of H. Let

pεk =
(
px1(1), p

εk
x1(2)

, pεk
x1(3)

, pεk
x|1|(4), px2(1), p

εk
x2(2)

, pεk
x2(3)

, pεk
x2(4)

, . . . ,

px|S|(1), p
εk
x|S|(2), p

εk
x|S|(3), p

εk
x|S|(4)

)
,
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and let (H, pεk ), for k = 1, 2, . . . , be awell-behaved contraction of S-symmetric frameworks
onM. Further, let uk, k = 1, 2, . . . , be an associated sequence of S-symmetric infinitesimal
motions which forms a convergent sequence in R

12|S|. Then the limit vector has the form(
wx1(1), wx1(1), wx1(1), wx1(1), wx2(1), wx2(1), wx2(1), wx2(1), . . . ,

wx|S|(1), wx|S|(1), wx|S|(1), wx|S|(1)
)
.

Proof Denote the copies of K4 in H as K 1, . . . , K |S|, and let (K j , p| j ) be the corresponding
realisations induced by (H, p). Let u = u1 and denote the S-symmetric infinitesimal motion

u = (
ux1(1), ux1(2), ux1(3), ux1(4), . . . , ux|S|(1), ux|S|(2), ux|S|(3), ux|S|(4)

)
.

By focusing on the restricted motion u|K j and the subsequence uk |K j , associated with
(K j , p| j ), we can follow the proof of [18, Lemma 5.4] with only trivial modifications, to
establish that the well-behaved contraction sequence (H, pεk ) takes the infinitesimal motions
uk |K j to (wx j (1), wx j (1), wx j (1), wx j (1)). Since that Lemma was stated for surfaces of type
k = 1 and our lemma includes the cylinder, with symmetry groups of type kS = 1, we
include the details in the appendix. Since u|K 
 is the image of u|K j under some xt ∈ S,
we may simultaneously use the argument from the appendix to see that uk |K 
 is taken to
(wx
(1), wx
(1), wx
(1), wx
(1)) for each 
, where wx
(1) is the image of wx j (1) under xt ∈ S.
The contracted framework is again an S-symmetric framework onM and the limit vector of
the sequence of S-symmetric infinitesimal motions has the required form. ��
Lemma 9 Let G ′

0 → G0 be a vertex-to-K4 move applied to an S-gain graph G ′
0 with the

new K4 having all identity gains and V (G0) = {v1, v2, . . . , vn} where v1, v2, v3, v4 are the
vertices of the new K4. Let G ′ and G be the covering graphs corresponding to G ′

0 and G0, and
let (G ′, p′) and (G, p) be the corresponding S-generic frameworks onM withM ∈ {Y, C}
and S chosen so that M has symmetric type kS = 1. Suppose that (G ′, p′) is S-isostatic.
Then (G, p) is also S-isostatic.

Proof Let pi = p(vi ) for i = 1, 2, 3, 4 and let px j (i) for j = 1, 2, . . . , |S| be the joints of
(G, p) corresponding to the orbit of pi (and so for each j , vx j (i) is the corresponding vertex of
G). Suppose that (G, p) is not S-isostatic. Since (G ′, p′) is S-isostatic, G ′

0 is (2, k, kS)-gain-
tight soG0 is also (2, k, kS)-gain-tight. It follows that (G, p) is S-dependentwith a non-trivial
S-symmetric infinitesimal motion. Let pεk be a sequence of S-generic framework vectors
for (G, p) with pεk

x j (i)
→ px j (1), as k → ∞, for i = 2, 3, 4 and for 1 ≤ j ≤ |S|, where the

K4 contraction is well-behaved (for all j = 1, . . . , |S|). Since (G, pεk ) is S-generic and M
has symmetric type kS = 1, there is exactly 1 trivial S-symmetric infinitesimal motion of
(G, pεk ) for each k. Moreover, since (G, p) is S-dependent there is a non-trivial S-symmetric
infinitesimal motion of (G, pεk ) for each k.

Hence, for all k, there exists an S-symmetric infinitesimal motion uk = (ukx1(1), . . . , u
k
n)

of (G, pεk ) such that uk is in the tangent space of pεk , uk has norm 1 and uk is orthogonal
to the trivial S-symmetric infinitesimal motion. By passing to a subsequence, if required,
uk converges to an S-symmetric infinitesimal motion w of the limit framework (G, q) as
k → ∞. It now follows from Lemma 8 that w has the form

(wx1(1), wx1(1), wx1(1), wx1(1), wx2(1), wx2(1), wx2(1), wx2(1), . . . ,

wx|S|(1), wx|S|(1), wx|S|(1), wx|S|(1), ur , . . . , un).

Moreover, w is in the tangent space of q , w has norm 1 and w is orthogonal to the trivial
S-symmetric infinitesimalmotion. This implies that the S-generic framework (G ′, q ′) (where
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q ′ arises from q by restricting V (G) to V (G ′)) has an S-symmetric infinitesimal motion

u− = (wx1(1), wx2(1), . . . , wx|S|(1), ur , . . . , un)

which is orthogonal to the unique trivial S-symmetric infinitesimal motion of (G ′, q ′), con-
tradicting the hypothesis that (G ′, p′) was S-isostatic. ��
Lemma 10 Let M ∈ {Y, C} and
– ifM = Y let S be Cm (with the z-axis as the rotational axis), Cs (with mirror orthogonal

to the z-axis or a plane containing the z-axis) or Ci and
– ifM = C let S be Cm (with the z-axis as the rotational axis), Cs (with mirror orthogonal

to the z-axis), Ci , Cmh (with the z-axis as the rotational axis) or S2m (with the z-axis as
the rotational axis).

Let (G, p) be an S-generic S-isostatic framework in RM
(G,S,θ) with quotient S-gain graph

(G0, ψ) and let (G ′
0, ψ

′) be formed from (G0, ψ) by a vertex-to-4-cycle move. Then any
S-generic realisation of the covering graph G ′ of (G ′

0, ψ
′) is S-isostatic.

The proof is similar to [35, Proposition 1] with minor modifications due to the different
definition of a stress in the surface context (recall Definition 3) and to using the orbit-surface
rigidity matrix rather than the rigidity matrix of a 3-frame.

Proof Choose a vertex v1 of G0 to be split and suppose v2, v3, . . . , vk are the neighbors of
v1. Without loss of generality, we may assume that all edges joining v1 and vi , i = 1, . . . , k,
are directed away from v1 and that the edge (v1, vi ) has gain αi . (If the edge (v1, vi ) appears
l > 1 times, then we denote the corresponding edge gains by αi = αi1, . . . , αil , for a fixed
numbering of the edges; in this case, the gains αi1, . . . , αil are of course all distinct.) Let
G∗

0 be the S-gain graph obtained from G0 by adding a new vertex v0 and two edges (v0, v2)

and (v0, v3) with respective gains α2 and α3. The covering graph of G∗
0 is denoted by G∗.

Further, we let (G∗, p∗) be the framework obtained from (G, p) by setting p∗(v0) = p(v1)
and p∗(vi ) = p(vi ) for all other vertices vi , i �= 0, of G∗.

Consider the S-gain graph G ′
0 which is obtained from G∗

0 by swapping some number of
edges (v1, v j ) for j ∈ {4, 5, . . . } to edges (v0, v j ) (keeping the same gains). (If there are
multiple edges joining v1 with v2 and v3, then we may also swap edges of the form (v1, v2)

and (v1, v3) to edges (v0, v2) and (v0, v3), provided that their gains are not equal to α2 or
α3.) Let G ′ be the covering graph of G ′

0.
Let (ω, λ) be an S-symmetric self-stress on (G ′, p∗). In the following, we will identify

an S-symmetric self-stress of a framework with its restriction to the edges and vertices of the
corresponding quotient S-gain graph. Let ωi j = ω({vi , α j (v j )}) for i = 0, 1 and j = 2, 3,
and let λi = λ(vi ). Then note that if we set ω̃12 = ω02+ω12, ω̃13 = ω03+ω13, λ̃1 = λ0+λ1,
and ω̃(e) = ω(e) for all other edges e and λ̃i = λi for all other vertices vi , then (ω̃, λ̃) is an
S-symmetric self-stress of (G, p). Thus, since (G, p) is S-isostatic, we must have ω̃1 j = 0
for each j and λ̃i = 0 for each i .

It follows that around p1 we have ω12(p1 − pα2(2)) + ω13(p1 − pα3(3)) + λ1s1 = 0.
Since (G, p) is S-generic, and p1 − pα2(2), p1 − pα3(3) and the normal s1 toM at p1 are not
coplanar, we have ω12 = ω13 = λ1 = 0. Similarly, we deduce that ω02 = ω03 = λ0 = 0.
Thus, the rows of OM(G ′, p∗, S) are linearly independent. Now we perturb (G ′, p∗) within
a neighbourhood B(p∗, ε)∩M, for sufficiently small ε to find an S-generic position (G ′, p′)
which is guaranteed to be S-isostatic since (G ′, p∗) is. ��
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Lemma 11 Let M ∈ {Y, C} and
– ifM = Y let S be Cm (with the z-axis as the rotational axis), Cs (with mirror orthogonal

to the z-axis or a plane containing the z-axis) or Ci and
– ifM = C let S be Cm (with the z-axis as the rotational axis), Cs (with mirror orthogonal

to the z-axis), Ci , Cmh (with the z-axis as the rotational axis) or S2m (with the z-axis as
the rotational axis).

Let (G1, p1) and (G2, p2) be two S-generic S-isostatic frameworks inRY
(G,S,θ) with quotient

S-gain graphs (G1
0, ψ

1) and (G2
0, ψ

2). Then an S-generic framework (G1 ⊕ G2, p) corre-
sponding to the edge join of G1

0 and G2
0 with joining edge given arbitrary gain is S-isostatic

on M.

Proof The orbit-surface matrices OM(G1, p1, S) and OM(G2, p2, S) have maximal rank.
Hence the block matrix [

OM(G1, p1, S) 0
0 OM(G2, p2, S)

]

has a 2-dimensional nullspace. The final joining edge, S-generically, eliminates the additional
S-symmetric infinitesimal motion. ��

Note that the final lemma clearly fails for settings where there are more or less than one
isometry.

9 Laman type theorems

We have now put together enough results to prove our main theorems. For convenience let
us say that, for an S-gain graph G0, V (G0) = {1, . . . , n} and pi = (xi , yi , zi ) for each i .

Proof of Theorem 9 Theorem 6 proves the necessity.
For the sufficiency we use induction and Theorem 14. Let the edge of K2 be e = (1, 2)

with gain α ∈ Ci , and let pα(i) = (x ′
i , y

′
i , z

′
i ), i = 1, 2. Then note that OS(K2, p, Ci ) is the

3 × 6 matrix ⎡
⎣x1 − x ′

2 y1 − y′
2 z1 − z′2 x2 − x ′

1 y2 − y′
1 z2 − z′1

x1 y1 z1 0 0 0
0 0 0 x2 y2 z2

⎤
⎦

which is easily checked to have rank 3. Theorem 14 gives us a short list of operations that
generate all (2, 3, 3)-gain-tight graphs. For the inductive step suppose (G, p) is Ci -isostatic
and suppose G ′ is formed from G by any one of these operations. Then Lemmas 5 and 6
confirm that any Ci -generic realisation of G ′ is Ci -isostatic. ��
Proof of Theorem 10 Theorem 6 proves the necessity.

For the sufficiency we use induction and [10, Theorem 4.4]. Let S ∈ {Cmh, S2m} and let
K ∗
1 denote a loop at vertex 1 with non-trivial gain α (in particular, note that the gain α cannot

be an inversion). Further, let pα(1) = (x ′
1, y

′
1, z

′
1) and pα−1(1) = (x ′′

1 , y′′
1 , z′′1) Then note that

OS(K ∗
1 , p, S) is the 2 × 3 matrix[

2x1 − x ′
1 − x ′′

1 2y1 − y′
1 − y′′

1 2z1 − z′1 − z′′1
x1 y1 z1

]
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which is easily checked to have rank 2 in each case. [10, Theorem 4.4] gives us a short list of
operations that generate all (2, 3, 1)-gain-tight graphs. For the inductive step suppose (G, p)
is S-isostatic and supposeG ′ is formed fromG by any one of these operations. Then Lemmas
5 and 6 confirm that any S-generic realisation of G ′ is S-isostatic. ��
Proof of Theorem 11 Theorem 6 proves the necessity.

For the sufficiency we use induction and Theorem 15. First note that OY (K1, p, Cm),
where K1 is the vertex 1, is the 1 × 3 matrix[

x1 y1 0
]

with rank 1. Theorem 15 gives us a short list of operations that generate all (2, 2, 2)-gain-tight
graphs. For the inductive step suppose (G, p) is Cm-isostatic and suppose G ′ is formed from
G by any one of these operations. Then Lemmas 5, 6, 7 and 10 confirm that any Cm-generic
realisation of G ′ is Cm-isostatic. ��
Proof of Theorem 12 Theorem 6 proves the necessity.

For the sufficiency we use induction and Theorem 17. Let S ∈ {Cs,Ci } and K ∗
1 denote

a loop at vertex 1 with non-trivial gain α. Further, let pα(1) = (x ′
1, y

′
1, z

′
1). Clearly, pα(1) =

pα−1(1), since S is a group of order 2. Note that OY (K ∗
1 , p, S) is the 2 × 3 matrix[

2(x1 − x ′
1) 2(y1 − y′

1) 2(z1 − z′1)
x1 y1 0

]

which has rank 2 in each case. Also OY (K4 + e, p, S) is a 11 × 12 matrix which can
easily be checked to have rank 11 for each choice of S.1 Theorem 17 gives us a short list of
operations that generate all (2, 2, 1)-gain-tight graphs. For the inductive step suppose (G, p)
is S-isostatic and supposeG ′ is formed fromG by any one of these operations. Then Lemmas
5, 6, 9, 10 and 11 confirm that any S-generic realisation of G ′ is S-isostatic. ��
Proof of Theorem 13 Theorem6 proves the necessity.

For the sufficiency we use induction and Theorem 16. Let S ∈ {Cm, Cs, Ci , Cmh, S2m} and
K ∗
1 denote a loop at vertex 1 with non-trivial gain α. Further, let pα(1) = (x ′

1, y
′
1, z

′
1) and

pα−1(1) = (x ′′
1 , y′′

1 , z′′1). Note that OC(K ∗
1 , p, S) is a 2 × 3 matrix[

2x1 − x ′
1 − x ′′

1 2y1 − y′
1 − y′′

1 2z1 − z′1 − z′′1
x1 y1 −z1

]

which has rank 2 for each choice of S. Also OC(K4 + f, p, S) is a 11 × 12 matrix and
OC(K5 − e, p, S) is a 14 × 15 matrix which can easily be checked to have rank 11 and 14
for each respective choice of S.2

Theorem 16 gives us a short list of operations that generate all (2, 1, 1)-gain-tight graphs.
For the inductive step suppose (G, p) is S-isostatic and suppose G ′ is formed from G by
any one of these operations. Then Lemmas 5, 6, 9, 10 and 11 confirm that any S-generic
realisation of G ′ is S-isostatic. ��
1 Let V (K4 + e) = {v1, v2, v3, v4}, let e = v1v2 or let e be a loop on v1 and let q(v1) =
( 1√

2
, 1√

2
, 4), q(v2) = (1, 0, 2), q(v3) = (−1, 0, −1), q(v4) = 1√

2
, 1√

2
, −1). It is elementary to check

that rank OY (K4 + e, q, S) = 11 for each group (in the case of the vertical mirror we used the plane through
the point (0, 1, 0)). It follows that the generic rank is also 11.
2 Let q(v1) = (1, 0, 1), q(v2) = (3, 0, −3), q(v3) = (1, 1,

√
2), q(v4) = (−2, 2, 2

√
2), q(v5) =

(
√
2, −√

2,−2). Let V (K4 + f ) = {v1, v2, v3, v4} with f = v1v3 or with f being a loop on v1
and let V (K5 − e) = {v1, v2, v3, v4, v5} with e = v4v5. Then rank OC(K4 + f, q, S) = 11 and
rank OC(K5 − e, q, S) = 14 for each group. Since p is generic, it follows that rank OC(K4 + f, p, S) = 11
and rank OC(K5 − e, p, S) = 14.
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10 Further work

We finish by outlining a number of avenues of further developments. We start with a slight
diversion into matroid theory.

10.1 Matroids and inductive constructions

LetIk,
,m be the family of (k, 
,m)-gain-sparse edge sets in (H, ψ). Then, as noted in [10,29],
Ik,
,m forms the family of independent sets of a matroid on E(H) for certain (k, 
,m). Let
M(k, 
,m) := (E(H), Ik,
,m) whether or not the triple k, 
,m induces a matroid. Using
3 basic matroids as ‘building blocks’ we can use standard matroid techniques to see that
M(k, 
,m) is a matroid for a large range of triples k, l,m ∈ N.

First note that when 
 = m, (k, 
,m)-gain-sparsity is exactly (k, 
)-sparsity (on a multi-
graph) and M(k, 
) is known to be a matroid for all 0 ≤ 
 < 2k [36]. We also assume in this
paper that m ≤ 
.

Our 3 basic matroids are the frame matroid M(1, 1, 0) [37], the cycle matroid M(1, 1, 1)
and the bicircular matroid M(1, 0, 0). Then the previous sentence tells us that each possible
option for M(1, 
,m) is a matroid. For k > 1, using matroid union and Dilworth truncation
we know the following:

1. M(k, k + t,m + t) is a matroid for 0 ≤ t < k and m ≤ k (take m copies of the cycle
matroid and k − m copies of the frame matroid and then apply t Dilworth truncations),

2. M(k, k − m + n + t, n + t) with 0 ≤ n ≤ m ≤ k and n + t < k + m is a matroid (take
n copies of the cycle matroid, m − n copies of the bicircular matroid and k − m copies
of the frame matroid and then apply t Dilworth truncations).

By the above remarks we know that: M(2, 3, 3) is a matroid (see also Theorem 9);
M(2, 3, 2) is a matroid (this count does not appear in symmetry-forced rigidity analyses
of frameworks in the plane or on surfaces, as the surface must be a sphere and there does not
exist a symmetry group with two fully symmetric rotations. However it does occur for peri-
odic frameworks [22] or in ‘anti-symmetric’ rigidity analyses (see Sect. 10.7)); M(2, 3, 1)
is a matroid (see also Theorem 8); M(2, 3, 0) is not a matroid in general [29]; M(2, 2, 2) is
a matroid (see also Theorem 11); M(2, 2, 1) is a matroid (see also Theorem 12); M(2, 2, 0)
is a matroid (see also Conjecture 2 below); M(2, 1, 1) is a matroid (see also Theorem 13);
M(2, 1, 0) is a matroid (see also Conjecture 4 below); M(2, 0, 0) is a matroid (this count
appears for frameworks on surfaces of type k = 0 which we do not consider in this paper
(recall Sect. 2)).

For k ≥ 3 these observations still give us a lot of information; however they do not tell us
anything about the case when 
−m > k. We do not know if M(2, 3, 0) is typical or atypical
for such triples.

Returning to the subject of the paper, we note that combining the results of Sect. 7with [10,
Theorem 4.4] and [22, Theorem 4.7] gives inductive constructions for (2, 
,m)-gain-tight
graphs (sometimes only for particular groups) for all 1 ≤ m ≤ 
 < 4. However, the case
when m = 0 is completely open. One indication of the potential difficulty to overcome here
is that the minimum vertex degree in the graph may be 4. The analogue of the Henneberg
moves for degree 4 vertices are known as X and V-replacement [7,10,20,33]. V-replacement
is known to not preserve (2, 
)-sparsity. X-replacement has been used to some effect in [10]
so it is plausible that it could be used for the cases in question here. However, while X-
replacement (as an operation on frameworks) is easy to understand in the plane (the generic
argument is based on the simple fact that, generically, two lines intersect (see also [10])),
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the question whether the corresponding operation in 3-dimensions preserves generic rigidity
is still open [7,20] (two generic lines in 3D need not intersect!). This difficulty also arises
for X-replacements on frameworks supported on surfaces since two lines will typically not
intersect in a point on the surface. However, the X-replacement operation on frameworks
supported on surfaces may still be more accessible than the X-replacement operation in the
general 3-dimensional case.

10.2 The sphere

As indicated in Sect. 6, it seems difficult to establish characterisations for symmetry-forced
rigidity on the sphere for groups other than Cm , Cs , Ci , Cmh and S2m , as there are no tangential
isometries (i.e., rotations) which are symmetric with respect to these groups.

An exception are the groups Cmv , where m is odd, as for these groups, we may combine
results in [10,31] to obtain a characterisation for symmetry-forced rigidity on the sphere even
though there are no rotations which are symmetric with respect to Cmv . Theorems 8, 9 and
10 provide characterisations for the groups Cm , Cs , Ci , Cmv (with m odd), Cmh (with m odd)
and S2m (with m even). The obstacles for Cmv , where m is even, were described in Sect. 6
(see also [10]). This leaves the groups Cmh , where m is even, and S2m , where m is odd.

Definition 7 Let (H, ψ) be a Cmh-gain graph, where m is even, or a S2m-gain graph, where
m is odd. Then (H, ψ) is called (2, 3, 1)i -gain-sparse if

– |F | ≤ 2|V (F)| − 3 for any nonempty F ⊆ E(H) and v ∈ V (F) with 〈F〉v = C1 or
〈F〉v = Ci ;

– |F | ≤ 2|V (F)| − 1 otherwise.

A (2, 3, 1)i -gain-sparse graph (H, ψ) satisfying |F | = 2|V (F)|−1 is called (2, 3, 1)i -gain-
tight.

Conjecture 1 Let S be the group Cmh, where m is even, or the group S2m, where m is odd.
Let (G, p) be an S-generic realisation on S and let (G0, ψ) be the quotient S-gain graph of
G. Then (G, p) is S-isostatic if and only if (G0, ψ) is (2, 3, 1)i -gain-tight.

10.3 The cylinder

For the cylinder, we offer the following conjectures.

Conjecture 2 Let S be the cyclic group C2 representing 2-fold rotation around an axis which
is orthogonal to the z-axis. Let (G, p) be an S-generic realisation on Y and let (G0, ψ) be
the quotient S-gain graph of G. Then (G, p) is S-isostatic if and only if (G0, ψ) is (2, 2, 0)-
gain-tight.

This conjecture is of particular interest because it implies that there is a symmetry-
preserving motion in a framework that counts to be generically minimally rigid without
symmetry. We illustrate such a motion in the following example.

Example 1 LetG0 be the gain graph consisting of a 0-gain K4 on vertices a, b, c, d , together
with an additional edge (c, d) with gain 1. Then, with symmetry group C2 as defined in
Conjecture 2, the covering graph G of G0 consists of two vertex disjoint copies of K4 joined
by two edges. Theorem 3 implies that generic realisations of G (without symmetry) are rigid
on the cylinder Y . However, the quotient C2-gain graph G0 of G satisfies |E(G0)| = 7 <

8 = 2|V (G0)| − 0. Thus, embedded C2-generically on Y , as in Fig. 11, Theorem 6 implies
the existence of a non-trivial continuous motion on Y .
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Fig. 11 A C2-symmetric
framework (G, p) on the cylinder
Y which has a non-trivial
symmetry-preserving motion, but
whose underlying graph G is
generically isostatic on Y
(without symmetry). The grey
joints are at the ‘back’ of the
cylinder

Definition 8 Let (H, ψ) be a Cmh-gain graph, a Cmv-gain graph or a S2m-gain graph. Then
(H, ψ) is called (2, 2, 1)r -gain-sparse if

– |F | ≤ 2|V (F)| − 2 for any nonempty F ⊆ E(H) and v ∈ V (F) with 〈F〉v = C1 or
〈F〉v = Cm′ , m′ ≤ m;

– |F | ≤ 2|V (F)| − 1 otherwise.

A (2, 2, 1)r -gain-sparse graph (H, ψ) satisfying |F | = 2|V (F)|−1 is called (2, 2, 1)r -gain-
tight.

Conjecture 3 Let S be the group Cmh, Cmv or S2m, where the rotational axis is the cylinder
axis. Let (G, p) be an S-generic framework inRY

(G,S,θ) with quotient S-gain graph (G0, ψ).
Then (G, p) is S-isostatic if and only if (G0, ψ) is (2, 2, 1)r -gain tight.

Weremark that (2, 2, 1)r -gain-tight graphs are a special class of (2, 2, 1)-gain-tight graphs.
For the groups Dm , Dmh and Dmd it is plausible that the necessary conditions given

in Theorem 7 are also sufficient, but difficult to prove due to the (2, 2, 0)-gain-sparsity
count (recall Sect. 10.1). Moreover, the remarks in Sect. 6.1 give a warning that unexpected
behaviour may arise, and hence we do not provide explicit conjectures for these groups.

10.4 The cone

For the cone, note that there is no symmetry group which turns a generically rigid framework
with a free action on the vertex set on the cone into a flexible one. However we do suggest
the following conjecture.

Conjecture 4 Let S be the group C2 representing 2-fold rotation about an axis perpendicular
to the z-axis (i.e., perpendicular to the axis of the cone) or the group Cs , where the mirror
plane of the reflection contains the z-axis. Let (G, p) be an S-generic framework inRC

(G,S,θ)

with quotient S-gain graph (G0, ψ). Then (G, p) is S-isostatic if and only if (G0, ψ) is
(2, 1, 0)-gain-tight.
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It is also plausible that the remaining groups (Cmv ,Dm ,Dmh andDmd ) can be understood
similarly. For Cmv andDm , for example, the conjecture would be that (2, 1, 0)r -gain tightness
characterises the symmetry-forced isostatic frameworks (where (2, 1, 0)r -gain-tightness is
defined analogously to Definition 8), since k〈F〉v = 1 if 〈F〉v is a purely rotational group
(with the rotational axis being the axis of the cone) and k〈F〉v = 0 otherwise.

10.5 Non-free actions

For the cylinder, rotational symmetry about the z-axis is necessarily a free group action.
However, for reflection symmetry s about a plane containing the z-axis, for example, this
plane intersects the cylinder in two disjoint lines. If we allow symmetry-generic realisations
to include joints lying on these lines then we must adapt the counts and the orbit-surface
rigidity matrix accordingly. Any such joint which is ‘fixed’ by the reflection s will have only
one degree of freedom, as it has to stay on the reflection plane of s and on the cylinder. While
we do not expect any new complication to arise in this more general situation, the proofs will
become significantly more messy due to the reduced number of columns in the orbit-surface
matrix for fixed vertices [30]. Similar observations apply to the cone.

10.6 Surfaces with 1 isometry

In [18] Laman type theorems were developed for any surface with exactly 1 isometry. Here
we have concentrated on the cone. We expect that our methods are adaptable to any other
surface with one isometry (such as tori, hyperboloids and paraboloids).

However, we highlight that the same group acting on two different surfaces (that a priori
have the same number of trivial motions) can give different numbers of symmetric trivial
motions and hence different combinatorial counts with an example theorem.

Theorem 18 (Reflection symmetry on the elliptical cylinder) LetF be an elliptical cylinder
about the z-axis and let Cs be generated by a reflection whose mirror plane contains the
z-axis. Let (G, p) be a framework in RF

(G,Cs ,θ) with quotient Cs -gain graph (G0, ψ). Then
(G, p) is Cs -isostatic if and only if (G0, ψ) is (2, 1, 1)-gain-tight.

This is in contrast with the same group for the cone, where Theorem 6 implies that the
Cs-gain graph must be (2, 1, 0)-gain-tight.

10.7 Incidental symmetry

In this paper, we focused on the symmetry-forced rigidity of symmetric frameworks on
surfaces. More generally, one may ask when an S-symmetric framework (G, p) on a surface
M is not only S-symmetric infinitesimally rigid (i.e., (G, p) has no non-trivial S-symmetric
infinitesimalmotion), but also infinitesimally rigid (i.e., (G, p)has nonon-trivial infinitesimal
motion at all).

A fundamental result in the rigidity analysis of (‘incidentally’) symmetric frameworks in
Euclidean d-space is that the rigidity matrix R(G, p) of an S-symmetric framework (G, p)
can be transformed into a block-decomposed form, where each block Ri (G, p) corresponds
to an irreducible representation ρi of the group S [12,24]. This breaks up the rigidity analysis
of (G, p) into a number of independent subproblems. In fact, the symmetry-forced rigidity
properties of (G, p) are described by the block matrix R1(G, p) corresponding to the trivial
irreducible representation ρ1 of S. In [30] the orbit rigidity matrix was derived to simplify
the symmetry-forced rigidity analysis of Euclidean frameworks (the orbit rigidity matrix
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O(G, p, S) is equivalent to the block matrix R1(G, p), but it can be constructed without
using any methods from group representation theory). Moreover, in the very recent paper
[29], an ‘orbit rigidity matrix’ was established for each of the blocks Ri (G, p), and these
new tools were successfully used to characterise S-generic infinitesimally rigid frameworks
for a number of point groups S.

These methods can clearly be extended to analyse the infinitesimal rigidity of S-generic
frameworks on surfaces. However, note that for each surfaceM and each symmetry group S
considered in this paper (except for the groups Cs and Ci on the cylinderY), there always exists
an irreducible representation ρi of S with the property that there is no trivial ρi -symmetric
infinitesimal motion (i.e., there is no trivial motion in the kernel of the corresponding block
matrix Ri (G, p)). Therefore, we need to deal with a (2, k, 0)-gain-sparsity count in each
of these cases (more precisely, (2, 3, 0)-gain-sparsity for the sphere, (2, 2, 0)-gain-sparsity
for the cylinder, and (2, 1, 0)-gain-sparsity for the cone), which gives rise to the difficulties
outlined in Sects. 6.1 and 10.1.

For the groups Cs and Ci on the cylinder Y , however, the block-decomposed orbit-surface
rigiditymatrix consists of two blocks, one corresponding to the trivial representation ρ1 of the
group (this block is equivalent to the orbit-surface rigidity matrix) and one corresponding to
the other irreducible representation ρ2 (this block is equivalent to an ‘anti-symmetric’ orbit-
surface rigiditymatrix), and for both of these blocks, one needs to consider the same (2, 2, 1)-
gain-sparsity count to test whether the block has maximal rank. Therefore, we propose the
following conjecture (recall also Proposition 3).

Conjecture 5 Let S be the groupCs or the groupCi , and let (G, p)bean S-generic framework
on the cylinder Y . Then (G, p) is isostatic if and only if (G, p) is S-isostatic.

10.8 Algorithmic implications

We expect that (k, 
,m)-gain-sparsity can be checked deterministically in polynomial time
whenever (k, 
,m)-gain-sparsity is a matroidal property. This would confirm that our theo-
rems provide efficient combinatorial descriptions of symmetry-forced rigidity. We leave the
exact details to the reader, but remark that: the quotient gain graph of a given symmetric sim-
ple graph can clearly be obtained in polynomial time; (2, 
, 
)-gain-sparsity for 
 = 0, 1, 2, 3
is known to be polynomial time computable [14]; the case corresponding to Theorem 8 has
been considered [10, Section 10]; and the remaining cases considered in this paper can be
checked using similar arguments.

Acknowledgments We would like to thank the anonymous referee for a very careful reading and numerous
helpful suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

We adopt the set-up of Lemma 8. We claimed that the sequence of well-behaved frameworks
in Lemma 8 takes uk to(

wx1(1), wx1(1), wx1(1), wx1(1), wx2(1), wx2(1), wx2(1), wx2(1), . . . ,

wx|S|(1), wx|S|(1), wx|S|(1), wx|S|(1)
)
.
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Consider an S-symmetric infinitesimal motion u of (H, p). By definition, ux j (i) ·Nx j (i) =
0, where Nx j (i) is the unit normal at px j (i) and (px j (i) − px j (i ′)) · (ux j (i) − ux j (i ′)) = 0 for
1 ≤ i, i ′ ≤ 4, 1 ≤ j ≤ |S|. Since, for each j , (K j , p| j ) is infinitesimally rigid in R

3, the

restricted motion u|K j is equal to u( j)
a + u( j)

b , where u( j)
b is determined by translation by the

vector b j and where u( j)
a corresponds to an infinitesimal rotation about a line through px j (1)

with direction vector a j .
We will show that the subsequence uk |K j converges to the limit (wx j (1), wx j (1), wx j (1),

wx j (1)) for some j ∈ {1, . . . , |S|}. By symmetry, this suffices to prove the claim.The argument
that follows is a direct adaptationof [18,Lemma5.4]. To simplify the notationwe set x j (i) = i
and drop the j from a j , b j , f j , s j , ŝ j , t j , t̂ j , n̂ j in the remainder of the argument.

We have u1 = b and we may scale a so that ui − u1 = (pi − p1) × a for i = 2, 3, 4. By
elementary manipulation of the cross product this gives us the equations

a · (Ni × (pi − p1)) + b · Ni = 0 for i = 2, 3, 4. (10.1)

We have

d f

ds
= ŝ + κssn̂ + rs and

d f

dt
= t̂ + κt t n̂ + rt

where ‖rs‖ and ‖rt‖ are of order ‖(s, t)‖2, and also the normal vectors

N (si , ti ) = d f

ds
(si , ti ) × d f

dt
(si , ti ).

This gives us, in a neighbourhood of p1, a continuous choice of

N (si , ti ) = ŝ × t̂ + κt ti ŝ × n̂ + κssi n̂ × t̂ + r = n̂ − (κt ti t̂ + κssi ŝ) + r , (10.2)

where ‖r‖ is of order ‖(si , ti )‖2. At the point pε
i = f (εsi , εti ), by (10.2), these normals take

the form

N ε
i = N (εsi , εti ) = n̂ − ε(κt ti t̂ + κssi ŝ) + r ε

i ,

where ‖r ε
i ‖ = O(ε2). Let p|εj be the realisation of K j determined by pε

i = f (εsi , εti ). By

(10.1), an infinitesimal motion uε of (K j , p|εj ) on M has associated equations

aε · (N ε
i × (pε

i − p1)) + bε · N ε
i = 0 for i = 2, 3, 4. (10.3)

We can now identify the cross product N ε
i × (pε

i − p1) as

(n̂ − ε(κt ti t̂ + κssi ŝ)) × (ε(si ŝ + ti t̂) + 1

2
ε2(κss

2
i + κt t

2
i )n̂) + Rε

i

with ‖Rε
i ‖ = O(ε3). We may assume, by passing to a subsequence, that ε runs through a

sequence εk tending to zero and that the associated unit norm motions uε converge to a limit
motion u0 of the degenerate framework (K j , (p1, p1, p1, p1)) on M.

Let b0 = u01 and let bε and aε be the associated vectors. While bε = uε
1 converges to

b0, as ε = εk → 0, the sequence (aεk ) may be unbounded. However, in view of the three
equations uε

i − uε
1 = (pε

i − p1) × aε and the definition of pε
i it follows that ‖aεk‖ is at worst

of order 1/εk . We shall show that ‖aεk‖ is in fact bounded and so, from the equation above,
the desired conclusion follows. Using (10.3) we see that

aε · (εsi t̂ − εti ŝ − ε2si ti (κs − κt )n̂ + Rε
i ) − κs(b

ε · ŝ)εsi − κt (b
ε · t̂)εti + Rε

i

123



Geom Dedicata

is equal to zero, where Rε
i = ‖bε · Rε

i ‖ = O(ε2). Note that ‖aε · Rε
i ‖ = O(ε2) and

introduce coordinates aε
s , a

ε
t , a

ε
n for aε . Inputting these coordinates into the equation above

and canceling a factor of ε, it follows that

(aε
s ŝ + aε

t t̂ + aε
nn̂) · (si t̂ − ti ŝ − εsi ti (κs − κt )n̂) − κs(b

ε · ŝ)si − κt (b
ε · t̂)ti

is of order O(ε) for i = 2, 3, 4. Thus

−aε
s ti + aε

t si − aε
nεsi ti (κs − κt ) = dε

i

for i = 2, 3, 4, where

dε
i = bε · (κssi ŝ + κt ti t̂) + X ε

i

with X ε
i = O(ε). Let η = ε(κs − κt ) for i = 2, 3, 4, let Aε be the matrix⎛

⎝−t2 s2 −s2t2η
−t3 s3 −s3t3η
−t4 s4 −s4t4η

⎞
⎠

and note that detAε = Cε for some nonzero constant C . By Cramer’s rule we have

aε
n = (det Aε)

−1det

⎛
⎝−t2 s2 dε

2−t3 s3 dε
3−t4 s4 dε
4

⎞
⎠ = (det Aε)

−1det

⎛
⎝−t2 s2 X ε

2−t3 s3 X ε
3−t4 s4 X ε
4

⎞
⎠

since the column for dε
i − X ε

i is a linear combination of the first two columns. It follows that
the sequence aεk

n is bounded. The boundedness of (aεk
s ), and similarly (aεk

t ), follows more
readily, since

aε
s = (det Aε)

−1det

⎛
⎝dε

2 s2 −s2t2η
dε
3 s3 −s3t3η

dε
4 s4 −s4t4η

⎞
⎠

and the ε factors cancel. Thus, the sequence of vectors aεk is bounded, as desired.
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