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Abstract. Let Γ be a discrete group. Following Linnell and Schick one can define a
continuous ring c(Γ) associated with Γ. They proved that if the Atiyah Conjecture holds
for a torsion-free group Γ, then c(Γ) is a skew field. Also, if Γ has torsion and the Strong
Atiyah Conjecture holds for Γ, then c(Γ) is a matrix ring over a skew field. The simplest
example when the Strong Atiyah Conjecture fails is the lamplighter group Γ = Z2 ≀ Z. It
is known that C(Z2 ≀ Z) does not even have a classical ring of quotients. Our main result
is that if H is amenable, then c(Z2 ≀H) is isomorphic to a continuous ring constructed by
John von Neumann in the 1930′s.
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1. Introduction

Let us consider Matk×k(C) the algebra of k by k matrices over the complex field. This
ring is a unital ∗-algebra with respect to the conjugate transposes. For each element
A ∈ Matk×k(C) one can define A∗ satisfying the following properties.

• (λA)∗ = λA∗

• (A+ B)∗ = A∗ + B∗

• (AB)∗ = B∗A∗

• 0∗ = 0, 1∗ = 1

Also, each element has a normalized rank rk(A) = Rank(A)/k with the following properties.

• rk(0) = 0, rk(1) = 1,
• rk(A+ B) ≤ rk(A) + rk(B)
• rk(AB) ≤ min{rk(A), rk(B)}
• rk(A∗) = rk(A)
• If e and f are orthogonal idempotents then rk(e+ f) = rk(e) + rk(f).

The ring Matk×k(C) has an algebraic property namely, von Neumann called regularity:
Any principal left-(or right) ideal can be generated by an idempotent. Furthermore, among
these generating idempotents there is a unique projection (that is Matk×k(C) is a ∗-regular
ring). In a von Neumann regular ring any non-zerodivisor is necessarily invertible. One
can also observe that the algebra of matrices is proper, that is

∑n
i=1 aia

∗
i = 0 implies that

all the matrices ai are zero. One should note that if R is a ∗-regular ring with a rank
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function, then the rank extends to Matk×k(R) [6], where the extended rank has the same
property as rk except that the rank of the identity is k.
One can immediately see that the rank function defines a metric d(A,B) := rk(A−B) on
any algebra with a rank, and the matrix algebra is complete with respect to this metric.
These complete ∗-regular algebras are called continuous ∗-algebras (see [5] for an extensive
study of continuous rings). Note that for the matrix algebras the possible values of the
rank functions are 0, 1/k, 2/k, . . . , 1. John von Neumann observed that there are some
interesting examples of infinite dimensional continuous ∗-algebras, where the rank function
can take any real values in between 0 and 1. His first example was purely algebraic.

Example 1. Let us consider the following sequence of diagonal embeddings.

C → Mat2×2(C) → Mat4×4(C) → Mat8×8(C) → . . .

One can observe that all the embeddings are preserving the rank and the ∗-operation.
Hence the direct limit lim−→Mat2k×2k(C) is a ∗-regular ring with a proper rank function.
The addition, multiplication, the ∗-operation and the rank function can be extended to
the metric completion M of the direct limit ring. The resulting algebra M is a simple,
proper, continuous ∗-algebra, where the rank function can take all the values on the unit
interval.

Example 2. Consider a finite, tracial von Neumann algebra N with trace function trN .
Then N is a ∗-algebra equipped with a rank function. If P is a projection, then rkN (P ) =

trN (P ). For a general element A ∈ N , rkN (A) = 1−limt→∞

∫ t

0
trN (Eλ)dλ, where

∫∞

0
Eλ dλ

is the spectral decomposition of A∗A. In general, N is not regular, but it has the Ore
property with respect to its zero divisors. The Ore localization of N with respect to its
non-zerodivisors is called the algebra of affiliated operators and denoted by U(N ). These
algebras are also proper continuous ∗-algebras [1]. The rank of an element A ∈ U(N ) is
given by the trace of the projection generating the principal ideal U(N )A. It is important
to note, that U(N ) is the rank completion of N (Lemma 2.2 ([12]).
Linnell and Schick observed [9] that if X is a subset of a proper ∗-regular algebra R, then
there exists a smallest ∗-regular subalgebra containing X, the ∗-regular closure. Now let
Γ be a countable group and CΓ be its complex group algebra. Then one can consider the
natural embedding of the group algebra to its group von Neumann algebra CΓ → NΓ. Let
U(Γ) denote the Ore localization of N (Γ) and the embedding CΓ → U(Γ). Since U(Γ) is
a proper ∗-regular ring, one can consider the smallest ∗-algebra A(Γ) in U(Γ) containing
C(Γ). Let c(Γ) be the completion of the algebra A above. It is a continuous ∗-algebra
[5]. Of course, if the rank function has only finitely many values in A, then c(Γ) equals
to A(Γ). Note that if CΓ is embedded into a continuous ∗-algebra T , then one can still
define cT (Γ) as the smallest continuous ring containing CΓ. In [3] we proved that if Γ is
amenable, c(Γ) = cT (Γ) for any embedding CΓ → T associated to sofic representations
of Γ, hence c(Γ) can be viewed as a canonical object. Linnell and Schick calculated the
algebra c(Γ) for several groups, where the rank function has only finitely many values on
A. They proved the following results:
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• If Γ is torsion-free and the Atiyah Conjecture holds for Γ, then c(Γ) is a skew-field.
This is the case, when Γ is amenable and CΓ is a domain. Then c(Γ) is the Ore
localization of CΓ. If Γ is the free group of k generators, then c(Γ) is the Cohen-
Amitsur free skew field of k generators. The Atiyah Conjecture for a torsion-free
group means that the rank of an element in Matk×k(CΓ) ⊂ Matk×k(U(N (Γ))) is
an integer.

• If the orders of the finite subgroups of Γ are bounded and the Strong Atiyah Con-
jecture holds for Γ, then c(Γ) is a finite dimensional matrix ring over some skew
field. In this case the Strong Atiyah Conjecture means that the ranks of an element
in Matk×k(CΓ) ⊂ Matk×k(U(N (Γ))) is in the abelian group 1

lcm(Γ)
Z, where lcm(Γ)

indicates the least common multiple of the orders of the finite subgroups of Γ.

The lamplighter group Γ = Z2 ≀ Z has finite subgroups of arbitrarily large orders. Also,
although Γ is amenable, CΓ does not satisfy the Ore condition with respect to its non-
zerodivisors [8]. In other words, it has no classical ring of quotients. The goal of this paper
is to calculate c(Z2 ≀Z) and even c(Z2 ≀H), where H is a countably infinite amenable group.

Theorem 1. If H is a countably infinite amenable group, then c(Z2 ≀ H) is the simple

continuous ring M of von Neumann.

2. Crossed Product Algebras

In this section we recall the notion of crossed product algebras and the group-measure
space construction of Murray and von Neumann. Let A be a unital, commutative ∗-algebra
and φ : Γ → Aut(A) be a representation of the countable group Γ by ∗-automorphisms.
The associated crossed product algebra A⋊ Γ is defined the following way. The elements
of A⋊ Γ are the finite formal sums

∑

γ∈Γ

aγ · γ ,

where aγ ∈ A. The multiplicative structure is given by

δ · aγ = φ(δ)(aγ) · δ .

The ∗-structure is defined by γ∗ = γ−1 and (γ · a)∗ = a∗ · γ−1. Note that

(δ · aγ)
∗ = (φ(δ)aγ · δ)

∗ = δ∗ · φ(δ)a∗γ = φ(δ−1)φ(δ)a∗γ · δ
−1 = a∗γ · δ

∗ .

Now let (X,µ) be a probability measure space and τ : Γ y X be a measure preserv-
ing action of a countable group Γ on X. Then we have a ∗-representation τ̂ of Γ in
Aut(L∞(X,µ)), where L∞(X,µ) is the commutative ∗-algebra of bounded measurable
functions on X (modulo zero measure perturbations).

τ̂(γ)(f)(x) = f(τ(γ−1)(x)) .
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Let H = l2(Γ, L2(X,µ)) be the Hilbert-space of L2(X,µ)-valued functions on Γ. That
is, each element of H can be written in the form of

∑

γ∈Γ

bγ · γ ,

where
∑

γ∈Γ ‖bγ‖
2 < ∞ . Then we have a representation L of L∞(X,µ)) ⋊ Γ on

l2(Γ, L2(X,µ)) by

L(
∑

γ∈Γ

aγ · γ)(
∑

δ∈Γ

bδ · δ) =
∑

δ∈Γ

(

∑

γ∈Γ

aγ(τ̂(γ)(βδ)) · γδ

)

.

Note that L(
∑

γ∈Γ aγ · γ) is always a bounded operator. A trace is given on L∞(X,µ))⋊Γ
by

Tr(S) =

∫

X

a1(x)dµ(x) .

The weak operator closure of L(L∞
c (X,µ))⋊Γ) in B (l2(Γ, L2(X,µ))) is the von Neumann

algebra N (τ) associated to the action. Here L∞
c (X,µ) denotes the subspace of functions

in L∞(X,µ) having only countable many values.
Note that one can extend Tr to TrN (τ) on the von Neumann algebra to make it a tracial
von Neumann algebra.
We will denote by c(τ) the smallest continuous algebra in U(N (τ)) containing L∞

c (X,µ)⋊Γ.
One should note that the weak closure of L∞

c (X,µ)⋊ Γ in B (l2(Γ, L2(X,µ))) is the same
as the weak closure of L∞(X,µ) ⋊ Γ. Hence our definition for the von Neumann algebra
of an action coincides with the classical definition. On the other hand, c(L∞

c (X,µ)⋊ Γ) is
smaller than c(L∞(X,µ)⋊ Γ).

3. The Bernoulli Algebra

Let H be a countable group. Consider the Bernoulli shift space BH :=
∏

h∈H{0, 1}
with the usual product measure νH . The probability measure preserving action τH : H y

(BH , νH) is defined by

τH(δ)(x)(h) = x(δ−1h) ,

where x ∈ BH , δ, h ∈ H. Let AH be the commutative ∗-algebra of functions that depend
only on finitely many coordinates of the shift space. It is well-known that the Rademacher
functions {RS}S⊂H, |S|<∞ form a basis in AH , where

RS(x) =
∏

δ∈S

exp(iπx(δ)) .

The Rademacher functions with respect to the pointwise multiplication form an Abelian
group isomorphic to ⊕h∈HZ2 the Pontrjagin dual of the compact group BH satisfying

• RSRS′ = RS△S′

•
∫

BH

RS dν = 0 , if |S| > 0
• R∅ = 1.
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The group H acts on AH by

τ̂H(δ)(f)(x) = f
(

τH(δ
−1)(x)

)

.

Hence,

τ̂H(δ)RS = RδS .

Therefore, the elements of AH ⋊ H can be uniquely written as in the form of the finite
sums

∑

δ

∑

S

cδ,SRS · δ ,

where δ ·RS = RδS · δ .
Now let us turn our attention to the group algebra C(Z2 ≀ H). For δ ∈ H, let tδ be the
generator in

∑

h∈H Z2 belonging to the δ-component. Any element of C(Z2 ≀ H) can be
written in a unique way as a finite sum

∑

δ

∑

S

cδ,StS · δ ,

where tS =
∏

s∈S ts, δ · tS = tδS, tStS′ = tS△S′ . Also note that

Tr(
∑

δ

∑

S

cδ,StS · δ) = c1,∅ .

Hence we have the following proposition.

Proposition 3.1. There exists a trace preserving ∗-isomorphism

κ : C(Z2 ≀H) → AH ⋊H such that

κ(
∑

δ

∑

S

cδ,StS · δ) =
∑

δ

∑

S

cδ,SRS · δ .

Recall that if A ⊂ N1, B ⊂ N1 are weakly dense *-subalgebras in finite tracial von
Neumann algebras N1 and N2 and κ : A → B is a trace preserving ∗-homomorphism,
then κ extends to a trace preserving isomorphism between the von Neumann algebras
themselves (see e.g. [7] Corollary 7.1.9.). Therefore, κ : C(Z2 ≀ H) → AH ⋊ H extends
to a trace (and hence rank) preserving isomorphism between the von Neumann algebras
N (Z2 ≀H) and N (τH).

Proposition 3.2. For any countable group H,

c(Z2 ≀H) ∼= c(τH) .

Proof. The rank preserving isomorphism κ : N (Z2 ≀H) → N (τH) extends to a rank preserv-
ing isomorphism between the rank completions, that is, the algebras of affiliated operators.
It is enough to prove that the rank closure of AH ⋊H is L∞

c (BH , νH)⋊H.

Lemma 3.1. Let f ∈ L∞
c (BH , νH). Then rkN (τH)(f) = νH(supp(f)).
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Proof. By definition,

rkN (τH)(f) = 1− lim
λ→0

trN (τH)Eλ ,

where Eλ is the spectral projection of f ∗f corresponding to λ.

trN (τH)Eλ = νH({x | |f 2(x)| ≤ λ}) .

Hence, rkN (τH)(f) = 1− νH({x | f 2(x) = 0}) = νH(supp(f)) . �

Let {mn}
∞
n=1 ⊂ AH ,mn

rk
→ m ∈ L∞

c (BH , νH). Then mn · γ
rk
→ m · γ . Therefore our

proposition follows from the lemma below.

Lemma 3.2. AH is dense in L∞
c (BH , νH) with respect to the rank metric.

Proof. By Lemma 3.1, L∞
fin(BH , νH) is dense in L∞

c (BH , νH), where L
∞
fin(BH , νH) is the

∗-algebra of functions taking only finitely many values. Recall that V ⊂ BH is a basic set
if 1V ∈ AH . It is well-known that any measurable set in BH can be approximated by basic
sets, that is for any U ⊂ BH , there exists a sequence of basic sets {Vn}

∞
n=1 such that

(1) lim
n→∞

νH(Vn△U) = 0 .

By (1) and Lemma 3.1

lim
n→∞

rkN (τn)(1Vn
− 1U) = 0 .

Let f =
∑l

m=1 cm1Um
, where Um are disjoint measurable sets. Let limn→∞ νH(V

m
n △Um) =

0, where {V m
n }∞n=1 are basic sets. Then

lim
n→∞

rkN (τn)(
l
∑

m=1

cm1V m
n

− f) = 0 .

Therefore, AH is dense in L∞
fin(BH , νH) . �

4. The Odometer Algebra

The Odometer Algebra is constructed via the odometer action using the algebraic crossed
product construction. Let us consider the compact group of 2-adic integers Ẑ(2). Recall

that Ẑ(2) is the completion of the integers with respect to the dyadic metric

d(2)(n,m) = 2−k ,

where k is the power of two in the prime factor decomposition of |m− n|. The group Ẑ(2)

can be identified with the compact group of one way infinite sequences with respect to the
binary addition.
The Haar-measure µhaar on Ẑ(2) is defined by µhaar(U

l
n) = 1/2n, where 0 ≤ l ≤ 2n − 1

and U l
n is the clopen subset of elements in Ẑ(2) having residue l modulo 2n. Let T be the

addition map x → x + 1 in Ẑ(2). The map T defines an action ρ : Z y (Ẑ(2), µhaar)

The dynamical system (T, Ẑ(2), µhaar) is called the odometer action. As in Section 3, we
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consider the ∗-subalgebra of function AM in L∞(Ẑ(2), µhaar) that depend only on finitely

many coordinates of Ẑ(2). We consider a basis for AM . For n ≥ 0 and 0 ≤ l ≤ 2n − 1 let

F l
n(x) = exp

(

2πix(mod 2n)

2n
l

)

.

Notice that F 2l
n+1 = F l

n. Then the functions {F l
n}n,l|(l,n)=1 form the Prüfer 2-group

Z(2) = Z1 ⊂ Z2 ⊂ Z4 ⊂ Z8 ⊂ . . .

with respect to the pointwise multiplication. The discrete group Z(2) is the Pontrjagin dual

of the compact Abelian group Ẑ(2). The element F 1
n is the generator of the cyclic subgroup

Z2n . Note that
∫

Ẑ(2)

F l
n dµhaar = 0

except if l = 0, n = 0, when F l
n ≡ 1. Observe that if k ∈ Z then

(2) ρ(k)F l
n = F l+k(mod 2n)

n

since F l
n(x− k) = F

l+k(mod 2n)
n (x) . Hence we have the following lemma.

Lemma 4.1. The elements of AM ⋊Z can be uniquely written as finite sums in the form
∑

k

∑

n≥0

∑

l|(l,n)=1

cn,l,kF
l
n · k ,

where k · F l
n = F

l+k(mod 2n)
n and F 0

0 = 1.

5. Periodic operators

Definition 5.1. A function Z × Z → C is a periodic operator if there exists some n ≥ 1
such that

• A(x, y) = 0, if |x− y| > 2n

• A(x, y) = A(x+ 2n, y + 2n).

Observe that the periodic operators form a ∗-algebra, where

• (A+ B)(x, y) = A(x, y) + B(x, y)
• AB(x, y) =

∑

z∈ZA(x, z)B(z, y)
• A∗(x, y) = A(y, x)

Proposition 5.1. The algebra of periodic operators P is ∗-isomorphic to a dense subalgebra

of M.

Proof. We call A ∈ P an element of type-n if

• A(x, y) = A(x+ 2n, y + 2n)
• A(x, y) = 0 if 0 ≤ x ≤ 2n − 1, y > 2n − 1
• A(x, y) = 0 if 0 ≤ x ≤ 2n − 1, y < 0.
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Clearly, the elements of type-n form an algebra Pn isomorphic to Mat2n×2n(C) and Pn →
Pn+1 is the diagonal embedding. Hence, we can identify the algebra of finite type elements
Pf = ∪∞

n=1Pn with lim−→Mat2n×2n(C).
For A ∈ P , if n ≥ 1 is large enough, let An ∈ Pn be defined the following way.

• An(x, y) = A(x, y) if 2nl ≤ x, y ≤ 2nl + 2n − 1 for some l ∈ Z.
• Otherwise, A(x, y) = 0.

Lemma 5.1. (i): {An}
∞
n=1 is a Cauchy-sequence in M.

(ii): (A+ B)n = An + Bn.

(iii): rkM(A∗
n − (A∗)n) = 0.

(iv): rkM((ABn)− AnBn) = 0, .
(v): limn→∞An = 0 if and only if A = 0.

Proof. First observe that for any Q ∈ Pn

rkM(Q) ≤
|{0 ≤ x ≤ 2n − 1 | ∃ 0 ≤ y ≤ 2n − 1 such that An(x, y) 6= 0.}|

2n

Suppose that A(x, y) = A(x+ 2k, y + 2k) and k < n < m. Then

|{0 ≤ x ≤ 2n − 1 | An(x, y) 6= Am(x, y) for some 0 ≤ y ≤ 2n − 1}| ≤ 2k2m−n .

Hence by the previous observation, {An}
∞
n=1 is a Cauchy-sequence. Note that (iii) and (iv)

can be proved similarly, the proof of (ii) is straightforward. In order to prove (v) let us
suppose that A(x, y) = 0 whenever |x− y| ≥ 2k. Let n > k and 0 ≤ y ≤ 2k − 1 such that

A(x, y) 6= 0 for some −2k ≤ x ≤ 2k − 1. Therefore rkMAn ≥ 2n−k−1
2n

. Thus (v) follows. �

Let us define φ : P → M by φ(A) = limn→∞An. By the previous lemma, φ is an injective
∗-homomorphism. �

Definition 5.2. A periodic operator A is diagonal if A(x, y) = 0, whenever x 6= y. The

diagonal operators form the Abelian ∗-algebra D ⊂ P.

Lemma 5.2. We have the isomorphism D ∼= C(Z(2)), where Z(2) is the Prüfer 2-group.

Proof. For n ≥ 1 and 0 ≤ l ≤ 2n − 1 let El
n ∈ D be defined by

El
n(x, x) := exp

(

2πix(mod 2n)

2n
l

)

.

It is easy to see that E2l
n+1 = El

n and the multiplicative group generated by E1
n is isomorphic

to Z2n . Observe that the set {El
n}n,l,(l,n)=1 form a basis in the space of n-type diagonal

operators. Therefore, D ∼= ∪∞
n=1C(Z2n) = C(Z(2)). �

Let J ∈ P be the following element.

• J(x, y) = 1, if y = x+ 1.
• Otherwise, J(x, y) = 0.

Then

(3) J · El
n = El+1(mod 2n)

n .
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Also, any periodic operator A can be written in a unique way as a finite sum
∑

k∈Z

Dk · J
k ,

where Dk is a diagonal operator in the form

Dk =
∞
∑

n=0

∑

l|(l,n)=1

cl,n,kE
l
n .

Thus, by (2) and (3), we have the following corollary.

Corollary 5.1. The map ψ : P → AM ⋊ Z defined by

ψ(
∑

k

∑

n≥0

∑

l|(l,n)=1

cl,n,kE
l
n · k) =

∑

k

∑

n≥0

∑

l|(l,n)=1

cl,n,kF
l
n · k

is a ∗-isomorphism of algebras.

6. Lück’s Approximation Theorem revisited

The goal of this section is to prove the following proposition.

Proposition 6.1. We have c(ρ) ∼= M where ρ is the odometer action.

Proof. Let us define the linear map t : P → C by

t(A) :=

∑2n−1
i=0 A(i, i)

2n
,

where A ∈ P and A(x+ 2n, y + 2n) for all x, y ∈ Z.

Lemma 6.1. TrN (ρ)(ψ(A)) = t(A) , where ψ is the ∗-isomorphism of Corollary 5.1.

Proof. Recall that TrN (ρ)(F
l
n) = 0 , except, when l = 0, n = 0, F l

n = 1. If n 6= 0 and l 6= 0,
then t(El

n) is the sum of all k-th roots of unity for a certain k, hence t(El
n) = 0. Also,

t(1) = 1. Thus, the lemma follows. �

It is enough to prove that

(4) rkM(A) = rkN (ρ)(ψ(A))

Indeed by (4), ψ is a rank-preserving ∗-isomorphism between P and AM ⋊ Z. Hence the
isomorphism ψ extends to a metric isomorphism

ψ̂ : P → AM ⋊ Z ,

where P is the closure of P in M and AM ⋊ Z is the closure of AM ⋊ Z in U(N (ρ)) .
Since P is dense in M, P ∼= M. Also, AM ⋊ Z is a ∗-subalgebra of U(N (ρ)), since the
∗-ring operations are continuous with respect to the rank metric. Therefore AM ⋊ Z is a
continuous algebra isomorphic to M. Observe that the rank closure AM ⋊ Z is isomorphic
to the rank closure of L∞

c (Ẑ(2), µhaar) ⋊ Z by the argument of Lemma 3.2. Therefore,
c(ρ) ∼= M. Thus from now on, our only goal is to prove (4).
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Lemma 6.2. Let A ∈ P and An ∈ Mat2n×2n(C) as in Section 5. Then the matrices

{An}
∞
n=1 have uniformly bounded norms.

Proof. Let M,N be chosen in such a way that

• |An(x, y)| ≤M for any x, y ∈ Z, n ≥ 1.
• |An(x, y)| = 0 if |x− y| ≥ N

2
.

Now let v = (v(1), v(2), . . . , v(2n)) ∈ C
2n , ‖v‖2 = 1 . Then

‖Anv‖
2 =

2n
∑

x=1

|
∑

y ||x−y|<N/2

An(x, y)v(y)|
2 ≤M2

2n
∑

x=1

|
∑

y ||x−y|<N/2

v(y)|2 ≤

≤M2N
2n
∑

x=1

∑

y ||x−y|<N/2

|v(y)|2 ≤M2

2n
∑

y=1

N |v(y)|2 =M2N2 .

Therefore, for any n ≥ 1, ‖An‖ ≤MN . �

Lemma 6.3. Let A ∈ P. Then for any k ≥ 1

lim
k→∞

t((A∗
nAn)

k) = t((A∗A)k) = TrN (ρ)(ψ(A
∗A)k)) .

Proof. Let m ≥ 1, l ≥ 1, q ≥ 1 be integers such that

• A(x, y) = A(x+ 2m, y + 2m) for any x, y ∈ Z.
• A(x, y) = 0, if |x− y| ≥ l.
• |(A∗A)k(x, x)| ≤ q and |(A∗

nAn)
k(x, x)| ≤ q for any x ∈ Z.

By definition,

t((A∗
nAn)

k) =

∑2n

x=1(A
∗
nAn)

k(x, x)

2n

t((A∗A)k) =

∑2n

x=1(A
∗A)k(x, x)

2n
.

Observe that if 2lk < x, 2n − 2lk, then

(A∗A)k(x, x) = (A∗
nAn)(x, x) .

Hence,

|t((A∗A)k)− t((A∗
nAn)

k)| ≤
4klq

2n
.

Thus our lemma follows. �

Now, we follow the idea of Lück [10]. Let µ be the spectral measure of ψ(A) ∈ N (ρ). That
is

TrN (ρ)f(A
∗A) =

∫ K

0

f(x) dµ(x) ,

for all f ∈ C[0, K], where K > 0 is chosen in such a way that Specψ(A∗A) ⊂ [0, K] and
‖A∗

nAn‖ ≤ K for all n ≥ 1. Also, let µn be the spectral measure of A∗
nAn, that is,

t(f(A∗
nAn)) =

∫ K

0

f(x) dµn(x) ,
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or all f ∈ C[0, K]. As in [10], we can see that the measures {µn}
∞
n=1 converge weakly to

µ. Indeed by Lemma 6.3,

lim
n→∞

t(P (A∗
nAn)) = TrN (ρ)P (A

∗A)

for any real polynomial P , therefore

lim
n→∞

t(f(A∗
nAn)) = TrN (ρ)f(A

∗A)

for all f ∈ C[0, K].
Since rkM(An) = rkM(A∗

nAn) and rkN (ρ)(ψ(A)) = rkN (ρ))ψ(A
∗A)), in order to prove (4) it

is enough to see that

lim
n→∞

rkM(A∗
nAn) = rkN (ρ)(ψ(A

∗A)) .

Observe that rkM(A∗
nAn) = 1− µn(0) and

rkN (ρ)(ψ(A
∗A)) = 1− lim

λ→0
TrN (ρ)Eλ = µ(0) .

Hence, our proposition follows from the lemma below (an analogue of Lück’s Approximation
Theorem).

Lemma 6.4. limn→∞ µn(0) = µ(0) .

Proof. Let Fn(λ) =
∫ λ

0
µn(t) dt and F (λ) =

∫ λ

0
µ(t) dt be the distribution functions of our

spectral measures. Since {µn}
∞
n=1 weakly converges to the measure µ, it is enough to show

that {Fn}
∞
n=1 converges uniformly. Let n ≤ m and Dn

m : Mat2n×2n(C) → Mat2m×2m(C) be
the diagonal operator. Let ε > 0. By Lemma 5.1, if n,m are large enough,

Rank(Dn
m(An)− Am) ≤ ε2m .

Hence, by Lemma 3.5 [2],

‖Fn − Fm‖∞ ≤ ε .

Therefore, {Fn}
∞
n=1 converges uniformly. �

7. Orbit Equivalence

First let us recall the notion of orbit equivalence. Let τ1 : Γ1 y (X,µ) resp. τ2 : Γ2 y

(Y, ν) be essentially free probability measure preserving actions of the countably infinite
groups Γ1 resp. Γ2. The two actions are called orbit equivalent if there exists a measure
preserving bijection Ψ : (X,µ) → (Y, ν) such that for almost all x ∈ X and γ ∈ Γ1 there
exists γx ∈ Γ2 such that

τ2(γx)(Ψ(x)) = Ψ(τ1(γ)(x)) .

Feldman and Moore [4] proved that if τ1 and τ2 are orbit equivalent then N (τ1) ∼= N (τ2) .
The goal of this section is to prove the following proposition.

Proposition 7.1. If τ1 and τ2 are orbit equivalent actions, then c(τ1) ∼= c(τ2).
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Our Theorem 1 follows from the proposition. Indeed, by Proposition 3.2 and Proposition
6.1

M ∼= c(ρ) and c(Z2 ≀H) ∼= c(τH) .

By the famous theorem of Ornstein and Weiss [11], the odometer action and the Bernoulli
shift action of a countably infinite amenable group are orbit
equivalent. Hence M ∼= c(Z2 ≀H) . �

Proof. We build the proof of our proposition on the original proof of Feldman and Moore.
Let γ ∈ Γ1, δ ∈ Γ2. Let

M(δ, γ) = {y ∈ Y | τ2(δ)(y) = Ψ(τ1(γ)Ψ
−1(y))}

N(γ, δ) = {x ∈ X | τ1(γ)(x) = Ψ−1(τ2(δ)Ψ(x))}.

Observe that Ψ(N(δ, γ)) = M(γ, δ) . Following Feldman and Moore ([4], Proposition 2.1)
for any γ ∈ Γ1, δ ∈ Γ2

κ(γ) =
∑

h∈Γ2

h · 1M(h,γ)

and

λ(δ) =
∑

g∈Γ1

g · 1N(g,δ)

are well-defined. That is,
∑k

n=1 hn · 1M(hn,γ) converges weakly to κ(γ) ∈ N (τ2) as k → ∞

and
∑k

n=1 gn · 1N(gn,δ) converges weakly to λ(δ) ∈ N (τ1) as k → ∞, where {γn}
∞
n=1 resp.

{δn}
∞
n=1 are enumerations of the elements of Γ1 resp. Γ2.

Furthermore, one can extend κ resp. λ to maps

κ′ : L∞((X,µ)⋊ Γ1) → N (τ2)

resp.

λ′ : L∞((Y, ν)⋊ Γ2) → N (τ1)

by

κ′(
∑

γ∈Γ1

aγ · γ) =
∑

γ∈Γ1

(aγ ◦Ψ
−1) · κ(γ) =

∑

γ∈Γ1

(aγ ◦Ψ
−1) ·

∞
∑

n=1

hn · 1M(hn,γ)

and

λ′(
∑

δ∈Γ2

bδ · δ) =
∑

δ∈Γ2

(bδ ◦Ψ) · λ(δ) =
∑

δ∈Γ2

(bδ ◦Ψ) ·
∞
∑

n=1

gn · 1N(gn,δ) .

The maps κ′ resp. λ′ are injective trace-preserving ∗-homomorphisms with weakly dense
ranges. Hence they extend to isomorphisms of von Neumann algebras

κ̂ : N (τ1) → N (τ2), λ̂ : N (τ2) → N (τ1) ,

where κ̂ and λ̂ are, in fact, the inverses of each other.
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Lemma 7.1.

(5) lim
k→∞

rkN (τ2)

(

∑

γ∈Γ1

(aγ ◦Ψ
−1) ·

k
∑

n=1

hn · 1M(hn,γ) − κ̂(
∑

γ∈Γ1

aγ · γ)

)

= 0 .

(6) lim
k→∞

rkN (τ1)

(

∑

δ∈Γ2

(bδ ◦Ψ) ·
k
∑

n=1

gn · 1N(gn,δ) − λ̂(
∑

δ∈Γ2

bδ · δ)

)

= 0 .

Proof. By definition, the disjoint union ∪∞
n=1M(hn, γ) equals to Y (modulo a set of measure

zero). We need to show that if {
∑k

n=1 Tn · 1M(hn,γ)}
∞
k=1 weakly converges to an element

S ∈ N (τ2), then {
∑k

n=1 Tn · 1M(hn,γ)}
∞
k=1 converges to S in the rank metric as well, where

Tn ∈ L∞
c (Y, ν) ⋊ Γ2. Let Pk =

∑k
n=1 1M(hn,γ) ∈ l2(Γ, L2(Y, ν)). We denote by P̂k the

element
∑k

n=1 1M(hn,γ) in L∞
c (Y, ν) ⋊ Γ2. By definition, if L(A)(Pk) = 0 then AP̂k = 0.

Now, by weak convergence,

L(S)(Pk) = lim
l→∞

l
∑

n=1

Tn · 1M(hn,γ)(Pk) .

That is,

L(S −
k
∑

n=1

Tn · 1M(hn,γ))(Pk) = 0 .

Therefore,

(S −
k
∑

n=1

Tn · 1M(hn,γ))P̂k = 0 .

Thus,

(S −
k
∑

n=1

Tn · 1M(hn,γ)) = (S −
k
∑

n=1

Tn · 1M(hn,γ))(1− P̂k) .

By Lemma 3.1, rkN (τ2)(1− P̂k) = 1−
∑k

n=1 ν(M(hn, γ)), hence

lim
k→∞

rkN (τ2)(S −
k
∑

n=1

Tn · 1M(hn,γ)) = 0 . �

Now let us turn back to the proof of our proposition. By (5), κ̂maps the algebra L∞
c (X,µ)⋊

Γ1 into the rank closure of L∞
c (Y, ν) ⋊ Γ2. Since κ̂ preserves the rank, κ̂ maps the rank

closure of L∞
c (X,µ)⋊Γ1 into the rank closure of L∞

c (Y, ν)⋊Γ2. Similarly, λ̂ maps the rank
closure of L∞

c (Y, ν) ⋊ Γ2 into the rank closure of L∞
c (X,µ) ⋊ Γ1. That is, κ̂ provides an

isomorphism between the rank closures of L∞
c (X,µ)⋊Γ1 and L

∞
c (Y, ν)⋊Γ2. Therefore, the

smallest continuous ring containing L∞
c (X,µ)⋊ Γ1 in U(N (τ1)) is mapped to the smallest

continuous ring containing L∞
c (Y, ν)⋊ Γ2 in U(N (τ2)) . �
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