
1

Rosen’s (M,R) System in Unified Modelling Language 1

 2

Ling Zhang1, Richard A. Williams2 and Derek Gatherer1* 3

 4

1Division of Biomedical & Life Sciences, Faculty of Health & Medicine, 5

Lancaster University, Lancaster LA1 4YW, UK 6

2Department of Management Science, Management School, Lancaster 7

University, Lancaster LA1 4YW, UK 8

 9

*Corresponding author 10

Email: d.gatherer@lancaster.ac.uk 11

 12

mailto:d.gatherer@lancaster.ac.uk

2

 13

Abstract 14
 15

Robert Rosen’s (M,R) system is an abstract biological network architecture that 16

is allegedly non-computable on a Turing machine. If (M,R) is truly non-computable, 17

there are serious implications for the modelling of large biological networks in 18

computer software. A body of work has now accumulated addressing Rosen’s claim 19

concerning (M,R) by attempting to instantiate it in various software systems. 20

However, a conclusive refutation has remained elusive, principally since none of the 21

attempts to date have unambiguously avoided the critique that they have altered 22

the properties of (M,R) in the coding process, producing merely approximate 23

simulations of (M,R) rather than true computational models. In this paper, we use 24

the Unified Modelling Language (UML), a diagrammatic notation standard, to 25

express (M,R) as a system of objects having attributes, functions and relations. We 26

believe that this instantiates (M,R) in such a way than none of the original properties 27

of the system are corrupted in the process. Crucially, we demonstrate that (M,R) as 28

classically represented in the relational biology literature is implicitly a UML 29

communication diagram. Furthermore, since UML is formally compatible with 30

object-oriented computing languages, instantiation of (M,R) in UML strongly implies 31

its computability in object-oriented coding languages. 32

 33

1. Introduction 34

Relational biology is a school of thought within mathematical theoretical 35

biology that claims that living systems can be expressed in valid models that are 36

3

nevertheless non-computable, thus placing a limitation on the analytical and 37

predictive potential of mainstream systems biology. First devised by Robert Rosen 38

(Rosen, 1958a, b, 1959, 1963, 1972, 1991, 2000) and subsequently developed by 39

various others (Baianu, 2006; Casti, 1988 ; Cottam et al., 2007; Kineman, 2007; 40

Kineman, 2011; Louie, 2005, 2007a, b; Louie, 2009, 2011; Louie, 2015; Louie and 41

Kercel, 2007; Witten, 2007; Wolkenhauer and Hofmeyr, 2007), relational biology has 42

been extensively reviewed as posthumous interest in Rosen’s work has grown 43

among systems biologists (Cardenas et al., 2010; Cornish-Bowden and Cardenas, 44

2005, 2007; Cornish-Bowden et al., 2007; Letelier et al., 2011; Wolkenhauer, 2007) 45

One of the bases of relational biology’s critique of systems biology lies in the 46

theory of computation in Turing machines, and how that theory relates to self-47

referential network architectures, meaning networks in which causal chains are 48

circular. The Turing model of computation has provided the theoretical 49

underpinning for the design of computers for over 70 years, but it was realised very 50

early that there are certain problems that cannot be solved by Turing machines in 51

any finite period of time, but rather continue processing data indefinitely (Radó, 52

1962; Turing, 1936). One major class of algorithms of this sort involve impredicative 53

sets, meaning sets that are members of themselves (Whitehead and Russell, 1963 54

[1927]). 55

Recent work in relational biology has focussed on one particular theoretical 56

model: a small abstract network architecture, the Metabolism-Repair – or 57

alternatively Metabolism-Replacement (Letelier et al., 2006) – system, 58

conventionally abbreviated to (M,R). Aloisius Louie has used the mathematics of 59

Category Theory to demonstrate that (M,R) contains an impredicative set, and is 60

4

therefore non-computable on a Turing machine (Louie, 2005, 2007a, b; Louie, 2009, 61

2011). It should be emphasised that impredicativity is not the only obstacle to 62

computability of (M,R) (see Rosen, 1989 for a possibly even more fundamental 63

problem), but Louie has focussed attention on it as an important testable aspect of 64

(M,R)’s properties. Illustration of how (M,R) can be expressed in Category Theory is 65

beyond the scope of this paper - the best concise demonstration is Louie’s 2005 66

paper (Louie, 2005) - but a more intuitive grasp of the self-referential nature of (M,R) 67

can be achieved simply by contemplating its topology in either the original graphical 68

representation (Rosen, 1991) or the reworking by Goudsmit designed to make it 69

more comprehensible to biochemists (Goudsmit, 2007) by representing it as 70

composed of metabolic and catalytic reactions (Fig. 1). In the Goudsmit 71

representation (Fig. 1a), productive reactions are shown using the black arrows and 72

catalytic requirements using the red dotted arrows. In the original (M,R) diagram of 73

Rosen (Fig. 1b), the productive reactions are presented as open-headed arrows and 74

causal processes as fill-headed arrows, with their arrowheads on the substrate of the 75

productive reaction. 76

 77

 78

5

Fig. 1 a: The Goudsmit representation of the (M,R) system. b: the original (M,R) 79

diagram of Rosen. 80

 81

When (M,R) is considered in the terms proposed by Goudsmit, all of the 82

catalytic components of the (M,R) network (f, ϕ, B) are themselves material products 83

of the network, and all the causal relations within (M,R) – in the terminology of 84

relational biology, its entailment structures – are internal. If one follows through a 85

series of events within (M,R), one can see that there is an infinite loop. For instance, 86

f catalyses the production of B from A, or as relational biologists say, f entails B. This 87

in its turn, entails ϕ, which entails f, and so on. This is often expressed algebraically 88

using an entailment operator, ├ , as follows: 89

𝑓𝑓 ├ 𝐵𝐵 ├ ϕ ├ 𝑓𝑓├ 𝐵𝐵 …

Rosen intended (M,R) to be broadly representative of living systems, in that 90

the production of B from A may be taken to represent the totality of metabolism in a 91

cell, and the other reactions represent the totality of repair and replication 92

components of the system. However, whether or not one chooses to see (M,R) as a 93

generalized abstract description of a living system or rather as the basis for a specific 94

example, as most of those who have attempted to compute it have done, the 95

implications for systems biology are serious. If a small network instantiation of (M,R) 96

is Turing non-computable, the existence of an (M,R)-like structure within a larger 97

genetic or biochemical network would mean that it would also be non-computable. 98

Correspondingly, if (M,R) is an adequate general model of a living system, artificial 99

life is non-computable. The only way out of these problems would be to sacrifice 100

6

representational precision, creating a mere simulation of a network as opposed to a 101

precise model. Relational biology defines a model as a computational or 102

mathematical representation of an aspect of reality in which the entailment 103

structures of the real world are mirrored in the entailment structures of the 104

representation. A simulation by contrast, may have any entailment structures 105

adequate to produce approximate behaviour corresponding to the real world. 106

Simulations may be useful, but they rarely lead to true understanding. By virtue of 107

being forced to substitute simulation for modelling, systems biology cannot fully 108

capture the complex functional organisation of organisms (Rosen, 1991). 109

 110

The responses to relational biology’s critique of systems biology have been 111

varied. The most direct attacks have been on the premises of (M,R) – either it is 112

mathematically flawed or otherwise incomplete, it makes assumptions that are 113

unjustified or it does not closely enough represent biological reality to be valuable 114

(Chu and Ho, 2006, 2007; Goertzel, 2002; Gutierrez et al., 2011; Landauer and 115

Bellman, 2002; Wells, 2006). These attacks have produced equally vigorous 116

responses (Louie, 2004, 2007a; Louie, 2011), which have been summarised by Gwinn 117

(2010). A second line of assault has been more indirect – to attempt to present 118

(M,R) in a software format. The rationale of this second approach is to demonstrate 119

that (M,R) is pragmatically computable, and thus to imply that there must be some 120

error in the basic logic of relational biology, without formally identifying that error. 121

This attritional offensive has also run into problems, principally with the need to 122

show that the software instantiations of (M,R) do not, for software engineering 123

7

purposes, add or subtract elements from (M,R) that render them invalid as accurate 124

models of what they purport to compute. 125

 126

A summary of these previous attempts is given in Table 1. The relevance of the 127

autopoietic system simulations on lines 1 to 3 is uncertain, as they were performed 128

before publication of the paper of Letelier et al (2003) which posited that (M,R) is a 129

variant of autopoietic systems. Since this has not been independently corroborated, 130

the inclusion of autopoietic system simulations on the list must remain tentative. 131

The remaining five lines of Table 1, however, all represent experiments carried out 132

for the explicit purpose of testing the computability of (M,R). 133

 134

Table 1. Summary of practical attempts to compute (M,R) 135

Type of simulation Software system Reference

Autopoietic Tesselation automaton (Varela et al., 1974)

Autopoietic SWARM (McMullin, 2004;

McMullin and Varela,

1997)

Autopoietic Assorted others (Breyer et al., 1998; Ono

and Ikegami, 2002; Suzuki

and Ikegami, 2008; Zeleny,

1978)

Extended (M,R) Hybrid automaton (Cho et al., 2005)

Full (M,R)-consistent MatLab/COPASI/MetaTool (Piedrafita et al., 2012a;

8

example Piedrafita et al., 2010;

Piedrafita et al., 2012b)

Full (M,R)-consistent

example

SPICE (Prideaux, 2011)

Compact (M,R) Bio-PEPA (Gatherer and Galpin,

2013)

Verbatim (M,R) UML this paper

 136

The latest published example, by Gatherer & Galpin (2013), may serve to 137

illustrate the pitfalls that lie on this path. In that paper, we attempted to treat (M,R) 138

as an individual network of four moieties and three catalysed reactions, from which 139

we then derived reaction rate equations expressed in the Bio-PEPA process algebra 140

engine (Hillston, 2005). This produced a clearly functioning system which exhibited 141

some interesting behaviour, with output variation largely dependent on starting 142

conditions. However, potential sources of error were pointed out by reviewers and 143

recognised in the published paper. The first of these is the use of a stochastic 144

mechanism for updating the (M,R) system state in Bio-PEPA. Since the original (M,R) 145

is completely deterministic, introduction of stochasticity represents the application 146

of an extra layer of causality to (M,R). We believe we successfully addressed the 147

problem by also running the (M,R) system in a deterministic mode using a Runge-148

Kutta algorithm. However, this may also beg the question of the degree to which it 149

is appropriate to use another algorithmic process with its own internal entailment 150

structure (in this case one based on Runge-Kutta) to govern the processes occurring 151

within (M,R). 152

9

 153

The second problem is one common to all computational instantiations of 154

(M,R) that attempt to translate the system into one resembling a small series of 155

metabolic reactions governed by Michaelis-Menten kinetics or a similar set of rules 156

(Prideaux, 2011), where entities f and ϕ are defined as concentrations of enzymes. 157

This difficulty is too complex to explain in the present context, but can be found in 158

detail in section 2 of Louie’s 2011 paper (Louie, 2011). 159

 160

The third problem is that the Bio-PEPA implementation of (M,R) would also, in 161

some runs, continue beyond our patience to observe it, given regular replenishment 162

of the input material A. Indeed, for many combinations of starting state parameters, 163

we were unable to predict if the program would terminate, or when. We concluded 164

that, although this might be taken to support the contention that (M,R) is not fully 165

computable in finite time for all potential starting configurations on a Turing system, 166

the Bio-PEPA instantiation of (M,R) was life-like, insofar as the life of any organism 167

may be unpredictably short, long or indefinite. Therefore relational biology’s 168

insistence that incomplete computability necessarily renders artificial life 169

uninformative about real life, is untenable. However, this merely undermines one of 170

relational biology’s corollaries, not its central argument. 171

 172

Leaving aside these issues, a fourth and more serious problem was detected in 173

the treatment of component B. In order to keep (M,R) compact, we assumed that B 174

was capable of acting both as a metabolic substrate for production of f and also to 175

catalyse the production of ϕ. This infringes the rules of (M,R), and indeed the 176

10

treatment of B has also been a problem in previous computational (Prideaux, 2011) 177

and theoretical (Landauer and Bellman, 2002; Mossio et al., 2009) approaches. This 178

issue has been elaborated on in some detail by other authors (Cardenas et al., 2010; 179

Letelier et al., 2006). A similar argument could be made for the dual role of f as 180

substrate for the production of ϕ and as a catalyst. 181

 182

This illustrates the difficulty of encoding (M,R) without in some way corrupting 183

its structure. The use of Bio-PEPA, SPICE, MatLab, Copasi and MetaTool, and indeed 184

SWARM if autopoietic simulation can be regarded as relevant, necessarily impose 185

constraints and limitations emerging from the software tools themselves. These 186

may subtly alter the entailment structure of the computed representation of (M,R) 187

to the point where (M,R) is not being truly modelled but rather merely simulated - 188

the precise point that relational biology makes about systems biology in general. 189

 190

Here, we once again attempt to computationally represent (M,R), this time 191

paying particular attention to doing so in a way that will not introduce any such 192

corruptions of (M,R)’s entailment structure. To do this, we choose the Unified 193

Modelling Language (UML) (Booch et al., 1998; Fowler, 2004), maintained by the 194

Object Management Group (2011). Although originally developed to document 195

technical requirements for the analysis and design of computer systems (Booch et 196

al., 1998), UML has recently been used to model complex biological systems (Read et 197

al., 2014; Roux-Rouquie et al., 2004; van Beijnum et al., 2010; Yan, 2010). Webb and 198

White (2005) and Bersini et al (2012) argue that the principles of object-oriented 199

analysis and design inherent in UML can be directly applied to the top-down 200

11

modelling of cells, and bottom-up modelling of metabolic pathways and cell 201

signalling cycles. Crucially, UML allows computational structures to be represented 202

entirely graphically, and therefore enables us to produce an instantiation of (M,R) 203

which is completely transparent in its entailment structure without any hidden 204

causal layers. We therefore produce a more verbatim encoding of (M,R) than has 205

previously been achieved. 206

 207

UML is compatible with any higher-order object-oriented (or class-based), 208

computing language, such as Java, C++, and Objective-C. However, we do not at this 209

stage take the obvious subsequent step of attempting to translate the UML 210

representation into lines of code in any of these languages, which may be achieved 211

via the intuitions of a programmer, or by using an automated UML-to-code 212

application such as Poseidon (Gentleware AG, Hamburg). This would only introduce 213

an added layer of potential error into the experiment, and once again raise the 214

spectre of (M,R)’s corruption. We therefore present here only the graphical 215

encoding of (M,R) in UML, in order first to establish beyond doubt that a genuine 216

object-oriented realization of (M,R) is possible. 217

 218

2. Methods 219

Object-oriented analysis was assisted by use of Class-Responsibility-220

Collaboration (CRC) cards (Beck and Cunningham, 1989) and table top simulation. By 221

using real physical objects as tokens for software objects, the CRC method assists 222

greatly in priming the programmer’s intuitions concerning what objects to define 223

12

and what properties and functions they should have. As a result of the CRC process, 224

the following types of UML diagram(Booch et al., 1998; Fowler, 2004; Object 225

Management Group, 2011) were constructed in Visual Paradigm (2010): 226

 227

a) Class Diagram – specifying the entities within the system, their features and 228

relationships to each other 229

b) Activity Diagram - specifying the behaviour of the system 230

c) Communication Diagram – specifying how the entities within the system are 231

connected, or how they interact. 232

d) State Machine Diagram – specifying how events within the system change 233

the entities within the system 234

 235

b) to d) are all examples of what are more generically termed UML behaviour 236

diagrams, whereas a) is a UML structure diagram. 237

 238

3. Results 239

3.1 Class Diagram 240

Object-oriented analysis is based on the notion that since the world is full of 241

concrete objects that interact with each other, computer programs that attempt to 242

address the real world should have a similar logical structure. The software world is 243

therefore filled with software objects. Like objects in the real world, these software 244

objects may be grouped by similarity. A software class in object-oriented analysis is 245

an abstract term used to describe a set of software objects that share properties, in 246

13

other words, objects that are in some way the same kind of thing. Classes are 247

deemed to have attributes which describe the properties of the objects in the class, 248

and functions (also known as methods) which describe what the objects do. Classes 249

can inherit attributes and functions from their parent classes. Fig. 2 shows 250

inheritance from the class Biomolecule, which has two daughter classes, Substrate 251

and Enzyme. The class Substrate has a single function: produceOtherBiomolecules(), 252

indicating that this is what substrates do. Likewise the class Enzyme also has a single 253

function: catalyseSubstrates(). From Substrate and Enzyme we then derive three 254

more classes apiece which together represent the objects within (M,R). To take one 255

of these as an example, class ϕ has the single function: catalyseRepair(B): f/f’, 256

indicating that ϕ is the enzyme responsible for catalysis of the reaction which 257

produces f or f’ from B. We have avoided the error of Gatherer & Galpin (2013) by 258

specifying b as a separate class to B, and also distinguishing between class f as 259

substrate versus class f’ as enzyme. This is equivalent to the conversion function on 260

B in the previous instantiation of (M,R) in SPICE (Prideaux, 2011). It should be noted 261

that none of our classes has any attributes. This is because the entities in (M,R) are 262

defined entirely in terms of what they do, rather than what they look like, their size 263

etc. This is entirely in keeping with relational biology’s emphasis on abstract 264

function. To quote Rosen: “The relation of analogy between natural systems is in 265

fact independent of their material constitution.” (Rosen, 1991, p119). It should be 266

stressed that other object hierarchies may be possible, for instance to abolish the 267

Substrate/Enzyme distinction and define classes b and f’ as sub-classes of B and f, 268

respectively. There is no single correct object-oriented instantiation of (M,R), but all 269

14

correct instantiations should allow the system to perform metabolism, repair and 270

replication as specified by Rosen. 271

 272

 273

Fig. 2: A UML class diagram for (M,R) Class names are above the horizontal line, 274

functions are below the horizontal line. Vertical arrows indicate inheritance. Class 275

B, for instance, is a substrate and therefore inherits the functions of class Substrate, 276

in addition to possessing its own, B-specific, functions. 277

 278

3.2 Activity Diagram 279

The class diagram contains a great deal of implicit information. This is 280

elaborated in more explicit form in the activity diagram (Fig. 3). The activities in this 281

diagram often correspond to the functions listed in the class diagram. Their explicit 282

effects, for instance “create B”, are contained within lozenges and the objects 283

resulting from these effects are contained within rectangles. The starting point of 284

the activity diagram is an object of class A and the end-points are the non-metabolic 285

objects of classes b, f’ and ϕ. The activity diagram thus represents mass-flow within 286

the (M,R) system, and illustrates the intuitively obvious fact that a continuous supply 287

of A is required to maintain the life of the system. The activity diagram is also the 288

part of UML that is most similar to the flowcharts of classic procedural programming 289

15

in languages such as Pascal and BASIC. In relational biology terminology, it is a 290

sequential composition (Louie, 2009, 2011), meaning that the circular entailments of 291

(M,R) have been unpicked and represented as a series of events with a beginning 292

and an end – there are no causal loops in the activity diagram. Crucially, relational 293

biology specifically rejects that such sequential compositions are full representations 294

of (M,R) but, conversely, admits they are computable. UML requires more than class 295

and activity diagrams to model (M,R). 296

 297

Fig. 3: A UML activity diagram for (M,R) An arbitrary initialization point is indicated 298

using the filled circle () and an arbitrary termination point using the filled circle 299

16

within another circle (). Choices are shown as diamonds, with ensuing activities in 300

lozenges. Arrows pointing out of activities show the products of that activity, and 301

arrows pointing into activities show the requirements for the activity. 302

 303

3.3 Communication diagram 304

Showing how the loop-free sequential composition of the activity diagram can 305

be developed into something closer to (M,R) requires specification not just of objects 306

and their activities, but of the necessary links between objects. Just as the activity 307

diagram makes explicit the functions pertaining to each class in the class diagram, 308

the communication diagram shows how each object is connected with other objects. 309

Each communication link is annotated as either productive or catalytic. Since the 310

productive activities each result in two outcomes, with the exception of the fϕ 311

reaction which only produces ϕ, these are annotated as 2:1, 2:2 etc. Crucially, UML 312

syntax allows for the existence of loops in communication diagrams. The 313

communication diagram is thus, in the terminology of relational biology, a 314

hierarchical composition (Louie, 2009, 2011), meaning that the linear structure of 315

the activity diagram is now circular. The communication diagram (Fig. 4) is of special 316

interest as it may be manipulated in such a way that it strongly resembles the 317

standard (M,R) diagram (Fig. 5, compare to Fig. 1b). 318

 319

17

 320

Fig. 4: A UML communication diagram for (M,R) Objects are shown in squares. 321

 322

 323

18

Fig. 5: A UML communication diagram for (M,R) with classes repositioned to 324

emphasise essential identity to original (M,R) diagram of Rosen (inset). Numbers 325

on communication lines correspond to those of Fig. 4. 326

 327

3.4 State machine diagrams 328

(M,R) is often stated to be a state-free system (Louie, 2009, 2011; Rosen, 1991, 329

2000), so the use of state machine diagrams requires some further explanation. The 330

state machines presented here imagine the fate of individual objects, undergoing 331

biochemical modification under the effects of the various catalysts within the 332

system. The fate of the catalytic objects (b, f’ and ϕ) is not explicitly specified in 333

classic representations of (M,R) (Louie, 2009, 2011; Rosen, 1991, 2000). If they are 334

taken to be immortal, they will accumulate. In our previous Bio-PEPA realization of 335

(M,R), a wear-and-tear function was incorporated to prevent this (Gatherer and 336

Galpin, 2013). Here, we choose to use each catalytic object three times before 337

removing it from the system. Recording the number of times each catalytic object 338

has been used could be accomplished by the addition of a memory attribute to the 339

class Enzyme, which would then be inherited by its three daughter classes (Fig. 2). 340

The value held by this memory attribute would be increased by a private function 341

activated each time the main function of the object – catalyseSubstrates(Substrate) -342

was activated. This has not been added to Fig. 2 in order to keep the Class diagram 343

as generic as possible. Since (M,R) in its original form makes no provision for wear-344

and-tear on the catalysts, there can be no absolutely correct way to represent it 345

when translating (M,R) into an alternative representation. 346

19

 347

Metabolic objects (A, B and f) by contrast, are converted to other metabolic 348

objects when the appropriate catalytic objects are available (Fig. 6). These 349

conversions can be seen in the context of the whole system on the activity diagram 350

(Fig. 3). The state machine diagrams make explicit how these activities relate to, and 351

transform, individual objects. Just as relational biology allows for sequential 352

compositions – analogous to the UML activity diagram (Fig. 3) – but denies that 353

these constitute a full description of (M,R), it also allows for the individual 354

components of (M,R) to have states, while denying that the (M,R) system as a whole 355

can be represented as a state machine (Rosen, 1991, 2000). 356

 357

20

 358

Fig. 6: UML state machine diagrams for individual classes in (M,R). The 359

initialization point is indicated using the filled circle () and the termination point 360

using the filled circle within another circle (). Choices are represented as 361

diamonds. 362

 363

As well as the issue of the computability of (M,R), relational biology also denies 364

its reducibility to its component parts, in other words whether or not we can 365

combine these individual state machine diagrams (Fig. 6) into a state machine 366

diagram for the entire system. We attempt to do this in Fig. 7, in which we define 367

21

states of the whole system, positioned in a circular entailment structure. This is 368

permissible within UML provided entry and exit points are specified. These are 369

arbitrary and may be placed anywhere within the diagram. The reduction of our 370

higher level states (“Metabolize”, “Repair” and “Replicate”) to the states of each 371

individual component (Fig. 6) is assisted by the annotatory rectangles in Fig. 7. The 372

system state “Metabolize”, for instance, is achieved when object A is in its individual 373

state “Active”, and object f’ is in its individual state “Active”. System state 374

“Metabolize” also initializes an object of class B, thus creating as output an object B 375

in individual state “Waiting”, and destroying an object A. The object f’ will either be 376

destroyed or enter individual state “Inactive” depending on its prior usage. The 377

reduction of the other system states to their component object states is left to the 378

reader. 379

 380

Although we believe that it is possible to see how the system states of Fig. 7 381

are reducible to the individual object states of Fig. 6, it is admittedly less easy to see 382

how Fig. 7 handles the concept of time. While the activity diagram (Fig. 3) and the 383

object state diagrams (Fig. 6) can illustrate the effect of an individual object within 384

the system over its life-cycle, they cannot convey the state of the entire system at 385

any one point in time. Indeed, Fig. 7 implies that the three system states are 386

mutually exclusive – that (M,R) is either in a state of metabolism or repair or 387

replication, but only ever in one at a time. One might posit that (M,R) can cycle 388

through the three states of Fig. 7 at such speed that they appear to be operating 389

simultaneously. However, this is a contrived and unsatisfactory solution. At this 390

point, UML has reached the boundaries of its usefulness for (M,R). Other authors 391

22

have also tested UML to the point of failure in modelling biological systems (Read et 392

al., 2014) Handling system states within (M,R) may require the application of 393

methods which can process concurrent states, such as Petri Nets (Chaouiya, 2007; 394

Rohr et al., 2010). 395

 396

 397

Fig. 7: A UML state machine diagram for the totality of (M,R) representing the 398

entailment structure. The arbitrary initialization point is indicated using the filled 399

circle () and the arbitrary termination point using the filled circle within another 400

circle (). Folded-corner rectangles with dotted lines are annotatory. 401

 402

4. Discussion 403

Unified Modelling Language (UML) is a diagrammatic notation standard 404

(maintained by the Object Management Group) that provides a set of rules for 405

representing objects and their relationships within systems. UML was conceived as a 406

preliminary tool to define the technical specification of an object-oriented computer 407

application before its translation into computer code using an appropriate higher-408

23

level language. Successful object-oriented analysis of a system strongly implies the 409

possibility of successful object-oriented computation of that system. We believe 410

that we have successfully produced an object-oriented analysis of (M,R) using UML. 411

It is acknowledged that some problems remain, which are discussed further below. 412

However, a compelling piece of evidence for the possibility of object-orientation of 413

UML lies in the close similarity of the classic (M,R) diagram (Fig. 1) to a UML 414

communication diagram (Figs. 4 and 5). Indeed we are tempted to advance the 415

opinion that the classic (M,R) diagram was an object-oriented communication 416

system avant la lettre. (M,R) therefore contains the seeds of object-orientation 417

within it, and the unfolding of these possibilities is both logical and necessary to a 418

full understanding of (M,R). 419

 420

Previous attempts at computation of (M,R) have fallen short largely because of 421

doubts concerning the way that (M,R) has been coded, resulting in computational 422

systems that have either fewer or more components than (M,R), or that perform 423

certain operations in a way that (M,R) does not – in other words that alter (M,R)’s 424

entailment structure. We propose that object-oriented analysis enables us to 425

produce the most precise computational representation of (M,R) to date, one which 426

ought to enable us to progress to a precise computational realization of (M,R) in 427

terms of object-oriented code. Nevertheless, there are certain areas where we have 428

had to make decisions about how to represent (M,R) in UML, where the classic 429

relational biology literature does not provide much in the way of guidance. The 430

potential therefore exists for corruption of (M,R), resulting in yet another slip from 431

true model to mere simulation. We discuss these below. 432

24

 433

1) The UML communication diagram (Fig. 4) may be rearranged without 434

disturbing its topology to produce something very similar to the classic (M,R) 435

representation (Fig. 5). However, we cannot claim complete identity, since 436

our communication diagram therefore has objects f and f’ where the original 437

(M,R) diagram has f, and objects B and b where the original (M,R) diagram 438

has entity B. 439

2) This distinction is maintained in the UML class diagram (Fig. 2) where we 440

have a total of 6 classes within the system. 441

3) Our activity (Fig. 3) and state machine (Figs. 6 and 7) have starting and 442

termination points specified. This is because the rules of UML require state 443

machines to compute over time and to have strict rules about when certain 444

processes will terminate or continue. We do not believe that the starting and 445

termination points are controversial in Fig. 3 or Fig. 6 as these represent parts 446

of (M,R) that are acknowledged to behave as mechanisms. In Fig. 7, it is 447

admitted that the placement of the starting and termination points produces 448

a certain awkwardness in the diagram, since the circular entailment structure 449

clearly produces a circular state structure. 450

 451

We believe it is clear on inspection that Fig. 3 is reducible to Fig. 6, or 452

conversely that Fig. 3 is clearly also a larger machine composed of the six smaller 453

machines in Fig. 6. We believe that Fig. 7 also represents a machine, although seeing 454

how it is reducible to Fig. 3, and therefore by implication to Fig. 6, requires a little 455

more careful scrutiny. 456

25

 457

5. Conclusions 458

Rosen intended (M,R) to be broadly representative of living systems, in that 459

the production of B from A may be taken to represent the totality of metabolic 460

reactions in a cell. ϕ, b and f’ are catalysts, for instance enzymes. B and f are the 461

products of metabolism and substrates for further metabolic reactions. The only 462

external necessity is the production of the basic foodstuff in the form of A, which is 463

purely a substrate and neither product nor catalyst. (M,R) may also be treated more 464

literally as a small network with three reactions and three catalysts. For further 465

clarification of the subtle distinction between B and f as substrates and b and f’ as 466

catalysts see Letelier et al (2006) and section 8 of Cardenas et al (2010). The 467

necessity of multifunctionality of the component parts of an (M,R) system is further 468

discussed by Cornish-Bowden and Cardenas (2007), and on this basis we believe that 469

division of our components into metabolic/catalytic objects – B/b and f/f’ 470

respectively is justified. 471

 472

UML has the advantage that, by representing all elements of an analysis in a 473

diagrammatic format, there are no hidden modifications of the system being 474

realised. Seeing how one UML diagram is implied, indeed necessitated, by the 475

others is self-evident once the principles of UML are understood. The entailment 476

structures of the UML realization of (M,R) are the same as those of (M,R) itself, 477

which is the crucial requirement for a model of a system as opposed to a simulation. 478

Therefore, we have come closer to a computer model of (M,R) than has been 479

26

previously achieved. Since correctly formed UML enables the generation of object-480

oriented code which captures the object-oriented structure specified in the UML 481

analysis, we believe that such code may fulfil the requirements for an accurate 482

model of (M,R) on a Turing-architecture computer, thus subsuming relational biology 483

into standard computational systems biology. First, however, we present the object-484

oriented UML analysis for the scrutiny of the relational biology and systems biology 485

communities. 486

 487

Acknowledgments 488

We thank various colleagues and reviewers for their comments and suggestions, 489

some of which we have incorporated into our argument. No external funding bodies 490

contributed to this work. 491

 492

Data Access and Ethics Statement 493

No new data were created in this study. No ethical approval was required for this 494

study. 495

 496

 497

References 498

Baianu, I.C., 2006. Robert Rosen's work and complex systems biology. Axiomathes 499
16, 25-34. 500
Beck, K., Cunningham, W., 1989. A laboratory for teaching object-oriented thinking, 501
OOPSLA89. SIGPLAN Notices. 502
Bersini, H., Klatzmann, D., Six, A., Thomas-Vaslin, V., 2012. State-transition 503
diagrams for biologists. PLoS One 7, e41165. 504

27

Booch, G., Rumbaugh, J., Jacobson, I., 1998. The Unified Modeling Language User 505
Guide. Addison Wesley Longman, Reading, Massachusetts. 506
Breyer, J., Ackermann, J., McCaskill, J., 1998. Evolving reaction-diffusion 507
ecosystems with self-assembling structures in thin films. Artificial Life 4, 25-40. 508
Cardenas, M.L., Letelier, J.C., Gutierrez, C., Cornish-Bowden, A., Soto-Andrade, J., 509
2010. Closure to efficient causation, computability and artificial life. J Theor Biol 510
263, 79-92. 511
Casti, J.L., 1988 The theory of metabolism-repair systems Applied Mathematics and 512
Computation 28, 113-154. 513
Chaouiya, C., 2007. Petri net modelling of biological networks. Brief Bioinform 8, 514
210-219. 515
Cho, K.-H., Johansson, K.H., Wolkenhauer, O., 2005. A hybrid systems framework 516
for cellular processes. Biosystems 80, 273-282. 517
Chu, D., Ho, W.K., 2006. A category theoretical argument against the possibility of 518
artificial life: Robert Rosen's central proof revisited. Artificial Life 12, 117-134. 519
Chu, D., Ho, W.K., 2007. The localization hypothesis and machines. Artif Life 13, 520
299-302. 521
Cornish-Bowden, A., Cardenas, M.L., 2005. Systems biology may work when we 522
learn to understand the parts in terms of the whole. Biochem Soc Trans 33, 516-519. 523
Cornish-Bowden, A., Cardenas, M.L., 2007. Organizational invariance in (M,R)-524
systems. Chemistry and Biodiversity 4, 2396-2406. 525
Cornish-Bowden, A., Cardenas, M.L., Letelier, J.C., Soto-Andrade, J., 2007. Beyond 526
reductionism: metabolic circularity as a guiding vision for a real biology of systems. 527
Proteomics 7, 839-845. 528
Cottam, R., Ranson, W., Vounckx, R., 2007. Re-mapping Robert Rosen's (M,R)-529
Systems. Chemistry and Biodiversity 4. 530
Fowler, M., 2004. UML distilled. A brief guide to the standard object modeling 531
language., 3 ed. Addison-Wesley, Boston, MA. 532
Gatherer, D., Galpin, V., 2013. Rosen's (M,R) system in process algebra. BMC 533
Systems Biology 7, 128. 534
Goertzel, B., 2002. Appendix 2. Goertzel versus Rosen: Contrasting views on the 535
autopoietic nature of life and mind., Creating Internet Intelligence. Kluwer 536
Academic/Plenum Publishers, New York. 537
Goudsmit, A.L., 2007. Some reflections on Rosen's conceptions of semantics and 538
finality. Chemistry and Biodiversity 4, 2427-2435. 539
Gutierrez, C., Jaramillo, S., Soto-Andrade, J., 2011. Some thoughts on A.H. Louie's 540
"More Than Life Itself: A Reflection on Formal Systems and Biology". Axiomathes 541
21, 439-454. 542
Gwinn, T., 2010. Critiques of critiques. 543
Available: http://www.panmere.com/?cat=18, In: Gwinn, T. (Ed.), Panmere. 544
Rosennean complexity and other interests. 545
Hillston, J., 2005. Process algebras for quantitative analysis, 20th Annual Symposium 546
on Logic in Computer Science. IEEE Computer Society, pp. 1-10. 547
Kineman, J.J., 2007. Modeling relations in nature and eco-informatics: a practical 548
application of rosennean complexity. Chemistry and Biodiversity 4, 2436-2457. 549
Kineman, J.J., 2011. Relational Science: A Synthesis. Axiomathes 21, 393-437. 550
Landauer, C., Bellman, K., 2002. Theoretical biology: Organisms and mechanisms. 551
AIP Conference Proceedings 627, 59-70. 552
Letelier, J.C., Cardenas, M.L., Cornish-Bowden, A., 2011. From L'Homme Machine 553
to metabolic closure: Steps towards understanding life. J Theor Biol 286, 100-113. 554

http://www.panmere.com/?cat=18

28

Letelier, J.C., Marin, J., Mpodozis, J., 2003. Autopoietic and (M,R)-systems. Journal 555
of Theoretical Biology 222, 261-272. 556
Letelier, J.C., Soto-Andrade, J., Guinez Abarzua, F., Cornish-Bowden, A., Cardenas, 557
M.L., 2006. Organizational invariance and metabolic closure: analysis in terms of 558
(M,R) systems. J Theor Biol 238, 949-961. 559
Louie, A.H., 2004. Rosen 1, Goertzel 0: Comments on the appendix “Goertzel versus 560
Rosen”, Available: http://panmere.com/rosen/Louie%20-%20GoetzelvsRosen.pdf. 561
Louie, A.H., 2005. Any material realization of the (M,R)-systems must have 562
noncomputable models. J Integr Neurosci 4, 423-436. 563
Louie, A.H., 2007a. A living system must have noncomputable models. Artificial Life 564
13, 293-297. 565
Louie, A.H., 2007b. A Rosen etymology. Chemistry and Biodiversity 4, 2296-2314. 566
Louie, A.H., 2009. More than Life Itself. A Synthetic Continuation in Relational 567
Biology. Ontos Verlag, Frankfurt. 568
Louie, A.H., 2011. Essays on More Than Life Itself Axiomathes 21, 473-489. 569
Louie, A.H., 2015. A metabolism–repair theory of by-products and side-effects. 570
International Journal of General Systems 44, 26-54. 571
Louie, A.H., Kercel, S.W., 2007. Topology and Life redux: Robert Rosen's relational 572
diagrams of living systems. Axiomathes 17, 109-136. 573
McMullin, B., 2004. Thirty years of computational autopoiesis: a review. Artificial 574
Life 10, 277-295. 575
McMullin, B., Varela, F.J., 1997. Rediscovering computational autopoiesis, SFI 576
Working Paper 97-02-012. Santa Fe Institute. 577
Mossio, M., Longo, G., Stewart, J., 2009. An expression of closure to efficient 578
causation in terms λ-calculus. Journal of Theoretical Biology 257, 489-498. 579
Object Management Group, 2011. Unified modeling language superstructure 580
specification v2.4. 581
Ono, N., Ikegami, T., 2002. Selection of catalysts through cellular reproduction, In: 582
Standish, R., Bedau, M.A., Abbass, H.A. (Eds.), 8th International Conference on 583
Artificial Life. MIT Press, pp. 57-64. 584
Piedrafita, G., Cornish-Bowden, A., Moran, F., Montero, F., 2012a. Size matters: 585
influence of stochasticity on the self-maintenance of a simple model of metabolic 586
closure. J Theor Biol 300, 143-151. 587
Piedrafita, G., Montero, F., Moran, F., Cardenas, M.L., Cornish-Bowden, A., 2010. A 588
simple self-maintaining metabolic system: robustness, autocatalysis, bistability. PLoS 589
Computational Biology 6, pii: e1000872. 590
Piedrafita, G., Ruiz-Mirazo, K., Monnard, P.A., Cornish-Bowden, A., Montero, F., 591
2012b. Viability conditions for a compartmentalized protometabolic system: a semi-592
empirical approach. PLoS One 7, e39480. 593
Prideaux, J.A., 2011. Kinetic models of (M,R)-systems. Axiomathes 21, 373-392. 594
Radó, T., 1962. On non-computable functions. Bell System Technical Journal 41, 595
877–884. 596
Read, M., Andrews, P.S., Timmis, J., Kumar, V., 2014. Modelling biological 597
behaviours with the unified modelling language: an immunological case study and 598
critique. Journal of the Royal Society. Interface 11, DOI: 10.1098/rsif.2014.0704 599
Rohr, C., Marwan, W., Heiner, M., 2010. Snoopy--a unifying Petri net framework to 600
investigate biomolecular networks. Bioinformatics 26, 974-975. 601
Rosen, R., 1958a. A relational theory of biological systems. Bull. Math. Biophys. 20, 602
245-260. 603

http://panmere.com/rosen/Louie%20-%20GoetzelvsRosen.pdf

29

Rosen, R., 1958b. The representation of biological systems from the standpoint of the 604
theory of categories. Bull. Math. Biophys. 20, 317-341. 605
Rosen, R., 1959. A relational theory of biological systems II. Bull. Math. Biophys. 21, 606
109-128. 607
Rosen, R., 1963. Some results in graph theory and their application to abstract 608
relational biology. Bulletin of Mathematical Biophysics 25, 231-241. 609
Rosen, R., 1972. Some Relational Cell Models: The Metabolism-Repair System, In: 610
Rosen, R. (Ed.), Foundations of Mathematical Biology. Academic Press, New York. 611
Rosen, R., 1989. The roles of necessity in biology, In: Casti, J.R., Karlqvist, A. (Eds.), 612
Newton to Aristotle: Toward a theory of models for living systems. Birkhauser, New 613
York, pp. 11-37. 614
Rosen, R., 1991. Life Itself: A Comprehensive Inquiry into the Nature, Origin, and 615
Fabrication of Life. Columbia University Press, New York. 616
Rosen, R., 2000. Essays on Life Itself. Columbia University Press, New York. 617
Roux-Rouquie, M., Caritey, N., Gaubert, L., Rosenthal-Sabroux, C., 2004. Using the 618
Unified Modelling Language (UML) to guide the systemic description of biological 619
processes and systems. Biosystems 75, 3-14. 620
Suzuki, K., Ikegami, T., 2008. Shapes and self-movement in protocell systems. 621
Artificial Life 15, 59-70. 622
Turing, A.M., 1936. On computable numbers, with an application to the 623
Entscheidungsproblem. Proc. London Math. Soc. 42, 230-265. 624
van Beijnum, B.J., Widya, I.A., Marani, E., 2010. Modeling the vagus nerve system 625
with the Unified Modeling Language. J Neurosci Methods 193, 307-320. 626
Varela, F., Maturana, H., Uribe, R., 1974. Autopoiesis: the organization of living 627
systems, its characterization and a model. Biosystems 5, 187-196. 628
Visual Paradigm, 2010. Visual paradigm for UML. UML tool for software application 629
development. 630
Webb, K., White, T., 2005. UML as a cell and biochemistry modeling language. 631
Biosystems 80, 283-302. 632
Wells, A.J., 2006. In defense of mechanism. Ecological Psychology 18, 39-65. 633
Whitehead, A.N., Russell, B., 1963 [1927]. Principia Mathematica, 2 ed. Cambridge 634
University Press, Cambridge. 635
Witten, T.M., 2007. (M,R)-systems, (P,M,C)-nets, hierarchical decay, and biological 636
aging: reminiscences of Robert Rosen. Chemistry and Biodiversity 4, 2332-2344. 637
Wolkenhauer, O., 2007. Interpreting Rosen. Artificial Life 13, 291-292. 638
Wolkenhauer, O., Hofmeyr, J.-H., 2007. An abstract cell model that describes the 639
self-organization of cell function in living systems. Journal of Theoretical Biology 640
246, 461-476. 641
Yan, Q., 2010. Bioinformatics for transporter pharmacogenomics and systems 642
biology: data integration and modeling with UML. Methods in Molecular Biology 643
637, 23-45. 644
Zeleny, M., 1978. APL-AUTOPOIESIS: Experiments in self-organization of 645
complexity., Progress in Cybernetics and Systems Research. Hemisphere Publishing 646
Corp., Washington, pp. 65-84. 647
 648
 649

