LAMPLIGHTER GROUPS AND VON NEUMANN‘S CONTINUOUS
REGULAR RING
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ABSTRACT. Let ' be a discrete group. Following Linnell and Schick one can define a
continuous ring ¢(I") associated with T'. They proved that if the Atiyah Conjecture holds
for a torsion-free group I', then ¢(T") is a skew field. Also, if I has torsion and the Strong
Atiyah Conjecture holds for I, then ¢(T") is a matrix ring over a skew field. The simplest
example when the Strong Atiyah Conjecture fails is the lamplighter group I' = Z2 1 Z. It
is known that C(Z27Z) does not even have a classical ring of quotients. Our main result
is that if H is amenable, then ¢(Zy ! H) is isomorphic to a continuous ring constructed by
John von Neumann in the 1930s.
Keywords. continuous rings, von Neumann algebras, the algebra of affiliated operators,

lamplighter group

1. INTRODUCTION

Let us consider Maty(C) the algebra of k by k matrices over the complex field. This
ring is a unital x-algebra with respect to the conjugate transposes. For each element
A € Matgy,(C) one can define A* satisfying the following properties.

o (A\A)* = \A*

o (A+B)"=A"+ B*

e (AB)* = B*A*

e 0"=0,1"=1
Also, each element has a normalized rank rk(A) = Rank(A)/k with the following properties.

e rk(0) = 0,rk(1) =1,

o 1k(A+ B) <r1k(A) + rk(B)

e tk(AB) < min{rk(A),rk(B)}

o rk(A*) =rk(A)

e If e and f are orthogonal idempotents then rk(e + f) = rk(e) + rk(f).
The ring Maty(C) has an algebraic property namely, von Neumann called regularity:
Any principal left-(or right) ideal can be generated by an idempotent. Furthermore, among
these generating idempotents there is a unique projection (that is Matyyx(C) is a *-regular
ring). In a von Neumann regular ring any non-zerodivisor is necessarily invertible. One
can also observe that the algebra of matrices is proper, that is Y., a;af = 0 implies that
all the matrices a; are zero. One should note that if R is a *-regular ring with a rank
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function, then the rank extends to Matgyx(R) [6], where the extended rank has the same
property as rk except that the rank of the identity is k.

One can immediately see that the rank function defines a metric d(A, B) :=rk(A — B) on
any algebra with a rank, and the matrix algebra is complete with respect to this metric.
These complete *-regular algebras are called continuous *-algebras (see [5] for an extensive
study of continuous rings). Note that for the matrix algebras the possible values of the
rank functions are 0,1/k,2/k,... ;1. John von Neumann observed that there are some
interesting examples of infinite dimensional continuous *-algebras, where the rank function
can take any real values in between 0 and 1. His first example was purely algebraic.

Example 1. Let us consider the following sequence of diagonal embeddings.
C— Matgxg(C) — Mat4><4((C) — Matgxg((C) — ...

One can observe that all the embeddings are preserving the rank and the x-operation.
Hence the direct limit li_n>1Mat2kX2k(C) is a x-regular ring with a proper rank function.
The addition, multiplication, the x-operation and the rank function can be extended to
the metric completion M of the direct limit ring. The resulting algebra M is a simple,
proper, continuous *-algebra, where the rank function can take all the values on the unit
interval.

Example 2. Consider a finite, tracial von Neumann algebra A with trace function try.
Then N is a x-algebra equipped with a rank function. If P is a projection, then rky (P) =
tra(P). For a general element A € NV, rky(A) = 1—limy, fot tra(E\)dA, where [° Ey dA
is the spectral decomposition of A*A. In general, N is not regular, but it has the Ore
property with respect to its zero divisors. The Ore localization of N with respect to its
non-zerodivisors is called the algebra of affiliated operators and denoted by U(N). These
algebras are also proper continuous *-algebras [1]. The rank of an element A € U(N) is
given by the trace of the projection generating the principal ideal U(N)A. Tt is important
to note, that U(N) is the rank completion of N (Lemma 2.2 ([12]).

Linnell and Schick observed [9] that if X is a subset of a proper *-regular algebra R, then
there exists a smallest *-regular subalgebra containing X, the %-regular closure. Now let
I' be a countable group and CI' be its complex group algebra. Then one can consider the
natural embedding of the group algebra to its group von Neumann algebra CI' — NT. Let
U(T') denote the Ore localization of N'(T") and the embedding CI" — U(T"). Since U(T") is
a proper x-regular ring, one can consider the smallest x-algebra A(I") in U(I") containing
C(I'). Let ¢(I") be the completion of the algebra A above. It is a continuous x-algebra
[5]. Of course, if the rank function has only finitely many values in A, then ¢(I") equals
to A(I"). Note that if CI' is embedded into a continuous *-algebra 7', then one can still
define cp(I") as the smallest continuous ring containing CI'. In [3] we proved that if T" is
amenable, ¢(I') = ¢p(I") for any embedding CI' — T associated to sofic representations
of I', hence ¢(I') can be viewed as a canonical object. Linnell and Schick calculated the
algebra ¢(I") for several groups, where the rank function has only finitely many values on
A. They proved the following results:
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e If I' is torsion-free and the Atiyah Conjecture holds for I, then ¢(I") is a skew-field.
This is the case, when I' is amenable and CI" is a domain. Then ¢(I") is the Ore
localization of CI'. If ' is the free group of k generators, then ¢(I") is the Cohen-
Amitsur free skew field of k generators. The Atiyah Conjecture for a torsion-free
group means that the rank of an element in Matyyx(CT') C Matyyx(U(N(T))) is
an integer.

e If the orders of the finite subgroups of I' are bounded and the Strong Atiyah Con-
jecture holds for I, then ¢(I') is a finite dimensional matrix ring over some skew
field. In this case the Strong Atiyah Conjecture means that the ranks of an element
in Matgyx(CT') C Matgyx,(U(N(I))) is in the abelian group lch(r)Z’ where lem(T")
indicates the least common multiple of the orders of the finite subgroups of I'.

The lamplighter group I' = Zs ¢! Z has finite subgroups of arbitrarily large orders. Also,
although I' is amenable, CI' does not satisfy the Ore condition with respect to its non-
zerodivisors [8]. In other words, it has no classical ring of quotients. The goal of this paper
is to calculate ¢(Zy1Z) and even ¢(Zy! H), where H is a countably infinite amenable group.

Theorem 1. If H is a countably infinite amenable group, then c¢(Zs ! H) is the simple
continuous ring M of von Neumann.

2. CROSSED PRODUCT ALGEBRAS

In this section we recall the notion of crossed product algebras and the group-measure
space construction of Murray and von Neumann. Let A be a unital, commutative x-algebra
and ¢ : I' — Aut(A) be a representation of the countable group I' by x-automorphisms.
The associated crossed product algebra A x I' is defined the following way. The elements
of A x I" are the finite formal sums

Z A~ -7,

vyel

where a, € A. The multiplicative structure is given by

5-ay = 9(6)(a,) -0

The *-structure is defined by v* =~y ! and (y-a)* = a* - y~!. Note that
(50, = (@0, -6 = & - (O, — SO -6 — a5

Now let (X, pu) be a probability measure space and 7 : I' ~ X be a measure preserv-
ing action of a countable group I' on X. Then we have a x-representation 7 of I' in
Aut(L>(X, p)), where L>®(X,p) is the commutative k-algebra of bounded measurable
functions on X (modulo zero measure perturbations).

FN()(@) = f(r(y)(@)).
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Let H = [1*(T', L*(X, 1)) be the Hilbert-space of L*(X, u)-valued functions on I'. That
is, each element of H can be written in the form of

Zb’y"}/a
yel

where 37 [|b,]> < oo. Then we have a representation L of L*(X,u)) x I' on
(I, L*(X, i) by

D IARIIEEES o s IR B

veT ser sel \~el

Note that L(}_, . a,-7) is always a bounded operator. A trace is given on L*(X, 1)) x I'
by

Te(s) = /X ar(2)dp(z)

The weak operator closure of L(L°(X,u)) % T') in B (I*(T", L?(X, u1))) is the von Neumann
algebra N (7) associated to the action. Here L°(X, i) denotes the subspace of functions
in L>°(X, u) having only countable many values.

Note that one can extend Tr to Tra(;) on the von Neumann algebra to make it a tracial
von Neumann algebra.

We will denote by ¢(7) the smallest continuous algebra in U (N (7)) containing L (X, ) x T
One should note that the weak closure of L3°(X,u) x T in B (I*(T', L?*(X, p))) is the same
as the weak closure of L>°(X, ) x I'. Hence our definition for the von Neumann algebra
of an action coincides with the classical definition. On the other hand, ¢(L(X, u) x I') is
smaller than ¢(L>(X, u) x T').

3. THE BERNOULLI ALGEBRA

Let H be a countable group. Consider the Bernoulli shift space By := [[,.,{0,1}
with the usual product measure vgy. The probability measure preserving action 74 : H ~
(B, vy) is defined by

7 (0) (@) (h) = 2(6~h),
where x € By, 0,h € H. Let Ay be the commutative x-algebra of functions that depend
only on finitely many coordinates of the shift space. It is well-known that the Rademacher
functions {Rs}scH, |s|<co form a basis in Ag, where

Rg(x) = H exp(irz(9)) .
0es
The Rademacher functions with respect to the pointwise multiplication form an Abelian
group isomorphic to @peyZs the Pontrjagin dual of the compact group By satisfying
® RsRgy = Rspg
° fBHRng:O, if |[S| >0
o Ry=1.
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The group H acts on Ay by
T (0)(f)(@) = f (ru(07)(x)) -

Hence,

7 (0)Rs = Rss .
Therefore, the elements of Ay x H can be uniquely written as in the form of the finite
sums

2D cashs o,

5 S
where § - Rg = Rsg - 9 .
Now let us turn our attention to the group algebra C(Zy ! H). For § € H, let t5 be the

generator in ), Z> belonging to the j-component. Any element of C(Z; ¢ H) can be
written in a unique way as a finite sum

DD custs o,
5 S
ts, 0 - tg = tsg, tstsr = tgas . Also note that

TI(Z Z 6575t5 . 5) =C10-
6 S

Hence we have the following proposition.

where tg =[], cq

Proposition 3.1. There exists a trace preserving x-isomorphism

k:C(Zy U H) — Ay x H such that
/{(Z Z C@sfts . 5) = Z Z C&SRS . 5
1 S é S

Recall that if A € Ny, B C N; are weakly dense *-subalgebras in finite tracial von
Neumann algebras N; and N3 and x : A — B is a trace preserving *-homomorphism,
then k extends to a trace preserving isomorphism between the von Neumann algebras
themselves (see e.g. [7] Corollary 7.1.9.). Therefore, k : C(Zy 1 H) — Ag x H extends
to a trace (and hence rank) preserving isomorphism between the von Neumann algebras

N(Zy 2 H) and N (1y).
Proposition 3.2. For any countable group H,
c(ZoVH) = c(Ty) -

Proof. The rank preserving isomorphism x : N (ZxtH) — N (7y) extends to a rank preserv-
ing isomorphism between the rank completions, that is, the algebras of affiliated operators.
It is enough to prove that the rank closure of Ay x H is LX(By,vy) x H.

Lemma 3.1. Let f € L¥(By,vy). Then thyr,)(f) = va(supp(f)).
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Proof. By definition,
thnr(ry) (f) = 1 = lim trwey) By

where F), is the spectral projection of f*f corresponding to A.

i Ex = va({z | [f*(@)] < A}).
Hence, tky(r)(f) =1 —vu({z | f3(x) = 0}) = vu(supp(f)). O

Let {m,}>°, C Ag,m, g m € L®(Bg,vy). Then m, -~ g m - . Therefore our
proposition follows from the lemma below.

Lemma 3.2. Ay is dense in LY (By,vy) with respect to the rank metric.

Proof. By Lemma 3.1, L%, (Bu,vy) is dense in L°(By,vy), where L%, (Bg,vg) is the
x-algebra of functions taking only finitely many values. Recall that V' C By is a basic set
if 1y € Ap. It is well-known that any measurable set in By can be approximated by basic
sets, that is for any U C By, there exists a sequence of basic sets {V},}>°, such that

(1) lim vy (V,,AU)=0.

By (1) and Lemma 3.1
lim I'k/\[(.,-n)(]_vn - ]-U) =0.

n—oo

Let f = anzl cmly,,, where Uy, are disjoint measurable sets. Let lim,, o, vy (V,"AU,,) =

0, where {V"}> | are basic sets. Then

!
lim rkN(m)(Z cmlym — f)=0.

n—00
m=1

Therefore, Ay is dense in L;’Q?n(BH, V) - O

4. THE ODOMETER ALGEBRA

The Odometer Algebra is constructed via the odometer action using the algebraic crossed
product construction. Let us consider the compact group of 2-adic integers Z). Recall

that Z(g) is the completion of the integers with respect to the dyadic metric
d(g) (n, m) =2k ,

where k is the power of two in the prime factor decomposition of |m — n|. The group Z(z)
can be identified with the compact group of one way infinite sequences with respect to the
binary addition.

The Haar-measure pi,, ., on 2(2) is defined by gy .0 (UL) = 1/27, where 0 < 1 < 2" —1
and U is the clopen subset of elements in Z(Q) having residue [ modulo 2". Let T' be the
addition map * — z + 1 in Z(Q). The map T defines an action p : Z (Z(g),uhaar)
The dynamical system (7T Z(g), Phaar) 15 called the odometer action. As in Section 3, we
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consider the x-subalgebra of function A, in LOO(Z(Q), Ihaar) that depend only on finitely
many coordinates of Z(Q). We consider a basis for Ay. Forn > 0and 0 <1< 2" —1 let

2mi d 2"
Fl(2) = eap <%l) -
Notice that F2\; = F}. Then the functions {F}, jjun=1 form the Priifer 2-group
Z(2)221CZ2CZ4CZ§;C...

with respect to the pointwise multlphcatlon The discrete group Zs) is the Pontrjagin dual

of the compact Abelian group Z(2 . The element F! is the generator of the cyclic subgroup
Zon. Note that

I
/ Iy dptpaar =0
Z2)
except if [ = 0,n = 0, when F! = 1. Observe that if k € Z then
@ )P = Frsose”
since Fl(z — k) = Fi ") () Hence we have the following lemma.

Lemma 4.1. The elements of Ay X Z can be uniquely written as finite sums in the form

D WP

k n>01|(Ln)=

where k - F! = FLrRmed2™) g F) =1.

5. PERIODIC OPERATORS

Definition 5.1. A function Z x Z. — C is a periodic operator if there exists some n > 1
such that

o A(z,y) =0, if |x —y| > 2"

o A(z,y) = Alx 4+ 2",y +2").

Observe that the periodic operators form a x-algebra, where
o (A+ B)(z,y) = Alz,y) + B(z,y)
hd AB(‘T7 y) = ZzeZ A(fL’, Z)B(Z7 y)
o A*(z,y) = Ay, x)
Proposition 5.1. The algebra of periodic operators P is x-isomorphic to a dense subalgebra
of M.
Proof. We call A € P an element of type-n if
o A(x,y) = Az + 2",y +2")
o Alz,y)=0if0<az<2"—1,y>2"—1
e A(z,y) =0if0<x<2" -1,y <0.
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Clearly, the elements of type-n form an algebra P, isomorphic to Matgnxon (C) and P,, —
Pr+1 is the diagonal embedding. Hence, we can identify the algebra of finite type elements
P = Uy Py, with @Mathxzn (C).
For A € P, if n > 1 is large enough, let A,, € P,, be defined the following way.

o Ay (x,y) = A(z,y) if 2" < z,y < 2" + 2" — 1 for some [ € Z.

e Otherwise, A(z,y) = 0.

Lemma 5.1. (1): {A.}2, is a Cauchy-sequence in M.

(ii): (A+ B), = A, + B,.

(iii): rkpm (AL — (A%),) = 0.

(iv): rkp((ABy) — AnBn) =0,

(v): lim,, 0o A, = 0 if and only if A= 0.
Proof. First observe that for any @ € P,

0<x<2"—11]30<y<2"—1 such that A, (z, 0.
rkM(Q)gH == | —y—zn (z,y) # 0.}]
Suppose that A(z,y) = A(z + 2¥,y + 2%) and k < n < m. Then
{0 <z <2"—1| Au(z,y) # Ap(z,y)for some 0 < y < 27 — 1} < 2k2m™

Hence by the previous observation, {A,}>° ;| is a Cauchy-sequence. Note that (iii) and (iv)
can be proved similarly, the proof of (ii) is straightforward. In order to prove (v) let us

suppose that A(z,y) = 0 whenever |z —y| > 2*. Let n > k and 0 <y < 2% — 1 such that
A(z,y) # 0 for some —2% < x < 2% — 1. Therefore rkyA, > 2”;:’1. Thus (v) follows. O
Let us define ¢ : P — M by ¢(A) = lim,,_,o A,,. By the previous lemma, ¢ is an injective

x-homomorphism. ]

Definition 5.2. A periodic operator A is diagonal if A(x,y) = 0, whenever x # y. The
diagonal operators form the Abelian x-algebra D C P.

Lemma 5.2. We have the isomorphism D = C(Z)), where Zs) is the Priifer 2-group.

Proof. Forn > 1and 0 <[] <2"—1 let Efl € D be defined by
271 d 2™
El(z,x) := exp (%1) :

It is easy to see that E2, | = E! and the multiplicative group generated by E} is isomorphic
to Zyn. Observe that the set {E!},; 1n)=1 form a basis in the space of n-type diagonal
operators. Therefore, D = U2 C(Zan) = C(Zg)). O
Let J € P be the following element.

o J(x,y)=1,ify=a+1.

e Otherwise, J(z,y) = 0.
Then

(3) JEfz — E,lj_l(m()dQn).
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Also, any periodic operator A can be written in a unique way as a finite sum

ZDka7

keZ
where Dy, is a diagonal operator in the form

- 2. antk.

n=0{|(l,n)=

Thus, by (2) and (3), we have the following corollary.
Corollary 5.1. The map ¢ : P — Ay X Z defined by

ZZ Z ClarEl k) ZZ Z il -k
k. n>01|(l,n)=1 k n>01|(l,n)=

1S a x-isomorphism of algebras.

6. LUCK’S APPROXIMATION THEOREM REVISITED
The goal of this section is to prove the following proposition.
Proposition 6.1. We have c(p) = M where p is the odometer action.

Proof. Let us define the linear map ¢t : P — C by
on_1
A
t(A) — Zz 02n (Z 7’) ’
where A € P and A(x + 2",y +2") for all z,y € Z.
Lemma 6.1. Ty, (¢Y(A)) = t(A), where 9 is the x-isomorphism of Corollary 5.1.

Proof. Recall that Tryr,)(F}) =0, except, when { = 0,n = 0,F) = 1. If n # 0 and [ # 0,
then ¢(E!) is the sum of all k-th roots of unity for a certain k, hence ¢(EL) = 0. Also,
t(1) = 1. Thus, the lemma follows. O

It is enough to prove that

(4) rkm(A) = k) (V(A))
Indeed by (4), 1 is a rank-preserving #-isomorphism between P and Ay, x Z. Hence the
isomorphism v extends to a metric isomorphism

Q/AJ P — Ay X7,
where P is the closure of P in M and Ay x Z is the closure of Ay x Z in UN(p)).
Since P is dense in M, P = M. Also, Ay X Z is a x-subalgebra of U(N(p)), since the
x-ring operations are continuous with respect to the rank metric. Therefore Ay; X Z is a
continuous algebra isomorphic to M. Observe that the rank closure Ajy; X Z is isomorphic

to the rank closure of L?(Z(Q), Phaar) X Z by the argument of Lemma 3.2. Therefore,
c(p) = M. Thus from now on, our only goal is to prove (4).
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Lemma 6.2. Let A € P and A, € Matynyon(C) as in Section 5. Then the matrices
{A,}5°, have uniformly bounded norms.
Proof. Let M, N be chosen in such a way that
o |[A,(z,y)| < M for any x,y € Z,n > 1.
o |[A,(z,y)| =0if |z —y| > %
Now let v = (v(l),v(2) .,v(27) € C* | ||v]|> = 1. Then

1Ano]* = ZI Yo AP <MY | Y ) <

=1 yllz—y|<N/2 =1 yllz—y|<N/2
2n on
<APNY Y ) < MY Nl = MAN?.
r=ly|lz—y|<N/2 y=1
Therefore, for any n > 1, ||A,]| < MN. O

Lemma 6.3. Let A € P. Then for any k > 1

Tim £((45,4,)5) = (A" A)F) = Tragp (U(A°A)F))

Proof. Let m > 1,1 > 1,q > 1 be integers such that
o A(z,y) = A(x 4+ 2™,y +2™) for any z,y € Z.
o A(a:,y)—O if |z —y| > 1.
o [(A"A) (2, 2)| < q and |(A;A4,) (2, 2)] < g for any @ € Z.
By definition,
2n
Ar A
(A4, = 2t A0
277.
Ar Ak
t((A*A)k) — Za:zl( o ) (%,ZE) )

Observe that if 2[k < x,2" — 2[k, then
(A" A (2, ) = (A7 An) (2, ).
Hence,

« . 4klq
(A" A)) — H(A54,)9)| < 4
Thus our lemma follows. g
Now, we follow the idea of Liick [10]. Let u be the spectral measure of ¢)(A) € N (p). That

18

Trp g f(A*A) = / f(x) du(z)

for all f € C0, K], where K > 0 is chosen in such a way that Specy(A*A) C [0, K] and
|A:A,|| < K for all n > 1. Also, let u, be the spectral measure of Af A, that is,

A,)) = / F(2) dpin()
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orall f € C[0,K]. As in [10], we can see that the measures {1, }>° | converge weakly to
w. Indeed by Lemma 6.3,

lim ¢(P(A;Ay)) = Trap) P(AA)

n—oo

for any real polynomial P, therefore

lim ¢(f (A5 A,)) = Teng) f(A"A)

n—oQ

for all f € C[0, K].
Since rkp(An) = rka (A Ay) and rkar) (¥(A)) = rkar(p) )10 (A*A)), in order to prove (4) it
is enough to see that

lim k(A An) = thy(p (P(A™A)) .

n—o0

Observe that rka (A% A,) =1 — p,(0) and
rky () (P(A"A)) =1 - /1\13(1] Trap) Ex = 11(0) .

Hence, our proposition follows from the lemma below (an analogue of Liick’s Approximation
Theorem).

Lemma 6.4. lim,, 1,(0) = p(0).

Proof. Let F,,(\) = fo)\ wn(t) dt and F(\) = fo)\ w(t) dt be the distribution functions of our
spectral measures. Since {u, }52; weakly converges to the measure p, it is enough to show
that {F,}2, converges uniformly. Let n < m and D!, : Matgnyon (C) — Matomyom (C) be
the diagonal operator. Let € > 0. By Lemma 5.1, if n, m are large enough,

Rank(D] (A,) — Ap) < e2™.
Hence, by Lemma 3.5 [2],
[Fn = Fnlloo < €.

Therefore, {F,,}22, converges uniformly. O

7. ORBIT EQUIVALENCE

First let us recall the notion of orbit equivalence. Let 7 : I'y ~ (X, p) resp. 7 : [y
(Y, v) be essentially free probability measure preserving actions of the countably infinite
groups 'y resp. I's. The two actions are called orbit equivalent if there exists a measure
preserving bijection W : (X, u) — (Y, v) such that for almost all z € X and v € I'; there
exists 7, € ['y such that

72(72) (Y (2)) = ¥ (1 (7) (@) -
Feldman and Moore [4] proved that if 71 and 75 are orbit equivalent then N (1) =2 N (7).
The goal of this section is to prove the following proposition.

Proposition 7.1. If 1y and 7o are orbit equivalent actions, then c(m) = ¢(12).
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Our Theorem 1 follows from the proposition. Indeed, by Proposition 3.2 and Proposition
6.1

M=Zc(p) and ¢(ZoVH) = c(ty) .
By the famous theorem of Ornstein and Weiss [11], the odometer action and the Bernoulli

shift action of a countably infinite amenable group are orbit
equivalent. Hence M = ¢(Zy  H). d

Proof. We build the proof of our proposition on the original proof of Feldman and Moore.
Let y € I'y, 0 € I's. Let

M@6,v)={yeY |n0)y) =¥(rn)¥ (y)}

N(7,0) ={z € X |n(y)(z) = ¥ (12(0)¥(x))}.
Observe that W(N(0,7)) = M(v,0) . Following Feldman and Moore ([4], Proposition 2.1)
for any vy € I'1, § € I'y

K(Y) = b Laey
hels
and
MO) =Y g Intgs)
gel’y
are well-defined. That is, Y2 _, hy, - Lagn, ») converges weakly to x(y) € N () as k — oo
and 32F_ g, - 1n(gn,0) converges weakly to A(0) € N(m) as k — oo, where {,}72, resp.
{6, }22, are enumerations of the elements of I'; resp. I's.
Furthermore, one can extend x resp. A to maps

/{/ : LOO(()(7 /J,) X Fl) — N(Tg)

resp.
N L2((Y,v) xTy) = N(m)
by
HI(Z Uy -7y) = Z(@w o W) k(y) = Z(av 0¥l Zhn M ()
~vely ~very ~ery n=1
and

)\/(Z b5 . 5) = Z(b(g e} \I/) : )\(5) = Z(b5 9) ‘If) : Zgn : 1N(gn75) .

6el's 6el'y 6el’s n=1

The maps ' resp. X are injective trace-preserving x-homomorphisms with weakly dense
ranges. Hence they extend to isomorphisms of von Neumann algebras

f%:N(Tl)—>./\/(T2),5\:N(T2)—>N(T1)a

where £ and A are, in fact, the inverses of each other.
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Lemma 7.1.

k
(5) kh_{go TR/ () (Z(a“f ovTl). Z B = Lng(hiy) — ’%(Z Ay - 7)) =0.

yel'y n=1 vel'y

k
(6) Lim k) (Z(b(; OW) > gn - Inggesy — A bs- 5)) =0.
0€ly n=1 6ely
Proof. By definition, the disjoint union U® , M (h,,,y) equals to Y (modulo a set of measure
zero). We need to show that if {32F_ T, -1 M(hn) Yoer Weakly converges to an element
S € N (), then {3F_, T, - Lai(hn ) b ooy converges to S in the rank metric as well, where
T, € L°°(Y v) x Ty, Let Py = S°F_ 1yyn, o) € 13(T, L*(Y,v)). We denote by Py the
element Z L im0 L2°(Y,v) x Iy, By definition, if L(A)(P;) = 0 then AP, = 0.
Now, by weak convergence,
!

L(S)(F) = lim D T Lty (Pe) -
n=1

That is,
k
= T Lt () (Pe) = 0.
n=1
Therefore,
k
(S = T Inggnay) P = 0.
n=1
Thus,
k k
(S = T Lat(ha) = (S =D T+ Lasiha)) (1 = B
n=1 n=1

By Lemma 3.1, rkps(r,)(1 — P)=1-3"_ v(M(hy,7)), hence

Jim k) (S ZT M(hn)) = 0. O

Now let us turn back to the proof of our proposition. By (5), & maps the algebra L°(X, ) x
I'; into the rank closure of L°(Y,v) x I's. Since & preserves the rank, 4~ maps the rank
closure of L®(X, 1) x T into the rank closure of L (Y, v) x T'. Similarly, A maps the rank
closure of LP(Y,v) x T'y into the rank closure of LS°(X, ) x I';. That is, & provides an
isomorphism between the rank closures of L°(X, ) x 'y and L°(Y, v) x I'y. Therefore, the
smallest continuous ring containing L°(X, ) x I'y in U(N (7)) is mapped to the smallest
continuous ring containing L°(Y,v) x Ty in U(N(72)) . O
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