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Summary
Depth of anaesthesia monitors usually analyse cerebral function with or without other physiological signals; non-

invasive monitoring of the measured cardiorespiratory signals alone would offer a simple, practical alternative. We

aimed to investigate whether such signals, analysed with novel, non-linear dynamic methods, would distinguish

between the awake and anaesthetised states. We recorded ECG, respiration, skin temperature, pulse and skin conduc-

tivity before and during general anaesthesia in 27 subjects in good cardiovascular health, randomly allocated to

receive propofol or sevoflurane. Mean values, variability and dynamic interactions were determined. Respiratory rate

(p = 0.0002), skin conductivity (p = 0.03) and skin temperature (p = 0.00006) changed with sevoflurane, and skin

temperature (p = 0.0005) with propofol. Pulse transit time increased by 17% with sevoflurane (p = 0.02) and 11%

with propofol (p = 0.007). Sevoflurane reduced the wavelet energy of heart (p = 0.0004) and respiratory (p = 0.02)

rate variability at all frequencies, whereas propofol decreased only the heart rate variability below 0.021 Hz

(p < 0.05). The phase coherence was reduced by both agents at frequencies below 0.145 Hz (p < 0.05), whereas the

cardiorespiratory synchronisation time was increased (p < 0.05). A classification analysis based on an optimal set of

discriminatory parameters distinguished with 95% success between the awake and anaesthetised states. We suggest

that these results can contribute to the design of new monitors of anaesthetic depth based on cardiovascular signals

alone.
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Introduction
Because general anaesthesia involves loss of conscious-

ness, objective measures of depth of anaesthesia have

been focused mostly on EEG and EEG-derived mea-

surements, such as the evoked potentials from sound

or noxious stimuli [1–4]. Currently, there is no moni-
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tor of brain activity which meets the ideal of 100%

sensitivity and specificity for the awake and anaes-

thetised states. At least part of that deficiency may

arise because ‘anaesthesia vs awake’ may not be a bin-

ary set of conditions, and there may be neurophysio-

logical states in between that are nonetheless

apparently suitable for surgery [5, 6]. However, anaes-

thesia is also well known to influence the cardiovascu-

lar system. A multi-centre European study recently

assessed a combination of EEG parameters with mea-

sures of standard clinical cardiovascular parameters

(heart rate, blood pressure, change of heart rate and

blood pressure), for characterisation of the anaesthetic

state [7]. Even with this extensive combination of mea-

sures, the prediction probability of 88% for correctly

identifying the awake-to-anaesthetised transition still

fell far below the 100% ideal.

In standard clinical settings, like the above study,

most cardiovascular data are processed on a beat-by-

beat basis. But, if measured with a higher sampling

frequency (i.e. several samples per beat), the resultant

signals can provide more information relating to how

the system is changing (its dynamic properties such as

contributing oscillations and their coherence). In turn,

how these change with anaesthesia can be assessed.

There is also the possibility of including additional

non-invasive sensors, such as respiratory effort, skin

conductivity and skin temperature, all operated at a

high sampling frequency. We therefore propose that

simultaneous measurements of cardiovascular signals

in combination with dynamic analysis could have

potential clinical applications by providing the basis

for future depth of anaesthesia monitors.

As all cardiovascular variables vary with time, and

do so in a non-linear way, analyses that reflect this

non-linearity provide closer approximations to reality

[8, 9]. Dynamic analysis of blood flow measurements

suggests that there are at least five characteristic oscil-

latory frequencies in the cardiovascular system, each

attributable to a particular physiological process,

including cardiac, respiratory, myogenic, sympathetic

and endothelial activities (Table 1). Complex oscilla-

tions can often be decomposed into their individual

oscillatory components using the Fourier transform.

Formally, however, this can be done only when the

signals are periodic, which implies that, for example,

mean heart rate is constant over time. In reality, this is

not the case. Therefore, we need methods that reveal

the time-variability of the constituent oscillations. A

method known as ‘wavelet analysis’ can decompose

oscillatory components locally in time to yield an opti-

mal time-frequency resolution [8, 10]. Furthermore,

techniques such as ‘wavelet phase coherence’ and ‘syn-

chronisation analysis’ can extract information about

the interactions between the underlying oscillatory

processes [9, 11].

We expected that anaesthesia would result in mul-

tiple changes in cardiovascular regulation that could be

revealed by applying novel non-linear dynamics meth-

ods to relevant signals. In addition, we proposed that,

when a large range of cardiovascular and autonomic

parameters are analysed, it would be possible to reli-

ably establish whether a patient was awake or anaes-

thetised. Thus, we tested two hypotheses: first, that

there is a clear difference between the awake and

anaesthetised states; and second, that anaesthesia using

propofol would be demonstrably different (as assessed

by our methods) from anaesthesia using sevoflurane.

The choices of signals to be recorded, and the best

ways of creating the parameters for their interaction,

were guided by the results of earlier work on cardio-

vascular dynamics during anaesthesia in both rats [12,

13] and humans [14]. Core temperature [15] and skin

conductance [16] were added to the signals to be

recorded because these quantities are known to

undergo changes during anaesthesia.

Methods
The approvals of the relevant Research Ethics Com-

mittees were obtained before the study commenced.

Data collection took place before registration of studies

into trials registries was required. Subjects were invited

to participate and their written informed consent to

take part in the study was obtained on the day of sur-

gery. We studied healthy (ASA physical status 1 and

2) subjects aged between 18 and 60 years scheduled to

undergo minor to intermediate surgical procedures.

The exclusion criteria were: cardiovascular disease or

chronic obstructive pulmonary disease; ongoing cancer

or diabetes mellitus; allergy to anaesthetic drugs; or

taking medication that could influence the central ner-

vous system or cardiovascular dynamics. Subjects were
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ineligible if they had consumed caffeine-containing

drinks after 20:00 the previous day, or had taken a

sleeping pill the night before surgery.

A randomisation envelope was opened by study

personnel and the specified anaesthetic drug was pre-

pared, checked and labelled. No premedication was

given. Standard clinical anaesthetic monitoring was

attached (pulse oximetry, 3-lead electrocardiogram and

non-invasive arterial blood pressure). The sensors for

data recording were then applied as described below.

Intravenous access was obtained. After application and

calibration of the sensors, a stabilisation period was

allowed.

Once subjects confirmed that they were comfort-

able, they were asked to relax, lie still, stay awake, and

not speak unless necessary for the duration of the

recordings. The first set of recordings was then made

for approximately 30 minutes before anaesthesia. After

this, anaesthesia was induced with the drug dictated by

the randomisation procedure. In addition, a commer-

cial gas analyser displaying respired gas oxygen, carbon

dioxide and volatile anaesthetic agent concentrations

was used. For the propofol group, anaesthesia was

induced by infusing propofol until a simulated plasma

target concentration of 6.0 lg.ml�1 was reached

(DiprifusorTM, target control system (TCI) Astra-

Zeneca, London, UK). A laryngeal mask airway was

inserted 2 min after the start of the infusion. After

insertion, the target concentration was reduced to

3.0 lg.ml�1 and the infusion was maintained at this

rate throughout the measurement period [17, 18]. For

the sevoflurane group, subjects were asked to breathe

sevoflurane through a close-fitting facemask until an

end-tidal concentration of 5% was reached. A laryngeal

mask airway was inserted, and then the sevoflurane

turned off until the end-tidal concentration fell to 2%.

The sevoflurane was then re-instituted to maintain the

end-tidal concentration at 2% throughout the measure-

ment period [19]. After a further stabilisation period

of 5–10 min, the second set of signal recordings took

place. Subjects breathed spontaneously during both

sets of recordings.

The signals were recorded using a system (Car-

dio&Brain Signals; Jo�zef Stefan Institute, Ljubljana,

Slovenia) specially designed for this study. The signals

were fed, via 24-bit A/D conversion at 1200 Hz, into a

purpose-built signal-conditioning unit and then stored

on a laptop computer.

The electrical activity of the heart was measured

with a 3-lead ECG system. To obtain well-defined

ECG R-peaks, used to calculate heartbeat timing, the

standard electrodes were attached to the subject’s left

shoulder, right shoulder and lowest rib on the left

side of the body. The connecting cable was a

M1735A 3-lead ECG shielded cable (Philips Medizin

Systeme B€oblingen GmbH, Boeblingen, Germany) and

adapted to the Cardio&Brain Signals ECG input con-

nector.

Respiratory effort was recorded using a belt encir-

cling the subject’s chest, fitted with a Biopac TSD201

Respiratory Effort Transducer (Biopac Systems Inc.,

Goleta, CA, USA).

Skin temperature was measured with two 8.5-mm

diameter, high-sensitivity, low heat capacity thermistors

taped to the skin: YSI 709B Thermilinear� sensors (YSI

Inc., Yellow Springs, OH, USA). The first (T1) was

positioned on the inside right ankle, over the medial

malleolus; and the second (T2) on the inside of the

right wrist, over the radial styloid process. Care was

taken to ensure good thermal contact between the sen-

sor and the skin.

Skin conductivity was measured using a pair of sil-

ver-plated electrodes taped to the ball and between the

distal and proximal joints of the right thumb. The

electrodes were adapted from the M1931A Reusable

EEG Adult Cup Electrode set of the Ag/AgCl electrode

system (Philips Medizin Systeme B€oblingen GmbH).

Electrical contact was facilitated by use of a standard

conductivity gel, e.g. Electro-Gel� from Electro-Cap

International, Inc., Eaton, OH, USA. Conductivity was

determined from the DC current when 0.5 V was

applied between the electrodes. The maximum current

was limited to 125 lA.

The pulse generated by changes in arterial blood

pressure was measured on the subject’s right index

finger with a piezoelectric pressure transducer, the

MLT1010 Pulse Transducer (AD Instruments Pty Ltd,

Bella Vista, NSW, Australia). The volume of blood

flowing into the finger tightened a cuff, generating a

pulse signal. As the output is a measure of dynamic

changes in pressure, the signal was integrated to obtain

a time series of blood pressure.
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The R-peaks of the ECG signal, and the maxima

of the respiration signal, were used as markers for car-

diac and respiratory oscillations, respectively. In this

way, the heart rate variability and respiratory fre-

quency variability signals were obtained (Appendix

S1). The maxima and minima of the integrated pulse

signal represent the systolic and diastolic pressures,

respectively. We defined the arrival times of the pulse

signal to the finger as the minima in the pressure; this

is not only the easiest part of the signal to recognise

and locate but is also the least distorted part of the

propagated wave [20]. The time delay between the

arrival time of the pressure pulse wave and its corre-

sponding R-peak was defined as the pulse transit time.

To discern the frequency content of the cardiovas-

cular oscillations, we performed wavelet analysis on

the recorded signals. The Morlet mother wavelet [21]

was used to calculate the continuous wavelet trans-

form. The spectral range was then divided into the five

physiologically relevant frequency intervals [8, 22]

between 0.0095 and 2 Hz shown in Table 1. The

energy of each of the signals, including the variability

of the heart and respiration rates, was calculated

(Appendix S2) within these intervals.

Wavelet phase coherence was used for exploration

of the phase relationships at particular frequencies

between oscillations from pairs of separate signals [23,

24]. Generally, phase coherence was considered to exist

if the phase difference between two oscillations

remained constant throughout the whole time of obser-

vation; this suggested that the signals are regulated from

a common source, or that they are mutually synchro-

nised [25] (see Appendix S2 for details of how the

synchronisation and wavelet phase coherence were

calculated; the method of surrogates [26] was used to

test for significance). Co-ordination between the heart

and respiration is known to exist at rest and during

anaesthesia [9, 11, 12, 27–31]. Specifically, we studied

the phase synchronisation between respiration and

heartbeat as analysed by the synchronisation index [8].

The synchronisation time for each subject was defined

as the sum of the intervals during which the indices are

95% or above of perfect synchronisation for window

lengths of 6T for 1:n synchronisation and 8T for 2:n

synchronisation, where T is the average respiratory per-

iod. This choice of window length and the use of phase

gives the same relative period for all subjects, as opposed

to methods which are based on absolute time [30, 31].

We then calculated the change in synchronisation time

between the awake state and during anaesthesia.

The analyses were made in MATLAB (Math-

Works, Natick, MA, USA) and two types of

comparison were carried out. First, using a paired,

non-parametric (Wilcoxon signed-rank) test, we inves-

tigated the statistical differences between the extracted

parameters related to the awake and anaesthetised

states. Secondly, we tested statistical differences

between the extracted parameters relevant for the

anaesthetised state with each of the two agents, using

an unpaired Wilcoxon rank sum test. The significance

level was set at p = 0.05. Wherever appropriate, the

significance of dynamic parameters, like phase coher-

ence, was tested against properties extracted from sur-

rogate signals which were generated by randomising

the correlations between the two signals, thus making

them independent and phase incoherent, but preserv-

ing the statistical properties of each signal [26].

On the basis of parameters derived from the

recorded signals, and by applying automatic classifica-

tion method, we classified subjects into groups or classes

associated with three distinct states: awake, anaes-

thetised with sevoflurane, and anaesthetised with propo-

fol. The classification is a machine-learning process

which is refined until it performs optimally. There are

many possible classification schemata and training

methods [32–35]. We applied two different approaches.

First, we applied a method specially developed for this

study. It is a variant of distance-based classification (see

below) that arose naturally in the present context. It

takes direct account of the physiological nature of the

Table 1 Frequency intervals and their associated
physiological activity.

Interval Frequency (Hz) Physiological origin

I 0.6–2.0 Heartbeat
II 0.145–0.6 Respiratory activity
III 0.052–0.145 Intrinsic myogenic activity
IV 0.021–0.052 Neurogenic (sympathetic)

activity
V 0.0095–0.021 NO-dependent endothelial

activity

NO, nitric oxide.

© 2015 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists of Great Britain and Ireland. 1359

Kenwright et al. | Cardiorespiratory interactions and depth of anaesthesia Anaesthesia 2015, 70, 1356–1368



extracted parameters and during classification simulta-

neously optimises the distance measure. Secondly, to test

the strength of our new classification method, we

applied standard classification techniques and corre-

sponding methodology from the freely available open-

source software package WEKA [36].

We used an unpaired test (Kolmogorov–Smirnov

[37]) to determine whether there were significant dif-

ferences between the classified groups. If the difference

for a pair of physiological variables was found to be

significant (p < 0.05) these were considered as attri-

butes and were included in the discriminatory analysis.

The attributes, summarised in Table 2, were grouped

into mean values, wavelet powers and interactions; we

then went through a controlled cascade of reductions

and mergers of attribute sets to find the most predic-

tive attributes (see online Appendix S3 for details on

ranking attributes).

We used a distance-based classification technique,

called the nearest neighbour classifier [31], where each

subject is assigned a vector x based on their measured

signals and derived values. The (squared) distance

between two subjects x1 and x2 is calculated as

D(x1,x2)
2 = (x1 � x2)

T A (x1 � x2), where T indicates

the transpose of the original matrix. The distance mea-

sure (i.e. the entries in the positive symmetric matrix

A) is determined through a procedure described in

online Appendix S3, where further details are given

[38].

The results of a classifier are assessed by inspecting

the ‘confusion matrix’ [38] (see Table A2 of the online

supplementary information). In brief, the confusion

matrix contrasts actual states/classifications (rows) with

classifications/states (columns) predicted by the classi-

fier. The diagonal entries correspond to the number

(likelihood) of correct classifications and off-diagonal

entries to the number (likelihood) of misclassifications:

the likelihood entries in one row sum up to 100%.

Further details can be found in Appendix S3.

Results
We recruited 27 patients from two centres, Oslo

(n = 13) and Lancaster (n = 14). Of these, 12 were

anaesthetised with propofol and 15 with sevoflurane;

six patients received propofol in each of the two cen-

tres; eight received sevoflurane in Lancaster and seven

in Oslo. The subject characteristics are given in

Table 3.

An example of a set of recorded signals is given in

Fig. 1. We first calculated their mean values across the

whole recording, as shown in Table 4. Each subject

Table 2 The attributes used in the vector-based dis-
criminatory analysis for the different subsets of data.
Roman numerals indicate frequency intervals (see
Table 1). The 12 most relevant attributes, used in the
optimised classification calculation, appear shaded.

Mean values
subset

Wavelet powers
subset Interactions subset

Heart rate HRV energy II HRV-conductivity II
Respiratory rate HRV energy III HRV-conductivity III
Skin temperature HRV energy IV HRV-conductivity IV
Skin conductivity HRV energy V Conductivity-pulse I
Pulse transit time RFV energy III Conductivity-pulse III
Total HRV energy RFV energy IV Conductivity-pulse IV
Total RFV energy RFV energy V Conductivity-

temperature I
Total conductivity
energy

Conductivity
energy III

Conductivity-
temperature II

Total temperature
energy

Conductivity
energy IV

Pulse-temperature I

Conductivity
energy V

C-R synchronisation
time

Conductivity
energy VI

1:n synchronisation
window length

Temperature
energy III

2:n synchronisation
window length

Temperature
energy IV

Temperature
energy V

Temperature
energy VI

RFV, respiratory frequency variability; HFV, heart rate vari-
ability.

Table 3 Characteristics of the two groups. Values are number or mean (SD).

Group
Number of
subjects (M:F) Age; years Height; cm Weight; kg

Body mass
index; kg.m�2

Sevoflurane 15 (8:7) 31.9 (9.4) 176.0 (11.5) 77.8 (12.3) 25.7 (5.0)
Propofol 12 (10:2) 38.5 (12.3) 178.9 (9.1) 78.6 (16.3) 24.0 (3.9)
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acted as his/her own control in terms of awake versus

anaesthetised. There was no statistically significant dif-

ference between the awake measurements of the two

study groups, propofol and sevoflurane.

Neither anaesthetic agent caused a statistically sig-

nificant change in the mean heart rate and there was

no significant difference between the anaesthesia

groups; p values for all comparisons are shown in

Table 4. In contrast, sevoflurane caused a significant

increase in respiratory rate compared both with base-

line and with propofol.

A significant increase in skin temperature was

observed on both sites with both anaesthetic agents.

The mean values shown in Table 4 represent the mean

between the two measurement sites, on wrist and

ankle. There was no significant difference between the

propofol and sevoflurane groups.

There was wide between-subject variation in

recorded skin conductivity, amounting to several

orders of magnitude. However, for all subjects, skin

conductivity was typically highest when the sensor was

first attached, then fell during the period of awake

measurement, with rapid increases when the subject

was subjected to a stimulus such as noise, end of the

measurement, or the onset of the anaesthesia proce-

dure. Mean skin conductivity decreased during anaes-

thesia with both agents, though this was significant

only for sevoflurane. There was no significant

Table 6 Confusion matrix, giving the likelihoods of
correct and incorrect classification into two states, for
the distance-based classification as in Table 3, using an
optimal distance on 12 attributes.

Classified state

Awake Anaesthetised

Actual state
Awake 98% 2%
Anaesthetised 8% 92%

Table 4 Heart rate, respiratory rate, skin temperature, skin conductivity, pulse transit time, the mean wavelet energy
of the signals, the duration of cardiorespiratory synchronisation and the duration of the windows for 1:n and 2:n
cardiorespiratory synchronisation. Values are mean (SD).

Sevoflurane Propofol Comparison

Control Anaes p Control Anaes p pcontrols psevo.prop

HR; Hz 1.07 (0.16) 1.07 (0.15) 0.89 1.08 (0.18) 1.14 (0.20) 0.23 0.96 0.46
RR; Hz 0.22 (0.07) 0.37 (0.08) 0.0002 0.19 (0.05) 0.23 (0.05) 0.09 0.14 0.0002
STemp; °C 30.0 (0.9) 32.1 (1.2) 0.00006 30.2 (2.1) 31.9 (2.2) 0.0005 0.33 0.75
SCond; ms 2.09 (2.50) 1.34 (1.17) 0.03 2.26 (2.18) 1.67 (1.37) 0.18 0.69 0.29
PTT; s 0.18 (0.02) 0.21 (0.05) 0.02 0.18 (0.01) 0.2 (0.02) 0.007 0.17 0.68
Mean wavelet energy
HRV; Hz2 1.36 0.53 0.0004 0.98 0.47 0.11 0.07 0.98
RFV; Hz2 0.26 0.13 0.02 0.39 0.14 0.051 0.54 0.21
STemp; °C2 0.00002 0.00007 0.14 0.0002 0.0001 0.85 0.07 0.54
SCond; S2 0.09 0.0003 0.002 0.02 0.0003 0.003 0.75 0.61

C-R synch.; s 173 385 0.03 138 323 0.04 0.55 0.55
C-R 1:n synch. window; s 38.00 16.00 0.00006 36.41 27.67 0.0830 0.0596 0.000022
C-R 2:n synch. window; s 50.87 21.20 0.00006 48.50 36.83 0.0654 0.0824 0.000019

p values are provided for the comparisons between control and anaesthetised groups with each of the two anaesthetics, and in the
final columns between the awake measurements for the two groups (pcontrols) and for the two anaesthetic agents (psevo.prop).
HR, heart rate; RR, respiratory rate; STemp, skin temperature; SCond, skin conductivity; PTT, pulse transit time; C-R synch,
duration of cardiorespiratory synchronisation.

Table 5 Confusion matrix, giving the likelihoods of
correct and incorrect classification into three states for
distance-based classification using an optimal distance
on 12 attributes.

Classified state

Awake
Anaes-
Sevoflurane

Anaes-
Propofol

Actual state
Awake 98% 0 2%
Anaes-Sevoflurane 8% 84% 8%
Anaes-Propofol 9% 11% 80%
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difference between the two agents with respect to this

decrease.

Anaesthesia caused a significant increase in pulse

transit time (Table 4): 17% with sevoflurane and 11%

with propofol.

Wavelet analysis of oscillations in measured and

derived signals revealed the following results. Both

anaesthetic agents were associated with a decrease in

heart rate variability (Fig. 2); this was significant across

all frequencies for sevoflurane, but only in frequency

interval V (0.0095–0.021 Hz) for propofol. Both agents

were associated with a decrease in respiratory fre-

quency variability, significantly for sevoflurane and

close to significance for propofol. There was no signifi-

cant change in temperature variability for either agent.

However, median skin conductivity variability

decreased considerably for both agents, though this fall

was small in comparison with the between-subject

variation in mean values at baseline.

Furthermore, we observed that the heartbeat and

breathing entered periods of synchronisation, whereby

a fixed number of beats occurred for each breathing

cycle, as had been demonstrated previously [27–31].

The total synchronisation time was found to increase

with both anaesthetics, whereas the 1:n and 2:n syn-

chronisation windows decreased significantly only with

sevoflurane, thus showing significant difference in the

effects of the two anaesthetics. In contrast, the differ-

ence in the synchronisation time between the two

anaesthetics was not significant (Table 4).

Figure 3 shows the phase coherence between pairs

of the cardiovascular and respiratory signals in the

awake and anaesthetised states. Frequencies where the

change is significant are shaded; for example, section

Table 7 Confusion matrix giving both the numbers
and likelihoods of correct and incorrect classifications
into three states, for the distance-based classification as
in Table 3, using an optimal distance on 12 attributes.
The numbers have been obtained using leave-one-out
cross-validation (as opposed to repeated 50% hold-out
for Tables 3 and 4).

Classified state

Awake
Anaes-
Sevoflurane

Anaes-
Propofol

Actual state
Awake 100% 0 0
Anaes-Sevoflurane 7% 93% 0
Anaes-Propofol 0 0 100%
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Figure 1 Example of a short segment of signals recorded during anaesthesia (from top to bottom): electrical activity
of the heart (ECG); respiration as a percentage of the sensor range; skin conductivity; skin temperature from the
wrist (upper) and ankle (lower) and piezoelectric pulse.
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(d) of Fig. 3 shows the phase coherence between skin

conductivity and the pulse pressure signal. Both

sevoflurane and propofol caused a significant reduction

in phase coherence below 0.145 Hz. In effect, the

coherence between these two signals when awake was

lost during anaesthesia.

The attributes used in the classification analysis to

distinguish the awake from the anaesthetised state

appear in Table 2. The controlled cascade of reduc-

tions and mergers of attribute sets revealed a very effi-

cient set of 12 attributes, which appear shaded in

Table 2 (see Appendix S3 online for details on ranking

attributes). By using the obtained optimal distance in

classification with repeated hold-out validation, we

obtained a classification accuracy of A3 = 90% with

the corresponding confusion matrix expressed in per-

centages in Table 5. In this table, the sum in a hori-

zontal row is 100% and the values on the diagonal

present correct classifications. Thus, 98% of awake

subjects were classified as awake and 2% as anaesthe-

tised with propofol. The classification resulted in

recognising 84% of subjects anaesthetised with sevo-

flurane correctly, whereas 8% were wrongly classified

as awake and another 8% as anaesthetised with propo-

fol. Lastly, of all subjects anaesthetised with propofol,

80% were classified correctly, 9% were classified as

awake and 11% as anaesthetised with sevoflurane.

Further description of the confusion matrix is given in

Appendix S3.

Merging the two anaesthetised states into one

state, yielded a classification accuracy of A2 = 95%, as

summarised in the confusion matrix given in Table 6.

The classification with the optimal distance and simple

leave-one-out cross-validation gives an accuracy

A3 = 98%, as summarised in the confusion matrix in

Table 7.

Details of the classification analysis and results are

summarised in Appendix 3.

Discussion
The use of cardiovascular and autonomic signs to assess

depth of anaesthesia is not new; scores based on such

signs have been used in the research context since the

1980s [39–43], and the signs are still in clinical use [15].

In particular, heart rate variability, analysed either via

its frequency content [39] or various entropy measures

[44], in combination with blood pressure or cardiores-

piratory co-ordination [30, 31], have been used to assess

the activity of the autonomic nervous system as an indi-

cator of the state of anaesthesia. However, our results

yield insights into the changes in cardiovascular interac-

tions revealed by the application of recently-introduced

non-linear dynamic of analytical methods [9]. They

were applied, not just to one or two signals, but to sev-

eral simultaneously measured signals, and a classifica-

tion method was used for optimal combination of all

the inferred parameters. A number of distinct changes

between the awake and anaesthetised states, and
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between the effects of the two anaesthetics, are thus

demonstrated. The study can draw two types of

conclusion: (a) on which physiological parameters

change significantly during anaesthesia with either

propofol or sevoflurane; and (b) on which of the

extracted parameters can be used to discriminate the

data optimally to classify each of the subject’s measured

states.

Respiratory rate, skin temperature and pulse tran-

sit time increased during anaesthesia, whereas skin

conductivity and the derived quantities of heart rate

and respiratory rate variability both decreased. We

have shown that anaesthesia is associated with a conse-

quent reduction in the phase coherence, whereas car-

diorespiratory phase synchronisation increases; the

tendency for heart rate and respiratory rate to syn-

chronise under anaesthesia is previously unreported

for sevoflurane in humans. Furthermore, there was a

general reduction in phase coherence between the

various signals under anaesthesia and a clear difference

between the effects of the two anaesthetics.

In earlier studies, heart rate variability has mostly

been assessed using Fourier-based methods of spectral

analysis, which typically deal with high-frequency

(approx. 0.02–0.15 Hz) and low-frequency (approx.

0.15–0.4 Hz) bands. While there are a number of

theories for the physiological basis of the activities at

different frequencies, the move from what might be

termed a ‘cardiocentric’ view of the circulation to one

which encompasses the role of vascular regulation is

well supported by our previous work [8, 22]. Decreases

have been reported in these bands [44], which are

approximately equivalent to bands III and IV in our

study (Table 1).

Other new findings in this study arise from the

use of wavelet analysis to further refine the results of a

number of physiological responses to anaesthesia.

Wavelet analyses enabled us to choose window sizes
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according to the time scales of interest and to identify

the physiological processes associated with particular

frequency bands (see Table 1). We have observed for

the first time a statistically significant decrease in heart

rate variability wavelet energy in the lower frequency

band V (0.0095–0.021 Hz) between the awake and

anaesthetised states with both anaesthetic agents

(Fig. 2a). In microvascular studies, activity in these

bands has been shown to be associated with nitric

oxide-related endothelial activity [45, 46].

There was a significant increase in the mean respi-

ratory rate with sevoflurane. Propofol resulted only in

a slight increase in respiratory frequency, which was

significantly lower than the average respiratory fre-

quency during sevoflurane anaesthesia. Furthermore,

the total energy of respiratory frequency variability

decreased with anaesthesia, significantly with sevoflu-

rane (p = 0.02) and borderline significantly with

propofol, (p = 0.051). The wavelet energy of respira-

tory frequency variability has not previously been stud-

ied during anaesthesia.

In relation to interactions, we observed an

increased tendency for the heart and respiration to

synchronise during anaesthesia with both sevoflurane

and propofol. This was reported in an earlier study of

cardiorespiratory interactions using propofol in

humans [14], and has been observed in rats [12]

anaesthetised with ketamine, but has not previously

been reported for sevoflurane in humans. Further,

when wavelet phase coherence was used to check for

significant phase relationships between the oscillations

in the various signals, we observed that this relation-

ship changed when a person is anaesthetised. For

instance, between the conductivity and pulse signals,

there is a reduction in the phase coherence at frequen-

cies below 0.145 Hz for both anaesthetic agents. The

observed reduction agrees with the general picture that

interactions within the cardiovascular system are

reduced by anaesthesia because communication

through the neuronal network is restricted.

In the discriminatory classification, we studied

separately the classifications based on the following

parameters obtained from analysis: (a) the mean values

and total wavelet energies; (b) the wavelet energy spec-

tra for individual frequency bands; and (c) the wavelet

phase coherence and synchronisation values. In each

of the three categories, an optimal set was selected and

the classification success rate was evaluated. Using the

mean data alone, we were able to categorise subjects

into three groups (awake, anaesthetised with sevoflu-

rane, anaesthetised with propofol) with a 86% success

rate, and into two groups (awake or anaesthetised)

with a 90% success rate. The changes in the oscilla-

tions and their interactions induced by the anaesthetics

are evidently not robust enough to provide measures

of state by themselves. However, a combination of the

mean values, oscillations and interaction data

improved the success rate of categorising into three

groups (awake, anaesthetised with sevoflurane, anaes-

thetised with propofol) to 90%, whereas for classifying

into two groups (awake, anaesthetised) the optimisa-

tion of classification improved to 95%.

The main aims of the study were to understand

the effects of the two anaesthetics and, in particular, to

establish which physiological parameters change most

significantly on entering anaesthesia. Thus, we hoped

to identify which parameters are potentially the most

useful in discriminating between the awake and anaes-

thetised states. These were found to be: the mean res-

piratory rate; the total wavelet energy of the heart rate

variability; the total wavelet energy of the respiratory

frequency variability signal; the mean temperature; the

mean synchronisation time; the window lengths for 1:

n and 2:n synchronisation; the phase coherence

between pulse and temperature in frequency interval I;

the wavelet energy in frequency intervals III and IV of

heart rate variability; the wavelet energy in frequency

interval V of the respiratory frequency variability; and

the wavelet energy of frequency interval VI of the con-

ductivity signal. Coherence and synchronisation analy-

ses remain candidates for inclusion within a future

novel method of anaesthesia monitoring, but do not

provide robust enough measures for use by themselves.

Our result of 95% prediction of the awake-to-

anaesthetised transition compares favourably with the

88% prediction based on a combination of EEG and

static physiological variables [7]. Once the number of

data sets for classification is larger (several hundreds),

one could expect prediction approaching 100%.

We have selected a relatively simple model of anaes-

thesia – to evaluate the effects of each of the two drugs

as specifically as possible. However, to evaluate the
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practical applicability of the presented results, a study

with more realistic conditions need to be performed.

This should include: subjects with varying drug concen-

trations during anaesthesia, or different combination of

anaesthetics; subjects who are receiving neuromuscular

blocking drugs in addition to general anaesthetics; and

subjects whose lungs are being mechanically ventilated,

all preferably with continuous recordings during surgery

and emergence from anaesthesia.

In summary, we have presented thorough investiga-

tions of the effects of sevoflorane and propofol on car-

diovascular regulation. Subtle differences in the effects

of these two drugs, which are known to operate via dif-

ferent cellular mechanisms, were identified for car-

diorespiratory interactions. Furthermore, a number of

relevant parameters were extracted and those that con-

tributed to higher classification rates, in either two

groups (control and anaesthetised) or three groups

(control, sevoflurane and propofol) were discussed.

Although we did not use measures of depth of anaesthe-

sia other than end-tidal sevoflurane and target propofol

concentrations, we believe that our study paves the way

to a modern depth of anaesthesia monitor utilising

simultaneous recordings of cardiovascular signals, with

on-line non-linear analysis and classification, able to

monitor robustly the state and depth of anaesthesia.

Future work could usefully validate the novel algorithm

on data from a new, larger group of patients and incor-

porate an additional measure of depth of anaesthesia

such as the use of the isolated forearm technique. We

would also advocate further studies to improve the sen-

sitivity and specificity of each of our components for the

composite analyses. It has, for instance, been shown that

refinement of the raw skin conductivity values into anal-

yses of frequency of minor sweat bursts increases the

precision of the skin conductivity tool [47].
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tory analysis.
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plete dataset.
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