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Abstract

Mid-study design modifications are becoming increasingly accepted in confirmatory
clinical trials, so long as appropriate methods are applied such that error rates are
controlled. It is therefore unfortunate that the important case of time-to-event
endpoints is not easily handled by the standard theory. We analyze current methods
that allow design modifications to be based on the full interim data, i.e., not only the
observed event times but also secondary endpoint and safety data from patients who are
yet to have an event. We show that the final test statistic may ignore a substantial
subset of the observed event times. An alternative test incorporating all event times is
found, where a conservative assumption must be made in order to guarantee type I error
control. We examine the power of this approach using the example of a clinical trial
comparing two cancer therapies.

1 Introduction 1

There are often strong ethical and economic arguments for conducting interim 2

analyses [1] of an ongoing clinical trial and for making changes to the design if 3

warranted by the accumulating data. One may decide, for example, to increase the 4

sample size on the basis of promising interim results. Or perhaps one might wish to 5

drop a treatment from a multi-arm study on the basis of unsatisfactory safety data. 6

Owing to the complexity of clinical drug development, it is not always possible to 7

anticipate the need for such modifications, and therefore not all contingencies can be 8

dealt with in the statistical design. 9

Unforeseen interim modifications complicate the frequentist statistical analysis of the 10

trial considerably. Over recent decades many authors have investigated so-called 11

“adaptive designs” in an effort to maintain the concept of type I error control [2–6]. 12

While the theory behind these methods is now well understood if responses are observed 13

immediately, subtle problems arise when responses are delayed, e.g., in survival trials. 14

[7] proposed adaptive survival tests that are constructed using the independent 15

increments property of logrank test statistics [8–10]. However, as pointed out by [11], 16

these methods only work if interim decision making is based solely on the interim 17

logrank test statistics and any secondary endpoint data from patients who have already 18

had an event. In other words, investigators must remain blind to the data from patients 19
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who are censored at the interim analysis. [12] argue that decisions regarding interim 20

design modifications should be as substantiated as possible, and propose a test 21

procedure that allows investigators to use the full interim data. This methodology, 22

similar to that of [13], does not require any assumptions regarding the joint distribution 23

of survival times and short-term secondary endpoints, as do, e.g., the methods proposed 24

by [14], [15, 16] and [17]. 25

In this article we analyze the proposals of [13] and [12] and show that they are both 26

based on weighted inverse-normal test statistics [18], with the common disadvantage 27

that the final test statistic may ignore a substantial subset of the observed survival 28

times. This is a serious limitation, as disregarding part of the observed data is generally 29

considered inappropriate even if statistical error probabilities are controlled – see, for 30

example, the discussion on overrunning in group sequential trials [17]. We quantify the 31

potential inflation of the type I error rate if all observed data were used in these 32

approaches. By adjusting the critical boundaries for the least favourable scenario we 33

derive an alternative testing procedure which allows both, sample size reassessment and 34

the use of all observed data. 35

The article is organized as follows. In Section 2 we review standard adaptive design 36

theory and the recent methods of [13] and [12], as well as calculating the maximum type 37

I error rate if the ignored data is naively reincorporated into the test statistic. In 38

addition we construct a full-data guaranteed level-α test. In Section 3 we illustrate the 39

procedures in clinical trial example and discuss the efficiency of the considered testing 40

procedures. We present our conclusions in Section 4. 41

2 Methods 42

2.1 Adaptive Designs 43

Comprehensive accounts of adaptive design methodology can be found in [6, 19]. For 44

testing a null hypothesis, H0 : θ = 0, against the one-sided alternative, Ha : θ > 0, the 45

two-stage adaptive test statistic is of the form f1(p1) + f2(p2), where p1 is the p-value 46

based on first-stage data, p2 is the p-value based on second-stage data, and f1 and f2 47

are prespecified monotonically decreasing functions. Consider the simplest case that no 48

early rejection of the null hypothesis is possible at the end of the first stage. We will 49

restrict attention to the weighted inverse-normal test statistic [18], 50

Z = w1Φ−1(1− p1) + w2Φ−1(1− p2), (1)

where Φ denotes the standard normal distribution function and w1 and w2 are 51

prespecified weights such that w2
1 +w2

2 = 1. If Z > Φ−1(1−α), then H0 may be rejected 52

at level α. The assumptions required to make this a valid level-α test are as follows [20]. 53

Assumption 1 54

Let X int
1 denote the data available at the interim analysis, where X int

1 ∈ Rn with
distribution function G(xint1 ; θ). In general, X int

1 will contain information not only
concerning the primary endpoint, but also measurements on secondary endpoints and
safety data. It is assumed that the first-stage p-value function p1 : Rn → [0, 1] satisfies∫

Rn

1
{
p1(xint1 ) ≤ u

}
dG(xint1 ; 0) ≤ u for all u ∈ [0, 1] .

Assumption 2 55

At the interim analysis, a second-stage design d is chosen. The second-stage design is 56

allowed to depend on the unblinded first-stage data without prespecifying an adaptation 57

rule. Denote the second-stage data by Y , where Y ∈ Rm. It is assumed that the 58
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distribution function of Y , denoted by Fδ,xint
1

(y, θ), is known for all possible second 59

stage designs, δ, and all first-stage outcomes, xint1 . 60

Assumption 3 61

The second-stage p-value function p2 : Rm → [0, 1] satisfies 62∫
Rm 1 {p2(y) ≤ u} dFδ,xint

1
(y; 0) ≤ u for all u ∈ [0, 1]. 63

Immediate responses The aforementioned assumptions are easy to justify when 64

primary endpoint responses are observed more-or-less immediately. In this case X int
1 65

contains the responses of all patients recruited prior to the interim analysis. A 66

second-stage design δ can subsequently be chosen with the responses from a new cohort 67

of patients contributing to Y . 68

Delayed responses and the independent increments assumption An interim 69

analysis may take place whilst some patients have entered the study but have yet to 70

provide a data point on the primary outcome measure. Most approaches to this 71

problem [7,8, 10] attempt to take advantage of the well known independent increments 72

structure of score statistics in group sequential designs [21]. As pictured in Figure 1, 73

X int
1 will generally include responses on short-term secondary endpoints and safety data 74

from patients who are yet to provide a primary outcome measure, while Y consists of 75

some delayed responses from patients recruited prior to the interim analysis, mixed 76

together with responses from a new cohort of patients. 77

Figure 1. Schematic of a two-stage adaptive trial design with delayed response using
the independent increments assumption.

Let S(X int
1 ) and I(X int

1 ) denote the score statistic and Fisher’s information for θ, 78

calculated from primary endpoint responses in X int
1 . Assuming suitable regularity 79

conditions, the asymptotic null distribution of S(X int
1 ) is Gaussian with mean zero and 80

variance I(X int
1 ) [22]. The independent increments assumption is that for all first-stage 81

outcomes xint1 and second-stage designs δ, the null distribution of Y is such that 82

S(xint1 , Y )− S(xint1 ) ∼ N
{

0, I(xint1 , Y )− I(xint1 )
}
, (2)

at least approximately, where S(X int
1 , Y ) and I(X int

1 , Y ) denote the score statistic and 83

Fisher’s information for θ, calculated from primary endpoint responses in (X int
1 , Y ). 84

Unfortunately, (2) is seldom realistic in an adaptive setting. [11] show that if the 85

adaptive strategy at the interim analysis is dependent on short-term outcomes in X int
1 86

that are correlated with primary endpoint outcomes in Y , i.e., from the same patient, 87

then a naive appeal to the independent increments assumption can lead to very large 88

type I error inflation. 89

Delayed responses with patient-wise separation An alternative approach, 90

which we call “patient-wise separation”, redefines the first-stage p-value, 91

p1 : Rp → [0, 1], to be a function of X1, where X1 denotes all the data from patients 92

recruited prior to the interim analysis at calendar time T int, followed-up until a 93

pre-fixed maximum calendar time Tmax. In this case p1 may not be observable at the 94

time the second-stage design δ is chosen. This is not a problem, as long as no early 95

rejection at the end of the first stage is foreseen. Any interim decisions, such as 96

increasing the sample size, do not require knowledge of p1. It is assumed that Y consists 97

of responses from a new cohort of patients, such that xint1 could be formally replaced 98

with x1 in the aforementioned adaptive design assumptions. We call this patient-wise 99

separation because data from the same patient cannot contribute to both p1 and p2. 100
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[23] and [24] apply this approach when a patient’s primary outcome can be 101

measured after a fixed period of follow-up, e.g., 4 months. However, one must take 102

additional care with a time-to-event endpoint, as one is typically not prepared to wait 103

for all first-stage patients – those patients recruited prior to T int – to have an event. 104

Rather, p1 is defined as the p-value from a statistical test applied to the data from 105

first-stage patients followed up until time T end, for some T end ≤ Tmax. In this case it is 106

vital that T end be fixed at the start of the trial, either explicitly or implicitly [12,13]. 107

Otherwise, if T end were to depend on the adaptive strategy at the interim analysis, this 108

would impact the distribution of p1 and could lead to type I error inflation. 109

The situation is represented pictorially in Figure 2. An unfortunate consequence of 110

pre-fixing T end is that this will not, in all likelihood, correspond to the end of follow-up 111

for second-stage patients. All events from first-stage patients that occur after T end
112

make no contribution to the statistic (1). 113

Figure 2. Schematic of a two-stage adaptive trial design with delayed response using
patient-wise separation.

2.2 Adaptive Survival Studies 114

Consider a randomized clinical trial comparing survival times on an experimental 115

treatment, E, with those on a control treatment, C. For simplicity, we will focus on the 116

logrank statistic for testing the null hypothesis H0 : θ = 0 against the one-sided 117

alternative Ha : θ > 0, where θ is the log hazard ratio, assuming proportional hazards. 118

Similar arguments could be applied to the Cox model. Let D1(t) and S1(t) denote the 119

number of uncensored events and the usual logrank score statistic, respectively, based 120

on the data from first-stage patients – those patients recruited prior to the interim 121

analysis – followed up until calendar time t, t ∈ [0, Tmax]. Under the null hypothesis, 122

assuming equal allocation and a large number of events, the variance of S1(t) is 123

approximately equal to D1(t)/4 [25]. The first-stage p-value must be calculated at a 124

prefixed time point T end: 125

p1 = 1− Φ
[
S1(T end)/

{
D1(T end)/4

}1/2]
. (3)

The number of events can be prefixed at d1, say, with T end chosen implicitly 126

T end := min {t : D1(t) = d1} . (4)

Jenkins et al., method [13] describe a “patient-wise separation” adaptive survival 127

trial, with test statistic (1), first-stage p-value (3) and T end defined as in (4). While 128

their focus is on subgroup selection, we will appropriate their method for the simpler 129

situation of a single comparison, where at the interim analysis one has the possibility to 130

adapt the pre-planned number of events from second-stage patients – i.e., those patients 131

recruited post T int. The weights in (1) are pre-fixed in proportion to the pre-planned 132

number of events to be contributed from each stage, i.e., w2
1 = d1/(d1 + d2), where 133

d1 + d2 is the total originally required number of events. The second-stage p-value 134

corresponds to a logrank test based on second-stage patients, i.e., 135

p2 = 1− Φ
[
S2(T ∗

2 )/ {D2(T ∗
2 )/4}1/2

]
,

where T ∗
2 := min {t : D2(t) = d∗2} with S2(t) and D2(t) defined analogously to S1(t) and 136

D1(t), and where d∗2 is specified at the interim analysis. 137
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Irle and Schäfer method Instead of explicitly combining stage-wise p-values, [12] 138

employ the closely related “conditional error” approach [3, 4, 26]. 139

They begin by prespecifying a level-α test with decision function, ϕ, taking values in 140

{0, 1} corresponding to non-rejection and rejection of H0, respectively. For a survival 141

trial, this entails specifying the sample size, duration of follow-up, test statistic, 142

recruitment rate, etc. Then, at some not necessarily prespecified timepoint, T int, an 143

interim analysis is performed. The timing of the interim analysis induces a partition of 144

the trial data, (X1, X2), where X1 and X2 denote the data from patients recruited 145

prior- T int and post- T int, respectively, followed-up until time Tmax. For a standard 146

log-rank test, the decision function is 147

ϕ(X1, X2) = 1
[
S(T end)/

{
D(T end)/4

}1/2
> Φ−1(1− α)

]
, (5)

where D(T end) and S(T end) denote the number of uncensored events and the usual 148

logrank score statistic, respectively, based on data from all patients followed-up until 149

time T end := min {t : D(t) = d} for some prespecified number of events d. 150

At the interim analysis, the general idea is to use the unblinded first-stage data xint1

to define a second-stage design, δ, without the need for a prespecified adaptation
strategy. Again, the definition of δ includes factors such as sample size, follow-up
period, recruitment rate, etc., in addition to a second-stage decision function
ψ : Rm → {0, 1} based on second-stage data Y ∈ Rm. Ideally, one would like to choose
ψ such that EH0

(ψ | X int
1 = xint1 ) = EH0

(ϕ | X int
1 = xint1 ), as this would ensure that

EH0(ψ) = EH0

{
EH0

(
ψ | X int

1

)}
= EH0

{
EH0

(
ϕ | X int

1

)}
= EH0

(ϕ) = α, (6)

i.e., the overall procedure controls the type I error rate at level α. Unfortunately, this 151

approach is not directly applicable in a survival trial where X int
1 contains short-term 152

data from first-stage patients surviving beyond T int. This is because it is impossible to 153

calculate EH0
(ϕ | X int

1 = xint1 ) and EH0
(ψ | X int

1 = xint1 ), owing to the unknown joint 154

distribution of survival times and the secondary endpoints already observed at the 155

interim analysis. One may, however, condition on X1 rather than on X int
1 and choose ψ 156

such that EH0
(ψ | X1 = x1) = EH0

(ϕ | X1 = x1), thus ensuring type I error control 157

following the same argument as (6). For example, it is possible to extend patient 158

follow-up and use the second-stage decision function 159

ψ(X2) = 1
[
S(T ∗)/ {D(T ∗)/4}1/2 ≥ b∗

]
, (7)

where T ∗ := min {t : D(t) = d∗}, d∗ ≥ d is chosen at the interim analysis, and b∗ is a
cutoff value that must be determined. [12] show that, asymptotically,

EH0 {ϕ | X1 = x1} = EH0

{
ϕ | S1(T end) = s1

}
and

EH0 {ψ | X1 = x1} = EH0 {ψ | S1(T ∗) = s∗1} .

In each case, calculation of the right-hand-side is facilitated by the asymptotic result 160

that, assuming equal allocation under the null hypothesis, for t ∈ [0, Tmax], 161(
S1(t)

S(t)− S1(t)

)
∼ N

((
0
0

)
,

(
D1(t)/4 0

0 {D(t)−D1(t)} /4

))
. (8)

One remaining subtlety is that EH0 {ψ | S1(T ∗) = s∗1} can only calculated at 162

calendar time T ∗, where T ∗ > T int. Determination of b∗ must therefore be postponed 163

until this later time. 164
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Using result (8), it is straightforward to show that ψ = 1 if and only if 165

Z > Φ−1(1− α), where Z is defined as in (1) with p1 defined as in (3), the second-stage 166

p-value function defined as 167

p2(Y ) = 1− Φ
(
{S(T ∗)− S1(T ∗)} / [{D(T ∗)−D1(T ∗)} /4]

1/2
)
, (9)

and the specific choice of weighting w2
1 = D1(T end)/D(T end). Full details are provided 168

in the 4. 169

Remark 1. The Irle and Schäfer method uses the same test statistic as the Jenkins 170

et al. method, with a clever way of implicitly defining the weights and the end of 171

first-stage follow-up, T end. It has two potential advantages. Firstly, the timing of the 172

interim analysis need not be prespecified – in theory, one is permitted to monitor the 173

accumulating data and at any moment decide that design changes are necessary. 174

Secondly, if no changes to the design are necessary, i.e., the trial completes as planned 175

at calendar time T end, then the original test (5) is performed. In this special case, no 176

events are ignored in the final test statistic. 177

Remark 2. From first glance at (7), it may appear that the events from first-stage 178

patients, occurring after T end, always make a contribution to the final test statistic. 179

However, this data is still effectively ignored. We have shown in the online supplement 180

that the procedure is equivalent to a p-value combination approach where p1 depends 181

only on data available at time T end. In addition, the distribution of p2 is asymptotically 182

independent of the data from first-stage patients: note that S(T ∗)− S1(T ∗) and S2(T ∗) 183

are asymptotically equivalent [12]. The procedure therefore fits our description of a 184

“patient-wise separation” design, and the picture is the same as in Figure 2. The 185

first-stage patients have in effect been censored at T end, despite having been 186

followed-up for longer. This fact has important implications for the choice of d∗. If one 187

chooses d∗ based on conditional power arguments, one should be aware that the 188

effective sample size has not increased by d∗ − d. Rather, it has increased by 189

d∗ − d−
{
D1(T ∗)−D1(T end)

}
, which could be very much smaller. 190

Remark 3. A potential disadvantage of the Irle and Schäfer method compared to 191

the Jenkins et al. method is that one is not permitted to adapt any aspect of the 192

recruitment process prior to time T end. Contrary to what is claimed in [12], it is not 193

valid to extend the recruitment period (or speed up recruitment as in the example they 194

give) to reach an increased number of events d∗ within the originally planned trial 195

duration. This is because T end is defined implicitly as T end := min {t : D(t) = d} under 196

the assumptions of the original design. Therefore T end is unobservable if the recruitment 197

process is changed in response to the interim data. [27] discuss this issue further. 198

2.3 Hypothesis tests based on all available follow-up data 199

Suppose that the trial continues until calendar time T ∗ ∈ (T end, Tmax). Data from 200

first-stage patients – those patients recruited prior to T int – accumulating between 201

times T end and T ∗ should be ignored. In this section we will investigate what happens, 202

in a worst case scenario, if this illegitimate data is naively incorporated into the 203

adaptive test statistic (1). Specifically, we find the maximum type I error associated 204

with the test statistic 205

Z∗ = w1S1(T ∗)/ {D1(T ∗)/4}1/2 + w2Φ−1(1− p2). (10)

Since T ∗ depends on the interim data in a complicated way, the null distribution of
(10) is unknown. One can, however, consider properties of the stochastic process

Z(t) = w1S1(t)/ {D1(t)/4}1/2 + w2Φ−1(1− p2), t ∈
[
T end, Tmax

]
.
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In other words, we consider continuous monitoring of the logrank statistic based on 206

first-stage patient data. The worst-case scenario assumption is that the responses on 207

short-term secondary endpoints, available at the interim analysis, can be used to predict 208

the exact calendar time the process Z(t) reaches its maximum. In this case, one could 209

attempt to engineer the second stage design such that T ∗ coincides with this timepoint, 210

and the worst-case type I error rate is therefore 211

PH0

{
max

T end≤t≤Tmax
Z(t) > Φ−1(1− α)

}
. (11)

Although the worst-case scenario assumption is clearly unrealistic, (11) serves as an
upper bound on the type I error rate. It can be found approximately via standard
Brownian motion results. Let u := D1(t)/D1(Tmax) denote the information time at
calendar time t, and let S1(u) denote the logrank score statistic based on first-stage
patients, followed-up until information time u. It can be shown that
B(u) := S1(u)/ {D1(Tmax)/4}1/2 behaves asymptotically like a Brownian motion with

drift ξ := θ {D1(Tmax)/4}1/2 [28]. We wish to calculate

Pθ=0

{
max

T end≤t≤Tmax
Z(t) > Φ−1(1− α)

}
(12)

=

∫ 1

0

Pθ=0

[
max

u1≤u≤1
B(u) > u1/2w−1

1

{
Φ−1(1− α)− w2Φ−1(1− p2)

}]
dp2,

where u1 = D1(T end)/D1(Tmax). While the integrand on the right-hand-side is difficult 212

to evaluate exactly, it can be found to any required degree of accuracy by replacing the 213

square root stopping boundary with a piecewise linear boundary [29]. 214

The two parameters that govern the size of (11) are w1 and u1. Larger values of w1 215

reflect an increased weighting of the first-stage data, which increases the potential 216

inflation. In addition, a low value for u1 increases the window of opportunity for 217

stopping on a random high. Table 1 shows that for a nominal α = 0.025 level test, the 218

worst-case type I error can be up to 15% when u1 = 0.1 and w1 = 0.9. As u1 → 0 the 219

worst-case type I error rate tends to 1 for any value of w1 > 0 [30]. 220

Table 1. Worst case type I error for various choices of weights and information
fractions. Nominal level α = 0.025 one-sided.

u1
w1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.052 0.047 0.044 0.041 0.039 0.037 0.035 0.033 0.030
0.2 0.067 0.059 0.054 0.050 0.046 0.043 0.039 0.036 0.032
0.3 0.081 0.070 0.062 0.057 0.052 0.047 0.043 0.039 0.034
0.4 0.094 0.080 0.071 0.063 0.057 0.052 0.046 0.041 0.036
0.5 0.106 0.089 0.078 0.069 0.062 0.056 0.050 0.044 0.037
0.6 0.119 0.098 0.085 0.075 0.067 0.059 0.053 0.046 0.038
0.7 0.131 0.107 0.092 0.081 0.072 0.063 0.055 0.048 0.040
0.8 0.143 0.116 0.100 0.087 0.076 0.067 0.058 0.050 0.041
0.9 0.155 0.125 0.106 0.092 0.081 0.070 0.061 0.052 0.042

A full-data guaranteed level-α test If one is unprepared to give up the guarantee 221

of type I error control, an alternative test can be found by increasing the cut-off value 222

for Z∗ from Φ−1(1− α) to k∗ such that 223∫ 1

0

Pθ=0

[
1

max
u=u1

B(u) > u1/2w−1
1

{
k∗ − w2Φ−1(1− p2)

}]
dp2 = α.

PLOS 7/14



3 Results 224

3.1 Clinical trial example 225

The upper bound on the type I error rate varies substantially across w1 and u1. To give 226

an indication of what can be expected in practice, consider a simplified version of the 227

trial described in [12]. A randomized trial is set up to compare chemotherapy (C) with 228

a combination of radiotherapy and chemotherapy (E). The anticipated median survival 229

time on C is 14 months. If E were to increase the median survival time to 20 months 230

then this would be considered a clinically relevant improvement. Assuming exponential 231

survival times, this gives anticipated hazard rates λC = 0.050 and λE = 0.035, and a 232

target log hazard ratio of θR = − log(λE/λC) ≈ 0.36. If the error rates for testing 233

H0 : θ = 0 against Ha : θ = θR are α = 0.025 (one-sided) and β = 0.2, the required 234

number of deaths (assuming equal allocation) is 235

d = 4
[{

Φ−1(1− α) + Φ−1(1− β)
}
/θR

]2 ≈ 248.

The relationship between the required number of events and the sample size depends 236

on the recruitment pattern, and we will consider two scenarios. In our “slow recruitment” 237

scenario, patients are recruited uniformly at a rate of 8 per month for a maximum of 60 238

months with an interim analysis performed at 23 months. In our“fast recruitment” 239

scenario, patients are recruited uniformly at a rate of 50 per month for a maximum of 240

18 months with an interim analysis after 8 months. In both cases, the only adaptation 241

we allow at the interim analysis is to increase the number of events. Recruitment must 242

continue as planned but the follow-up period may be extended. The maximum duration 243

of the trial is restricted to 100 months in the first case and 30 months in the second case. 244

Figure 3 shows the expected number of events as a function of time for both 245

scenarios assuming exponentially distributed survival times with hazards equal to the 246

planned values. 247

Figure 3. Expected total number of events as a function of time based on exponential
survival with hazard rates λC = 0.05 and λE = 0.035. Slow recruitment: 8 patients per
month for a maximum of 60 months. Fast recruitment: 50 patients per month for a
maximum of 18 months. Vertical lines are at T int, T end and Tmax.

The maximum type I error inflation, determined via w1 and u1, will depend on the 248

observed number of events from first- and second-stage patients at calendar times T int
249

and T end. However, the expected pattern of events in Figure 3 provide some indication. 250

In the slow recruitment scenario, we expect to recruit 179 patients by the time of the 251

interim analysis. We also expect 149 of the first 248 events to come from patients 252

recruited prior to the interim analysis. These numbers would give w1 = (149/248)1/2, 253

u1 = 149/179 and, according to equation (12), maxα = 0.044. For the fast recruitment 254

scenarios the respective quantities are w1 = (169/248)1/2, u1 = 169/264 and 255

maxα = 0.060. 256

On the efficiency of the full-data level-α test Consider the full-data guaranteed 257

level-α test defined above. Recall that this test has the advantage of allowing interim 258

decision making to be based on all available data whilst using a final test statistic that 259

takes account of all observed event times. Unfortunately, this advantage is likely to be 260

outweighed by the loss in power resulting from the increased cut-off value, as can be 261

seen in Figure 4. The difference between the noncentrality parameters of Z(T ∗) and 262

Z(T end) is plotted against the time extension T ∗ − T end for various choices of θ. In the 263

slow recruitment scenario the increase in the noncentrality parameter is outweighed by 264
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the increase in the cut-off value, even when the log-hazard ratio is as large as was 265

expected in the planning phase. In the fast recruitment setting, it is possible for the 266

increase in the noncentrality parameter to exceed the increase in the cut-off value when 267

the trial is extended substantially. However, the trial would typically only need to be 268

increased substantially if the true effect size were lower than planned. And in this case 269

(θ ≤ 0.66θR) one can see that the increased cut-off value still dominates. 270

Figure 4. Difference between the noncentrality parameters of the adaptive test
statistics Z(T ∗) and Z(T end) as a function of the time extension
T ∗ − T end ∈

[
0, Tmax − T end

]
. Horizontal lines are drawn at k∗ − Φ−1(0.975), where k∗

denotes the cut-off value of the full-data guaranteed level-α test, and Φ denotes the
standard normal distribution function.

4 Discussion 271

Unblinded sample-size recalculation has been criticized for its lack of efficiency relative 272

to classical group sequential designs [32, 33]. If the recalculation is made on the basis of 273

an early estimate of treatment effect, the final sample size is likely to have high 274

variability [34], and, in addition, the test decision is based on a non-sufficient 275

statistic. [35] show how, for a given re-estimation rule, a classical group sequential 276

design can be found with an essentially identical power function but lower expected 277

sample size. 278

In response to these arguments [36] emphasize that “the real benefit of the adaptive 279

approach arises through the ability to invest sample resources into the trial in stages”. 280

An efficient group sequential trial, on the other hand, requires a large up-front sample 281

size commitment and aggressive early stopping boundaries. From the point of view of 282

the trial sponsor, the added flexibility may in some circumstances outweigh the loss of 283

efficiency. 284

In this paper we have shown that when the primary endpoint is time-to-event, a 285

fully unblinded sample-size recalculation – i.e., a decision based on all available efficacy 286

and safety data – has additional drawbacks not considered in the aforementioned 287

literature. Recently proposed methods [12,13] share the common disadvantage that 288

some patients’ event times are ignored in the final test statistic. This is usually deemed 289

unacceptable by regulators. Furthermore, it is the long-term data of patients recruited 290

prior to the interim analysis that is ignored, such that more emphasis is put on early 291

events in the final decision making. This neglect becomes more serious, therefore, if the 292

hazard rates differ substantially only at large survival times. Note, however, that a 293

standard logrank test would already be inefficient in this scenario [37]. 294

The relative benefit of the Irle and Schäfer method [12], in comparison with that of 295

Jenkins et al. [13], is that the timing of the interim analysis need not be pre-specified 296

and, in addition, the method is efficient if no design changes are necessary. On the other 297

hand, the Irle and Schäfer method has the serious practical flaw that it is not 298

permissible to change any aspect of the recruitment process in response to the interim 299

data. 300

Confirmatory clinical trials with time-to-event endpoints appear to be one of the 301

most important fields of application of adaptive methods [38]. It is therefore especially 302

important that investigators considering an unblinded sample size re-estimation in this 303

context are aware of the additional issues involved. We have shown that all considered 304

procedures will require giving up an important statistical property – a situation 305

summarized succinctly in Table 2. 306
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Table 2. Trade-off involved in choosing between methods when extending the
follow-up period of a survival trial. Methods considered: (A), data is combined
assuming independent stage-wise increments; (B), patient-wise separation with pre-fixed
end of first-stage follow-up; (C), naive patient-wise separation without pre-fixed end of
first-stage follow-up; and (D), patient-wise separation using the full-data guaranteed
level-α test.

Strict type I All data available All events included Relative
error control for interim decisions in test statistic power

(A) Ind. Increments X × X X
(B) Z(T end) > z1−α X X × X
(C) Z(T ∗) > z1−α × X X X
(D) Z(T ∗) > k∗ X X X ×

The relevance of these issues is highlighted by the recently published VALOR trial in 307

acute myeloid leukaemia [39]. Treatment effect estimates from phase II data suggested 308

that 375 events might be sufficient to confirm efficacy. However, there is always 309

uncertainty surrounding such an estimate. A smaller effect size - corresponding to 310

upwards of 500 required events - would still be clinically meaningful, but funding such a 311

trial was beyond the resources of the study sponsor. The solution was to initiate the 312

trial with the smaller sample size but plan an interim analysis, whereby promising 313

results would trigger additional investment. In this case, the interim decision rules were 314

pre-specified and, upon observing a promising hazard ratio after 173 events, the total 315

required number of events was increased to 562. The final analysis was based on a 316

weighted combination of log-rank statistics, corresponding to method (A) in Table 2. It 317

is important to emphasize that the validity of this approach relies on the second-stage 318

sample size being a function of the interim hazard ratio. Had other information – e.g., 319

disease progressions – played a part in the interim decision making, then the type I 320

error rate could have been compromised as described in this paper. 321

While statistical theory can be developed to control the type I error rate given 322

certain model assumptions, there is always the potential for “operational bias” to enter 323

an adaptive trial. FDA draft guidance [40] emphasizes the need to shield investigators 324

as much as possible from knowledge of the adaptive changes. The very knowledge that 325

sample size has been increased – implying a “promising” interim effect estimate – could 326

lead to changes of behavior in terms of treating, managing, and evaluating study 327

participants. As a minimum, the European Medicines Agency requires that the primary 328

analysis “be stratified according to whether patients were randomized before or after 329

the protocol amendment” [41]. Aside from the regulatory importance, it is also in the 330

sponsor’s interest to minimize operational bias when trial outcomes will influence 331

significant investment decisions [42]. For a further discussion on the regulatory and 332

logistical challenges sponsors may face we refer to [6, 19]. 333

We have focussed our attention on the type I error control and power of the various 334

procedures. Estimation of the treatment effect size following an adaptive survival trial 335

is also an important topic. Current available methods can be found in [8], [43] and [44]. 336

Supporting Information 337

S1 Appendix 338

Connection between conditional error and combination test. The cut-off b∗
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satisfies

EH0

{
ϕ | S1(T end) = s1

}
= PH0

{
S(T ∗)/(d∗/4)1/2 ≥ b∗ | S1(T ∗) = s∗1

}
= PH0

(
{S(T ∗)− S1(T ∗)} / [{d∗ −D1(T ∗)} /4]

1/2 ≥ c∗ | S1(T ∗) = s∗1

]
,

which implies that c∗ = Φ−1 [1− EH0
{ϕ | S1(T ) = s1}]. Therefore,

ψ = 1⇔ S(T ∗)/(d∗/4)1/2 ≥ b∗

⇔ {S(T ∗)− S1(T ∗)} / [{d∗ −D1(T ∗)} /4]
1/2 ≥ c∗

⇔ Φ−1(1− p2) ≥ Φ−1
[
1− EH0

{
ϕ | S1(T end) = s1

}]
⇔ p2 ≤ EH0

{
ϕ | S1(T end) = s1

}
.

The conditional error probability, EH0

{
ϕ | S1(T end) = s1

}
, can be found from the

joint distribution of S1(T end) and S(T end). Omitting the argument T end from S1, S, D1

and D:

EH0 {ϕ | S1 = s1} = PH0

{
S/(D/4)1/2 > Φ−1(1− α) | S1 = s1

}
= PH0

[
2(S − S1)/(D −D1)1/2 > Φ−1(1− α) {D/(D −D1)}1/2

−2S1/(D −D1)1/2 | S1 = s1
]

= 1− Φ
[
Φ−1(1− α) {D/(D −D1)}1/2 − Φ−1(1− p1) {D1/(D −D1)}1/2

]
and therefore p2 ≤ EH0 {ϕ | S1(T ) = s1} if and only if 339{

D1(T end)/d
}1/2

Φ−1(1− p1) +
[{
d−D1(T end)

}
/d
]1/2

Φ−1(1− p2) ≥ Φ−1(1− α).
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4. Müller HH, Schäfer H. Adaptive Group Sequential Designs for Clinical Trials:
Combining the Advantages of Adaptive and of Classical Group Sequential
Approaches. Biometrics. 2001;57:886–891.

5. Hommel G. Adaptive modifications of hypotheses after an interim analysis.
Biometrical Journal. 2001;43(5):581–589.

6. Bauer P, Bretz F, Dragalin V, König F, Wassmer G. Twenty-five years of
confirmatory adaptive designs: opportunities and pitfalls. Statistics in Medicine.
2015 (Early View). DOI: 10.1002/sim.6472 .
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