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Abstract 14 
 15 

Robert Rosen’s (M,R) system is an abstract biological network architecture that 16 

is allegedly non-computable on a Turing machine.  If (M,R) is truly non-computable, 17 

there are serious implications for the modelling of large biological networks in 18 

computer software.  A body of work has now accumulated addressing Rosen’s claim 19 

concerning (M,R) by attempting to instantiate it in various software systems.  20 

However, a conclusive refutation has remained elusive, principally since none of the 21 

attempts to date have unambiguously avoided the critique that they have altered 22 

the properties of (M,R) in the coding process, producing merely approximate 23 

simulations of (M,R) rather than true computational models.  In this paper, we use 24 

the Unified Modelling Language (UML), a diagrammatic notation standard, to 25 

express (M,R) as a system of objects having attributes, functions and relations.  We 26 

believe that this instantiates (M,R) in such a way than none of the original properties 27 

of the system are corrupted in the process.  Crucially, we demonstrate that (M,R) as 28 

classically represented in the relational biology literature is implicitly a UML 29 

communication diagram.  Furthermore, since UML is formally compatible with 30 

object-oriented computing languages, instantiation of (M,R) in UML strongly implies 31 

its computability in object-oriented coding languages. 32 

 33 

1. Introduction 34 

Relational biology is a school of thought within mathematical theoretical 35 

biology that claims that living systems can be expressed in valid models that are 36 
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nevertheless non-computable, thus placing a limitation on the analytical and 37 

predictive potential of mainstream systems biology.  First devised by Robert Rosen 38 

(Rosen, 1958a, b, 1959, 1963, 1972, 1991, 2000) and subsequently developed by 39 

various others (Baianu, 2006; Casti, 1988 ; Cottam et al., 2007; Kineman, 2007; 40 

Kineman, 2011; Louie, 2005, 2007a, b; Louie, 2009, 2011; Louie, 2015; Louie and 41 

Kercel, 2007; Witten, 2007; Wolkenhauer and Hofmeyr, 2007), relational biology has 42 

been  extensively reviewed as posthumous interest in Rosen’s work has grown 43 

among systems biologists (Cardenas et al., 2010; Cornish-Bowden and Cardenas, 44 

2005, 2007; Cornish-Bowden et al., 2007; Letelier et al., 2011; Wolkenhauer, 2007) 45 

One of the bases of relational biology’s critique of systems biology lies in the 46 

theory of computation in Turing machines, and how that theory relates to self-47 

referential network architectures, meaning networks in which causal chains are 48 

circular.  The Turing model of computation has provided the theoretical 49 

underpinning for the design of computers for over 70 years, but it was realised very 50 

early that there are certain problems that cannot be solved by Turing machines in 51 

any finite period of time, but rather continue processing data indefinitely (Radó, 52 

1962; Turing, 1936).  One major class of algorithms of this sort involve impredicative 53 

sets, meaning sets that are members of themselves (Whitehead and Russell, 1963 54 

[1927]). 55 

Recent work in relational biology has focussed on one particular theoretical 56 

model: a small abstract network architecture, the Metabolism-Repair – or 57 

alternatively Metabolism-Replacement (Letelier et al., 2006) – system, 58 

conventionally abbreviated to (M,R).  Aloisius Louie has used the mathematics of 59 

Category Theory to demonstrate that (M,R) contains an impredicative set, and is 60 
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therefore non-computable on a Turing machine (Louie, 2005, 2007a, b; Louie, 2009, 61 

2011).  It should be emphasised that impredicativity is not the only obstacle to 62 

computability of (M,R) (see Rosen, 1989 for a possibly even more fundamental 63 

problem), but Louie has focussed attention on it as an important testable aspect of 64 

(M,R)’s properties.  Illustration of how (M,R) can be expressed in Category Theory is 65 

beyond the scope of this paper - the best concise demonstration is Louie’s 2005 66 

paper (Louie, 2005) - but a more intuitive grasp of the self-referential nature of (M,R) 67 

can be achieved simply by contemplating its topology in either the original graphical 68 

representation (Rosen, 1991) or the reworking by Goudsmit designed to make it 69 

more comprehensible to biochemists (Goudsmit, 2007) by representing it as 70 

composed of metabolic and catalytic reactions (Fig. 1).  In the Goudsmit 71 

representation (Fig. 1a), productive reactions are shown using the black arrows and 72 

catalytic requirements using the red dotted arrows.  In the original (M,R) diagram of 73 

Rosen (Fig. 1b), the productive reactions are presented as open-headed arrows and 74 

causal processes as fill-headed arrows, with their arrowheads on the substrate of the 75 

productive reaction. 76 

 77 

 78 
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Fig. 1 a: The Goudsmit representation of the (M,R) system.  b: the original (M,R) 79 

diagram of Rosen.  80 

 81 

When (M,R) is considered in the terms proposed by Goudsmit, all of the 82 

catalytic components of the (M,R) network (f, ϕ, B) are themselves material products 83 

of the network, and all the causal relations within (M,R) – in the terminology of 84 

relational biology, its entailment structures – are internal.  If one follows through a 85 

series of events within (M,R), one can see that there is an infinite loop.  For instance, 86 

f catalyses the production of B from A, or as relational biologists say, f entails B.  This 87 

in its turn, entails ϕ, which entails f, and so on.  This is often expressed algebraically 88 

using an entailment operator, ├ ,  as follows: 89 

𝑓𝑓 ├ 𝐵𝐵 ├ ϕ ├  𝑓𝑓├  𝐵𝐵 … 

Rosen intended (M,R) to be broadly representative of living systems, in that 90 

the production of B from A may be taken to represent the totality of metabolism in a 91 

cell, and the other reactions represent the totality of repair and replication 92 

components of the system.  However, whether or not one chooses to see (M,R) as a 93 

generalized abstract description of a living system or rather as the basis for a specific 94 

example, as most of those who have attempted to compute it have done, the 95 

implications for systems biology are serious.  If a small network instantiation of (M,R) 96 

is Turing non-computable, the existence of an (M,R)-like structure within a larger 97 

genetic or biochemical network would mean that it would also be non-computable.  98 

Correspondingly, if (M,R) is an adequate general model of a living system, artificial 99 

life is non-computable.  The only way out of these problems would be to sacrifice 100 
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representational precision, creating a mere simulation of a network as opposed to a 101 

precise model.  Relational biology defines a model as a computational or 102 

mathematical representation of an aspect of reality in which the entailment 103 

structures of the real world are mirrored in the entailment structures of the 104 

representation.  A simulation by contrast, may have any entailment structures 105 

adequate to produce approximate behaviour corresponding to the real world.  106 

Simulations may be useful, but they rarely lead to true understanding.  By virtue of 107 

being forced to substitute simulation for modelling, systems biology cannot fully 108 

capture the complex functional organisation of organisms (Rosen, 1991). 109 

 110 

The responses to relational biology’s critique of systems biology have been 111 

varied.  The most direct attacks have been on the premises of (M,R) – either it is 112 

mathematically flawed or otherwise incomplete, it makes assumptions that are 113 

unjustified or it does not closely enough represent biological reality to be valuable 114 

(Chu and Ho, 2006, 2007; Goertzel, 2002; Gutierrez et al., 2011; Landauer and 115 

Bellman, 2002; Wells, 2006).  These attacks have produced equally vigorous 116 

responses (Louie, 2004, 2007a; Louie, 2011), which have been summarised by Gwinn 117 

(2010).  A second line of assault has been more indirect – to attempt to present 118 

(M,R) in a software format.  The rationale of this second approach is to demonstrate 119 

that (M,R) is pragmatically computable, and thus to imply that there must be some 120 

error in the basic logic of relational biology, without formally identifying that error.  121 

This attritional offensive has also run into problems, principally with the need to 122 

show that the software instantiations of (M,R) do not, for software engineering 123 



7 
 

purposes, add or subtract elements from (M,R) that render them invalid as accurate 124 

models of what they purport to compute. 125 

 126 

A summary of these previous attempts is given in Table 1.  The relevance of the 127 

autopoietic system simulations on lines 1 to 3 is uncertain, as they were performed 128 

before publication of the paper of Letelier et al (2003)  which posited that (M,R) is a 129 

variant of autopoietic systems.  Since this has not been independently corroborated, 130 

the inclusion of autopoietic system simulations on the list must remain tentative.  131 

The remaining five lines of Table 1, however, all represent experiments carried out 132 

for the explicit purpose of testing the computability of (M,R).   133 

 134 

Table 1.  Summary of practical attempts to compute (M,R) 135 

Type of simulation Software system Reference 

Autopoietic Tesselation automaton (Varela et al., 1974) 

Autopoietic SWARM (McMullin, 2004; 

McMullin and Varela, 

1997) 

Autopoietic Assorted others (Breyer et al., 1998; Ono 

and Ikegami, 2002; Suzuki 

and Ikegami, 2008; Zeleny, 

1978) 

Extended (M,R) Hybrid automaton (Cho et al., 2005) 

Full (M,R)-consistent MatLab/COPASI/MetaTool (Piedrafita et al., 2012a; 
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example Piedrafita et al., 2010; 

Piedrafita et al., 2012b) 

Full (M,R)-consistent 

example 

SPICE (Prideaux, 2011) 

Compact (M,R) Bio-PEPA (Gatherer and Galpin, 

2013) 

Verbatim (M,R) UML this paper 

 136 

The latest published example, by Gatherer & Galpin (2013), may serve to 137 

illustrate the pitfalls that lie on this path.  In that paper, we attempted to treat (M,R) 138 

as an individual network of four moieties and three catalysed reactions, from which 139 

we then derived reaction rate equations expressed in the Bio-PEPA process algebra 140 

engine (Hillston, 2005).  This produced a clearly functioning system which exhibited 141 

some interesting behaviour, with output variation largely dependent on starting 142 

conditions.  However, potential sources of error were pointed out by reviewers and 143 

recognised in the published paper.  The first of these is the use of a stochastic 144 

mechanism for updating the (M,R) system state in Bio-PEPA.  Since the original (M,R) 145 

is completely deterministic, introduction of stochasticity represents the application 146 

of an extra layer of causality to (M,R).  We believe we successfully addressed the 147 

problem by also running the (M,R) system in a deterministic mode using a Runge-148 

Kutta algorithm.  However, this may also beg the question of the degree to which it 149 

is appropriate to use another algorithmic process with its own internal entailment 150 

structure (in this case one based on Runge-Kutta) to govern the processes occurring 151 

within (M,R). 152 
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 153 

The second problem is one common to all computational instantiations of 154 

(M,R) that attempt to translate the system into one resembling a small series of 155 

metabolic reactions governed by Michaelis-Menten kinetics or a similar set of rules 156 

(Prideaux, 2011), where entities f and ϕ are defined as concentrations of enzymes.  157 

This difficulty is too complex to explain in the present context, but can be found in 158 

detail in section 2 of Louie’s 2011 paper (Louie, 2011). 159 

 160 

The third problem is that the Bio-PEPA implementation of (M,R) would also, in 161 

some runs, continue beyond our patience to observe it, given regular replenishment 162 

of the input material A.  Indeed, for many combinations of starting state parameters, 163 

we were unable to predict if the program would terminate, or when.  We concluded 164 

that, although this might be taken to support the contention that (M,R) is not fully 165 

computable in finite time for all potential starting configurations on a Turing system, 166 

the Bio-PEPA instantiation of (M,R) was life-like, insofar as the life of any organism 167 

may be unpredictably short, long or indefinite.  Therefore relational biology’s 168 

insistence that incomplete computability necessarily renders artificial life 169 

uninformative about real life, is untenable.  However, this merely undermines one of 170 

relational biology’s corollaries, not its central argument. 171 

 172 

Leaving aside these issues, a fourth and more serious problem was detected in 173 

the treatment of component B.  In order to keep (M,R) compact, we assumed that B 174 

was capable of acting both as a metabolic substrate for production of f and also to 175 

catalyse the production of ϕ.  This infringes the rules of (M,R), and indeed the 176 
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treatment of B has also been a problem in previous computational (Prideaux, 2011) 177 

and theoretical (Landauer and Bellman, 2002; Mossio et al., 2009) approaches.  This 178 

issue has been elaborated on in some detail by other authors (Cardenas et al., 2010; 179 

Letelier et al., 2006).  A similar argument could be made for the dual role of f as 180 

substrate for the production of ϕ and as a catalyst.  181 

 182 

This illustrates the difficulty of encoding (M,R) without in some way corrupting 183 

its structure.  The use of Bio-PEPA, SPICE, MatLab, Copasi and MetaTool, and indeed 184 

SWARM if autopoietic simulation can be regarded as relevant, necessarily impose 185 

constraints and limitations emerging from the software tools themselves.  These 186 

may subtly alter the entailment structure of the computed representation of (M,R) 187 

to the point where (M,R) is not being truly modelled but rather merely simulated - 188 

the precise point that relational biology makes about systems biology in general. 189 

 190 

Here, we once again attempt to computationally represent (M,R), this time 191 

paying particular attention to doing so in a way that will not introduce any such 192 

corruptions of (M,R)’s entailment structure.  To do this, we choose the Unified 193 

Modelling Language (UML) (Booch et al., 1998; Fowler, 2004), maintained by the 194 

Object Management Group (2011).  Although originally developed to document 195 

technical requirements for the analysis and design of computer systems (Booch et 196 

al., 1998), UML has recently been used to model complex biological systems (Read et 197 

al., 2014; Roux-Rouquie et al., 2004; van Beijnum et al., 2010; Yan, 2010).  Webb and 198 

White (2005) and Bersini et al (2012) argue that the principles of object-oriented 199 

analysis and design inherent in UML can be directly applied to the top-down 200 
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modelling of cells, and bottom-up modelling of metabolic pathways and cell 201 

signalling cycles.  Crucially, UML allows computational structures to be represented 202 

entirely graphically, and therefore enables us to produce an instantiation of (M,R) 203 

which is completely transparent in its entailment structure without any hidden 204 

causal layers.  We therefore produce a more verbatim encoding of (M,R) than has 205 

previously been achieved.   206 

 207 

UML is compatible with any higher-order object-oriented (or class-based), 208 

computing language, such as Java, C++, and Objective-C.  However, we do not at this 209 

stage take the obvious subsequent step of attempting to translate the UML 210 

representation into lines of code in any of these languages, which may be achieved 211 

via the intuitions of a programmer, or by using an automated UML-to-code 212 

application such as Poseidon (Gentleware AG, Hamburg).  This would only introduce 213 

an added layer of potential error into the experiment, and once again raise the 214 

spectre of (M,R)’s corruption.  We therefore present here only the graphical 215 

encoding of (M,R) in UML, in order first to establish beyond doubt that a genuine 216 

object-oriented realization of (M,R) is possible. 217 

 218 

2. Methods 219 

Object-oriented analysis was assisted by use of Class-Responsibility-220 

Collaboration (CRC) cards (Beck and Cunningham, 1989) and table top simulation.  By 221 

using real physical objects as tokens for software objects, the CRC method assists 222 

greatly in priming the programmer’s intuitions concerning what objects to define 223 
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and what properties and functions they should have.  As a result of the CRC process, 224 

the following types of UML diagram(Booch et al., 1998; Fowler, 2004; Object 225 

Management Group, 2011) were constructed in Visual Paradigm (2010): 226 

 227 

a) Class Diagram – specifying the entities within the system, their features and 228 

relationships to each other 229 

b) Activity Diagram -  specifying the behaviour of the system 230 

c) Communication Diagram – specifying how the entities within the system are 231 

connected, or how they interact. 232 

d) State Machine Diagram – specifying how events within the system change 233 

the entities within the system 234 

 235 

b) to d) are all examples of what are more generically termed UML behaviour 236 

diagrams, whereas a) is a UML structure diagram. 237 

 238 

3. Results 239 

3.1 Class Diagram 240 

Object-oriented analysis is based on the notion that since the world is full of 241 

concrete objects that interact with each other, computer programs that attempt to 242 

address the real world should have a similar logical structure.  The software world is 243 

therefore filled with software objects.  Like objects in the real world, these software 244 

objects may be grouped by similarity.  A software class in object-oriented analysis is 245 

an abstract term used to describe a set of software objects that share properties, in 246 
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other words, objects that are in some way the same kind of thing.  Classes are 247 

deemed to have attributes which describe the properties of the objects in the class, 248 

and functions (also known as methods) which describe what the objects do.  Classes 249 

can inherit attributes and functions from their parent classes.  Fig. 2 shows 250 

inheritance from the class Biomolecule, which has two daughter classes, Substrate 251 

and Enzyme.  The class Substrate has a single function: produceOtherBiomolecules(), 252 

indicating that this is what substrates do.  Likewise the class Enzyme also has a single 253 

function: catalyseSubstrates().  From Substrate and Enzyme we then derive three 254 

more classes apiece which together represent the objects within (M,R).  To take one 255 

of these as an example, class ϕ has the single function: catalyseRepair(B): f/f’, 256 

indicating that ϕ is the enzyme responsible for catalysis of the reaction which 257 

produces f or f’ from B.  We have avoided the error of Gatherer & Galpin (2013) by 258 

specifying b as a separate class to B, and also distinguishing between class f as 259 

substrate versus class f’ as enzyme.  This is equivalent to the conversion function on 260 

B in the previous instantiation of (M,R) in SPICE (Prideaux, 2011).  It should be noted 261 

that none of our classes has any attributes.  This is because the entities in (M,R) are 262 

defined entirely in terms of what they do, rather than what they look like, their size 263 

etc.  This is entirely in keeping with relational biology’s emphasis on abstract 264 

function.  To quote Rosen: “The relation of analogy between natural systems is in 265 

fact independent of their material constitution.”  (Rosen, 1991, p119).  It should be 266 

stressed that other object hierarchies may be possible, for instance to abolish the 267 

Substrate/Enzyme distinction and define classes b and f’ as sub-classes of B and f, 268 

respectively.  There is no single correct object-oriented instantiation of (M,R), but all 269 



14 
 

correct instantiations should allow the system to perform metabolism, repair and 270 

replication as specified by Rosen. 271 

 272 

 273 

Fig. 2:  A UML class diagram for (M,R) Class names are above the horizontal line, 274 

functions are below the horizontal line.  Vertical arrows indicate inheritance.  Class 275 

B, for instance, is a substrate and therefore inherits the functions of class Substrate, 276 

in addition to possessing its own, B-specific, functions.   277 

 278 

3.2 Activity Diagram 279 

The class diagram contains a great deal of implicit information.  This is 280 

elaborated in more explicit form in the activity diagram (Fig. 3).  The activities in this 281 

diagram often correspond to the functions listed in the class diagram.  Their explicit 282 

effects, for instance “create B”, are contained within lozenges and the objects 283 

resulting from these effects are contained within rectangles.  The starting point of 284 

the activity diagram is an object of class A and the end-points are the non-metabolic 285 

objects of classes b, f’ and ϕ.  The activity diagram thus represents mass-flow within 286 

the (M,R) system, and illustrates the intuitively obvious fact that a continuous supply 287 

of A is required to maintain the life of the system.  The activity diagram is also the 288 

part of UML that is most similar to the flowcharts of classic procedural programming 289 
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in languages such as Pascal and BASIC.  In relational biology terminology, it is a 290 

sequential composition (Louie, 2009, 2011), meaning that the circular entailments of 291 

(M,R) have been unpicked and represented as a series of events with a beginning 292 

and an end – there are no causal loops in the activity diagram.  Crucially, relational 293 

biology specifically rejects that such sequential compositions are full representations 294 

of (M,R) but, conversely, admits they are computable.  UML requires more than class 295 

and activity diagrams to model (M,R). 296 

 297 

Fig. 3:  A UML activity diagram for (M,R) An arbitrary initialization point is indicated 298 

using the filled circle () and an arbitrary termination point using the filled circle 299 
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within another circle ().  Choices are shown as diamonds, with ensuing activities in 300 

lozenges.  Arrows pointing out of activities show the products of that activity, and 301 

arrows pointing into activities show the requirements for the activity.   302 

 303 

3.3 Communication diagram 304 

Showing how the loop-free sequential composition of the activity diagram can 305 

be developed into something closer to (M,R) requires specification not just of objects 306 

and their activities, but of the necessary links between objects.  Just as the activity 307 

diagram makes explicit the functions pertaining to each class in the class diagram, 308 

the communication diagram shows how each object is connected with other objects. 309 

Each communication link is annotated as either productive or catalytic.  Since the 310 

productive activities each result in two outcomes, with the exception of the fϕ 311 

reaction which only produces ϕ, these are annotated as 2:1, 2:2 etc. Crucially, UML 312 

syntax allows for the existence of loops in communication diagrams.  The 313 

communication diagram is thus, in the terminology of relational biology, a 314 

hierarchical composition (Louie, 2009, 2011), meaning that the linear structure of 315 

the activity diagram is now circular.  The communication diagram (Fig. 4) is of special 316 

interest as it may be manipulated in such a way that it strongly resembles the 317 

standard (M,R) diagram (Fig. 5, compare to Fig. 1b).   318 

 319 



17 
 

 320 

Fig. 4:  A UML communication diagram for (M,R) Objects are shown in squares. 321 

 322 

 323 
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Fig. 5:  A UML communication diagram for (M,R) with classes repositioned to 324 

emphasise essential identity to original (M,R) diagram of Rosen (inset). Numbers 325 

on communication lines correspond to those of Fig. 4. 326 

 327 

3.4 State machine diagrams   328 

(M,R) is often stated to be a state-free system (Louie, 2009, 2011; Rosen, 1991, 329 

2000), so the use of state machine diagrams requires some further explanation.  The 330 

state machines presented here imagine the fate of individual objects, undergoing 331 

biochemical modification under the effects of the various catalysts within the 332 

system.  The fate of the catalytic objects (b, f’ and ϕ) is not explicitly specified in 333 

classic representations of (M,R) (Louie, 2009, 2011; Rosen, 1991, 2000).  If they are 334 

taken to be immortal, they will accumulate.  In our previous Bio-PEPA realization of 335 

(M,R), a wear-and-tear function was incorporated to prevent this (Gatherer and 336 

Galpin, 2013).  Here, we choose to use each catalytic object three times before 337 

removing it from the system.  Recording the number of times each catalytic object 338 

has been used could be accomplished by the addition of a memory attribute to the 339 

class Enzyme, which would then be inherited by its three daughter classes (Fig. 2).  340 

The value held by this memory attribute would be increased by a private function 341 

activated each time the main function of the object – catalyseSubstrates(Substrate) -342 

was activated.  This has not been added to Fig. 2 in order to keep the Class diagram 343 

as generic as possible.  Since (M,R) in its original form makes no provision for wear-344 

and-tear on the catalysts, there can be no absolutely correct way to represent it 345 

when translating (M,R) into an alternative representation.   346 
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 347 

Metabolic objects (A, B and f) by contrast, are converted to other metabolic 348 

objects when the appropriate catalytic objects are available (Fig. 6).  These 349 

conversions can be seen in the context of the whole system on the activity diagram 350 

(Fig. 3).  The state machine diagrams make explicit how these activities relate to, and 351 

transform, individual objects.  Just as relational biology allows for sequential 352 

compositions – analogous to the UML activity diagram (Fig. 3) – but denies that 353 

these constitute a full description of (M,R), it also allows for the individual 354 

components of (M,R) to have states, while denying that the (M,R) system as a whole 355 

can be represented as a state machine (Rosen, 1991, 2000). 356 

 357 
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 358 

Fig. 6:  UML state machine diagrams for individual classes in (M,R).  The 359 

initialization point is indicated using the filled circle () and the termination point 360 

using the filled circle within another circle ().  Choices are represented as 361 

diamonds. 362 

 363 

As well as the issue of the computability of (M,R), relational biology also denies 364 

its reducibility to its component parts, in other words whether or not we can 365 

combine these individual state machine diagrams (Fig. 6) into a state machine 366 

diagram for the entire system.  We attempt to do this in Fig. 7, in which we define 367 
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states of the whole system, positioned in a circular entailment structure.  This is 368 

permissible within UML provided entry and exit points are specified.  These are 369 

arbitrary and may be placed anywhere within the diagram.  The reduction of our 370 

higher level states (“Metabolize”, “Repair” and “Replicate”) to the states of each 371 

individual component (Fig. 6) is assisted by the annotatory rectangles in Fig. 7.  The 372 

system state “Metabolize”, for instance, is achieved when object A is in its individual 373 

state “Active”, and object f’ is in its individual state “Active”.  System state 374 

“Metabolize” also initializes an object of class B, thus creating as output an object B 375 

in individual state “Waiting”, and destroying an object A.  The object f’ will either be 376 

destroyed or enter individual state “Inactive” depending on its prior usage.  The 377 

reduction of the other system states to their component object states is left to the 378 

reader. 379 

 380 

Although we believe that it is possible to see how the system states of Fig. 7 381 

are reducible to the individual object states of Fig. 6, it is admittedly less easy to see 382 

how Fig. 7 handles the concept of time.  While the activity diagram (Fig. 3) and the 383 

object state diagrams (Fig. 6) can illustrate the effect of an individual object within 384 

the system over its life-cycle, they cannot convey the state of the entire system at 385 

any one point in time.  Indeed, Fig. 7 implies that the three system states are 386 

mutually exclusive – that (M,R) is either in a state of metabolism or repair or 387 

replication, but only ever in one at a time.  One might posit that (M,R) can cycle 388 

through the three states of Fig. 7 at such speed that they appear to be operating 389 

simultaneously.  However, this is a contrived and unsatisfactory solution.  At this 390 

point, UML has reached the boundaries of its usefulness for (M,R).  Other authors 391 



22 
 

have also tested UML to the point of failure in modelling biological systems (Read et 392 

al., 2014) Handling system states within (M,R) may require the application of 393 

methods which can process concurrent states, such as Petri Nets (Chaouiya, 2007; 394 

Rohr et al., 2010).  395 

 396 

 397 

Fig. 7:  A UML state machine diagram for the totality of (M,R) representing the 398 

entailment structure. The arbitrary initialization point is indicated using the filled 399 

circle () and the arbitrary termination point using the filled circle within another 400 

circle ().  Folded-corner rectangles with dotted lines are annotatory. 401 

 402 

4. Discussion 403 

Unified Modelling Language (UML) is a diagrammatic notation standard 404 

(maintained by the Object Management Group) that provides a set of rules for 405 

representing objects and their relationships within systems.  UML was conceived as a 406 

preliminary tool to define the technical specification of an object-oriented computer 407 

application before its translation into computer code using an appropriate higher-408 
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level language.  Successful object-oriented analysis of a system strongly implies the 409 

possibility of successful object-oriented computation of that system.  We believe 410 

that we have successfully produced an object-oriented analysis of (M,R) using UML.  411 

It is acknowledged that some problems remain, which are discussed further below.  412 

However, a compelling piece of evidence for the possibility of object-orientation of 413 

UML lies in the close similarity of the classic (M,R) diagram (Fig. 1) to a UML 414 

communication diagram (Figs. 4 and 5).  Indeed we are tempted to advance the 415 

opinion that the classic (M,R) diagram was an object-oriented communication 416 

system avant la lettre.  (M,R) therefore contains the seeds of object-orientation 417 

within it, and the unfolding of these possibilities is both logical and necessary to a 418 

full understanding of (M,R). 419 

 420 

Previous attempts at computation of (M,R) have fallen short largely because of 421 

doubts concerning the way that (M,R) has been coded, resulting in computational 422 

systems that have either fewer or more components than (M,R), or that perform 423 

certain operations in a way that (M,R) does not – in other words that alter (M,R)’s 424 

entailment structure.  We propose that object-oriented analysis enables us to 425 

produce the most precise computational representation of (M,R) to date, one which 426 

ought to enable us to progress to a precise computational realization of (M,R) in 427 

terms of object-oriented code.  Nevertheless, there are certain areas where we have 428 

had to make decisions about how to represent (M,R) in UML, where the classic 429 

relational biology literature does not provide much in the way of guidance.  The 430 

potential therefore exists for corruption of (M,R), resulting in yet another slip from 431 

true model to mere simulation.  We discuss these below. 432 
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 433 

1) The UML communication diagram (Fig. 4) may be rearranged without 434 

disturbing its topology to produce something very similar to the classic (M,R) 435 

representation (Fig. 5).  However, we cannot claim complete identity, since 436 

our communication diagram therefore has objects f and f’ where the original 437 

(M,R) diagram has f, and objects B and b where the original (M,R) diagram 438 

has entity B.  439 

2) This distinction is maintained in the UML class diagram (Fig. 2) where we 440 

have a total of 6 classes within the system. 441 

3) Our activity (Fig. 3) and state machine (Figs. 6 and 7) have starting and 442 

termination points specified.  This is because the rules of UML require state 443 

machines to compute over time and to have strict rules about when certain 444 

processes will terminate or continue.  We do not believe that the starting and 445 

termination points are controversial in Fig. 3 or Fig. 6 as these represent parts 446 

of (M,R) that are acknowledged to behave as mechanisms.  In Fig. 7, it is 447 

admitted that the placement of the starting and termination points produces 448 

a certain awkwardness in the diagram, since the circular entailment structure 449 

clearly produces a circular state structure. 450 

 451 

We believe it is clear on inspection that Fig. 3 is reducible to Fig. 6, or 452 

conversely that Fig. 3 is clearly also a larger machine composed of the six smaller 453 

machines in Fig. 6.  We believe that Fig. 7 also represents a machine, although seeing 454 

how it is reducible to Fig. 3, and therefore by implication to Fig. 6, requires a little 455 

more careful scrutiny. 456 
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 457 

5. Conclusions 458 

Rosen intended (M,R) to be broadly representative of living systems, in that 459 

the production of B from A may be taken to represent the totality of metabolic 460 

reactions in a cell.  ϕ, b and f’ are catalysts, for instance enzymes.  B and f are the 461 

products of metabolism and substrates for further metabolic reactions.  The only 462 

external necessity is the production of the basic foodstuff in the form of A, which is 463 

purely a substrate and neither product nor catalyst.  (M,R) may also be treated more 464 

literally as a small network with three reactions and three catalysts.  For further 465 

clarification of the subtle distinction between B and f as substrates and b and f’ as 466 

catalysts see Letelier et al (2006) and section 8 of Cardenas et al (2010).  The 467 

necessity of multifunctionality of the component parts of an (M,R) system is further 468 

discussed by Cornish-Bowden and Cardenas (2007), and on this basis we believe that 469 

division of our components into metabolic/catalytic objects – B/b and f/f’ 470 

respectively is justified. 471 

 472 

UML has the advantage that, by representing all elements of an analysis in a 473 

diagrammatic format, there are no hidden modifications of the system being 474 

realised.  Seeing how one UML diagram is implied, indeed necessitated, by the 475 

others is self-evident once the principles of UML are understood.  The entailment 476 

structures of the UML realization of (M,R) are the same as those of (M,R) itself, 477 

which is the crucial requirement for a model of a system as opposed to a simulation.  478 

Therefore, we have come closer to a computer model of (M,R) than has been 479 
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previously achieved.  Since correctly formed UML enables the generation of object-480 

oriented code which captures the object-oriented structure specified in the UML 481 

analysis, we believe that such code may fulfil the requirements for an accurate 482 

model of (M,R) on a Turing-architecture computer, thus subsuming relational biology 483 

into standard computational systems biology.  First, however, we present the object-484 

oriented UML analysis for the scrutiny of the relational biology and systems biology 485 

communities. 486 
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