Developing IoT Applications in the Fog: a
Distributed Dataflow Approach

Nam Ky Giang, Michael Blackstock, Rodger Lea! Victor C.M. Leung
Department of Electrical and
Computer Engineering
University of British Columbia
Vancouver, Canada
Email: {kyng, rodgerl, vleung} @ece.ubc.ca, mblackst@magic.ubc.ca

Abstract—In this paper we examine the development of
IoT applications from the perspective of the Fog Computing
paradigm, where computing infrastructure at the network edge in
devices and gateways is leverage for efficiency and timeliness. Due
to the intrinsic nature of the IoT: heterogeneous devices/resources,
a tightly coupled perception-action cycle and widely distributed
devices and processing, application development in the Fog
can be challenging. To address these challenges, we propose a
Distributed Dataflow (DDF) programming model for the IoT that
utilises computing infrastructures across the Fog and the Cloud.
We evaluate our proposal by implementing a DDF framework
based on Node-RED (Distributed Node-RED or D-NR), a visual
programming tool that uses a flow-based model for building IoT
applications. Via demonstrations, we show that our approach
eases the development process and can be used to build a variety
of IoT applications that work efficiently in the Fog.

Keywords—Distributed dataflow, Internet of Things, Program-
ming models, Node-RED.

I. INTRODUCTION

While there has been significant research interest in the
Internet of Things (IoT) over the past decade, much of this has
focused on systems aspects of the IoT, including networking
[1], systems [2], middleware [3] and Cloud support for the IoT
[4]. To date, there has been less work looking at application
development, which remains a complicated process due to the
intrinsic nature of the IoT: heterogeneous devices/resources,
various perception-action cycles and widely distributed devices
and computing resources [5] [6] [7]. A promising approach to
IoT application development has been to virtualize things using
Cloud services, offering a well defined abstraction of devices
and a common programming framework [8] [9] for developers
to ease the development process. However, this approach is not
suitable for a significant part of the IoT application spectrum
which requires processing closer to the device, and a tighter
coupling between events and actions. For example, in a simple
scenario consisting of a virtual switch and light bulb, the
system should behave like a real switch, with similar latency
and responsiveness. By introducing a centralized Cloud based
intermediary, we might introduce unnecessary latency and
greater potential for network failure. Further, in many cases,
pushing raw data directly into the Cloud is not desirable or
necessary for many IoT applications. To reduce communica-
tions costs and storage needs, applications may require raw
data filtering, aggregation and analysis before data is uploaded
in the Cloud [10]. For instance, in STIS [2], a variant of EPC

(Electronic Product Code) Information System [11], all raw
events are collected from sensors/RFID readers and processed
solely on the Cloud, resulting in unnecessary data redundancy
and network overhead. By processing this data locally, costs
can be lowered and the overall responsiveness of this system
can be improved.

In an affort to address some of the shortcomings of the
Cloud computing for the IoT, researchers have proposed Fog
computing [12] [10] [13]. Unlike Cloud-based virtualization,
the Fog computing paradigm leverages the computing, storage
and network resources within and at the edge of the network
to augment the capabilities of the Cloud. These processing
elements, running on a variety of devices such as network
gateways, IoT edge devices etc. provide a mechanism to move
processing closer to the network edge. By distributing com-
puting resources closer to users and things, the Fog computing
model can be a better choice for building applications for the
IoT.

However, while it is clear that the Fog computing model
offers a number of benefits for typical IoT applications (prox-
imity to data, better latency etc), Fog computing can be
significantly more complex from the IoT application devel-
oper’s perspective. Essentially we have moved from a model
whereby IoT devices connect to a central Cloud service and
all applications use a well defined IoT API offered by this
centralised Cloud service as a way to manage and control
remote devices, to one where computation and other resources
are distributed across a complex network of servers, gateways
and devices - in some cases even across different domains
of control. While there are a number of research projects
[14] [15] [16] [17] that have addressed this challenge, none
of them provides a generic development model that can be
widely applied to different application domains. Moreover,
the distribution of application logic that involves resource
coordination of heterogeneous devices and between the Fog
and the Cloud has not been fully addressed.

In this paper, we examine the development of IoT applica-
tions that span both the Fog and the Cloud, identifying some
important characteristics - and their associated requirements
- that most IoT applications possess. These include device
heterogeneity, support for different Perception-Action (PA)
cycles, mobility and scalability requirements. Toward address-
ing these requirements we propose a Distributed Dataflow
(DDF) programming model that provides an efficient means to
develop IoT applications and coordinate resources distributed

* Rodger Lea is also with School of Computing and Communications, Lancaster University, UK. rodger@comp.lanc.ac.uk

*

* Rodger Lea is also with School of Computing and Communications, Lancaster University, UK. rodger@comp.lanc.ac.uk

across hosts in a Fog deployment.

We validate our approach by implementing a DDF frame-
work based on an open-source flow based run time and visual
programming tool called Node-RED. Node-RED (NR), an
open source project by IBM, uses a dataflow programming
model for building IoT applications and services but has been
designed as a run-time for individual devices. Our extensions
to NR, called Distributed Node-RED (D-NR) extends the NR
run-time to help developers to leverage resources between
devices and the Cloud to build Fog based IoT applications.
A preliminary implementation has been reported in [18],
where we introduced a small change to the vanilla NR to
support DDF deployment. In this paper, we report on a more
extensive analysis of Distributed Dataflow as an approach to
IoT programming and in particular its ability to support the Fog
computing model. We also present a more complete design and
implementation of D-NR and our experience using the system
to build some typical IoT applications.

The paper is written as follows. Section II discusses
the characteristics and requirements of IoT applications with
regard the Fog computing model. Section III introduces our
proposed DDF programming model for IoT applications de-
velopment in the Fog. Our proof of concept implementation
of DDF and experiences in building IoT applications are
described in section IV and V. In Section VI we examine
a number of existing systems that propose implementations of
Fog computing or in-network processing frameworks, compar-
ing them to our work. Section VII discusses some issues and
lessons learned and lastly section VIII concludes our work.

II. 10T APPLICATIONS DEVELOPMENT IN THE FOG AND
THE CLOUD

While application development in the IoT has not been
researched extensively there has been some work on addressing
certain IoT application requirements. In many cases, work
on Wireless Sensor Networks (WSN) were applied to IoT
application development. To design an effective application
framework for the IoT, key characteristics of the IoT must
be considered including PA cycle [5], device heterogeneity
[6], device mobility, interaction pattern [7], scalability and
so on. However, the analysis of these issues is based mostly
on existing WSN systems and IoT systems that consist of
only physical devices, not a mix of devices and Fog, Cloud
infrastructures. For example, in [7], heterogeneity is limited at
the difference between sensor and actuator, or in [5] [7], the
interaction model is just between devices themselves.

Fog computing extends these device-centric approaches to
IoT development by introducing support for edge processing,
network processing and a integration with Cloud computing.
To date, there has been limited research work on the details of
Fog computing, and in particular how to efficiently implement
this model to support IoT application development. In [12],
the authors identified key differences between the Fog and the
Cloud and new challenges in the Fog. This work is rather
general and not focused on developing IoT applications. From
our experience and based on existing works, we derive four
distinctive requirements that Fog-based IoT platforms should
be able to support: the need to support different PA cycles,
scalability, device heterogeneity, and mobility.

Fog-to-Fog
______ Fog-to-Cloud
— — — - Cloud-to-Fog
_____ Cloud-to-Cloud

Edge Node

10 Node

Fig. 1. Perception-Action cycle

A. Perception-action cycle support

The PA cycle is a natural characteristic of IoT applications
whereby participants in the Fog and Cloud infrastructure need
to fulfill certain application logic and timeliness requirement
for interaction. This is aligned with different interaction models
between things and other web services. We identified four
interaction models of the PA cycle (Fig. 1). 1) Interaction is
between devices (things) in a local network, which satisfies
immediate cycle action. 2) Interaction is initiated from things
in a local network to the Cloud, which fulfills non-time-
sensitive action result. 3) Interaction is initiated from the
Cloud to things in a local network, which represents a semi-
immediate action result. 4) Interaction is between IoT related
web services in the Cloud.

In Fog computing, unlike Cloud computing or device-
centric scenarios, computation resources are present both in
the Cloud and on the network edge, making it possible for IoT
applications that require immediate or semi-immediate action
results to be satisfied more efficiently.

B. Scalability

Scalability is an important characteristic of the IoT since
the number of connected things is growing rapidly. Many
research efforts rely on Cloud computing to support the anal-
ysis of IoT-generated data and application logic that involve
trillions of things [19]. However, given the large amount of
data generated by IoT devices, implementing IoT applications
wholly in the Cloud is neither efficient nor feasible. In some
Fog computing scenarios an application will need a method to
pre-process raw data on the device or in a local network before
uploading aggregated results to the Cloud. Furthermore, when
the number of connected things grows, selecting or querying
for things becomes a crucial task of an IoT app. Because of
this, it can be difficult to maintain an up to date centralized
directory of things when they are constantly changing their
state and availability. In many cases, participating devices
must be able to execute the IoT applications autonomously,
independent of connectivity to a centralized Cloud hosted
service.

C. Heterogeneity

Device heterogeneity is another intrinsic characteristic of
any IoT system [20]. An IoT platform must support different

Resourceful
devices |

IS

Y

Vertical Heterogeneity

N4 i
Constrained ‘ 3
devices

< Horizontal Heterogeneity: devices provide different services >

Fig. 2. Device Heterogeneity

levels of device heterogeneity and abstract the device complex-
ity to some extent. From the Fog computing perspective, device
heterogeneity in the IoT refers to the differences in not only
protocols or device services [21] but also computing resources.
We refer to the former differences as horizontal heterogeneity
and the later as vertical heterogeneity in accordance to a
hierarchical Fog architecture as shown in Fig. 2.

To illustrate this, we classify Fog devices into three types
of logical nodes based on their computing resources: Edge,
10 (Input/Output), and Compute nodes. Edge nodes produce
sensing data and consume actuation messages. IO nodes
are capable of brokering communications with Edge nodes
but generally possess limited computing resources. Compute
nodes have some computing resources to offer. Edge nodes
are typically not reconfigurable/programmable, while IO and
Compute nodes are more dynamic and usually have some kinds
of programmable runtime. A combination of these logical
nodes can be implemented in one or separately in different
physical devices. The decision on how to assign these logical
node classifications to physical devices depends on the system
designer and the capability of the device. For instance, a smart
gateway with networking and computing resources can act as
a Compute and an IO node to manage other physical devices,
some acting as Edge nodes, others as 10 nodes and Compute
nodes.

An IoT application should be able to execute over a
group of devices with various computing, sensing/actuating
and communication resources to fully leverage the capability
of different devices. Accordingly, an IoT system needs to
provide a way to define the constraints that regulate where and
how application logic should be deployed, so as to efficiently
exploit computation resources that are widely distributed and
scattered over the edge devices.

D. Mobility

The requirement for device mobility comes from the natu-
ral portability of many physical things and has been identified
by many researchers as a key requirement to address when
building IoT platforms. However, to date it has mainly been
viewed as a service availability problem, in that IoT appli-
cations may not be able to consistently request data or send

control commands to things [22] [7]. From the Fog computing
perspective, not only is service availability affected by a things
mobility but also the availability of computational resources
nearby. It is not only possible for Edge nodes to move around,
Compute and IO nodes may also be mobile.

If Cloud computing cannot be used to provide computation
resource for IoT applications (for reasons discussed above), the
Fog implementation needs a mechanism to move computation
resources in the Fog along with the thing [10] (similar to
VM migration in the Cloud or the use of mobile agents), or
have a mechanism for duplicating and distribute computation
resources to the possible destinations of mobile things (similar
to load balancing in the Cloud) [14].

We have identified core requirements for developing IoT
applications and discussed these requirements in the context
of Fog and Cloud computing combination. These requirements
highlight the need for a programming model for the IoT that
can leverage computing resources across the Fog and the Cloud
for the development of IoT applications. In the next section, we
propose Distributed Dataflow (DDF), a programming model
for developing IoT applications in the Fog, toward meeting
the requirements outlined above.

III. DISTRIBUTED DATAFLOW: A PROGRAMMING MODEL
FOR THE FOG

Dataflow [23] is a well-known programming model that
has been applied for developing WSN applications in several
works [16] [6] [24]. In the dataflow programming model,
application logic is expressed as a directed graph (flow) where
each node can have inputs, outputs and independent processing
units. There are nodes that only produce outputs and ones
that only consume inputs, which usually represent the start
and the end of the flow. The nodes processing units process
the inputs and produce outputs for downstream nodes. The
processing unit of a node executes independently and does not
affect the execution of other nodes. Thus, the nodes are highly
reusable and portable. Dataflow programming models define
their own language grammar for constructing the flow. Many
modern systems provide a graphical interface for constructing
the flow, with the aim to make it easier to move between design
and implementation and reduce development time. Although
the dataflow programming model originated as a programming
model for parallel execution of tasks using multiprocessors, it
has been widely adopted in distributed systems as a coordina-
tion language for developing distributed applications [23]. In
this paper we refer to dataflow model mainly as a coordination
language for developing IoT Applications.

A DDF is a dataflow program where the flow is deployed
on multiple physical devices rather than one. Each physical
device may be responsible for the execution of one or more
nodes in the flow, forming sub flows. Some inter-node data
transfer may happen between devices. Thus, DDF requires
mechanisms for data transfer between physical devices to
support communication between nodes on different devices.
Unlike homogeneous WSNs, heterogeneous devices in an [oT
application often need a flexible communications capability
between physical devices so that inter-node data transfer can be
made independently of the underlying communication proto-
cols. It also requires a way to dynamically deploy nodes in the

On Cloud

)

Sensor

| Same Device

At Specific location

Same Network

Fig. 3. Distributed Dataflow model

flow onto participating devices and servers. Fig. 3 illustrates
our definition of DDF.

For the IoT, the dataflow programming model offers a
significant advantage by raising the abstraction level of the
underlying IoT systems to ease the developers task without
sacrificing much flexibility. This is because once the under-
lying hardware, protocols and functionality of IoT systems
are abstracted as nodes in a flow, much of the design of the
application logic is simplified to manipulating node connec-
tions and processing generated data. When the developer needs
more flexibility or functionality than the current nodes offer,
new special-purpose nodes can be developed and deployed,
or nodes that support embedded script languages can be used
to leverage features of the underlying system, implement new
protocols or functionality that does not exist in the current
system.

In this way, the development of an IoT application can be
split between two classes of developers. Node developers can
ensure that the nodes needed to communicate with specific
things and their required protocols are available, while IoT
application developers can focus on wiring up the flow and
creating scripting nodes to connect things and services in
the Fog. While this separation of node-level development has
been proposed in other works [25] [26], the abstraction of
node in dataflow programming model using only inputs and
outputs greatly simplifies the application development process.
For example, in [25] the authors proposed the notion of a
reusable thing driver that abstracts things functionality and
hides its complexity. But there, the application developer is still
required to learn the drivers complex programming interfaces.
Meanwhile in [26], the authors had to trade off flexibility
for simplicity when abstracting things functionality into web
service interfaces.

When examining the development of IoT applications
across the Fog and the Cloud, we hypothesize that a dataflow
programming model would be a good fit for the derived
requirements in section II. This is because a dataflow program
consists of a graph of nodes and the deployment of nodes
into an IoT environment can be controlled dynamically and
flexibly. A detailed justification of our DDF programming
model for IoT applications development in the Fog is explained
as follows, based on our outlined requirements.

A. Perception-Action cycle support

In our discussion we showed that an IoT application can
have different requirements on the PA cycle support, ranging
from (semi-) immediate actuation after a sensing event is
captured, to sense-only application logic. A DDF model can
accomplish this by strategically deploying nodes of the flow
to edge servers and physical devices. Nodes that are involved
in an immediate actuation cycle can be deployed on closely
located devices, such as those are on the same network. This
keeps the communication delay between Compute and IO
nodes to minimal so that immediate actuation result can be
achieved.

B. Heterogeneity

DDF model supports IoT applications with both horizontal
and vertical heterogeneity requirements. By developing spe-
cialised nodes that represent different things’ functionality,
developers can build applications that incorporate various
thing services by wiring the nodes together. Because the
interaction between things is abstracted as dataflow between
nodes supplied by developers who are experts in the various
protocols and hardware connectivity, application developers
need not focus on these aspects of the application, meeting
horizontal heterogeneity requirements. Vertical heterogeneity
requirements can be met by differentiating participated things
based on their computing resource, while constraining the
deployment of nodes in the flow so that they are deployed
only on devices with appropriate resources. For example, some
devices can be marked as Compute nodes; some nodes in
the flow are constrained to run only on Compute nodes. This
ensures computing resources in devices and gateways at the
network edge are leveraged efficiently.

C. Mobility

We propose to address mobility in the DDF by duplicating
nodes in the flow and deploying them around the potential
locations of things participating in the application. Generally
a node in the flow needs to be deployed on more than one
physical device; it is usually duplicated to run on a group of
devices so that the system is flexible enough to handle the
movement of things. For example, a developer can choose to
deploy some nodes in the flow on all gateways in a building
based on either network or physical location. This allows other
devices that depend on such nodes to move freely around in
the building. While it may be possible and more efficient to
use a dynamic mobile code migration technique rather than
code duplication, weve found this approach to be simpler and
so far, suitable for small, simple application logic that does
not require excessive computation resources.

D. Scalability

A DDF application does not rely on a centralised man-
agement sysstem to coordinate participating devices. Rather,
the participating devices themselves decide how to execute
the application logic and communicate with other participating
devices based on the flow’s design. This helps the system to
scale up since no intrinsic management service is required once
the initial deployment completes. A DDF implementation in
the Fog also provides an easier way to coordinate in-network

processing resources by dynamically wiring physical devices
together. This reduces the need to transmit raw data generated
by things to the Cloud, improving the overall efficiency of the
system.

IV. PROOF OF CONCEPT IMPLEMENTATION

To evaluate how practical it is to implement the DDF
programming model, we designed a dataflow application
framework based on NR [27], a visual dataflow programming
language and runtime developed by IBM. NR was developed
using JavaScript language with Node.JS technology. It consists
of a web-based visual dataflow editor with pre-built input, out-
put as well as processing nodes. It allows developers to write
applications by wiring these nodes together. The applications
are then forwarded to NR’s backend where actual executions
of application logic are performed. NR itself was designed
to develop applications that run on a single device such as
a Raspberry Pi. In our preliminary work [18], we extended
NR to support the design of dataflow programs that run across
many devices and between devices and the Cloud, which we
called Distributed Node-RED (D-NR).

Our IoT implementation consists of D-NR processes run-
ning across participating devices in local networks and servers
in a Cloud infrastructure. One of these D-NR processes
serves as a development server where developers design their
application (flow) using the NRs visual dataflow editor. All
participating D-NR processes subscribe to an MQTT topic
that represents the status of the flow being developed. We will
refer to this main dataflow as the master flow to differentiate
it from the sub flows' that run on individual D-NR processes.
Whenever a developer deploys an update to the master flow,
all the participating devices and Cloud servers are notified so
that they can pull the latest version of it. The participating D-
NR instances then parse the master flow and based on a set of
constraints, decide which nodes should to be deployed locally
and which are to be replaced by a placeholder node. The
placeholder node is used to connect sub flows from different
devices together.

In this paper, we tackle the differences in device capability
or device heterogeneity, not addressed in our previous work.
Each participating D-NR instance hosted on a device describes
its own set of capabilities in advance. In the current design,
these capabilities include the devices computation resource,
network bandwidth, available storage as well as other user-
defined properties such as physical/logical location or device
group. The devices computation resource is divided into 4
classes according to the three types of nodes discussed in
section II: Edge, IO, and Compute device for Fog environment
and Cloud device for Cloud environment. Network bandwidth
and storage availability are based on the devices physical
network interfaces capability and available disk storage. Physi-
cal/logical location or device group are user-defined properties
that can be configured by system operators which can be used
to identify/locate the device.

Based on this capability definition, constraints can be ap-
plied to the master flow. Developers can specify which device

INote, our notion of sub flows is similar, but subtly different from the
notion of sub-flows in vanilla NR. In vanilla NR, sub flows are reusable flow
segments which still run on a single machine, while ours are segments of the
master flow that run on distributed devices.

ICICS 5th floor
Same Room

sensormag Light Control

L

Compute Node

Authentication

Fred Cloud

Room Occupied

Fig. 4. Develop Fog-based IoT application with D-NR

a sub flow should be deployed on by applying constraints
on the devices capabilities and properties. In our previous
work, we defined only one simple constraint: a deviceld. This
deviceld explicitly matches a node in the master flow with
a device or class of devices it should be deployed to. Since
there is only one constraint, assigning distributed sub flows
to devices is very straightforward. Developers just need to
specify the device constraint by drawing rectangles over the
master flow to set the desired device on which the nodes
should be deployed. In our current design, the constraints are
more complex and now include computation resources, net-
work bandwidth, available storage, and user-defined properties.
These new constraints continue to act as input into which D-
NR instance a node should be deployed on. They are designed
based on the new requirements identified on the previous
sections. For example, in order to fulfill a time-sensitivity
requirement, we should be able to constrain the deployment so
that some specific nodes need to be run on the same network
to minimise the communication delay between them. While
working on the DDF system we have realized that the number
and range of constraints can be numerous. With this design
we’ve tried to find the right balance between flexibility and
usability in the initial set of constraints we support.

V. APPLICATION DEVELOPMENT EXPERIENCE

To evaluate our proposed DDF programming model we
built a typical IoT application in the Smart Environment
domain [28]. Specifically, our application consists of a TI
SensorTag, two Raspberry Pis (RPi), a PC server in our local
network and an Amazon EC2 instance. The RPi, our PC server
and the EC2 instance all have our D-NR installed to execute
their subset of our applications dataflow. The SensorTag has
two buttons, which can control the lights in every room it
enters. One RPi has a Bluetooth Low Energy (BLE) dongle
that can communicate with the SensorTag, the other RPi is used
to control the lights using its GPIO pins. These RPis can be
combined as one in real deployment, however to demonstrate
the DDF model, we decided to keep them separated.

There is an Authentication node that authenticates the
SensorTag based on its MAC address so that only a specific
SensorTag can control the lights. The application also updates
some web services whenever a control message is sent in order
to announce that the room has been occupied. Our application
scenario requires immediate actuation of the lights in the room
after a control message is sent (a SensorTag button is clicked).
Thus, the Authentication node must be deployed in the local

Define new constraint

&&Constraint Id: ICICS Sth floor

Device:

Geolocation:

=<, Node-RED
Metwork: 142.103.25.0/24
&Set Constraints l—
Compute:

Storage: Add new
Sarme Room
Custom:
BAS Server
Fred Cloud
Compute Node
UBC Network

ICICS 5th floor

Fig. 5. Creating and Setting Constraints for Nodes
TABLE 1. EXISTING IOT FOG AND DATAFOW SYSTEMS
Hetero- Mo- Scala-
Wt el sy | Bl | sk
. on same .
Mobile Fog device vertical yes large
MA-based perception o o laree
MapReduce | only &
Flask, local horizontal | no
ATaG network medium
glue.thing via Cloud | horizontal | no small
T-Res, local horizontal | no small
D-LITe network

network (our PC server) while the web services interaction can
run on our EC2 instance.

As seen in Fig. 4 and 5, we used constraints in our D-NR
implementation to specify how our application logic should
be deployed. The SensorTag and Light Control nodes are
required to run within the same room so that the SensorTag
only controls lights in the room it has entered. This means the
movement of the SensorTag is accommodated by duplicating
these nodes across devices in our building. This is done by
the participating devices themselves whenever a change in
the master flow is made. That is, they will pull the master
flow, parse it’s topology and decide which nodes to deploy
automatically instead of having the application manage all the
devices. Therefore, our application can execute across a large
number of devices when the scale of deployment goes up.
Another constraint was applied to the Authentication node,
which requires it to run on a Compute Node in our local net-
work. This ensures the result of the Authentication process can
be propagated immediately to the Light Control, fulfilling the
time sensitive requirement. Lastly, a Twitter node is employed
to broadcast the occupancy status of the room. This node is
required to run on the EC2 instance (FRED Cloud?). Clearly,
our D-NR implementation can support different requirements
of PA cycle and different device capabilities/services.

VI. RELATED WORK

In this section we survey some existing frameworks that
leverage the Fog computing and dataflow models. These sys-

Zhttp://fred.sensetecnic.com

tems are compared to our requirements analysis in Table I and
are discussed below.

Hong et al. proposed Mobile Fog (MF) [14] that allows the
deployment of an IoT application across multiple devices in a
hierarchical system architecture from the network edge to the
Cloud. It provides an API for clients to send data vertically or
horizontally between devices in a hierarchical network, as well
as handlers that are used to process the data in the devices. MF
relies on a dynamic node discovery process to associate devices
together in a parent-child relationship where parent nodes lend
their computation resources to process data received from child
nodes. MFs hierarchical system architecture naturally allows
IoT applications to aggregate and process data locally along
the way from the edge network to the Cloud. In addition, it
supports load balancing between parent nodes so that child
nodes are associated with underloaded parents, improving the
overall scalability of the system. Mobility is handled by the
dynamic resource discovery process and duplication of appli-
cation codes on multiple devices. Meeting the requirements
for PA cycle is not fully taken into account by MF since a
parent node can only act on the same device from which it
receives the message. Because of this, PA cycle logic cannot
span multiple devices (e.g. the case where logic that processes
sensing data on one device actuates another device). Regarding
device heterogeneity, the MF programming model differenti-
ates nodes vertically based on the parent-child relationship and
the differences in their computation resources. Furthermore,
it does not support differences on services provided by edge
devices (there is only one API to get sensing data from all
types of devices). Supporting IoT application that operate on
different types of edge devices is very difficult as the developer
has to manually identify the data format of all edge devices.

Ichiro [17] proposed a Mobile Agent-based (MA) MapRe-
duce, inspired by the MapReduce data analysis model. Instead
of transferring all sensing data to a centralised server for pro-
cessing using MapReduce, the authors performed MapReduce
locally at the edge devices to minimise the network con-
sumption. The system allows developers to write and deploy
MapReduce procedures on heterogeneous devices. This work
supports a typical class of sense-only IoT applications without
any actuation so that various PA cycles are not mentioned.
However, it proves the need of in-network processing or Fog
computing for the IoT.

Distributed middleware frameworks can also be seen as
implementations of Fog computing since they provide in-
network processing capability that leverages computation re-
sources of edge devices. Daniele et al. proposed T-Res [15],
a framework that support in-network processing for WSN. T-
Res was implemented in Contiki OS with a lightweight Python
virtual machine. T-Res abstracts IoT applications into tasks
that are deployed on embedded devices. Each task consists of
four sub-resources: input source, output destination, processing
function and a last output value. The IoT application is
developed by configuring these tasks sub-resources so that
data is transferred between devices and processed by devices
in-network. Similarly to T-Res, Sylvain et al. proposed D-
LITe[29], a distributed middleware for motes based on Finite
State Transducers, which is also implemented in Contiki OS.
An IoT application is abstracted into a set of rules that control
the behaviour of the underlying mote based on the messages

it received and its current state. The limitation of these works
is that they cannot incorporate application logic that spans
across local networks and the Cloud in a unified way. They
also do not provide a way for the developer to automatically
select the things that participate in the application so that
manual configuration and deployment are required. This makes
scalability a challenge for both systems. Moreover, in both
systems computation resources are tightly coupled into the
edge devices assuming the devices have the same capabilities.
Finally, in neither case did either of these projects address
mobility.

Flask [16] and ATaG [30] are two well-known data-driven
programming models for WSN. In both works, authors ab-
stracted the application logic to small processing units that
manipulate and exchange data with each other, which then
form a dataflow graph. Compared to our proposal, these works
do not support vertical heterogeneity, that is, they did not
exploit the difference in devices’ computation resources for
the application logic. That is, while ATaG has a notion of
horizontal heterogeneity by assigning attributes to devices to
differentiate them based on their sensing/actuating services,
Flask operates on a set of homogeneous devices. Furthermore,
since these two works were developed specifically for WSN,
they do not consider different PA-cycles that was addressed in
this paper, such as the interaction that involves the Cloud.

glue.thing [31] is another framework for Iot Applications
development that has some similarities to our work in that it
was also built on top of the Node-RED platform. In glue.thing,
a master device controls and monitors all participating nodes
in a local network. Whenever a device joins the network, its
special nodes are added into the flow editor of the master
device and, made available to the developer. In another imple-
mentation, glue.thing deploy the master device on the Cloud
and manually register devices to the Cloud so that service
composition can be made in the Cloud. However this scheme
is less scalable because the glue.thing Composer works with
devices individually rather than classes of devices. Our work is
significantly different in that we exploit computation resource
in the Fog to provide in-network runtime environment.

Compare to DDF, none of these works fully supports the
rich set of PA—cycles as proposed and fulfilled in our work.
We also put forward a new dimension to the heterogeneity
definition of IoT systems and showed that none of these
works addresses both vertical and horizontal heterogeneity
as ours does. Mobility of things is not handled in most
work while MF and DDF share a similar approach that uses
code duplication. Scalability remains a difficult problem for
developing IoT Applications that only a few of the discussed
work can manage large scale deployment. MF achieves this
by deploying the same application codes on multiple devices
while DDF requests the participated devices pull the codes
autonomously.

VII. DISCUSSION

To program the IoT with D-NR, we have developed some
nodes ourselves, which are used to connect to our Web of
Thing Toolkit (WoTKit) platform [32]. The development of
nodes for Node-RED and D-NR was straightforward; we
need only to provide mechanisms for the input and output

nodes to authenticate against the WoTKit service, and ways
to move control messages and sensor data between D-NR
and the WoTKit platform. These new nodes were written in
JavaScript making development an easy task. We also inherited
a substantial number of nodes that are already made available
to the Node-RED platform so that the development of IoT
flows with D-NR is largely an exercise of wiring existing nodes
together.

The biggest challenge we encountered when developing
and deploying IoT applications to the Fog using D-NR is to
coordinate communication between nodes on different devices.
Currently we employ an intermediate message broker (based
on MQTT) as the communication channel between nodes on
different devices. Using a broker with publish/subscribe mech-
anisms ensures loose coupling between participating servers,
gateways and devices, and removes the need for components to
maintain the IP addresses and host names themselves. However
we have found that some application logic requires certain
services and devices to have knowledge of each other. For
example, in some scenarios, an actuator in room A should
only receive command messages from another person or thing
in the same room. In another scenario, we may want to deploy
the same flows to many different devices located in different
places, but we do not want the messages to be exchanged
between these places.

In our previous D-NR paper, we used MQTT topics to
coordinate communication between nodes comprised of the
source node and destination node ids in a distributed flow
partition. If we deploy a sub flow to multiple devices, all
devices listening on that topic receive messages published by
the source sub flow. This is not always desirable. To address
this, we added constraint information to the topic between sub
flows that nodes on different devices will publish and subscribe
to. This is done by hashing all the constraints being applied on
a node to make a short, unique topic ID that such nodes will
publish and subscribe to. However, using a message broker
also has the disadvantage of requiring all communication to
go through an intermediary, which can affect the timeliness
of a PA cycle. We are currently working on leveraging exist-
ing service discovery mechanisms and direct communications
protocol® to collect devices on a local network.

VIII. CONCLUSION

In this paper we have suggested that the Fog approach
is a suitable architecture for IoT applications and proposed a
Distributed Dataflow programming model as a basis for Fog-
based IoT applications. We discussed the core requirements
that Fog-based IoT applications need to meet and identified
a number of issues with existing approaches to Fog based
application development. We have shown how our DDF pro-
gramming model provides an easy way to design and develop
IoT applications by combining application constraints and
device capabilities to help drive the dynamic deployment of
application logic. Finally, we discussed our implementation
of the DDF programming model by extending the Node-RED
platform which we used to implement and demonstrate several
typical IoT applications. This small scale evaluation has shown

3This approach has been employed in another Node-RED fork [33] and we
have initiated discussions with the authors about collaborating on this.

the viability of our approach and the many advantages of the
DDF programming model and its practicability in real world
IoT scenarios. Although we have demonstrated a basic DDF
implementation, there are several open issues, for example the
need to include a distributed discovery and communications
infrastructure suitable for our platform to facilitate the com-
munication between devices that span multiple networks and
domains. We plan to address this and other issues in future
work.

ACKNOWLEDGMENT

This work has been partially supported by NSERC and
Sense Tecnic Systems Inc.

REFERENCES

[11 IETF, “Ipv6 over networks of resource-constrained nodes (6lo),”
https://datatracker.ietf.org/wg/6lo/documents/.

[2] N. K. Giang, S. Kim, D. Kim, M. Jung, and W. Kastner, “Extending
the EPCIS with Building Automation Systems: A New Information
System for the Internet of Things,” in 2014 8th International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing,
2014, pp. 364-369.

[3] S. H. Kim and D. Kim, “Multi-tenancy support with organization
management in the Cloud of Things,” in Proceedings - IEEE 10th
International Conference on Services Computing, SCC 2013, vol. 6,
no. 1, 2013, pp. 232-239.

[4] S. Nastic, S. Sehic, D.-h. Le, H.-1. Truong, and S. Dustdar, ‘“Provision-
ing Software-defined IoT Cloud Systems,” in The 2nd International
Conference on Future Internet of Things and Cloud (FiCloud-2014),
2014.

[5] P. Patel, A. Kattepur, D. Cassou, and G. Bouloukakis, “Evaluating the
Ease of Application Development for the Internet of Things,” Tech.
Rep., 2013.

[6] A. Awan, S. Jagannathan, and A. Grama, “Macroprogramming Het-
erogeneous Sensor Networks using Cosmos,” in Proceedings of the
European Conference on Computer Systems (EuroSys), vol. 41, no. 3,
2007, p. 159.

[71 L. Mottola and G. P. Picco, “Programming wireless sensor networks,”
ACM Computing Surveys, vol. 43, no. 3, pp. 1-51, 2011.

[8] S. Nastic, S. Sehic, M. Vogler, H.-L. Truong, and S. Dustdar, “PatRI-
CIA - A Novel Programming Model for IoT Applications on Cloud
Platforms,” in Service-Oriented Computing and Applications (SOCA),
2013 IEEE 6th International Conference on. leee, Dec. 2013, pp.
53-60.

[9]1 R. Lea and M. Blackstock, “City hub: A cloud-based iot platform for
smart cities,” in Cloud Computing Technology and Science (CloudCom),
2014 IEEE 6th International Conference on, Dec 2014, pp. 799-804.

[10] M. Yannuzzi, R. Milito, R. Serral-Gracia, D. Montero, and M. Ne-
mirovsky, “Key ingredients in an IoT recipe : Fog Computing , Cloud
Computing , and more Fog Computing,” in Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD), 2014
IEEE 19th International Workshop on, 2014, pp. 325-329.

[11] GSI1, “Epcglobal network,” http://www.gs1.org/.

[12] L. M. Vaquero and L. Rodero-Merino, “Finding your Way in the Fog,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, pp.
27-32, 2014.

[13] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
Its Role in the Internet of Things Characterization of Fog Computing,”
in the first edition of the MCC workshop on Mobile cloud computing
(MCC ’12), 2012, pp. 13-15.

[14] K. Hong, D. Lillethun, B. Ottenwilder, and B. Koldehofe, “Mobile Fog
: A Programming Model for Large Scale Applications on the Internet
of Things,” in the second ACM SIGCOMM workshop on Mobile cloud
computing (MCC ’13), 2013, pp. 15-20.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

D. Alessandrelli, M. Petraccay, and P. Pagano, “T-Res: Enabling recon-
figurable in-network processing in IoT-based WSNs,” in Proceedings
- IEEE International Conference on Distributed Computing in Sensor
Systems, DCoSS 2013, 2013, pp. 337-344.

G. Mainland, M. Welsh, and G. Morrisett, “Flask: A language for data-
driven sensor network programs,” MA, Tech. Rep. TR-13-06, 2006.

I. Satoh, “A Framework for Data Processing at the Edges,” Database
and Expert Systems Applications, vol. 8056, pp. 304-318, 2013.

M. Blackstock and R. Lea, “Toward a Distributed Data Flow Platform
for the Web of Things,” in Proceedings of the Sth International
Workshop on Web of Things (WoT ’14), 2014.

F. Li, M. Voegler, M. Claessens, and S. Dustdar, “Efficient and scalable
IoT service delivery on cloud,” in IEEE International Conference on
Cloud Computing, CLOUD, 2013, pp. 740-747.

I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas, “50 ways to build
your application: A survey of middleware and systems for wireless
sensor networks,” in [EEE International Conference on Emerging
Technologies and Factory Automation, ETFA, 2007, pp. 466—473.

T. Teixeira, S. Hachem, V. Issarny, and Nikolaos Georgantas, “Service
oriented middleware for the Internet of Things,” in Proceedings of the
4th European Conference on Towards a Service-Based Internet, vol.
6994, no. 257178, 2013, pp. 220-229.

C. Beckel, H. Serfas, E. Zeeb, G. Moritz, F. Golatowski, and D. Timmer-
mann, “Requirements for smart home applications and realization with
WS4D-PipesBox,” in Emerging Technologies & Factory Automation
(ETFA), 2011 IEEE 16th Conference on. leee, Sep. 2011, pp. 1-8.

W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow
programming languages,” ACM Computing Surveys, vol. 36, no. 1, pp.
1-34, 2004.

J. Zhang, Z. Li, O. Sandoval, N. Xin, Y. Ren, R. a. Martin, B. Iannucci,
M. Griss, S. Rosenberg, J. Cao, and A. Rowe, “Supporting Personizable
Virtual Internet of Things,” in Ubiquitous Intelligence and Computing,
2013 IEEE 10th International Conference on and 10th International
Conference on Autonomic and Trusted Computing (UIC/ATC). Ieee,
Dec. 2013, pp. 329-336.

J. Im, S. Kim, and D. Kim, “IoT Mashup as a Service: Cloud-Based
Mashup Service for the Internet of Things,” in Services Computing
(SCC), 2013 IEEE International Conference on. leee, Jun. 2013, pp.
462-4609.

M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving Application Logic
from the Firmware to the Cloud: Towards the Thin Server Architecture
for the Internet of Things,” in 2012 Sixth International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS
’12). leee, Jul. 2012, pp. 751-756.

IBM, “Node-red,” http://nodered.org/.

A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things-A
survey of topics and trends,” Information Systems Frontiers, no. March
2014, pp. 1-14, 2014.

S. Cherrier, Y. M. Ghamri-Doudane, S. Lohier, and G. Roussel, “D-
LITe: Distributed Logic for Internet of Things Services,” in Internet of
Things (iThings/CPSCom), 2011 International Conference on and 4th
International Conference on Cyber, Physical and Social Computing.
Ieee, Oct. 2011, pp. 16-24.

A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The abstract task
graph: A methodology for architecture-independent programming of
networked sensor systems,” in Proceedings of the 2005 workshop on

Endtoend senseandrespond systems applications and services, no. Eesr
05, 2005, pp. 19-24.

R. Kleinfeld, “glue . things a Mashup Platform for wiring the Internet
of Things with the Internet of Services,” in Proceedings of the 5th
International Workshop on Web of Things (WoT ’14), 2014.

M. Blackstock and R. Lea, “IoT mashups with the WoTKit,” in
Proceedings of 2012 International Conference on the Internet of Things,
10T 2012, 2012, pp. 159-166.

Z. Chao, “mobile collaborative framework,” https://github.com/ilc-
opensource/mcf.

