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Abstract—Point-to-multipoint communications are expected to
play a pivotal role in next-generation networks. This paperrefers
to a cellular system transmitting layered multicast servies to a
multicast group of users. Reliability of communications isensured
via different Random Linear Network Coding (RLNC) tech-
nigues. We deal with a fundamental problem: the computatiol
complexity of the RLNC decoder. The higher the number of
decoding operations is, the more the user's computationalver-
head grows and, consequently, the faster the battery of molai
devices drains. By referring to several sparse RLNC techniges,
and without any assumption on the implementation of the RLNC
decoder in use, we provide an efficient way to characterize th
performance of users targeted by ultra-reliable layered miticast
services. The proposed modeling allows to efficiently derévthe
average number of coded packet transmissions needed to reey
one or more service layers. We design a convex resource alion
framework that allows to minimize the complexity of the RLNC
decoder by jointly optimizing the transmission parametersand
the sparsity of the code. The designed optimization framew&
also ensures service guarantees to predetermined fractienof
users. The performance of the proposed optimization framewark
is then investigated in a LTE-A eMBMS network multicasting
H.264/SVC video services.

Index Terms—Sparse network coding, multicast communi-
cation, ultra-reliable communications, green communicabns,
mobile communication, resource allocation, LTE-A, eMBMS.

I. INTRODUCTION

of users. In particular, the multicast service is providad i
an ultra-reliable way, hence, the service shall be received
by predetermined fractions of users, and has to meet target
temporal constraints. It is worth noting that the posdiili
of managing ultra-reliable multicast applications is palp
in any Professional Mobile Radio (PMR) standard [3]. Even
though classic PMR standards, like Terrestrial Trunkedi®&kad
(TETRA) or Association of Public-Safety Communications
Officials-Project 25 (APCO P25), refer to ad-hoc commu-
nication protocol stacks, the upcoming evolutions of those
standards will rely on the 3GPP’s Long Term Evolution-
Advanced (LTE-A) standard and its extents [4]. As a result,
next-generation PMR standards are expected to enable the de
ployment of PMR systems over pre-existing LTE-A networks.
In this paper, we consider a system model where the
base station multicasts a scalable service composed by one
base layerand multipleenhancement layerdhe base layer
provides a basic reconstruction quality that is graduatty i
proved as one or more enhancement layers are progressively
received. Because of the layered nature of the considered
multicast service, it is natural to refer to service reliépi
constraints, which impose that at least a minimum number of
users is able to recover predetermined sets of serviceslayer
by a given temporal deadline. The layered service approach
has been originally adopted in video communications [5].

Among the major novelties likely to be implemented irHowever, as discussed in [1] and [6], the same principle is

next-generation networks, there is the possibility of jpdev

likely to go beyond the traditional boundaries of multineedi

ing services characterized by an availability level of atnocommunications and be applied in other fields in order to
100%. In the literature, that emerging kind of services igichieve aranalog-likeservice degradation.

usually referred to aslltra-reliable serviceg[1]. The ultra-

Because of the ultra-reliable nature of the considered mul-

reliable way of conveying services is expected to be greatigast service, users are required to acknowledge to the bas
useful in a plethora of applications, such as reliable clougtation when they successfully recovered one or more servic

connectivity, data harvesting from sensors, professioonat-
munications [2].

layers. Even though there exists Automatic Repeat-reQuest
(ARQ) [7] and Hybrid ARQ error control protocols [8] suitabl

Among the possibilities, this paper refers to a system modet PtM communications, the protocol complexity and the
where a Base Station (BS) transmits, in a multicast fastaonrequired amount of feedback quickly become intractabléas t

Point-to-Multipoint (PtM) service to a Multicast Group (MG
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number of users increases. For these reasons, the r&jiabili
of PtM communications is ensured via Application Level-
Forward Error Correction (AL-FEC) techniques based on Luby
Transform (LT) or low-density parity-check codes. However
as noted in [9], these kind of codes require large block lengt
to operate close to their capacity, and that could potdyntial

andbe an issue, in the case of multimedia communications. In

addition, the most recent evolutions of LT codes [10] usuall
rely on fixed degree distribution functions and, hence, the
code sparsity cannot be optimized on-demand. To this end,



in order to mitigate those issues, our system model ensugesup composed by a potentially great number of users, it is
reliability of multicast communications, via Random Limeanot appropriate to refer to the strategies as in [20], [21] tkae
Network Coding (RLNC) techniques [11], [12]. other hand, we will refer to classic decodable RLNC straegi
Given a source message/obource packets to be multicast(as in [19]) that are characterized by a significantly smnalle
the RLNC principle generates and multicasts a stream wuder feedback footprint.
coded packets, where each of them is obtained as a lineatnfortunately, as noted in [22], [23], the flip side of the
combination of multiple source packets. A user recovers thensidered RLNC techniques is represented by the complex-
source message as soon as it collects a number of lineatyyof the decoding operations that depends, amongst other
independent coded packets that is equat.t®LNC schemes code parameters, by the lengthof the source message. As
have been used in several wireless settings as a versatided in [24], [25], the decoding complexity problem can be
solution for reliable service delivery [13], [14]. Amongeth partially mitigated by the systematic implementation ofNRL
literature contributions, M. Xia@t al. [15] refer to a system (SRLNC). However, in case of poor propagation conditions,
model where nodes are connected by a network that cantbe performance of SRLNC coincides with that of RLNC [26].
represented by a Direct Acyclic Graph (DAG); that networlobviously, the more the decoding complexity grows, the more
consists of one source node and several sinks. In [15], e processing footprint increases and, hence, the battery
RLNC principle takes place at the network layer and allowsf mobile devices discharges. For these reasons, this paper
intermediate nodes to combine several incoming data flovegjdresses the following fundamental questienthere a way
reliability of coded packet transmissions is ensured viata minimize the RLNC decoding complexity of ultra-reliable
channel code operating at the physical layer. The size lalered multicast communications without altering theatir
coded packets and the channel code rate are jointly optimizaurrently onboard mobile devices?
to minimize the end-to-end delay at the network layer. In We will answer the aforementioned research question by
addition, multiple resource allocation approaches havenbeeferring to multiple sparse RLNC techniques. As will be
proposed to improve the reliability of layered services vielear in the following section, let us intuitively define the
different RLNC implementations [16]—[18]. In particuldt6] sparsity of the code as the number of source packets that
considers a multi-hop directed acyclic graph network toggl on average are involved in the generation process of each
where a scalable service is multicast to multiple receiversoded packet [22]. To the best of our knowledge, the general
That paper proposes to optimize the communication rate expression of the decoding complexity as a function of the
each link, in order to improve reliability. Channel erasuresource message length and the sparsity is unknown. However,
are further mitigated via classic FEC techniques. Simjlarthe decoding complexity decreases as the source message get
to [16], [17] deals with multi-hop network topologies andshorter [23] and/or the sparsity increases [22]. Intullive
layered services. However, in that case, reliability of-émd as the sparsity increases, the information content of each
end communications is improved via a specific implementaticoded packet decreases. Hence, the average number of coded
of RLNC, which achieves a ladder-shaped global codinmackets needed to recover a source message increases as the
matrix. Differently than [16] and [17], [18] applies RLNC tosparsity grows [22]. That leads us to further refine our nesea
populate a distributed caching system, kept by intermediajuestion as followsAre there any optimized sparse RLNC
network nodes. The communication-ends can take advantagrategies ensuring: (i) a reduced decoding complexityd an
of that while they retrieve the desired scalable servica,avi (ii) a recovery of the source message with an average number
reduced number of Point-to-Point sessions. In contrast3p{ of coded packet transmissions, which is close or equal tb tha
[18], this paper refers to a typical cellular network togptlp provided by non-sparse RLNC techniques?
where the source node transmits streams of coded packets tohe first contribution of the paper is that of providing
a set of users in a multicast fashion. In other words, th@a efficient performance modeling of sparse non-systematic
paper adopts RLNC to improve reliability over a one-hopnd systematic RLNC techniques via umified theoretical
broadcast network and not as a way to improve the end-feamework. In particular, in Section IlI, we characterize th
end communication throughout across a multi-hop netwotser performance in terms of the average number of coded
topology [12, Ref. [14]-[16]] and [19, Ref. [26]]. packet transmissions needed to recover a given service laye
We observe that the application of RLNC to one-hop broatt-is well known in the literature that an exact expression fo
cast networks has been also discussed in [20] and [21]. I btite aforementioned performance index is unknown [27]-[30]
cases, the broadcasting of a set of source packets is dplit ilihat is caused by the lack of an analytical formulation of
multiple stages. During the first stage all the source packéie probability of generating a full-rank sparse randomrixat
are broadcast by the source node, then, in the followingstagover a finite field [30]. In order to mitigate the aforemengdn
the source node and/or an intermediate relay node broaddsstie, X. Liet al. [27], [28], proposed a pioneering approach
streams of coded packets. Both [20] and [21] focus on differefor upper-bounding and lower-bounding the probability of
forms of Instantly Decodable Network Codes, which generagenerating at random a sparse non-singular random matrix,
coded packets in a deterministic fashion, based on multifdased on the zero pattern of the random matrix. Unfortupatel
user feedback. As a consequence, we observe that the dlervalidity of the resulting bounds has been proven only for
uplink traffic can quickly become non-negligible as the nemblarge finite fields. Apart from that, those bounds cannot be
of users increases. Given that we will refer to a system modficiently incorporated into an optimization model meamt t
composed by a source node multicasting services to a matlticae solved on-demand, before starting the transmission of a



service. In fact, the bound expressions involve nested suthe considered system model, an H.264/SVC video stream
where each term is a product of several binomial coefficjentonsists of several layers such that the enhancement layers
which could not be practically derivable, in the case of éargmprove the reconstruction quality provided by the baseeid
source message lengths (Section Il). Furthermore, it srad¢ layer. Finally, Section V summarizes the main findings of the
straightforward to formally prove the convexity of the basn paper.
as in [27], [28], because their definitions involve sever@hn
differentiable points.

For these reasons, we rely on the results presented in [29]
and extended in [30]. However, in [29], [30], authors onlgpr
vide a lower-bound of the probability that a spafse-1) x k& We consider a one-hop broadcast communication system,
matrix is full-rank, given that the first rows are linearly which is composed by one source node and a MGUof
independent, fo0 < ¢ < (k — 1). It is worth mentioning, users (hereafter calledhulticast userg In order to improve
that the aforementioned result was provided without refgrr the reliability of PtM communications, the source transmit
to any communication system or coding strategy. By buildindata streams encoded according to the RLNC principle. As a
upon that result, we provide an upper-bound for the averagensequence, the source node transmits streams of network-
number of coded packet transmissions needed to recove¢ogled packets (henceforth referred to aasled packejsto
service layer, via an Absorbing Markov Chain (AMC) withthe MG. For the sake of generality, we assume that the
reduced complexity. In particular, Section 1I-B will showv transmission of a PtM communication occurs over a set of
our performance modeling does not involve any explicit matrorthogonal broadcast erasure subchannels. Each subt¢hanne
inversion, which is a common and computationally costlpsteconsists of basic resource allocation units calledource
in AMC-based analysis. As will be clear in the followingblocks
sections, that desirable feature is achieved because)dhie(i As mentioned in the previous section, our main goal is
nature of the aforementioned probability lower-bound diif, to design a general optimized service-provisioning panadi
the way we defined the states of the proposed AMC modefor ultra-reliable multicast services, with a reduced aicg

The second contribution of the paper is made in Section Itpmputational complexity. The following section will also
where we answer to our research question by building upotarify that the proposed theoretical modeling (SectioB)I
an efficient user performance characterization and pragasi and the resource allocation procedure (Section Ill) ardyeas
resource allocation framework for ultra-reliable layenaditi- applicable to any cellular system capable of multicasting
cast services. The proposed framework aims to maximize thelltiple data streams at the same time. However, in order
code sparsity associated to each service layer, and hdwece to effectively map user Quality of Service (QoS) constmsint
overall decoding complexity is minimized. The optimizatio onto typical system performance metrics (e.g., delay, gack
goal is fulfilled by a joint optimization of both the codeerror rate, etc.), we will refer to an OFDM-based multioarri
sparsity and the Modulation and Coding Schemes (MCS)mmunication system.
used for multicasting each service layer. In addition, githee In the considered physical layer, the downlink phase is
layered nature of the transmitted services, the optindmatiorganized in radio frames. Resource blocks forming each
constraints ensure that the desired number of service daysubchannel are transmitted in one or more radio frames. Each
are recovered by predetermined fractions of users, with &ame can be modeled as a frequencyime structure where
average number of coded packet transmissions that is smaillee frequency and time domains are discretized into OFDM
than or equal to a target value. We prove that the proposadbcarriers and OFDM symbols, respectively. Each resource
resource allocation framework is convex and can be easiiiock occupies a fixed time intervai{g) and frequency band,
solved. Finally, we remark that the proposed resource @llog.e., each resource block spans a fixed number of OFDM
tion framework applies for several sparse RLNC techniquesyymbols and OFDM subcarriers. Since multicast users may ex-
in a complete RLNC decoder-agnostic fashion. perience heterogeneous propagation conditions, usersitive

Even though our analysis deals with a generic cellulés exploited by assuming that the subcarriers used in a resou
system model, Section IV inspects the effectiveness of thck are selected at random among all the available onés [34
proposed optimized sparse RLNC techniques by referring e also assume that users are static or characterized by low
a LTE-A communication network. We chose that particulanobility, hence, the user channel conditions are consitlere
communication standard for two main reasons: (i) LTE-A isonstant within a resource block.
likely to play a leading role in the early-stage deploymeint o Each coded packet is always mapped onto one resource
next-generation networks [31], and (ii) LTE-A provides thdlock and transmitted by means of a specific MCS that is
support to handle PtM communications at the radio accddgntified by an index, which can takd possible values. We
and core network level, by means of the evolved Multimedi@enote byp, (m) the Packet Error Rate (PER) experienced by
Broadcast Multicast Service (eMBMS) framework [32]. In the multicast uset, and byr(m) the number of information bits
proposed performance investigation, we refer to a MG tadyetcarried by one resource block, when the MCS with indeis
by non-real time multimedia multicast services compresséaduse. Let us consider two MCSs with indexeandb, where
according to the widely used H.264 video encoding standard.< b. In our system model we assume that the MCS with
In particular, we referred to the scalable extension of W,26indexa is characterized by a smaller modulation order and/or a
called Scalable Video Coding (H.264/SVC) [33]. In line witHower channel code rate thanFor the same user propagation

II. SYSTEM MODEL AND PERFORMANCE
CHARACTERISATION



K=K

i, source packets, as shown in Fig. 1 for3dayer message.
Ky ' In particular, layer¢ of x is defined by a fixed numbek,
ﬁ ] | | | |xK of source packets, implying thf’{f = Zle ke. If the MCS _
adopted by the subchannel delivering coded packets ofcgervi
T ks ' Es

layer/ is m, the number of bits carried by each resource block
will be equal tor(m,). Hence, we definé, = [by/r(my)].
Without loss of generality we assume that the first source
conditions, we have,(a) < p.(b) andr(a) < r(b). We also packets ofx belong to the base layer (= 1), and are
refer to a system where all the resource blocks belongintgeto fprogressively followed by packets defining the enhancement
same subchannel shall adopt the same MCS. Coded packgjers ¢ = 2,..., L).

associated with a PtM data service are transmitted via one ofn the remaining part of the paper, we will characterize the

more broadcast erasure subchannels. performance of different network coding strategies. I afi§o

The source node transmits to the MGlayered scalable become clear how the selection of MCS scheme and sparsity
service consisting of one basic layer ahd- 1 enhancement associated with each message layer can be jointly optimized
layers. Each layer is characterized by different priorityells.
The basic layer (also referred to as “lay€y owns the highest
priority, which decreases in the case of the enhancemesrtda
(layers2,...,L). In particular, layerL is characterized by Let K = Ytk be the number of source packets
the lowest priority. Because of that, it is natural to defin€@rming the first/ layers of a source message. In the classic
the level of QoS achieved by a multicast user as the numty@plementation of RLNC, the source node linearly comblnes

Fig. 1. Layered source message, in the casé ef 3.

)/A Random Linear Network Coding Background

of consecutive message layers, starting from the base, lay@urce packets{:cz} ~k,_ ,+1 forming message layef, i
that can be recovered. Hence, a user shall achieve the @sger to generate a streal{ryj i, of n, coded packets
level 7, if all the layersl, ..., ¢ are successfully recoveredwherey; = Zf("m 1%, - ;. Each coding coefficient; ;

For instance, if a user successfully recovers messageslayier uniformly selected at random over a finite fieGiF(q)
{1,2,...,6,0+2,0+3,..., L} then layers to ¢ improve the of size g. The coding coefficients associated wigh define
information provided by layet. In that case, the QoS levelthe coding vectorc; = (¢j k, ,+1,---,¢j.K,)- Since each
achieved is equal t6, and layers +2,..., L do not provide coding coefficient is obtained by the same Pseudo-Random
any QoS improvements, as layé#- 1 has not been received.Number Generator (PRNG), modern NC implementations are
The considered multi-layer principle has been originallgeen on representing; by the PRNG seed used to compute
designed for video compression standards. In the casetiod first coding vector component x, ,+1. The seed is
H.264/SVC [33], it is possible to achieve different kinds ofransmitted along with the correspondent coded packeteSin
video scalability [5]. With the spatial scalability, thedeio each user is equipped by the same PRNG, it can incrementally
frame resolution is gradually increased by each layer with trecompute all the coding vector components, starting from
purpose to fit screens with different capabilities. In thases the first one [11], [19]. The RLNC encoding process is then
the content provided by layer allows a user, for instance,repeated for each message layer 1,...,L. A multicast
to recover a352 x 288 px video stream. By following the user can recover the source message lay#rit successfully
same train of toughs, the spatial resolution can be boostedeivesk, linearly independent coded packets associated with
to 720 x 480 px and1920 x 1080 px, by means of layers 1 that message layer.
and 2, and layers 1 to 3, respectively. It is worth mentioning Unlike classic RLNC, a coded packet stream obtained by
that our analysis is generic enough to be applied to a®RLNC associated with layémgenerates, systematic packets
layered scalable service that follows the previously noevedd and one or more coded packets. The systematic packets are
hierarchical structure. It is beyond the scope of the papeentical to the source packe@si}fgmilﬂ, while the coded
to provide analytical and optimization frameworks dealingackets are obtained as in the classic RLNC case. For the sake
with the compression strategy used to generate a scalaplethe analysis, we define the coding vector associated with
service. For these reasons, the proposed analysis has bsetematic packetas a vector where: (i) theth component
made independent of the way service layers are generated @gnequal tol, and (ii) all the remaining components are equal
the nature of the adopted service scalability. to 0. For clarity, we will refer to a coding vector related to a
As suggested in [12], [19], we model the transmitted serviggstematic packet alegenerateoding vector in the rest of the
as a stream of information messages of the same size. Paper. In our system model, we assume that users acknowledge
scalable nature of the service is reflected on each messagehe source node, over a fully reliable channel, the ssfoks
In particular, each message consistsiofayers, where layer recovery of a layer. Furthermore, the source node transmits
¢ is a sequence ob, bits. We remark that coded packetsnessage layer until a predetermined fraction of multicastsi
associated with different message layers are transmityed Has recovered it. Obviously, as will become clear in Sedtion
different subchannels. Therefore, the total number of pismli  the transmission of each layer shall meet a temporal canstra
subchannels id. In the rest of the paper, we will provide an The sparse versions of both the classic (S-RLNC) and
analytical framework suitable for optimizing the transsi® systematic implementation of RLNC (S-SRLNC) are obtained
of each message and, hence, of the whole layered serviceas follows. Each component; of a non-degenerate coding
Each layered message = {xz1,...,xx} consists of K vector associated with source message ldysindependently



and identically distributed as follows [28]: At first, when usen, has not received any coded packet or
coded packets associated with zero-coding vectors, thecdef

Pr (e = v) = Zili e ifv=0 ) of C, is ks, and hence, the AMC is in stateg’é). The
L if v e GFq) \ {0} defect progressively decreases, i.e., the index of the AMC
- state decreases, as new linearly independent coded packets

wherep,, for 0 < p; < 1, is the probability of having;; = 0. received. As a consequence, in the case of l&yave have
The eventc; ; # 0 occurs with probabilityl — p,. We remark that the AMC consists ok, + 1 states. Furthermore, in order
that the average number of source packets involved in tttedefine the probability transition matrix of the user AMG w
generation of a non-degenerate coded packet, i.espghesity summarize here the proof of the following lemma, presented
of the code, can be controlled by tuning the valuepgffor in [29, Theorem 6.3].

any/=1,...,L. Lemma 2.1 ([29, Theorem 6.3]Assume that matrixC,,

Since coding vectors are generated at random, there is Ho@isists of(t + 1) x ke elements, for0 < ¢t < (k¢ — 1),
possibility of generating coding vectors where each codinghd assume thatout of t + 1 rows are linearly independent.
coefficient is equal to0. From a system implementationThe probabilityP, ; that matrixC,, is not full-rank admits the
perspective, all-zero coded packets should be discardedan following upper-bound:
transmitted. On the other hand, in the literature dealindp wi
the performance characterization of RLNC, it is common to 1—pe\]5
include the transmission of all-zero coded packets [35].[3 Py < [max (pe, — )] : 2
In that way, the performance modeling is tractable and keeps q
a higher degree of generality. The same principle is adopted
in this and the following sections. However, Section IV-Alwi Proof: Without loss of generality, assume that the first
show how the proposed analytical modeling can be applied to {5 of C,,, denoted byCy 1, ..., C..., are linearly indepen-
practical comm_unication system where all-zero coded pgackgent. By resorting to basic row-wise operations, it is pussi
are not transmitted. - _ _ to transformC,, such that the first rows and columns o€,

In order to establish a link between the coding schemggfine thet x ¢ identity matrix. Consequently, the firstrows
presented in [12] and those discussed in this paper, the fg{he transformedC, generate the same vector space defined
lowing sections will deal with the Non-Overlapping Wmdowoy Cu1,...,Cus. The probability thatC, is not full-rank
(NOW-RLNC) and the systematic NOW-RLNC strategies. WSntireIS/ dependé on the ladt — ¢ components of the last
observe that the exact performance model of the Expandipg, C..41 Of C,. Hence, the probability tha€, ,,, does

Window RLNC (EW-RLNC) strategy is unknown, even fofqt helong to the vector space defined@®y 1, ..., C,, is at
the non-sparse case. In fact, [12] proposes an upper-baund t ’ ’

ke—t
the probability of recovering a source message, when the E{g@St1 — max (pf’ 1q_—pl€) - That completes the proof.m
RLNC is used. Since the reasoning behind that bound relieBecause of (1), the exact QoS characterization is a chal-
on a well-known result of classic non-sparse RLNC [37], itenging task [28]. In particular, to the best of our knowledg
extension to the sparse case is not trivial. For these readun the exact expression df, ;. is not known. In the rest of the
sparse implementation of EW-RLNC is still an open researgiaper, owing to the lack of the exact expressiorPef, we
issue. use (2) to approximat®, ;, that is

ke—t
B. Markovian Modelling for Delay Performance P, [maX (pe 1 —pz)] . -
P ? _ 1 °

In this paper, user performance will be expressed in terms of
the average number of coded packet transmissions aftehwhj . L .
a useru achieves a predetermined QoS level. For this reaso ,e following remark is immediate from (2) and (3). _
in the remainder of the section, we focus on usend model ~ Remark 2.1:If p, = ¢~', each non-degenerate coding
the recovery of message layéras a Markovian process. In vVector is equiprobable, for a given valuefof Hence, gcodmg
particular, the user decoding process is modeled via an AM¢ECtor belongs to the vector space generated biyearly

Let C,, be a matrix associated with the userconsisting ndependent coding vectors with probabiliy, = ¢/q-
of k, columns and variable number of rows. As user This result has_been discussed in the Ilte_rature [37] but is
successfully receives a coded packet associated with fayef!€arly not applicable to the sparse case, in contrast to (3)
the corresponding coding vector is extracted and added, a¥ i§ worth mentioning that the considered approximatio (3
new row, into matrixC.,. Assumeu already receivea, > k; collapses to the exact expression Bj ; ¢311€ndz hence, the
coded packets, i.eC, is an, x k, matrix. Useru recovers relation Py, = [max (pe, (1 —pe)/(¢—1)]""" = ¢'/q"
layer ¢ when the rank ofC,, denoted byrank(C,,), is equal holds, forp, =¢~*.
to k, or equivalently when the defect of the matrix, defined From (3), the transition probability matrix describing the
asdef(C,) = k¢ — rank(C,,), is zero. For these reasons, wAMC associated with user and message layef can be
define a state of the user AMC as follows. derived by the following lemma.

Definition 2.1: The AMC associated with user and mes-  Lemma 2.2:Assume laye¥ is transmitted over a subchan-
sage layer is in statesl(“’é), if def(C,) =14, fori =0,...,k,.. nel which adopts the MCS with index. The probability



pwd p{w9 p{4? p{w Theorem 2.1 ([38, Theorem 3.3.5])f the AMC is in the

kg,kg—1 ko—1,kp—2

o transient statesz(.“’e), the average number of coded packet
"""""" @ @ transmissions needed to get to sta(%?ée) is
0 ifi=0
(u,€) (u,€) (u,€) (u, &) T-(u7é) = i (u,€) £ (7)
Pk’bkz Pkeflvktz*l Pii Poo ¢ ZNiaj ifi=1,... k.

j=1
Fig. 2. State transition diagram for the AMC associated wasier« and
message layet. From (7) and Theorem 2.1, we prove the following corollaries

P%’@ of moving from statesl(”’é) to statesgu’é) is (uCgroIIary 2.1: In the case of S-.RL.NC, the average number
’ Te-pine Of coded packets transmissions needed by usty

wo | 0 Perilll = pu(m)] ifi—j =1 recover the source message layés 7'\ = 71"
Pi7 =9 Pere—ill = pu(m)] + pu(m) if i =J (4) Proof: When the source node transmits the very first
0 otherwise. coded packet, user is in statesg:’é). That follows from the

u,f) fact that the source node has not previously transmitted any

Proof: Since the user AMC is in stateg , useru coded packets, and, hencenk(C,) is always equal (0. m
has collecteds, — ¢ linearly independent coded packets, i.e.; ' N R Lou L
e y P P We remark that, in the case of S-SRLNC transmission, at

k(C,) = k; — . As a new coded packet associated wit .
rank(C.) S P E}]e end of the systematic phase, usemay have collected

layer ¢ is transmitted, we have just two possibilities: . ;
4 J P one or more source packets, implying thit(C,) may be

e The rank of C, is increased tok, — ¢ + 1 - The - . -
b . . smaller thark,. In particular, ifdef(C,) < k,, the AMC will
coded packet is successfully received with probabﬁ- ¢- NP uye)e( 214) ‘

. S . start from any of the states% ey Sp
ity 1 7.p“(m>’ and it is linearly mdependent Of Corollary 2.2: Consider S-SRLNC. i systematic and non-
the previously received coded packets with probabilit

(1-P ). This event occurs with a probability equa ystematic coded packets associated with source megsage
(1 &1’;@—1 ' L= pu(m)] P Y €U re transmitted by means of the MCS with index the
— Tl ke—i - Pu .

. Vi .
. The rank of C, does not change - That may Occuponadered average numbatéf‘s,-\,)LNC of systematic and coded

because the coded packet is not successfully receiveoPS‘ert transmissions needed to recover layer

because it is linearly dependent of the previously received ke
. . . (u,l) . (u,l) . (u,l)
coded packets. This event occurs with a probability equal TS-SRLNC = Z U (kl L+ ) (8)
to Py i, —i[1 — pu(m)] + pu(m). =0
u Wherewl(“l) is the probability that the process associated with
From (29), we also understand that the probability of moyrsery, starts from state(™”, given by
ing from states""” to another state is zero. Hence,"’ '
represents the so-callabsorbingstate of the AMC. All the Wl(“-‘) — (k_é)pu(m)i [1— pu(m)]’“f*i7 i=0,....ke. (9)
remaining stateggu’e),...,séj’l) are commonly referred to v
as transient states [38]. The state transition diagram of the  Proof: Assume that: collectsk, —i out of k, systematic
resulting AMC can be represented as reported in Fig. 2. packets. Hence, matriC,, consists ofk, — i linearly inde-
From Lemma 2.2, it directly follows that thependent rows and, hence, the user AMC is in stéféé).
(k¢ +1) x (kg +1) transition matrix T+ describing In that case, from (7), we have that layeis recovered, on
the AMC of useru and associated with layef has the average, aftel, — i + """ packet transmissions, namely,

following structure in itscanonical form[38]: ke — i systematic packets plus” coded packets. At the
1 0 end of the systematic packet transmission phase, the AMC
T = (5) isi (w.d) i ity (% i ke—i
RO | QU0 | is in states;"” with probability (“*)p, (m)* [1 — pu(m)]™ ",

fori=0,..., k. Hence, the value oféf‘s’QLNC is obtained by
ﬁiénply averaging:gfzdrri(“’é) with the appropriate probability
value ofwf”’é), fori =0,...,ks, as provided in (8). ]

where Q%) is the k, x k, transition matrix modeling the
AMC process as long as it involves only transient states. T
term R(“Y is a column vector ok, elements which lists all
the probabilities of moving from a transient to the absagbin

state. From [38, Theorem 3.2.4], let define maiN%™-) as Il1. SPARSERLNC OPTIMIZATION: MOTIVATIONS AND

- RESOURCEALLOCATION MODELS
N@wO — Z (Q(u,e))t _ {I— Q(u,[)}il_ (6) Among the most effective ways of decreasing the com-
putational complexity of the RLNC decoding operations, we
(w.0) o ) i consider the reduction of the number of source packets fand t
ElementN; ;" at the locatior(i, j) of matrix N'-" defines jncrease of the sparsity of the non-degenerate coding r&ecto
the average number of coded packlgt transmissio?s reqlmiredder source message layer. As discussed in Section II, we
the process transition from stasé“’ ' to States§“’ ), where remark that as the MCS index, used to transmit layef
both sZW) and sg.”’g) are transient states. In particular, fromncreases, the numbef(m,) of useful bits carried by one
Lemma 2.2, the following theorem holds resource block or, equivalently, forming a coded packet, is

t=0
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coding decoder based on the Gaussian Elimination principle

ber of coded oack ocites which represent the most computationally intensive pathef

Fig. 3.  Average number of coded packet transmissions anddé ; ; ;

operations, fog; = 2. With regards the S-SRLNC scheme, the average numb((:‘*::geCOdIng process_ [14]. II’? particular, the morg increases,

of decoding operations have been obtained by considering 0.1. the more the coding matri€C,, becomes sparser, and, conse-

) ) _ quently, the Gaussian Elimination requires a smaller numbe

likely to increase. Given that coded and source packets h@jejterations [22]. That behavior is confirmed by Fig. 3b,

the same bit size, the value bf is likely to decrease whem, GészLNc decreases not only whén decreases but also when

increases. However, as, increases, user PER related to thg jycreases.

receptlt_)n of subchannélls_llkely to increase, i.e., the fraction |, the case of S-SRLNC, the value €£QSRLNC is indeed

of mult|cast_us_ers regarding the reception of subchafma 4¢ecteq by the user PER. The morgincreases, the more the

acceptable is likely to decrease. number of successfully received systematic packets deesea
It is worth noting that both the value of, and the anq the more the number of coded packets required to recover

probability p, of selecting a coding coefficient equal t0 zergne |ayer increases. Hence, that corresponds to an inctémen
determine the average number of coded packet transmissigiis yalue ofe'®

; , s spLne- In particular, Fig. 3b shows the value
and the average number of decoding operations neededogo(g)

. ) . for p, = 0.1.
layer’. With he f Fig. 3a shows ‘S_SRLNC' 10 Pu . o
recover layer (Ml)t regards o the first aspect, Fig. 3a shows In the case of S-RLNC, in order to establish a link between

(u,?) ;
the value of7s ‘pinc and 7 _spine @S @ function Ofpe.’. the average number of decoding operations and the time
for ¢ = 2, k¢, = {10,70} and a packet error probability . .
. needed to perform that number of decoding operations on a
pu = {0,0.1}, when S-RLNC or S-SRLNC is used. Curve . , .
. ) . w-end device, Fig. 3b also reports the average processing
have been obtained by computer simulations. More detalls . .
ime, for some(py, k¢) pairs. We have referred to a Gaussian

about the simulation environment will be given in Section IV_,. . "~ . .
In th fS-SRLNC. as di din Section II-A dg{ymlnatlon—based decoder run on a Raspberry Pi Model
nihecase of >- » 8s discussed in section 11-A, €0 [39]. We note that there exists a linear relation between

packets are tran_smltted after the sys?e_matlc packets oDslyi a reduction in the value OE(SQRLNC and in the average
if p, = 0, there is no need of transmitting coded packets as u

the systematic packet fully received. Thidinsp 10CESSINg time.
€ systematic p{?ﬁ)e S arg successiully received. 'B2D " |n the rest of the section, we will define a novel optimization
the reason wayg "or1.ne IS always equal td,, for p, = 0.

) model aiming to jointly optimize the sparsity of the code and
On the other hand, as the value @f increases, the number gto) y op P y

¢ coded K b itted | 1L Wle the MCS index used to multicast each layer of the source
of coded packets to be transmitte mcreaé)ses, as weill. essage. The proposed model provides resource allocation

observe that, for the same value af, 75" gp.nc is smaller solutions, which ensure that predetermined fractions efsis
than or equal to{“’; xc- Thatis given by the fact that, in therecover sets of progressive layers, on average, within engiv
case of S-SRLNC, there is aways the possibility for a user gmber of packet transmissions. In addition, the proposed
collect some systematic packets, which are obviously figeamodel, at the same time, maximizes the sparsity and minanize
independent. the total source message length.
Both with S-RLNC and S-SRLNC (fas, > 0), we observe
that if p, approached, then the average number of packe .
transmissioaz needed to recover Ia&im?eases. Thatis Siven’&' Proposed Resource Allocation Models
by the fact that, coding vectors tend to be composed by all-From thelogic perspectivewe refer to the radio resource
zero. In addition, for a given value qf;, as k, and/orp, mapping presented in Fig. 4 (left-hand side). As the resourc
decrease, the value @gijl N decreases. block is our fundamental resource allocation unit, the time
Fig. 3b shows the measured average number of decodmgation of each radio frame shall be an integer multiple of
operationSGSERLNc and e(SQSRLNC needed to recover layerthe resource block time duratigis. Every 7z seconds, the
¢, in the S-RLNC and S-SRLNC case, respectively. Resufigurce mode transmitat mostone coded packet per-layer.
are provided as a function of,, for k, = {10,30,70}. We remark that the transmission of a message layer continues

Obviously, féﬁRLNc does not depend on the user PER pdntil the desired fraction of multicast users has recovetred
just on k, and p,. In this paper, we will only refer to the (Section 1I-A). As a result, the average number of packet

fundamental finite field operatiohperformed by a network transmissions can be easily related to the average timesdeed
to recover a layer.

et a,b,c be three elements iGF(g), we will consider the following Even thoth all the resou_rce b|OC_kS forming the same
operationsia - b, a + b, a — b, a + (b-c) anda — (b - ¢). subchannel are mapped onto time contiguous OFDM symbols,

(a) No. of coded packet transmissions (b) No. of decoding operations



they could span a different set of OFDM subcarriers eveppded packet transmissions. As a result, constraint (18)res
7rB Seconds. For instance, subchannels could cyclically spdwat the number of multicast users achigyeS levell is at
different frequency sub-bands, as shown in Fig. 4 (rightehaleast equal tOZf:o U,. Since user: can only achieve QoS
side). In that way, the transmission of the same subchantelel ¢ if all the layersl, ..., ¢ have been recovered, it would
across the same set of OFDM subcarriers is avoided. Henlse, pointless to recover layéer before layer/ — 1. For the
users experiencing poor channel conditions across spec#ffane reasons, there is no point in having situations where
OFDM subcarriers will not always be prevented from recejvinthe fraction of users recovering layéris greater than the

the same message layer. fraction of users recovering— 1. Hence, it is reasonable to
In order to optimizem, and, indirectly,k,, the knowledge assume that the relatiobs_; > U, andm,_; < m, hold, for
of the user propagation conditions is required. Obviously,= 2,..., L. Furthermore, constraint (14) avoids both dense

the exact propagation conditions are unknown to the sourmading vectors (i.e.p, < ¢~ ') and all-zero coding vectors
node. However, modern communications standards allovsusére., p, = 1). Then constraint (15) remarks that varialle
to periodically provide feedback about their average ckanrcan only take values in rangg, ..., M. The ST problem
conditions across the whole transmission Fa&enerally, the can also be defined for the case of S-SRLNC by simply
PER experienced by is consideredicceptabldf it is smaller replacing in constraint (13) the tern‘é“R?NC with TS“SQLNC
than or equal to a threshol@ In the rest of the paper, weWe observe that the selection of parametgrsand U, for
will refer to the principle adopted by the LTE-A standard¢ =1,..., L, allow the ultra-reliable service to be delivered,
where any uset, provides as propagation condition feedbacky meeting the Service Level Agreements (SLAS) between the
the greatest MCS indekl,, such thatp,(M,) < p, defined service provider and the users. In our case, SLAs imposes the
as [32]: minimum fraction of users that shall achieve target QoSl¢éeve
_ . . and the maximum time needed (on average) to do so.
My={m|m € [, M]Apu(m) < pApu(m+1)>p}.(10) o = " constraint (13), the ST problem presents vast
For these reasons, if layéris transmitted with MCS index coupling constraints among the whole set of optimization
me < My, pu(me) will be equal to or smaller thap. Given variables. In spite of the apparent optimization compiexit
the “aggregate nature” of the user channel feedback, oelatiwe will show that the ST problem can be efficiently solved,
pu(M,,) < pis to be considered valid across the whole systeboth in the case of S-RLNC and S-SRLNC, by decomposing
band. Hence, the notion dff, is independent to the way it into subproblems of a reduced complexity. In order to do
subchannels are actually transmitted across each frame. so, it is worth solving the Layer Sparsity Maximization (L$M
Owing to the lack of knowledge of the user PER, duringroblem associated with user MCS indexm and layer.
the resource allocation phase, the source node approxmatée will eventually refer to the LSM problem to solve the SM

the user PER as problem. In particular, the LSM problem is defined as follows
~ P if my <M, LSM-(¢ 16
Pul(me) = { 1 otherwise. (11) (£, m) e Pe (16)
In the case of S-RLNC, the proposed Sparsity-Tuning (ST) st 78 R,L)NC < 7 a7)
resource allocation model is defined as follows: g l<p <1 (18)
ST prax Pl (12)  From Corollary 2.1, we have thaf'0\ . is defined as a sum

mi,..mp of terms from matrlxN(“ ). In the following, we equivalently
¢ rewrite constraint (17) in order to avoid the explicit insien

U ¢
S.t. 25 <Z Téne < Z ) Z t=1,....,L of I - Q™Y in (6), and we prove the convexity of LSM-

t=1 (L,u,m).
(13) We define thék, x k, matrix W (49 asW (w0 = 71— Q(w.0),
¢ <pe<l ¢=1,....,L (14) From (6), we have thaN(*) = (W(9)~1_ Let Q{"" be
me€{1,...,M} ¢=1,...,L (15) the (z’,j)-th element of matrixQ(*%. From (29) and (5), we

have thatQ(**) is a non-negative lower-triangular matrix with

where objective function (12) maximizes thenorm of vector
the following structure:

p = {p1,...,p}, which can be equivalently expressed as
Zlepg. Term 6(t) is an indication function that is equal (“ O o ... 0 0
to 1 if statement? is true, otherwise it is equal t6. Pa- Q(u ) Q(u 0
rameters, and U, represent the maximum number of coded Qwh = 21 _ It (19)
packet transmissions needed to recover (on average) neessag : L
layer ¢ and the minimum number of users that shall recover 0 0 0 Q]{f; il . ij ?{
layer ¢, respectively. For these reasons, the left-hand side of
constraint (13) represents the number of multicast users thience, fori andj = 1,..., ks, element(s, j) of W0 is
can recover layers, ..., ¢, on average, in at mo 74 e

Y g L i (1= pu(m))(1 = Pegoy_i) (Fi—j=1

(w0) _ MRS
23GPP LTE and LTE-A standards refer to this kind of user chifeselback Wi,j ={ (1 =pu(m))(1 = Prr,—i) if i = J (20)
as wideband Channel Quality Indicators [32]. 0 otherwise.



From (6), the following relation holds: Proof: From Corollary 2.2 and (23)7§“S§LNC can be

expressed as
W0 N0 1, (1) P
Relation (21) defines a set &f disjoint parametric systems _(u,¢) (ue oo (ue (ke — i

of equations, wherep, is the system parameter and the ~SSRLNC™ +Z e+

elements ofN(“*) are the system unknowns. Systemfor i

s=1,..., ke, consists ofk; — s + 1 equations. In particular, + plwh) Z [(1 = pu(m))(1 = Pys,_,)] " 5. (27)
thei-th equation of system, for i = s, ..., kg, is defined as: ‘ = ’

. . (u,0) . ..
Zw(u ,0) N(u I —5(i = ). 22) Likewise L_emma_ 3.175.drine 1S convex beca_use it is the
non-negative weighted sum of convex functions. Then the

= proof follows exactly the same reasoning as in the proof of
From (19), (20), the solution of systesmncan be expressed as| emma 3.1. -
N0 _ [(1 = pu(m))(1 — P, S)] ifi=1 ko 23) Oncke more, consider the ST problem and the following
0 otherwise. remar. _
. Lemma 3.3:Constraint (13) of the ST problem can be

Lemma 3.1:The LSM+¢,u, m) problem is convex. In ad- v
dition, the optimum solution of the problem is the real root (u,b . ~
25( SRLNC<T€) >Us

of (=1,....,L. (28

ke
D (1= pu(m))(1 =Py, —i)] ' =7 =0,  (24) or restated for the S-SRLNC case, in a similar way.

=0 Proof: From Section III-A, relatlonré“F;L)NC < 7 shall
which is greater than or equal to'! and smaller thar. hold, for at least/, users. Hence, the complete statement of the
Proof: From Corollary 2.1 and (23), we have théfé?r\lc argument (_)f functiloll?i(~) in (13) is equivalent to the following
can be equivalently rewritten as system of inequalities
ke ¢ ¢
u,l —
éRL)NC = Z (1 = pu(m))(1 = Peg,—i)] ' (25) 7's RLNC Z (29)
=0 t=1 t=1

(u,t) _
Since we refer to the approximation as in (R, i is TSRUNC = T fort=1,....¢

the non-negative power of a pointwise maximization of twgve observe that the first inequality is made redundant by the
convex functions. Hence?, ,—; is convex with respect to remaining ones. Hence, (13) can be rewritten as

pe. Consider function(l — p,(m))(1 — Py y,—i) of (25). U ,

SincePy j,—; is convex, function1 — p,(m))(1 —Pex,—s) IS . .

concave and, hencg,l — p,(m))(1 — Pex, )]~ is convex. Z 0 </\ Shine < Tt) = Z foré=1,....L,

As a reSU|t,Té_u§€)NC, expressed as in (25), is a non-negative (30)
weighted sum of convex functions, which is a convex functiowhere the leftmost term still counts exactly the same number
For these reasons, it follows that the LS¥«, m) problem of users achieving QoS levélas in (13). Consider layer it

is convex [40]. From (25), we rewrite constraint (17) ashall be received by at leak} users, fort = 1,..., L. Hence,
Zl: [(1 = pu(m))(1 — plﬁk[ﬂ)]*l < 4. Because of the the complete statement of (30), for a g|véns

convexity of LSM{¢,u, m), we have that the optimum so- U ’ ’

lution of the problem is given by the real root of (24), which Z 5 </\ ﬁ) > Z

belongs to[g~*, 1). ] -

The LSM<{¢,u,m) problem can be adapted to the S- .
SRLNC case by simply replacing constraint (17) with 25(73 RLNc<Tt) > U, fort=1,....¢
Ts(_uéQLNC < 7y. The resulting optimization problem can be (31)

solved as follows. We remark that relation&,_; > U, andm,_; < my hold,
Lemma 3.2:In the S-SRLNC case, the resulting LSMf or ¢ = 2....,L. In addition, from the considered PER

(¢,u,m) problem is convex, and '}S optimal solution is th‘?’nodel (11), we have that the set of users achieving QoS level
real root, greater than or equal 4o~ and smaller than, of ¢ entirely contains those achieving QoS levéls.. ¢ — 1.

the following equation: Hence, the first inequality of (31) is made redundant by the

ke following ones. That completes the proof. This proof can be
Z (u:6) (ke —1) similarly restated for the S-SRLNC case. ]

i=0 From Lemma 3.3, ST can be decomposed ihtmdepen-

ke dent optimization problems S{), ..., ST{L), where the ST-

+3 it Z [(1 = pu(m))(1 = Pr,—;)] " =7 =0.(26) () problem: (i) refers to the video laye (i) has the goal
i=1 j=1 of maximizingp,, and (iii) refers to just the constraints of ST
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that are related to layef. ST{¢) problem can be solved as g AEE
follows. 80 IR Ao b
Remark 3.1:From Lemmas 3.1 and 3.2, we have that o™ e o — xé}s’f
it candrih) \care non-decreasing functions with respectssr i o oo
to p¢, for ¢=! < p, < 1. In addition, for a given value gfy, S 40 ;(xﬂl
we remark that asn, increases, the value afi'shc wil 30 /i =
decrease as well (Section Il). Hence, @J-is solved by the f" B .
pair (mg, p¢) characterized by the greatest valuesigfandp, 05 00 R TR 09
such that relationsysihe < 7 o 7848 e < 7 hold, for at @qg=2
leastU, users. In particular, ST can be solved by resorting 133 XE-10 /¢¥
to LSM problems as follows. For anyi, = 1,...,M and % + k=30 74
¢ =1,...,L, let U, signify the set of users such that 70 e 7 mﬁ;f .
M,y > my. <E% e ET AR
1. Let us solve LSMY,u,m), for a useru € U,,, and L e e o /
’ oK
m =my. Let p; . ~be the optimum solution of LSM- 30 e
(¢,u,mg). If S-RLNC is in use then the value of; fg _____ i
is derived as provided by Lemma 3.1. On the other hand 7 7' = @2 = 05 2 0 2 g 06 = 07 08 0.9
if S-SRLNC is in use then we will refer to Lemma 3.2, for (b) g = 28

the computation ofy ., . Sincep, (m) is approximated as Fig. 5, Average number of coded packet transmissions vaviaege number
in (11), the SOIUtioanme will always be the same, for of coded packet transsmissions obtained by referring to fpEaximation as
every user iri/{mg. in (3), for ¢ = 2 and 2°.

2. For anymg = 1,...,M such thattf,,| > U, and the computer simulations rely on the encoders and decoders
an optimum solutionpy ., exists, the pair(ms,pj,,,) provided by the Kodo C++ network coding library [14].
is an optimum solution of STé). Among the optimum  [ig 5 refers to a scenario, where a source message of
solutions of problem ST¥), we choose the paitne, p; ,.,,) 1, {10, 30,50, 70} source packets is transmitted to a user by
associated with the greatest MCS index, i.e., we consid@gans of S-RLNC, over a fully reliable channel (i.e., theruse
the solution that ensures the smallest valuekpf(see pgR is equal t@). In particular, Fig. 5a compares, for= 2,

Section I1). _ the value offéf‘éf),\,c as in Corollary 2.1 with that obtained by
The process is repeated to solve any problem(&&Tfor simulations, as a function of the probability of selecting a
¢=1,...,L and, hence, to solve problem ST. We observgero coding coefficient. Fig. 5b reports the same performanc

that, for a given value ofn,, the pair(m¢,p;,,,) may not comparison, in the case gf= 2%. Figs. 5a and 5b show that,
exist. That can happen because: (i) the valuerofs too for p, = ¢~!, simulation and our theoretical upper-bound of
small and the average number of coded packet transmissieﬁ%f)m overlap. In fact, from Remark 2.1, in that case, (3)
always exceed, for ¢~ < p, < 1, and/or (ii) the target user no longer is an approximation. However, the gap between the
coveragel is too big (constraint (28) is not met), given theheoretical upper-bound and simulation results increasmas
overall user propagation conditions and, hence, the MCSs thecomes larger thaq!.
can be used in a considered scenario. Let us focus on S-RLNC such that > ¢, regardless of
For these reasons and, in particular, from Lemmas 3.1, 3r& value ofg, we observe that the performance gap between
and 3.3, it is immediate to prove the following theorem.  the theoretical upper-bound and simulation results mainly
Theorem 3.1:Both in the S-RLNC and S-SRLNC CaseSdepends On|y on the value @'@ andpe_ On the other hand’
the resource allocation solution of ST problem derived r large values oft, (such asj, > 50) andp, (pe > 0.93),
Remark 3.1, forany = 1,..., L, is optimal and characterizedthe value of the performance gap, normalized with respect to
by the greatest MCS indexes, i.e., the derived optimal &mlut 1, is almost constant and equal @c53. In other words, the
ensures the smallest valuesiof for £ =1,..., L. impact of ¢ on the performance gap is not pivotal and, at
the same time, it is mainly proportional 9. Given that the
IV. NUMERICAL RESULTS simulation results reported in Section IV-B refer to valués
ke and p, in the aforementioned ranges, that gives a clear
upper-bound of the impact of our approximation onto the
We recall from Section 1I-B that we mitigated the lack Of‘jisplayed performance, on a layer-basis. Since S-RLNC can
an accurate expression of the probabily; that a sparse be considered a special case of S-SRLNC, the aforementioned
random(t + 1) x k, matrix is not full-rank oveiGF(q), given  considerations also apply to the systematic case.
that the firstt rows are |inear|y independent. In particular, We \We observe that the theoretical upper-bound is no more than
upper-bounded the value &, by referring to the approx- 33 49% higher than simulation results, in the considered cases.
imation in (3). Hence, the average user delay valtééﬁé,\,c As one of the key aspects in our optimization framework is
(Corollary 2.1) and—é_“S’QLNC (Corollary 2.2) are expected to bethe enforcement of service coverage constraints, the maopt
greater than or equal to the correspondent average user defathe approximation as in (3) will indeed not violate those
values obtained via computer simulations. In this papér, akervice constraints. Ideally, if the exact expressiorfré{fﬁ),\lC

A. Assessment of the Performance Model
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and Téf‘éQLNC were known, we would get ST solutions char- _ 180 =g
acterised by a greater level of sparsity. In addition, fram a £ ., | 2 &ae=%) L P
implementation E:)erspective, it is not feasible to tabulhie ' g
exact values of i)\ . and {25 \c as a function ofp, and

ke. In particular, we remark that the value bf is given by
the layer bit length and the adopted MCS, which cannot bt

determined in advance.
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B. Performance Evaluation of the Proposed Resource Alloca %3 140 160 180 200 220 240 260 280 300

tion Models Distance (m)

The performance of the proposed resource allocation mod- @ R{ENC and %RLNC
eling has been investigated in an LTE-A scenario compose _ 8 ~<mizon -9 T 177
by 19 base stations arranged in two concentric fings ancz 50 + sonive (o
centered on aarget base stationEach base station manages el
three hexagonal sectors per cell. In addition, for the pa}si
layer parameters, we referred to the 3GPP’s benchmark Cas
scenario [41], where base stations are characterized by
inter-site distance o600 m. In order to meet the LTE-A
physical layer constraints, each coded packet is mapped cs Pl [ ad
resource blocks spanning a bandwidth 50 kHz and 12 o PewesssssesssesebeypweTL L
OFDM symbols (lasting forrgg = 10 ms). In accordance to Distance (m)
a well documented best practice in the deployment of LTE-A (b) S-RLNC and S-SRLNC
networks [32], the reception of a resource block is regaesed _. . s .

N Fig. 6. Average transmission footprinf“1:9), expressed in terms of number

acceptable whep is equal ta).1. The reader who may want to of packet transmissions, in the case of Stream A et 1,...,3, g — 2
have more details about the simulator and the considered lawd28.

level transmission parameters, can refer to [12, Section Vlgeo layer shall be recovered by the same average nufber
Due to space limitations, all those details have been odhitte)f coded packet transmissions, i.€,= 7 = ... = 71, = 7.

In our performance investigation, we referred to a netwoik.om constraint (13), we have that Qoisile\ﬁelshall be
scenario where the target base station multicasts a layetficved. on average, i f—ﬁt = (% coded packet trans-
video stream to a user MG, also known as Single Celhissions. Since the time duration of each resource block is
eMBMS (SC-eMBMS) transmission mode. Furthermore, W.eq, it is immediate to equivalently expressin seconds,
considered a user distribution characterized by the maximiyenoted as (sec.)”.
heterogeneity from the point of view of the channel condi$io  \ye compared the optimized version of S-RLNC and S-
In particular, we refer to a MG o/ = 80 users that gRr| NC (see Section IlI-A) against their non-sparse vession
are regularly placed along the symmetry axis of one Secigf order to provide a fair comparison among the strategies,
controlled by the target base station. The first usedlisn \yhen either RLNC or SRLNC is used. the MCS indexes
apart from the center of the cell, and the distance betwegp . ,, associated to the transmission of each video layer
two consecutive users sm. . . are optimized such that the service constraints are met, for

In this section, we consider two different video sequences _ -1,

(Stream A and Stream B) of0 s, compressed according t0 | ot ys define the average transmission footprifit'*) as
the H.264/SVC standard [33]: ,

o Stream A [42] - is aL. = 3 video trace characterized b u,
[42] y ) e for S-RLNC
{b1,b2,b3} = {702, 4841,20584} KBytes per layer.
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o Stream B [42] - is aL. = 4 video trace such that ¢
{b1, b2, b3, by} = {702,2138,6001,19384} KBytes per &l e for S-SRLNC.
layer. t=1

The video traces implement the coarse grain scalability-priThat definition can be easily extended to the non-sparse
ciple, which is a form of spatial scalability such that thereo version of RLNC and SRLNC by considering a value pof
bination of consecutive layers enhances the frame resalutiequal tog—!. We remark that in the rest of this section, all the
In addition, both video traces belong to the database prederuser performance investigation has been carried out via com
in [5], and developed for network performance evaluatigouter simulations. The approximated performance modeling
purposes. The video traces have a resolutio35¥ x 288, Section II-B is used only by the target base station durirg th
a Group of Picture size of6 frames and a video frame rateresource allocation operations.
of 30 fps. Figs. 6a and 6b show the value of“*) provided by all

In our numerical results, 30 s video trace defines one lay-the considered network coding schemes when Stream A is
ered source message. Each video layer has the same duratiahicast, in the case of = {2,2%} and for7 (sec.) equal
of the whole video trace. For simplicity, we impose that eadb 0.5 s. Since users are regularly distributed along with a
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Fig. 7. Expected value and scaled PMFofin the case of RLNC and for
g = 2 andp, = 1/2. The rightmost figure refers to case whéye= {30, 70}
andp, = 0.

(10

segment connecting the target base station with the ceﬁ,edgé
we have that: (iyr(**) can be equivalently expressed as a -

Distance (m)

(a) Stream A

Uy

[l @ S-RLNC/RLNC
x Pruned S-RLNC/RLNC
v S-SRLNC/SRLNC

SRLNC/SRLNC

@oip-8-8-8-0-0-8.0:0.

Sc-R- -2

0.0

function of the distance form the center of the cell, and (ii) =
the target number of usetg that shall receive video layer
can be equivalently expressed in terms of distances from th:
center of the cell (vertical dashed lines in Figs. 6a and 6b).
the other hand, the horizontal dashed lines in Figs. 6aand 6 | | ....ovo70
represents the maximum transmission footprint to achies® Q 0
level ¢, namely,Zf:1 Tt

From Fig. 6 and regardless of the network coding strategy in

. i i (w10
use, we observe that the values&f:1:) wheng = 2 are very ]!:lg. 8; Average f(iotprlnt ratio(“ " in the case of Stream A (Stream B),
. s . or{=1and3 (¢{ =1 and4) andq = 2.
close to those obtained when= 2°. In particular, the greatest

performance gap is associated in the case of RLNC andsifm of non-zero terms- 6" (r), i.e., E[X] is barely greater
is smaller thar coded packets. In general, the performanggan or equal to the correspondent sum of terms obtained by
differences between the case where 2 and the casg = 28 consideringg = 28. In fact, in the case of, = 30 (k, = 70),
tend to vanish as we refer to the optimized S-RLNC or E[X] is equal t031.6 and 30 (71.6 and 70), for ¢ = 2 and
SRLNC strategies. The reasoning behind the aforementiongd respectively. We thus observe that, even though the PMFs
behaviour is given in the following remark. _ of X for ¢ = 2 and ¢ = 2% are significantly different, the
Remark 4.1:Let X be a random variable expressing theorresponding average values ¥fare comparable. On the
number of coded packet transmissions needed to recovegiger hand, for a given > 0, we observe that the probability
message layer composed/af source packets transmitted viag|ye Pr[X < ] may vary significantly as the value of
the RLNC principle, forp, = 1/4. Fig. 7a shows, for de|fferent ¢ changes. The same reasoning can be easily extended for
values ofp,, the expected value of that iSE[X] = 7{"{ ¢ different values of PER and applies to all the RLNC strategie
In Fig. 7a, we observe that the valuesIgfX] derived when giscussed in this paper. In addition, that explains theoras
q = 2 are close to those obtained whenr= 2°, regardless of \ay scenarios wherg= 2 andq = 28 perform similarly from
the value ofp,.. For simplicity, let us refer to the case wherghe point of view of the average transmission footprint.
Pu =0 and.pg = 1/q. From [12, quu(g)]’ the Probability  consider Fig. 6, we observe that all the considered network
Mass Function (PMFPr[X = r] = ¢x"'(r) of X can be ¢qding strategies can meet the services coverage corsirain
expressed as follows: for the considered values df and U,. However, since the
optimized S-RLNC and S-SRLNC strategies are characterized
by values ofp, (for any ¢ = 1,...,L) that are greater
thang—!, the probability of transmitting non-degenerate coded
packets associated with all-zero coding vectors is likely t
increase. Hence, the average transmission footprintdgedv
by S-RLNC and S-SRLNC are greater than those associated
Hence, in this case, the expected value)@éfcan be alter- with the optimized RLNC and SRLNC strategies.
natively expressed aB[X] = 37, r (). Fig. 7b The aforementioned increment in the average transmission
shows the product of terms- qbgg’é) (r) as a function ofr, footprint has been investigated in Fig. 8a, where we regorte
for k, = {30,70} andq = {2,2%}. In the case ofy = 2, we the ratiow(*!) (called “average footprint ratio”) between
observe that the produet- ¢§y=@ (r) and hence, the PMF of the values ofr(**) provided by the S-RLNC (S-SRLNC)
X is non-zero across several valuesrot ky, for both of the and RLNC (SRLNC) strategies, for the QoS levdlsand
considered values df,. On the other hand, the PMF &f is 3, and ¢ 2. We note that ifw(*0 is equal tol, the
non-zero almost for = k,, wheng = 28. Considering a target considered sparse network coding strategy provides the sam
value of k, and ¢ = 2, from Fig. 7b, we can infer that the average transmission footprint of the correspondent pamnsge
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technique. Fig. 8a also shows the same performance metrii, " f = " ° g
for two modified versions of S-RLNC and S-SRLNC, hereafter: , [H'5 wer
referred to as “Pruned S-RLNC” and “Pruned S-SRLNC". £ e
Those two strategies behave as the proposed optimized glﬂ"gi H ¢
RLNC and S-SRLNC but in the pruned versions, the targe: =
base station does not transmit non-degenerate coded packiz'" ¢ =
associated with all-zero coding vectors. It is straigivifand to %ml i
prove that if a non-pruned sparse RLNC strategy meets the 0[}5
timization constraints, the correspondent pruned styavety 1o L 11 L]
. . BLNC_ (.25 0.5s _1s_SRLNC (.25 Q.5s _ls, BLNC_ Q.25 0.5 _Ls_SRINC (.25 Q.53 s,
do the same. From Fig. 8a we observe thatifie! ) values 7=2 7 (sec) q=2
provided by the S-RLNC at the target distances associatid wi (a) Stream A

U, andUs are equal td).4 and3.9, respectively. However, in
the case of the Pruned S-RLNC, the average footprint ratio o I,___p
drop t03.9 and 2.8, for the QoS leveld and3, respectively. 5[ e

With regards to the optimized S-SRLNC strategy, Heé':9)
values associated with the QoS levednd3 are equal td 0.2
and 2.4, respectively. However, also in this case, the Prunec
S-SRLNC provides smaller average footprint ratid€ and
2.1, for the first and the third QoS levels, respectively.

We also observe from Fig. 8a that thé*!:*) values pro-
vided by (non-Pruned and Pruned) S-RLNC strategies tend t
be constant, while the (19 values related to the S-SRLNC
strategies increase as the distance from the target base sta (b) Stream B

; ; ; ig. 9. i ians3) ande(14) in the case
ion arows. Th havior n xplain he f h 9. Average number of decoding operatiatt®) ande in
tion grows at behavior can be explained by the fact t c%gStream A and B, foy = 2 and g = 28. For RLNC and SRLNC7 is set

non-systematic network CO(;Iing strategies reqUire_ to mt_i equal t00.2. Different colours represents the contribution of eacletay the
coded packets from the beginning, while systematic tealesiq value ofe(:3) and e(1:4).

multicast coded packets only after the systematic paclaats h ] .

been transmitted. Hence, as the distance from the centerSBfitegies, we evaluated!*) by referring to a user PER equal
the cell increases, i.e., as the user propagation conditien © P-

worse, the number of systematic packets successfullyvetei Fig. 9a shows the value of(**%) provided by all the
decreases. In those cases, a user needs more coded packé@ngidered strategies, in the case of Stream Agfer{2, 25}.
recover a video layer. However, it is worth noting that th¥Ve recall from Section Ill that we refer to just the fundanagnt
optimized non-Pruned S-SRLNC and, specifically, the Prunédite field operations performed by a Gaussian Elimination-
S-SRLNC strategies provide valueswf-':¥) that drop below based decoder. Hence, the reception of coded packets as-
1.6 for distances that ar@2 m and20 m smaller than the sociated with all-zero coding vectors has no impact on the
desired coverage, for the QoS leveand3, respectively. The number of the considered operations. As a consequence, the
aforementioned analysis applies also in the case of StreamPBuned and non-Pruned versions of S-RLNC and S-SRLNC
Fig. 8b. are characterized by the same values&f).

The performance of the considered network coded strategiet.et us consider the S-RLNC strategy in Fig. 9a, it provides
has been also compared in terms of the complexity of thalues ofe(!:X) that are up t092.5% and 97.08% smaller
decoding operations. Likewise to the definition7éf'*), we than those provided by the non-sparse RLNC, fet 2 and
define the average numhét:*) of decoding operations needed; = 28, respectively. In particular, as expected, the value of

10° prrrr e e T T T e
ayer

,_.
<

<

=)

Avg. Number of Operations

q=2

to recover the first video layers as follows: ¢(:L) reduces as the target service transmission tinfsec.)
¢ grows. On the other hand, the S-SRLNC strategy ensures
Z%QRLNC, for S-RLNC values ofe(:L) that are up to57% and74.8% smaller than
(10 — ) =1 (34) those associated with the non-sparse SRLNC¢fer 2 and
¢ o q = 28, respectively. Regardless on the valugypive observe
Z€S—SRLNC' for S-SRLNC. that the systematic strategies provide valuesc@f’) that
t=1

are significantly smaller than those given by non-systemati
Also in this case, the definition of':*¥) can be extended to techniques. That is due to the fact that the decoder may rely o
the non-sparse version of the RLNC and SRLNC, by referrirggsubset of the systematic packets that have been suctgssful
to a value ofp, = ¢!, for £ =1,..., L. In the case of non- received and do not need to be decoded. We also observe
sparse RLNC and S-RLNC, we remark that the value(bf) that in the case off = 2%, both the non-sparse and sparse
is independent from the value of the user PER. On the ottstrategies are characterized by values&f) that can be up
hand, in the non-sparse SRLNC and S-SRLNC, the numher50.2% greater than in the case where- 2. We repeated the
of decoding operations grows as the number of successfudlgme performance investigation for Stream B. However, due
received systematic packets decreases; that happens wibespace limitations, we provide results only in terms @),
the user PER increases. To this end, for all the systemadticFig. 9b. Also in this case, the discussion and conclusions
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