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The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino
beam, produced at the J-PARC accelerator, a near detector complex and a large 295 km distant far
detector. The present work utilizes the T2K event timing measurements at the near and far detectors
to study neutrino time of flight as function of derived neutrino energy. Under the assumption of
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a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can
be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns
provide sensitivity to neutrino mass in the few MeV/c2 range. We study the distribution of relative
arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of
neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented
in the data sample is found to be m2

ν < 5.6 MeV 2/c4.

PACS numbers: 14.60.Pq,14.60.Lm,29.40.ka

I. INTRODUCTION

Over the past one and a half decades a variety of
experiments unequivocally demonstrated that neutrinos
change flavor as they travel from their source towards
a suitably located detector [1–10]. Neutrino oscillations
were observed in atmospheric [1] and solar neutrinos [2].
The oscillations were confirmed by accelerator [3–5] and
reactor based experiments [6] and have now been studied
in a variety of different channels [7–10] with improving
accuracy.

These experimental results imply that neutrinos have
non-zero rest mass. However, our knowledge of the neu-
trino masses remains limited and the determining the
values of the neutrino masses remains one of the most im-
portant problems of particle physics. To date only limits
on neutrino masses exist. Neutrino oscillation measure-
ment determine the mass squared differences and thereby
provide lower bounds on the heavier neutrino mass eigen-
states. A variety of experimental approaches with differ-
ent sensitivities derive upper limits on neutrino mass:

Measurements of pion at rest decay parameters are
muon based and find upper limits for the square root of

m
2(eff)
νµ ≡

∑
i |Uµi|2m2

νi , where Uµi represent elements of

the PMNS neutrino mixing matrix, of order 0.2 MeV/c2

(90% C.L.) [11, 12]. Limits on m
(eff)
νµ can also be derived

from nucleosynthesis in combination with cosmology and

are found to bem
(eff)
νµ . 0.2 MeV/c2 (90 % C.L.) [13, 20].

Neutrino time of flight (TOF) measurements [14] at
an accelerator based neutrino long baseline experiments
[15] select νµ and νµ candidate events to derive a 99%

C.L. upper limit on m
(eff)
νµ/νµ

< 50 MeV/c2. A neutrino

TOF based upper mass limit using νe had previously
been derived from SN1987A data [16]. Upper limits on

the square root of m
2(eff)
νe

≡
∑
i |Uei|2m2

νi are found to

be m
(eff)
νe

< 5.8 eV/c2 (95% C.L.).
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Tritium beta decay experiments are sensitive to the

same quantity m
(eff)
νe by measuring the end-point of the

beta spectrum. These direct neutrino mass measurement
experiments tend to have the best limits without having
to rely on assumptions about model parameters. Limits

are found to be m
(eff)
νe < 2.0 eV/c2 (95% C.L.) [17].

Neutrino-less double beta decay experiments produce

limits for m
(eff)
νe which are an order of magnitude more

stringent but depend on the assumption that neutrinos
are Majorana particles and rely on very uncertain
nuclear matrix element calculations.
The sum of all neutrino masses mtot is constrained by
measurements of the cosmological background radiation
to mtot < 0.2 eV/c2 (95% C.L.) [20] but limits are
strongly dependent on assumptions about the cosmolog-
ical parameters.
The Tokai to Kamioka (T2K) experiment allows esti-
mation of the effective neutrino mass associated with
muon and electron neutrinos using their relative TOF
(RTOF) between the near and far detectors. The mass is
derived from two quantities: the energy of the neutrino
candidate events and their TOF between near and
far detectors relative to the mean TOF for the most
energetic neutrino candidate events. At lower energies
the neutrino rest mass represents a larger fraction of the
total neutrino energy which leads to a larger neutrino
TOF if the rest mass is sufficiently large. The T2K
experiment offers a competitive opportunity for such a
measurement because of its very short beam bunches and
a relatively low mean neutrino beam energy for which
the magnitude of the delay due to the neutrino rest mass
increases. The analysis uses a sample of charged current
quasi-elastic (CCQE) neutrino candidate events at the
far detector for which neutrino energies can be derived
with good accuracy. We combine the electron and muon
neutrino CCQE samples to maximize statistics. The
near detector is used to measure the neutrino bunch
times which represent the start time for the neutrino
TOF.

Section II provides an overview of the T2K components
and is followed by a detailed description of the hardware
setup of timing components in section III. In section IV
we describe the data selection at the near and far detec-
tor and demonstrate good stability of all components of
the timing system. Section V starts with an overview
of the data analysis before we demonstrate the analysis
performance using toy data sets, applying it to the exper-
imentally recorded data and describing the treatment of



4

systematic uncertainties. Results are given in section VI
followed by a summary in section VII.

II. THE T2K EXPERIMENT

The T2K experiment [21] uses a 30 GeV proton beam
from the J-PARC accelerator facility. The experiment
combines (1) a muon neutrino beam line, (2) the near de-
tector complex, which is located 280 m downstream of the
neutrino production target and measures the neutrino
beam, which constrains the neutrino flux and cross sec-
tions, and (3) the far detector, Super-Kamiokande (SK),
which detects neutrinos at a distance of L = 295 km from
the target. The neutrino beam axis is directed 2.5◦ away
from SK producing a narrow-band νµ beam [22] at the
far detector with an energy peak at Eν ≈ 0.6 GeV. This
corresponds to the first minimum of the νµ survival prob-
ability at SK, thus enhances the sensitivity to neutrino
oscillations and reduces backgrounds from higher-energy
neutrino interactions at SK.

The J-PARC main ring (MR) accelerator produces a
fast-extracted proton beam. The primary beam line has
21 electrostatic beam position monitors, 19 secondary
emission monitors and an optical transition radiation
monitor to measure the beam profile, and five current
transformers (CT) which measure the proton current be-
fore a graphite target. Pions and kaons produced in the
target decay in the secondary beam line, which contains
three focusing horns and a 96-m-long decay tunnel. This
is followed by a beam dump and a set of muon monitors
(MUMON) [23].
The near detector complex contains an on-axis Interac-
tive Neutrino Grid detector (INGRID) [24] and an off-
axis magnetic detector, ND280. A more detailed de-
tector description is published elsewhere [25]. The IN-
GRID detector has 14 seven-ton iron-scintillator tracker
modules arranged in a 10-m horizontal by 10-m verti-
cal crossed array. This detector provides high-statistics
monitoring of the beam intensity, direction, profile, and
stability. The off-axis detector is enclosed in a 0.2-
T magnet that contains a subdetector optimized to
measure π0s (PØD) [26], three time projection cham-
bers (TPC1,2,3) [27] alternating with two one-ton fine-
grained detectors (FGD1,2) [28], and an electromag-
netic calorimeter (ECal) [29] that surrounds the TPC,
FGD, and PØD detectors. A side muon range detector
(SMRD) [30] consists of 2008 scintillator counters sand-
wiched between the iron plates which make up the ND280
magnet flux return yokes. Each counter is read out by
two photosensors, one on each side of the counter. The
SMRD identifies muons that exit or stop in the mag-
net steel when the path length exceeds the energy loss
range. The SK water Cherenkov far detector [32] has a
22.5 kt fiducial volume within a cylindrical inner detec-
tor (ID) instrumented with 11129 inward facing 20-inch
phototubes. Surrounding the ID is a 2-meter wide outer
detector (OD) with 1885 outward-facing 8-inch photo-

tubes. A Global Positioning System with <150 ns preci-
sion [31] synchronizes the timing between SK events and
the J-PARC beam spill.

These results are based on the data accumulated
in four periods: Run I (January-June 2010), Run II
(November 2010-March 2011), Run III (January-June
2012) and Run IV (October 2012 - May 2013). The pro-
ton beam power on the target steadily increased from
Run I, reaching 250 kW with about 1.2 × 1014 protons
per pulse on the target by the end of Run IV. The total
neutrino beam exposure on the SK detector corresponds
to an integrated 6.57× 1020 protons on target (POT).

III. THE T2K TIMING SYSTEM

The SK and J-PARC time synchronization systems are
almost identical, with only minor differences. Each sys-
tem includes two independent GPS receivers from dif-
ferent manufacturers (GPS1 and GPS2), a Rubidium
atomic clock, and a custom Local Time Clock (LTC)
board which serves as time keeper and matches signals to
specific times, that is it generates and distributes times-
tamps. The GPS receivers provide time data every sec-
ond and the Rubidium atomic clock provides a stable
precision time base for the LTC, which generates times
every 10 ns. The 1 pulse per second (PPS) signals from
the GPS receivers are used to reset the fine-scale coun-
ters in the LTC. The time data are integrated in the LTC
module, which communicates directly with the local de-
tector DAQ system.

A beam trigger signal is generated and linked to the
MR radio frequency (RF) to ensure synchronization with
the proton beam. This trigger signal is provided to the
power supplies of both the magnetic horn and the fast
extraction (FX) kicker magnet 3 ms before the beam ex-
traction. The beam trigger signal is distributed through
an optical fiber from the MR control room to the neutrino
beam line control room (NU1) where it’s arrival time is
measured by the LTC.

At J-PARC the LTC is located alongside the GPS re-
ceivers at NU1 and uses a 100 MHz (10ns) master clock
rate. The time stamped trigger signal is then distributed
to provide the ADC gate timing for the beam line CTs,
other proton beam monitors and MUMON.

The beam timing is monitored by CT1 which is the
most upstream of the neutrino beam line proton-beam
monitors. The relative time between the CT1 signal and
the edge of CT1’s ADC gate is set to an arbitrary value
of 1 µs to account for changes in the beam arrival time
after tuning of accelerator parameters. The uncertainty
of the 1 µs delay is less than 50 ns. In the present study
we measure near detector hit times and far detector event
times relative to CT1 beam signals to eliminate any drifts
in the proton bunch arrival times. Hence the accuracy is
better than 50 ns. All electronics delays are fixed during
beam operation such that the relative timing between
CT1, MUMON and ND280 are constant for a given run.
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One copy of the LTC trigger signal is sent via opti-
cal fiber to the neutrino monitor building (NM) to pro-
vide the beam trigger for ND280 and INGRID. The mas-
ter clock module in the ND280 electronics timestamps
ND280 hits relative to the LTC time signal.

The SMRD time stamps are recorded by frontend
boards which are controlled by FPGAs. The frontend
board timestamps the data with a precision of 2.5 ns.
The threshold to generate a timestamp is programmable
from 0 to 5 p.e. and is set to 2 p.e. in the case of the
SMRD. The ADC and timestamp data are assembled by
the FPGA and sent to a backend board for data concen-
tration and buffering. More details are given in [21, 30].

The beam spill trigger timestamp produced at NU1
is also sent to the SK DAQ server via a virtual private
network (VPN). An acceptance window of 1 ms width is
used to identify T2K beam related events using a software
trigger filter applied to the buffered event data stream.
The 1 ms wide time window is centered on the time of
the received beam trigger, offset by the light-speed travel
time for the 295 km distance between J-PARC and SK.

At SK, GPS receivers are located outside the mine en-
trance and the LTC module is located in the Central
Electronics Hut on top of the SK detector. The receivers
and LTC are identical to the ones used at NU1. second
At SK, event time stamping is done using a 60kHz (17µs)
master clock frequency. The SK hardware trigger module
(TRG) receives the 60kHz signal and counts the number
of cycles since the previous 1 PPS provided by the GPS.
The TRG hardware requires a 50 MHz signal which is
supplied by a Rubidium clock whose 10 MHz output has
been converted. Multiple PMT hits in a trigger of each
17µs period share a common GPS time stamp. The SK
front-end electronics records the time of each PMT hit
as the difference from the latest 17µs clock signal using
a charge to time converter (QTC) which has 0.52 ns res-
olution. The QTC counts are reset by the 60kHz clock.

IV. DATA SELECTION AND TIMING
STABILITY

At the near site the primary goal is to measure the
timing of the neutrino beam bunch structure. For this
purpose neutrino events with interaction vertices inside
the ND280 and the surrounding soil (sand events) can
be used. The near detector used for this analysis is the
SMRD because it provides a high statistics neutrino can-
didate sample due to the large mass of the magnet yokes
in which it is embedded.The SMRD allows a straight for-
ward selection of detector hits to maximize beam related
hits while keeping noise hits at a minimum.

At the far detector two beam neutrino candidate data
samples are identified, one to extract a neutrino mass
limit and a second one to perform system timing sta-
bility checks. Beam neutrino candidate events at SK are
selected by requiring that events are fully contained (FC)
inside the detector fiducial volume and within a 1 msec

time window centered on the expected arrival time of the
beam spill. The first sample consists of FC fiducial vol-
ume (FCFV) events with only one muon-like or electron-
like ring. This data sample corresponds to CCQE neu-
trino candidate events and represents the data set to ex-
tract an upper bound on neutrino mass. The second
sample consists of FC events with a visible energy above
2 GeV and does not contain any events from the first
sample. It is used to characterize the combined timing
uncertainty of the SK detector and the GPS system. The
former data sample is used to study energy dependent
RTOF effects as it allows an accurate estimate of neu-
trino energy on an event-by-event basis.

For event selection at both the near and far detector,
we check the stability of the time stamping mechanism
with respect to proton beam bunches as measured by
CT1. Since neutrino candidate events of interest are re-
lated to the proton beam bunches, the event times in
the near and far detector are coupled to the times when
the proton beam bunches arrive on target. Any detector
specific timing instabilities would appear as a large fluc-
tuation in the time difference between the detector event
and the CT1 signal. The residual timing distributions
of selected events at SK and the SMRD are used to de-
termine all timing uncertainties, which are relevant for a
neutrino RTOF analysis. Since the SK events are time
stamped with respect to the SK-GPS time and the beam
trigger time uses the NU1-GPS system as a time refer-
ence, good relative stability between the SK and NU1
GPS time references are required. Hence, the distribu-
tion of residual event times with respect to the center of
the nearest beam bunch for neutrino candidate events at
SK is a measure of the combination of the stability of
SK and the relative stability of the NU1 and SK GPS
reference times.

A. Near detector data selection and timing

The selected SMRD data sample is based on good
beam spills for which all ND280 data quality cut criteria
are satisfied [5] regardless of whether there is a SK event
or not. The total SMRD data set for run periods I, II,
III and IV represents 1.65×1019 POT, 7.89×1019 POT,
1.57×1020 POT and 3.25×1020 POT. The instantaneous
beam intensities during these running periods were such
that on average, a few SMRD hits are observed per spill.
SMRD hits are selected if both photosensors which read
out a single counter from opposite ends, each create a sig-
nal above 4.5 photo-electrons (p.e.) in coincidence. The
mean light yield for a perpendicularly penetrating muon
amounts to 40 p.e. No additional event reconstruction is
applied.

Figure 1 shows the resulting bunch timing distribution
for the selected SMRD hits integrated over run period
III. For comparison the bunch timing structure as ob-
served with the current transformer CT1 also integrated
over run period III is overlaid with appropriate delays in-
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FIG. 2. Zoomed in version of the fourth bunch of the hits
selected in SMRD (red: tSMRD) and CT1 (blue: tCT1) for
run period III.

cluded. The plotted timing distributions are for tSMRD

and tCT1, quantities which are described in more detail
later. Figure 2 shows a zoomed version of the fourth
bunch for run period III and is representative for any
other of the eight bunches. The peak heights of the
two distributions have been scaled to match each other
in order to facilitate a comparison of the bunch widths.
The shown distributions include fluctuations in the inter-
bunch timing from one spill to the next.

The CT1 data are recorded with a 160 MHz FADC
which limits the timing resolution (e.g. time bins of 6.25
ns width). Timing jitter of the FADC start gate does not
contribute significantly to the CT1 timing resolution.

Selected hits in the SMRD originate from a combina-
tion of neutrino interactions in the iron of the magnet
yokes and the surrounding sand. The background con-
tribution from random noise hits per bunch is estimated
to be well below 0.9%. Additional components of the
sub-percent level background are due to decay electrons
from muons stopping in the SMRD and ejected neutrons
produced in the interactions of the proton beam with the

target.
The majority of these background events are removed

by the requirement that events fall within a 200 ns time
window centered on the peak of the SMRD bunch. The
exact window size varies between bunches and runs and
is determined based on the full CT1 bunch width plus
a margin of 40 ns to allow for differences between the
proton and neutrino bunch widths as measured by CT1
and the SMRD, respectively. A cross-check with neutrino
candidate events in the PØD shows that this requirement
does not lead to a reduction of neutrino candidate events
in the sample.

Signal propagation time differences arising from the
varying counter locations which are known to within 1 cm
and readout cable lengths which are known to better than
a cm have been corrected. Any remaining differences due
to these corrections are well below the 1 ns level and are
negligible.

An important difference in the measurement of the
bunch timing by CT1 and the SMRD is that CT1 mea-
sures the proton beam signal and hence observes a signal
which stems from all protons in a bunch for every single
bunch. In contrast the SMRD observes muons from a
single or a few neutrino interactions per bunch and thus
sees the neutrino beam bunches. The distribution of CT1
timing signals tCT1 is a direct measurement of the bunch
to bunch arrival time fluctuations convoluted with the
CT1 timing resolution. Figure 3 shows distributions of
tCT1 as function of calendar time for bunch 4 and run
period III.
The distribution of SMRD signal times tSMRD is a com-
bination of the bunch width, variations in the bunch
width, bunch to bunch arrival time fluctuations and the
SMRD timing resolution for the selected event sample.
Figure 4 shows distributions of tSMRD as function of cal-
endar time for bunch 4 and run period III.
Figures 3 and 4 show times to have RMS values of 20 ns
and 24 ns over the run period. Beam event time mea-
surements at CT1 and SMRD are affected by fluctuations
in the arrival time σT0 of the beam bunch. Such fluctu-
ations originate from the accelerator complex and since
CT1 and the SMRD use the same time stamped FX beam
trigger signal, these fluctuations are common to both the
CT1 and SMRD measurements and can be subtracted
out. By looking at the difference ∆T = tSMRD - tCT1

on a bunch by bunch basis common fluctuations in the
bunch arrival times are removed. Figure 5 shows distri-
butions of ∆T as function of calendar time for bunch 4
and run period III and exhibits an RMS value of 16 ns
over the run period.

The width σsmrd+bunch of the near detector timing
probability distribution function (PDF) is calculated as

σsmrd+bunch =

√
σ2
SMRD − σ2

CT1 + σ2
∆T

2
(1)

The three uncertainties σCT1 , σSMRD and σ∆T can be
directly determined from the SMRD and CT1 data sets
as shown in Figs. 3, 4 and 5.
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The distributions are to very good approximation
Gaussian and are used to derive the three uncertainties
σCT1 , σSMRD and σ∆T on a run period by run period
basis. An example of the time integrated distribution of
SMRD signal times tSMRD for the 4th bunch and run
period III is shown in Fig. 6.
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FIG. 3. Data for tCT1 as function of calendar time for run
period III and bunch 4.
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FIG. 4. Data for tSMRD as function of calendar time for run
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Table I provides a summary of the SMRD hit timing
resolutions, σsmrd+bunch for run periods I through IV and
after averaging over all 8 (6 for run period I) bunches.

A more detailed list of resolutions σCT1 , σSMRD, σ∆T

and σsmrd+bunch is summarized in table V in the ap-
pendix for each of the 8 (or 6) bunches and all four run
periods.

B. Far detector data selection and timing

At the far detector FC events and FCFV single ring
muon-like and electron-like events all of which are in
time with beam spills are selected. Additional selection
cuts on the charged lepton momentum and the presence
or lack of decay electrons from stopping muons for the
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FIG. 6. Distribution of tSMRD for run period III and bunch
4 with a superimposed Gaussian fit.

muon-like and electron-like single ring event sample are
applied to increase the purity of CCQE events in the
sample. The electron-like single ring sample has further
selection cuts to reduce contamination from π0 and other
backgrounds.

Details of the selection criteria for FC and CCQE can-
didate events are described in [33] and are the same as

TABLE I. SMRD hit timing resolution, σsmrd+bunch for run
periods I through IV. The uncertainties represent the stan-
dard deviation between bunches 1 through 8. Run period II
data is split into two parts due to a break in data-taking and
associated system resets.

Run period number SMRD hit timing resolution

σsmrd+bunch [ns]

I 12.1 ± 0.1

IIa 12.6 ± 1.7

IIb 14.8 ± 0.5

III 14.5 ± 0.3

IV 13.8 ± 0.8
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FIG. 7. Timing distribution (top) and timing residuals (bot-
tom) of fully contained (FC) events for run periods I − IV.

used for T2K oscillation analyses. A total of 549 FC
events and 148 CCQE candidate events in time with
beam spills were observed at SK during run periods I
through IV.

The resulting timing distribution for FC events is
shown in the upper panel of Fig. 7, which clearly reflects
the beam bunch structure. Event times are corrected
for differences in the reconstructed event vertex positions
and associated neutrino and light travel times. The eight
dotted vertical lines in Fig. 7 represent the bunch center
positions fitted to the observed FC event timing peaks
preserving the 581ns inter-bunch intervals. The distribu-
tion of the residual time between each FC event and the
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FIG. 8. SK residual timing distributions for run period III
for FC non-CCQE sample.

closest fitted bunch center is shown in the lower plot of
Fig. 7 for events combined from all bunches and all 4 run
periods. The outliers at residual values of +200 ns are
classified as decay electrons based on predetermined cri-
teria including event single ring properties, electron like
particle identification and visible energy.

The SK event selection relies on the relative GPS sys-
tem timing between the near and far sites. Hence, the
distribution of SK event times tSK and time residuals
with respect to the nearest beam bunch center include in-
stabilities associated with the GPS timing system at the
near and far sites. The distribution of SK signal times
tSK is a combination of the bunch width, variations in
the bunch width, the SK timing resolution for the se-
lected event sample, GPS system timing instabilities and
potential neutrino TOF effects.

Our data analysis uses the distribution of timing resid-
uals of FC events excluding the CCQE candidate event
sample (FC non-CCQE) [1] with a visible energy above
2 GeV on a run period by run period basis to deter-
mine the combined SK and GPS system timing resolu-
tion. This sample is orthogonal to the CCQE candidate
sample used to extract a neutrino mass limit and will
therefore be referred to as sideband sample FCsideband.
The cut on visible energy was introduced so as to avoid
potential bias of the timing resolution due to time of
flight related relativistic delays in neutrino arrival times.
Above a visible energy of about 2 GeV and for neutrino
masses mν <6 MeV/c2 relativistic delays are expected to
be less than about 5 ns. The uncertainties on the com-
bined SK and GPS resolutions are of comparable size, 4
to 5ns.

Figure 8 shows the distribution of timing residuals for
FC non-CCQE events. Table II provides a summary of
the measured combination of SK and GPS system timing
resolutions and the bunch width for run periods I through
IV after averaging over individual bunches. Shown are
the RMS values of the timing residuals distributions for
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TABLE II. Measured combination of SK and GPS timing
resolutions and bunch width obtained from FCsideband events
for run periods I through IV.

Run period number RMS of SK FCsideband event

timing residulas [ns]

I + II (combined) 19.4 ± 4.3

II 21.4 ± 5.2

III 22.9 ± 5.9

IV 26.0 ± 3.6
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FIG. 9. Energy scale stability of the SK detector [1]. The
hatched grey regions correspond to run periods I through IV.
The dotted horizontal lines correspond to the ±1% stability
range.

each run period. Due to limited statistics for run period
I the RMS value was derived for events from run period I
and II combined. The errors are statistical and calculated
based on the number of events in the corresponding run
period.

The stability of the SK energy scale over the relevant
data period is demonstrated in Fig. 9. It shows the ob-
served energy loss for stopped muons as a function of
calendar time. The energy scale is stable within ±1%
over the run period I to IV time range. Reference [1] also
specifies the total error on the energy scale to be 2.3%
for run periods I through III and 2.4% for run period IV.

C. GPS system timing

The quality of the relative timing between the SK and
NU1 GPS reference times relies on the stability of the
GPS time systems at SK and NU1. The time differences
between GPS1 and GPS2 receivers at SK and NU1 are
shown in the top and middle panels of Fig. 10 as a func-
tion of time for run period III. The center line in each
plot shows the 24 hour average difference between pri-
mary and secondary GPS at each site. The daily upper
and lower 95% C.L. fluctuation ranges are also shown by
red lines. Occasional abrupt baseline shifts with magni-
tudes of several tens of ns are typically a consequence of

FIG. 10. Relative timing stability of the two official SK GPS
systems at SK (top panel) and NU1 (middle panel). Black and
red lines are daily averages and 95 %C.L. ranges, respectively.
The bottom panel shows the time residuals of the SK FC
events.

a system reset of either one of the GPS receivers, caus-
ing an oscillation shift upon restart. Jumps during a
given run have been analyzed in detail to check whether
neutrino candidate event timing data would be affected.
Since data from each run period are analyzed separately
the shifted baselines between run periods do not affect
the analysis results. The bottom panel of Fig. 10 shows
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the time residuals of FC events at SK with respect to the
time of the closest beam bunch center.

During run period III the observed step on 5/25/2012
in the GPS1−GPS2 time history at SK is due to a re-
set of GPS2. At the time of the incident GPS1 was
not affected. Since candidate events at SK obtain time
stamps from GPS2 the time stamps of FC events post
the GPS2 reset on 5/25/2012 have been corrected. The
correction consists of a time shift of the affected events
by the magnitude of the observed step. Shifts of order of
few tens of nanoseconds in baseline after a GPS reset are
expected. In addition, instantaneous GPS status infor-
mation is logged and has been used to further scrutinize
the quality of time stamps for the recorded FC candi-
date events. All time stamps for the FC events can be
considered reliable.

The timing uncertainty derived from the SK FCsideband
sample already contains any timing instabilities due to
the GPS systems at the near and far site since the SK
event selection relies on the time stamps at the near and
far sites.

V. DATA ANALYSIS

The same neutrinos cannot be observed at the near
and far detector. However, we can use the shape of the
beam timing structure at the near detector and neutrino
candidate events at the far detector to obtain a time of
flight measurement. We construct a suitable probabil-
ity density function (PDF) that describes the expected
arrival times of the neutrino beam bunch structure at
the far detector and fit it to the actual distribution of
neutrino candidate events at SK. Differences between ex-
pected and actual arrival time distributions can be de-
termined and used to derive neutrino RTOF differences
between events. The differences are studied as a function
of neutrino event energy and therefore can be used to set
an upper limit on neutrino mass.

The total resolution for neutrino arriveal times at SK
will be affected by the detector timing resolution and
jitter from the GPS timing system. The shapes of the
bunches in the near detector are to very good approxi-
mation Gaussian as can be seen in Fig. 2. Hence the near
detector PDF is represented by 6 or 8 Gaussian distribu-
tions each with a width of, σsmrd+bunch which reflects
a combination of the SMRD timing resolution and the
bunch width. Values of σsmrd+bunch for each run period
are given in table I. The far detector PDF is constructed
by convoluting the near detector PDF with a Gaussian.
For the width of the Gaussian we use the measured val-
ues for σSK+GPS , which represent an upper bound on the
combined SK and GPS system timing resolutions. The
far detector PDF can be written as:

P2(t2) =

∫
1

σSK+GPS

√
2π

e
−
(

(t2−t)2

2σ2
SK+GPS

)
P1(t)dt (2)

where σSK+GPS is the timing uncertainty due to SK and

the GPS system, P1 is the near detector PDF for any of
the 6 or 8 bunches, and t2 is the measured time of FC
CCQE events in the far detector. The resulting distribu-
tion describes the expected arrival times at SK. The com-
bined SK, GPS and SMRD hit timing resolution which
is reflected in the width of the bunches of P2 was deter-
mined according to

σP2 =
√
σ2
SK+GPS + σ2

smrd+bunch (3)

and found to be about 27 ns for run periods I through
IV. Relevant values for σsmrd+bunch and σSK+GPS are
presented in tables I and II, respectively.

For a given run period the times of all CCQE events are
adjusted by a common off-set. The off-set is chosen such
that the mean time for all CCQE candidate events with
a derived neutrino energy above 2 GeV is zero for that
run period. The arrival time distribution of high energy
events is not sensitive to the neutrino mass, m2

ν , for m2
ν <

10 MeV2/c4. Hence these events represent a good sub-
sample for adjusting all events. The adjustment off-sets
relative to the mean arrival time of the FC sample for
run periods I+II combined, III and IV are -2.5 ns, 1.1 ns
and 5.0 ns, respectively.

We compare the timing of each event in the far detector
to this PDF and find the value m2

ν by minimizing a neg-
ative log-likelihood function L over the CCQE neutrino
candidate events in the sample.

L =
∑
i

−lnP2(ti2 − Tmν (Eν)) (4)

where ti2 are the residual times of neutrino candidate
events and Tmν (Eν) represents the relativistic time of
flight of massive neutrinos and is given by

Tmν (Eν) =
τ√

1− (mνc
2

Eν
)2
, (5)

with τ being the light travel time.
The previously mentioned adjustment of measured

event timing residuals for events with derived neutrino
energies Eν > 2 GeV and m2

ν <10 MeV2/c4 can be ex-
pressed as

(ti2 − Tmν (Eν)) ≈ (ti2 − τ) = 0 (6)

m The neutrino energy Eν is derived from the recon-
structed energy Eν−recon of the detected event, which is
calculated, neglecting the Fermi motion, as

Eν−recon =
m2
p − (mn − Eb)2 −m2

µ + 2(mn − Eb)Eµ
2(mn − Eb − Eµ + pµ cos θµ)

,

(7)
where mp is the proton mass, mn the neutron mass, and
Eb = 27 MeV the binding energy of a nucleon inside a
16O nucleus. In Eq. 7 Eµ, pµ, and θµ are respectively
the measured muon energy, momentum and angle with
respect to the incoming neutrino.
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TABLE III. Oscillation parameters to calculate oscillation
probabilities for purposes of reweighing energy spectra

Oscillation parameter value

∆m2
23 2.4 × 10−3

sin2(2θ23) 1.0

sin2(2θ13) 0.1

sin2(2θ12) 0.87

∆m2
12 7.6 × 10−5

A detector response matrix relating true neutrino en-
ergy and reconstructed neutrino energy has been ob-
tained from the SK Monte Carlo (MC). Selection cuts
to identify FCFV single ring muon-like and electron-like
events are applied to the MC events to derive a sepa-
rate matrix for each selection [1, 5]. The MC data sam-
ples are composed of CC and NC interactions for initial
muon neutrinos, muon anti-neutrinos, electron neutrinos
and electron anti-neutrinos with relative percentages of
92.8%, 6.0%, 1.0% and 0.2%, respectively [34]. Neutrino
oscillation effects are included in the MC data samples by
re-weighting energy spectra with oscillation probabilities.
Table III shows the values of the assumed oscillation pa-
rameters. For a given data set of CCQE candidate events,
each with a reconstructed energy, true energies are ob-
tained by sampling from the corresponding entries in the
conversion matrix which is shown in Figure 11. From

FIG. 11. Monte Carlo energy conversion matrix for muon
neutrino candidate events. The vertical axis shows recon-
structed neutrino energy and the horizontal axis shows true
neutrino energy.

the resulting data samples with true neutrino event en-
ergies an average negative log-likelihood is calculated. In
the minimization the neutrino mass squared m2

ν is left
free to vary. The average log-likelihood yields a best-fit
m2
ν value and a negative log-likelihood curve as function

of m2
ν . The validity of the analysis method is tested on

an ensemble of 300 toy data sets and is described in the
following section. The same statistical sampling proce-

dure of the true energy distribution is also applied to the
experimentally recorded data set.

A. Toy data studies

The performance of the analysis was tested success-
fully on an ensemble of 300 toy data sets which are based
on T2K Monte Carlo data samples for the SK detector.
Each toy data set consists of 148 CCQE candidate events
and is subdivided into 4 subsets, corresponding to the
number of events observed in run period I through IV.
The same FCFV 1 ring muon-like and electron-like event
selection cuts were applied to the toy data sets as for
the experimentally recorded T2K-SK data. Each of the
resulting candidate events was assigned a residual bunch
time. This residual time was sampled from a Gaussian
distribution whose width was determined according to
the SK FCsideband event timing residuals for the corre-
sponding run periods. The numerical values of the widths
used are shown in table II. Initially, all of the 300 toy data
sets assume a true value of m2

ν−true = 0. Each toy data
set was submitted to the previously described analysis
procedure.

Further tests of the analysis algorithm were conducted
to study the sensitivity of the analysis to large changes
of the assumed true m2

ν−true. The tests were performed
successfully on an ensemble of 300 toy MC data sets with
148 events each. The toy data sets are similar to previ-
ously described toy data sets except for modified event
times to reflect the effect of non-zero values of m2

ν−true.
Event time residuals were modified according to an as-
sumed neutrino mass squared of m2

ν−true = 1, 2, 4, 10,
20 and up to 100 MeV2/c4 in steps of 10 MeV2/c4 . The
modified event times are calculated according to equa-
tion 8:

t = τ − τ√
1− (mνc

2

Eν
)2

(8)

Figure 12 shows the extracted values for m2
ν versus the

corresponding true input values m2
ν−true for the full range

of tested m2
ν−true input values. The error bars represent

the RMS of the distribution of the 300 extracted best-fit
values for m2

ν . The analysis correctly obtained the true
input values for m2

ν .

B. T2K data analysis

The previously described analysis procedure of fitting
a timing PDF to experimentally recorded timing distri-
butions is applied to the SK event sample of CCQE neu-
trino candidate events. Data from run periods I through
IV are fitted by setting up a single log-likelihood func-
tion with run specific PDFs. This final signal data set
which is used to extract a limit on the effective neutrino
mass contains 120 muon neutrino and 28 electron neu-
trino CCQE candidate events. For this data set the true
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pled true neutrino energies from the energy conversion ma-
trix. The minimum value is found to be m2

ν = 2.4 MeV2/c4.
The blue squares and red dots indicate the F-C 90% C.L. up-
per critical values without and with systematic uncertainties,
respectively. The corresponding 90% C.L. upper limits on m2

ν

= 4.4 MeV2/c4 and m2
ν = 5.6 MeV2/c4 are derived .

event energies were sampled 1000 times from the true
energy distributions for the reconstructed energy of each
event.

The log-likelihood curves for the 1000 energy samples
are averaged to provide an average log likelihood curve,
which is shown in Fig. 13. The best fit m2

ν value is
found to be at m2

ν = 2.4 MeV2/c4. A 90% C.L. up-
per limit is evaluated by means of an ensemble of toy
data sets. We calculate a 90% critical value following the
Feldman-Cousins (F-C) method described in [35]. An en-
semble of 300 toy data sets is generated with event times
corresponding to specific value of m2

ν−true. For each of

these toy data sets an average Delta-log-likelihood value
at the given value of m2

ν−true is calculated. A distribu-
tion of these average Delta-log-likelihood values is inte-
grated from 0 to 90%. The Delta-log-likelihood value
found at the 90% integration boundary represents the
critical value at that particular m2

ν−true. The process is
repeated for additional values of m2

ν−true and the result-
ing 90% C.L. critical values are shown along with the av-
erage log-likelihood curve for the experimental data set.
The intersection of these two curves is used to determine
the 90% C.L. upper limit on m2

ν . Figure 13 shows the
F-C 90% C.L. upper critical values for statistical uncer-
tainty only as blue squares for m2

ν−true values of 4 and
5 MeV2/c4 superimposed on the average negative log-
likelihood curve extracted from the data set. A 90% C.L.
upper limit on m2

ν of σ90%C.L.
m2
ν

= 4.4 MeV2/c4 is obtained.

This limit does not yet include systematic errors.

C. Systematic Uncertainties

Systematic uncertainties, which affect the extracted
value of m2

ν are caused by the event sample timing adjust-
ment as well as the time resolution at the far detector,
the near detector and the GPS system. Other sources
of systematic uncertainties stem from reconstructing the
event vertex, lepton momentum and the lepton direction
with respect to the neutrino beam at SK.

The effect of systematic uncertainties has been evalu-
ated by regenerating ensembles of toy data sets, which
had the systematic parameters varied within their 1
sigma bounds. Successively, the 90% C.L. critical val-
ues are recalculated and modified 90% C.L. upper limits
on m2

ν are derived.
The systematic uncertainty on the event sample tim-

ing adjustment is assumed to be the uncertainty on the
residual times of all CCQE candidate events with a de-
rived energy above 2 GeV. It is calculated as the RMS
spread of the data points above 2 GeV shown in Fig. 14
and divided by the square root of the number of events.
Values for this uncertainty for the different run periods
are shown in table IV. The adjustment offsets are within
the systematic uncertainty.

Values for the systematic uncertainty on lepton mo-
mentum and the angular uncertainty of the lepton direc-
tion are based on systematic uncertainties derived from
the SK atmospheric data sample [1]. We adopted a 2.3%
systematic uncertainty on the lepton energy scale at SK
for run periods I through III. For run period IV the cor-
responding value is 2.4%.

The effect of systematic errors in the SMRD and com-
bined SK and GPS time resolutions on m2

ν was accounted
for by changing the widths of the underlying Gaussian
distributions from which the event times were sampled.
Values of 0.1 to 1.7 ns for the SMRD and 5.9 ns to 3.6 ns
for SK + GPS are the run period specific errors as shown
in table I and II, respectively.

Systematic uncertainties for the energy conversion ma-
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TABLE IV. Summary of systematic effects on m2
ν . The left

most column specifies the type of systematic uncertainty, the
central columns give values for the different run periods and
the right columns show the resulting uncertainty on the 90%
C.L. upper limit of m2

ν and the change compared to the no-
systematics case. The systematic error on lepton angle is
1o for lepton momenta below 1.33 GeV/c2 and 2o for lepton
momenta above 1.33 GeV/c2. Values are taken from table I
and II.

Systematic Magnitude [ns] 90% C.L.

uncertainties Run periods absolute %

I IIa IIb III IV [MeV2/c4] change

Time 4.4 4.4 4.4 5.6 5.0 5.09 +15.9

adjustment

Lepton 2.3% 2.4% 4.4 +0.2

momentum +

angular bias 1(2)o

SK + GPS time 4.3 5.2 5.2 5.9 3.6 4.75 +8.2

resolution

SMRD time 0.1 1.7 0.5 0.3 0.8 4.41 +0.5

resolution

Total 5.58 +27.1

trix stemming from uncertainties in oscillation parame-
ters as well as nuclear interaction effects have been esti-
mated to be negligible. The magnitude of nuclear effects
for various final state interaction (FSI) parameters has
been obtained from MC studies [36] in form of modified
reconstructed neutrino energies. For each event the mod-
ified reconstructed energy is converted into a neutrino
energy by sampling a 1000 times from the corresponding
row in the conversion matrix. The resulting distributions
of derived energies for FSI reweighted Ereconν spectra for
toy MC data sets are consistent with the original (non-
FSI reweighted) distributions of derived neutrino ener-
gies.

The effect of the systematic uncertainties on m2
ν were

evaluated by repeating the previously described analysis
with one type of systematic parameter varied within its
bounds and for all 4 subsets. Table IV summarizes the
systematic uncertainties and the 90% C.L. upper limit on
m2
ν for each ensemble of modified toy data sets. The last

row shows the 90% C.L. upper limit based on toy data
sets for which all systematic uncertainties were varied
simultaneously.

Figure 13 shows the F-C 90% C.L. upper critical values
for combined statistical and total systematic uncertainty
as red dots for m2

ν−true values of 5,6 and 7 MeV2/c4

along with the average negative log-likelihood curve for
the experimental data set.
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FIG. 14. Timing residuals of T2K CCQE neutrino candidate
events as a function of derived neutrino energy. Events have
been grouped into energy bins of 100 MeV below 1 GeV and
bin sizes of 1GeV above 1 GeV.

VI. RESULTS

With systematic uncertainties included we find a 90%
C.L. upper limit on the effective neutrino mass squared
of m2

ν < 5.6 MeV2/c4.

The time deviation of individual CCQE neutrino can-
didate events at SK from the mean time of beam bunches
as function of neutrino energy is shown in Fig. 14 for the
148 CCQE neutrino candidate events collected in T2K
run periods I through IV. The plot was generated by
assigning each event the most likely true energy, Etrue
based on the MC energy conversion matrices discussed
above and the events’ reconstructed energy. The lines
indicate the expected ranges for time residuals for a vari-
ety of different effective neutrino masses. The upturn at
low energies clearly shows the relativistic effect on neu-
trino RTOF and the dependence on effective neutrino
mass. The half-width of the bands σband is determined
by the width, σP2

, of the far detector PDF P2 and its
associated systematic uncertainties added in quadrature.
Using values from tables I, II and IV and weighting them
according to the number of events in each run we deter-
mine the half-width to be σband = 27 ns.

The vertical normalization of the data points and
bands requires an absolute TOF measurement. For the
present relative time of flight analysis the mean of the
timing residuals for the high energy events has been ad-
justed to zero. At high energies and neutrino masses of a
few MeV/c2 or smaller no relativistic effects on the time
residuals are expected.

The high energy tails of the calculated bands have also
been centered on zero to match the adjustment of the
data. We calculated and plotted bands for mν values in
the range from 1 to 10 MeV/c2 in Fig. 14. Events have
been grouped into energy bins of 100 MeV below 1 GeV
and bin sizes of 1 GeV above 1 GeV.
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The overlap of the bands for different values of mν

at high energies clearly indicates that for neutrinos with
energies above 2 GeV there is no sensitivity to mν val-
ues below 10 MeV/c2. All sensitivity to small values of
mν stems from the energy dependence of event times for
events with energies below 1 − 2 GeV.

Significant improvements to the result would require
timing calibration measurements at the near and far de-
tectors to reduce systematic uncertainties.

As described in the introduction a variety of techniques
to determine neutrino mass with different sensitivities
exist. Our result of an upper neutrino mass limit based
on a neutrino TOF measurement may be compared to the
MINOS 99% C.L. upper limit on neutrino mass based on
a neutrino TOF analysis of mν < 50 MeV/c2 [15].

VII. SUMMARY

We report on a RTOF analysis based on the T2K run
period I through IV data sets. The signal event sample at
the far detector consists of 148 CCQE neutrino candidate
events at SK for which arrival times and reconstructed
energies have been determined. A far detector PDF was
fitted to the distribution of measured timing residuals of
the 148 neutrino CCQE candidate events. The fit uses
one free parameter, the effective neutrino mass mν . The

far detector PDF was constructed based on SMRD timing
measurements of the beam bunch timing structure and
FCsideband event time measurements at SK. The analysis
derives an upper limit on the effective neutrino mass. We
find a 90% C.L. upper limit on the effective neutrino mass
square of m2

ν < 5.6 MeV2/c4.
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IX. APPENDIX

Table V lists the resolutions σCT1 , σSMRD, σ∆T and
σsmrd+bunch for each of the 8 (respectively 6) bunches
and all four run periods.

TABLE V. SMRD and CT timing resolutions σCT1 , σSMRD,
σ∆T and σsmrd+bunch for run periods I through IV and each
of the 6 or 8 bunches separately.

Run bunch σSMRD σCT1 σ∆T σsmrd+bunch

period no. [ns] [ns] [ns] [ns]

I

1 13.4 7.3 12.7 12

2 13.9 8.3 13.1 12.2

3 13.7 7.9 12.9 12.1

4 13.8 7.8 12.8 12.1

5 14.2 7.7 12.4 12.2

6 14.4 9 12.8 12

IIa

1 14.5 9.5 12.6 11.8

2 16.1 11.5 13.3 12.3

3 16.2 11.3 14.1 12.9

4 19.1 12.8 14.7 14.4

5 16.7 16.6 13.1 9.4

6 18.8 12 15.3 14.9

7 20.5 16.5 13.9 13.1

8 13.9 9 12.8 11.7

IIb

1 18.3 13.8 15.3 13.8

2 21.2 16.2 15.5 14.6

3 22 16.4 15.5 15.1

4 19.9 14.3 15.9 14.9

5 19.9 14.9 15.8 14.6

6 21.6 16.3 15.9 15.1

7 21.6 16.2 16 15.2

8 21.1 15.8 16.1 15.1

III

1 23 18.7 15.7 14.6

2 23.5 19.5 14.9 14

3 24.6 20.3 15.7 14.8

4 24.3 19.8 15.6 14.9

5 23.8 19.7 15.3 14.4

6 24 19.6 15.5 14.7

7 23.9 19.8 15.2 14.3

8 23.8 19.9 14.8 14

IV

1 14.8 11.6 14.6 12.2

2 15.8 10.8 14.9 13.3

3 14.7 9.4 15.2 13.4

4 17.4 11.7 15.6 14.3

5 18 12.7 15.4 14.1

6 16.8 10.5 15.7 14.5

7 17.3 12.6 15.9 14

8 16.8 11.3 15.8 14.2
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