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ABSTRACT 
Terrestrial time-lapse photography offers insight into glacial processes through high spatial and temporal resolution imagery. 
However, oblique camera views complicate measurement in geographic coordinates, and lead to reliance on specific imaging 
geometries or simplifying assumptions for calculating parameters such as ice velocity. We develop a novel approach that 
integrates time-lapse imagery with multi-temporal digital elevation models to derive full 3D coordinates for natural features 
tracked throughout a monoscopic image sequence. This enables daily independent measurement of horizontal (ice flow) and 
vertical (ice melt) velocities. By combining two terrestrial laser scanner surveys with a 73-day sequence from Sólheimajökull, 
Iceland, variations in horizontal ice velocity of ~10% were identified over timescales of ~25 days. An overall surface elevation 
decrease of ~3.0 m showed rate changes asynchronous with the horizontal velocity variations, demonstrating a temporal 
disconnect between the processes of ice surface lowering and mechanisms of glacier movement. Our software, ‘Pointcatcher’, is 
freely available for user-friendly interactive processing of general time-lapse sequences and includes Monte Carlo error analysis 
and uncertainty projection onto DEM surfaces. It is particularly suited for analysis of challenging oblique glacial imagery, and we 
discuss good features to track, both for correction of camera motion and for deriving ice velocities. 

INTRODUCTION 
Time-lapse imagery can provide valuable glaciological information; for example, on glacier extents (Motyka and others, 

2003),  tidal interactions (Maas and others, 2006, Dietrich and others, 2007) and ice velocities (e.g. Flotron, 1973, 1992, Harrison 
and others, 1986, Ahn & Box, 2010, Evans, 2000, Schubert and others, 2013). Imagery can be acquired from the ground or above, 
with satellites capable of providing regular overpasses, typical spatial resolutions of order ~10 m, and datasets covering decadal 
timespans (e.g. Rignot, 1998, Shepherd and others, 2012, Heid & Kääb, 2012). For detailed analyses (e.g. of calving events, 
Rosenau and others, 2013, Amundson and others, 2008, O'Neel and others, 2003) repeat imagery can be required on timescales of 
minutes or hours. Such work is now being enabled due to the step change in spatio-temporal data resolutions resulting from 
increasing deployment of remote digital time-lapse cameras. However, due to the oblique view from terrestrial vantage points, 
perspective effects complicate quantitative data processing by varying the effective scale across the images. Furthermore, with 
single-camera (monoscopic) installations, ice motion towards (or away from) the camera cannot be determined, and horizontal 
and vertical components can only be uniquely distinguished for specific camera orientations. With vertical surface change from 
melting forming an important factor in glacier mass balance calculations, a technique to independently extract ice velocity and 
elevation change from time-lapse imagery captured from general (rather than specific) camera orientations should represent a 
useful glaciological tool. 

Here, we present an approach that enables horizontal and vertical components of glacier surface change to be quantified 
from a generalised oblique terrestrial time-lapse sequence, by integrating data from multi-temporal digital elevation models 
(DEMs). The method is based on deriving 3D geographic point coordinates for image feature-tracks within a geo-referenced time-
lapse sequence, through deriving individual viewing distances for each feature, in each image. The view distances are constrained 
using two DEMs acquired at different times, and by assuming that the planimetric path of each 3D point is linear over the duration 
of the sequence (i.e. if viewed from directly above, points would appear to travel in straight lines). 

We demonstrate the process using data from Sólheimajökull, Iceland (Figure 1), where time-lapse imagery was being 
acquired to assess the potential influence of the Katla volcano on glacier dynamics. The Sólheimajökull sequence represents a 
highly challenging dataset to process, encompassing all the difficulties that tend to arise in terrestrial time-lapse images: drift due 
to an unstable camera, variable weather, illumination and snow cover conditions, and an ice surface that evolves rapidly due to 
melting. These characteristics mean that approaches based on automated matching of image pairs (e.g. Messerli & Grinstead, 
2015) would have limited success. To address such challenges, we developed a freely available and user-friendly software 
(Pointcatcher, http://tinyurl/pointcatcher) that implements geo-referencing, image registration and Monte Carlo error analysis 
procedures in a feature-tracking application previously used for laboratory and volcanic image sequences (Delcamp and others, 
2008, Applegarth and others, 2010, James & Robson, 2014). The versatility of the resulting image processing software makes it 
applicable to terrestrial time-lapse sequences collected from glaciers around the world. 
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CURRENT TECHNIQUES AND CHALLENGES FOR ANALYSIS OF GLACIAL TIME-LAPSE IMAGES 
Significant recent progress has been made in measuring ice velocities from image sequences. Much of this has been driven by 

the increasing availability and resolution of optical and radar satellite imagery, with some of the automated image matching 
algorithms developed now also being explored for use with terrestrial sequences (e.g. Vernier and others, 2012, Messerli & 
Grinstead, 2015). Although the practical challenges associated with processing satellite data and terrestrial sequences acquired 
with consumer imagery can differ substantially, the same basic procedures underpin both workflows: registering sequential 
images or image pairs together, identifying and tracking image features that represent the glacial surface, and converting results, 
which are initially in image coordinates (i.e. pixels), to geographic coordinates (e.g. metres). 

Image registration 
Image registration (or co-registration) defines the relationships between different images which enable measurements made 

in each to be described within a single, reference image coordinate system. Registration transformations account for any changes 
in the camera or sensor parameters (such as position or pointing direction) between different images, and are usually determined 
through identifying and comparing image features in areas of static topography. With most modern ground-based time-lapse data 
acquired from either temporary or semi-permanent remote installations, camera position can generally be assumed to be 
constant. Thus, the registration process has to account only for small camera rotations, which can result from thermal effects, 
wind vibration or settling of the installation. Without effective registration, such rotations add noise (e.g. from wind vibration) or 
systematic displacements (e.g. from settling) to measured feature positions relative to the reference image. In some cases, where 
the 3D geographic coordinates of control points are known, image registration can be combined with geo-referencing, with each 
image registered directly to the geographic coordinate system, rather than initially to a reference image. 

The quality of image registration (and the error magnitude in subsequent analyses) is a function of the precision with which 
static points in the landscape can be located through the image sequence, and their distribution across images. Static points 
usually represent easier features to track than those on glacier surfaces (because they do not evolve through time) and are often 
amenable to accurate and fully automatic tracking. Nevertheless, registration problems arise when features change appearance 
(e.g. due to varying snow cover) or are obscured entirely by cloud during periods of poor weather. Understanding the 
uncertainties involved in image registration is critical to overall error analyses, and a Monte Carlo approach can be used to 
indicate the sensitivity of the registration to the characteristics of static point measurements in any image.   

Glacier feature tracking 
Image-based measurement of glacier surface motion is now commonly carried out using a variety of automated algorithms 

which match image texture between image pairs (Scambos and others, 1992, Leprince and others, 2007, Kääb & Vollmer, 2000). 
These algorithms can deliver large numbers of points with matching accuracies of potentially 0.02 pixels under idealised conditions 
(Maas and others, 2010). However, systematic changes in the appearance of natural features (e.g. due to variation in illumination 
or melting) can lead to bias in the results and, as features evolve further, matching will eventually fail. Thus, for rapidly changing 
surfaces, fully automated matching may only be possible over relatively short durations. To follow characteristic features over 
longer periods, manual individual feature identification and interactive tracking can be carried out (e.g. Eiken & Sund, 2012), 
although it is relatively time-consuming (restricting the number of features processed) and is unlikely to deliver sub-pixel 
accuracies. This is the case with the Sólheimajökull data, where rapid image texture change due to surface melting would preclude 
effective use of fully automated procedures for glacier surface tracking over any substantial durations. Decisions on whether to 
use interactive or automated tracking can be guided by consideration of the relative magnitude of feature displacements due to 
ice motion and the expected measurement and registration errors. 

Geo-referencing and 3D coordinates 
To derive 3D geographic point coordinates from images requires a camera model (which provides a generalised description 

of how the camera represents any external 3D scene in its 2D image), the viewing distance to each observed point, and image geo-
referencing parameters which describe the camera position and how it is oriented within the geographic coordinate system. The 
application of photogrammetric techniques and stereo time-lapse installations (Eiken & Sund, 2012, James & Robson, 2014, 
Whitehead and others, 2013, James and others, 2014) is currently being explored to enable viewing distances to be calculated 
directly from multiple simultaneous images, but accurate results are difficult to attain under practical field conditions. For single-
camera systems, geo-referencing can be achieved by aligning the image to a contemporaneous DEM through specific control 
points, and deriving viewing distances (hence 3D geographic point coordinates) by intersecting virtual rays representing the image 
observations, with the DEM surface (e.g. Messerli & Grinstead, 2015). 

In order to process sequential feature observations to derive velocities within an image sequence, an updated DEM should 
be used for each image unless the positional change of the surface can be assumed to be negligible, or a very specific viewing 
geometry is employed which is normal to the directions of surface change and ice movement. However, commonly only a single 
DEM is available, with the implication that any surface changes in the direction of the camera cannot be distinguished. Thus, only 
in camera views which are perpendicular to ice motion and surface change can horizontal and vertical components of motion be 
independently determined (e.g. Maas and others, 2006). For more general scenarios where a component of ice motion or surface 
melt is towards (or away from) the camera, updated view distances are a requirement to separate horizontal and vertical motions. 

 
Our contribution here is to address these challenges by (1) providing software that complements existing image-pair 

matching methods by enabling a flexible, interactive individual feature-tracking approach for the analysis of difficult time-lapse 
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image sequences, including Monte Carlo error analysis, and (2), developing a technique to extract independent horizontal and 
vertical velocity components from image feature tracks by integrating results with a DEM pair. Finally, (3) we demonstrate use of 
these in a case study at Sólheimajökull to identify variations in ice velocity and melt rate. 

METHODS: DATA COLLECTION AND PROCESSING 
To derive a high frequency record of ice movement and melting we developed a workflow to combine time-lapse imagery 

with multi-temporal DEMs (Figure 2). Our time-lapse image processing software, Pointcatcher, allows automatic, semi-automatic 
and fully interactive feature-tracking for image registration and for motion detection. Automated tracking is based on normalised 
cross-correlation of image patches, with selectable patch and search area sizes. The search area for a feature in a subsequent 
image can be centred on the initial feature coordinates, or can follow feature trajectories, with changes in camera orientation 
taken into account. For semi-automatic tracking, results computed using correlation can be interactively updated by the user 
along the sequence. This approach exploits the advantages of visual recognition whilst retaining some speed and accuracy 
advantages from automated processing and, with difficult imagery, delivers much more sustained feature tracks than could be 
achieved with a fully automated approach.  

Our methodology is based on individual feature tracking over prolonged periods, enabling measurement of cumulative 
feature displacements and calculation of mean velocities and within-sequence velocity variations. Image registration is carried out 
using observations of static features to derive corrective camera rotations. The image sequence is finally geo-referenced by 
matching to a DEM, and 3D point coordinates throughout the sequence are determined by integrating a second DEM. Error is 
assessed by determining the precision of the camera orientation based on the static points, and using a Monte Carlo approach to 
re-project that uncertainty onto the DEM. For the Sólheimajökull case study, DEMs were derived from terrestrial laser scanner 
(TLS) surveys carried out at the start and the end of the image acquisition period.  

Study site 
Sólheimajökull is an 8-km-long, non-surging temperate glacier which drains from the Mýrdalsjökull ice cap (Figure 1a). It 

supports a maximum ice thickness of 433 m (Mackintosh and others, 2002, Russell and others, 2010, Kruger and others, 2010, 
Sigurdsson, 2010) and a total area of approximately 78 km2 which extends into the active volcanic caldera of Katla – historically the 
most destructive subglacial volcanic system, and responsible for routing jökulhlaups down the Sólheimajökull outlet glacier (Lawler 
and others, 1996, Le Heron & Etienne, 2005, Roberts and others, 2000). The subglacial drainage system seasonally establishes 
connectivity with the Katla geothermal zone and transports dissolved volatile gases from beneath the glacier in the summer 
meltwater streams (Wynn and others, 2015). The dynamic advance and retreat cycles exhibited by the glacier (Schomacker and 
others, 2012) are frequently asynchronous with other glaciers along the south coast of Iceland, and are likely explained through 
the migration of ice divides (Dugmore & Sugden, 1991).The recent establishment of an ice-contact proglacial lake may also now be 
having an influence on glacier motion (e.g. Carrivick & Tweed, 2013). However, high temporal resolution assessment of 
Sólheimajökull’s motion has never before been captured.  

Time-lapse image acquisition 
Time-lapse images were collected for 73 days between April 30 and July 11, 2013 (Julian days 119 – 191), using a light weight 

setup originally designed for monitoring active lava flows (James and others, 2012) where speed of installation and portability of 
equipment are important factors, and any semi-permanent infrastructure is impractical.  The images were acquired with a dSLR 
Canon 550 with a 28 mm fixed focal length lens, and triggered by an intervalometer. The camera was protected in a small, 
weather-proof box positioned on the ground, aligned appropriately, and secured by partially burying with rocks (Figure 3, inset). 
Power was supplied from an adjacent 12 V battery, recharged by a 500 mA solar panel (also secured by rocks). Image acquisition 
was set for an hourly interval as a deliberate oversampling to increase the probability of obtaining good quality images during 
periods of variable weather conditions.  

TLS data acquisition and processing 
TLS data were acquired on 30 April and 11 July, 2013 using a very-long-range laser scanner (Riegl LPM-321) previously shown 

to be capable of providing useful data over measurement distances of 3.5-4 km (James and others, 2009, Schwalbe and others, 
2008). The scanner was used from elevated ground ~33 m from the time-lapse camera location (Figure 3), with the camera 
included in the scans to enable its position to be determined to within ~10 cm within the scanner’s coordinate system.  

In both TLS surveys, data were acquired of Sólheimajökull and the stationary cliffs either side of the glacier. The TLS was 
levelled and oriented such that its coordinate system was approximately aligned with respect to North. Although not critical to the 
ensuing analyses, the geo-referencing of the initial survey (30 April) was then refined by registering the stable cliff area to a pre-
existing airborne lidar dataset from 2010 (Staines and others, 2015). The second survey was then similarly adjusted to minimise 
the differences in the stable cliff regions between the two TLS surveys (using an iterative approach implemented in the Riegl 
processing software, RiProfile v.1.5.0).  

Image registration 
To account for small camera rotations during the sequence, image registration was carried out by tracking image features 

representing stable topography. Foreground elements of the scene could not be assumed to be stable due to ground heave and 
disruption by tourists, so reference points were selected covering the surrounding ridges and mountain top areas. Unfortunately, 
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varying illumination and snow cover conditions over most of this ground made for highly variable image texture that was 
unsuitable to track. Thus, the most reliable features represented irregular sections of horizon, where dark topography was 
highlighted against light sky or cloud backgrounds. Although this restricted features to a limited region, the horizon crossed the 
width of the image and provided a feature distribution that was reasonable for constraining camera rotation angles. A number of 
additional static features were identified to use as ‘check’ points. These were not used in the calculation of the registration 
parameters, but can be used to give an independent assessment of registration accuracy. 

Image registration comprised a two-stage process; a reference image was selected in which the greatest number of features 
was observed, and initial registrations were derived for all other images, using a fast, robust approach capable of identifying and 
rejecting outlier feature observations. This procedure is based on an image-based transform which does not account for lens 
distortion so, during the second registration stage, remaining (inlier) features are used to define a registration for each image in 
terms of a physical camera model – i.e. rotations around the camera’s horizontal (omega), vertical (phi) and optic axes (kappa). 
The camera model includes lens distortion parameters and, based on previous calibration work with the same lens (James & 
Robson, 2014), only one radial parameter was used for the Sólheimajökull sequence.  For images in which the static features could 
not be observed (e.g. due to complete occlusion of the horizon by cloud), successfully derived camera orientations from a 
sequential image were used. 

Glacier feature tracking 
The glacier surface was monitored by tracking an additional ~50 natural features that were identified as recognisable 

throughout the sequence (even if their appearance changed significantly). Normalised cross-correlation could be used to facilitate 
tracking over timescales of days; however, over longer timescales, the evolving surface usually required updating of the 
correlation template, and interactive adjustment and visual assessment of the feature positions was required. 

Geo-referencing and data integration 
The image sequence was geo-referenced to the TLS coordinate system by defining the camera position and orientation. The 

camera position coordinates were given by the time-lapse camera position identified in the TLS data. Camera orientation was 
estimated by projecting the TLS data onto the image and adjusting the camera angle until the TLS data appeared best aligned with 
the image scene. Due to computer-based matching between image features and topographic data being extremely challenging, 
the alignment process was carried out manually in Pointcatcher, so is not associated with formal error estimates. Nevertheless, 
with the camera used (with a 28 mm lens and 5 μm pixel size) an estimated mis-registration of up to 2 pixels would represent 
<0.005° of misalignment. 

Following geo-referencing, the image-based measurements can be transformed into 3D geographic coordinates through 
consideration of both DEMs (Figure 4). For the images taken simultaneously with the DEM acquisitions (at the start and end of the 
sequence), 3D coordinates for observed features can be derived by reprojecting the feature locations onto the DEM surfaces. 
Reprojection is implemented in Pointcatcher by forming a triangular network from the DEM points then, for each feature, using a 
graphical approach to determine which triangle the image feature ray intersects, and calculating the point coordinates of the 
intersection.  In order to obtain 3D point coordinates for all other images, each point was then assumed to move within the 
vertical plane that contained the start and end positions, i.e. in a straight line if viewed from directly above. Thus, for each feature, 
the 3D start and end points defined a vertical plane, and unique 3D point coordinates could be calculated for all other images in 
the sequence by intersecting the reprojected rays of the image feature with this plane (Figure 4e). 

With interactive (rather than automated) feature tracking, noise levels may be undesirably high in individual tracks, and 
velocities may be determined better by averaging several points. Thus, for each point, cumulative displacement values were 
normalised to the total path length travelled, and then modelled with a best-fit straight line (i.e. a constant velocity model). For 
each image, the differences between the modelled and measured normalised cumulative displacement values were averaged for 
all points, to give a mean variation from the constant-velocity position, described as a fraction of full path length. 

Error estimates 
With the underlying objective being to assess variations in melt and flow processes, absolute geo-referencing of the data was 

not critical for the analyses, so we focus on relative error along the sequence. Consideration of error within camera models or 
DEMs is also outside of the scope of this work, although could be added to the analysis in the future. 

The relative image registration quality represents how closely the position of a theoretical, perfectly measured static feature 
can be reproduced in different images. When using a camera model with a fixed location, registration quality can be characterised 
by the uncertainty in estimated camera rotation angles, which is a function of the number and distribution of tracked static 
features, and any errors in their coordinates. Thus, to assess the quality of image registration, a Monte Carlo approach can be used 
in which orientation values are estimated repeatedly, with different randomised errors (i.e. perturbations) added to the static 
points’ image positions for each estimation. The perturbations are taken from a pseudo-random normal distribution with a 
standard deviation that reflects the precision of the image measurements. This precision can be estimated directly by considering 
the distances (in pixels) between the static features in a registered image and the equivalent features in the reference image; the 
root of the mean square (RMS) of these residual distances indicates the precision of the static feature measurements made during 
tracking.  

Uncertainty in the image registration is thus defined by distributions of likely camera orientation angles. The overall precision 
of feature measurement for any particular feature within a registered image sequence, σmr, is then a combination of the effect of 
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image registration error within the region of the feature, σr, and the image measurement precision, σm, representing how well the 
coordinates of that feature can be located in different images:  

 σmr = (σr
2 + σm

2)½ 1). 
Finally, the relative error for a point in 3D can be derived by re-projecting this uncertainty onto a DEM surface. The re-projection 
process means that error magnitude in geographic coordinates increases for both increasing viewing distance and decreasing 
angle of incidence to the surface, with the resulting planimetric uncertainty for any one point unlikely to present a normal 
distribution. In Pointcatcher, the Monte Carlo implementation represents the uncertainty as a distribution of likely point positions 
on the DEM. Furthermore, the reprojected uncertainties from two images can be combined and their influence on velocity 
estimates assessed. 

RESULTS 
Over the 73 days between TLS surveys, 1768 time-lapse images were acquired. Due to Sólheimajökull surface velocities being 

≤0.2 m day-1, the sequence was down-sampled to 145 images to represent the best available at a ~12 hr interval.  

Image registration 
Due to the relatively constant appearance of the static features (Figure 5a), their locations could be dominantly tracked 

throughout the sequence using a fully automatic approach. Manual intervention was required when there was a sudden, large 
change in camera orientation (resulting from camera movement during maintenance and data retrieval on Julian days 119 and 
189). In this case, using a few manually tracked features to make an initial estimate of a new camera orientation then enabled 
successful automated tracking of the remaining features. 

Typically, >20 static features were successfully observed in an image (Figure 6a, b), resulting in camera orientations being 
directly calculated for 132 images of the sequence. In the remaining 13 images, low cloud completely obscured the distant and 
elevated topography used for the static points and orientation information had to be propagated from preceding or following 
epochs. As well as the manual interventions, the calculated camera orientation angles (Figure 6c) show initial variability early in 
the sequence due to ground heave, then a gradually declining rotation, presumably related to propagation of a thawing front 
deeper into the ground. 

For each image in which the static points could be observed, the Monte Carlo analysis (2000 simulations per image) resulted 
in camera angle distributions which all passed Chi-squared tests for normality, indicating that a standard deviation statistic would 
reasonably reflect the relative orientation precision. Thus, image registration delivered three camera angles per image, along with 
associated precision estimates which varied depending on the number, distribution and quality of the static point observations in 
each image (Figure 6c).  

The RMS of the residual magnitudes on the static points used for image registration show a mean of 0.51 pixels from along 
the sequence (Figure 6d). The RMS residual for the check points is similar, but rises notably after Julian day 183 to ~1.2 pixels. This, 
along with the strongly decreasing number of observed points due to cloud cover (Figure 6b), indicates increased uncertainty in 
image registration for the last ~10 days of the sequence. Note that after Julian day 190, cloud prevented observation of the static 
points in all but one half of one image thus, for this period, estimates of camera orientation are weak, with evaluation of precision 
not possible for most images. 

Glacier feature tracking 
On the glacier surface, varying snow cover and rapid melting resulted in image texture that evolved too quickly to be tracked 

over sustained periods along the sequence. Consequently, most of the glacier features tracked represented the base of dirt cones 
(Figure 5b) because, although these also evolved significantly, with some even disappearing to leave only faint surface traces, their 
junctions with the glacier surface generally provided strong image contrast. This evolution meant that semi-automatic tracking 
was required with frequent updates of the correlation template to maximise the length of tracks. The ‘noisiest’ tracks were from 
the most rapidly changing cones which needed the most operator interaction during tracking and could be challenging to identify 
the same representative point in subsequent images, even visually. 

For the Sólheimajökull data, we estimate that the manual measurement precision, σm, of the evolving natural features can be 
approximated as ~1 pixel. Using Equation 1 to give a sequence-wide precision estimate by assuming that the mean RMS error on 
the static points (0.51 pixels) represents an indicative estimate for registration accuracy across the images and along the 
sequence, gives σmr ≈ 1.1 pixels. Inspection of the feature tracks supports this value by suggesting a general noise magnitude of ~1 
- 2 pixels (Figure 7b). In limited cases (e.g. the start of track 2, Figure 5b), error magnitudes of up to ~5 pixels are shown, indicative 
of difficulties in feature identification. 

3D geographic coordinates 
The differences between the DEMs show a reasonably consistent -3.0 m vertical change across the scene, apart from where 

the Katla debris band lies (Figure 8). Transforming the feature tracks into 3D point coordinates indicated that they represent 
horizontal paths of 6 m to 15 m in length, denoting mean horizontal velocities of 0.06-0.20 m day-1, with the slower velocities 
located towards the edge of the glacier (Figure 8b). Velocity uncertainties resulting from image measurement and relative 
registration error (shown in Figure 8) are calculated by determining all combinations of path length between Monte Carlo 
simulations for the first and last images (500 perturbed positions for each point in each image, giving 2.5×105 simulated path 
lengths per point). The uncertainties are due to those of the reprojected point positions, so are independent of the glacier 
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movement and reflect the relative orientations of the camera view and the surface onto which it is reprojected. Thus, uncertainty 
ellipses are aligned towards the camera, and increase in magnitude with viewing distance and with decreasing incidence to the 
surface. 

Towards the centre of the glacier, the measurements suggest a region of constant horizontal velocity, for which the 19 points 
furthest from the glacier margin (Figure 8b) give an overall mean of 0.170 m day-1, with a standard deviation of 0.022 m day-1. 
However, variability between these measurements is not fully explained by the magnitude of their error bars. Although this could 
be interpreted to represent fine-grained horizontal variation in surface velocity, it is important to recognise that these velocities 
are derived from the bases of dirt cones, and cone evolution could add variability that is not captured within the Monte-Carlo-
based error bars. 

 Separating point tracks into cumulative horizontal and vertical displacement components (i.e. displacements from their 
initial point positions) suggests that many points express small but systematic deviations from constant velocity (Figure 9a). 
Normalising the cumulative displacements by path length, and then averaging all paths, highlights these temporal variations 
(Figure 9b). This indicates that the variations are systematic between different points, with periods of slower-than-average ice 
movement illustrated by negative gradients (Figure 9b), where point positions are gradually falling behind those given by the 
constant (mean) velocity models. Positive gradients indicate periods when points are ‘catching up’ or overtaking the positions 
derived from the mean velocity models, thus indicate periods of faster-than-average ice velocity.  

Over the course of the sequence, both horizontal and vertical velocity components demonstrate periods of high and low 
velocity with, for the horizontal component, magnitudes of up to ~10% velocity variation over durations of ~25 days. The brief 
period at the end of the monitoring period, where horizontal velocity appears to almost double (Figure 9b), occurs when the static 
points were generally obscured by cloud (Figure 6b). Consequently, during this period, image registration has to be assumed to be 
weak, with estimates of orientation precision only available for the last image. Thus, we consider the apparent rapid velocity 
change as likely to be an artefact of image registration error, and it is not interpreted as representative of a glacial process. 

DISCUSSION 
The results demonstrate our semi-automated, interactive individual feature tracking methodology for image-based ice 

velocity measurement, as a complementary approach to the fully automated image-pair matching commonly used with satellite 
data (e.g. Heid & Kääb, 2012). Whereas automated techniques work well when image changes are dominated by ice flow, 
interactive approaches should be considered when image variations are complex (e.g. from surface melting). 

Good features to track 
With automated tracking techniques, the use of natural features for image registration and velocity estimation can give 

problems due to variations in their image texture through time. In the Sólheimajökull dataset, static features on the surrounding 
cliffs were too affected by illumination changes and varying snow conditions to enable reliable tracking for image registration. 
However, features on the horizon proved suitable, even though the saturated or near-constant brightness values in the sky give no 
useful areas of image texture for cross-correlation. Thus, the correlation signal is reliant on the sharp contrast at the horizon and, 
to give good localisation in both x and y directions, in any regions used the horizon should not be highly linear (Figure 5a). 

Much of the recent work on glacier feature tracking has relied on heavily crevassed surfaces to provide the image texture 
required. The surface of Sólheimajökull is much more varied, with image texture also presented by features such as volcanic 
tephra layers, cones and thrust planes. Care has to be taken to select appropriate features to track – i.e. features that were not 
only persistent through the image sequence, but where feature movement is also representative (or as representative as possible) 
of surface displacement. Features such as those representing thrust planes must be avoided when surface melt rate is not 
negligible with respect to ice movement, because calculated velocities would otherwise reflect a combination of glacial motion 
and melt-back along the reverse inclined plane. 

Interactive individual point tracking or automated image-pair matching? 
For guiding decisions on which approach to use for a given image sequence, the durations over which successful tracking can 

be carried out can be compared to the anticipated duration required for a given signal to noise ratio (i.e. a ratio of pixel 
displacement representing ice motion, to apparent pixel displacement due to other factors). To estimate the number of image 
intervals, i, to achieve a specific signal to noise ratio, SNR, we can consider the mean expected image displacement per image 
interval, d, and the overall image measurement error (Equation 1), which comprises both error in the image feature measurement, 
σm, and the image registration, σr: 

 𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆×�𝜎𝜎𝑚𝑚2+𝜎𝜎𝑟𝑟2

𝑑𝑑
 2). 

For the Sólheimajökull sequence, d ≈ 1 pixel (~150-pixel-long displacement tracks over the 144-image sequence, Figures 6, 7) and, 
as previously discussed,  σm ≈ 1 pixel and σr ≈ 0.5 pixel. Thus, for a signal to noise ratio to exceed 10, measurements should be 
taken over intervals of greater than ~11 images. Successful fully automated image matching could reduce σm to typical values of 
~0.1 pixel (or possibly smaller), but the overall error term would remain high, constrained by the image registration component, 
σr. In this case, 5 image intervals would still be required for SNR > 10. Note that although σm can be effectively reduced by 
averaging multiple features, this would not similarly reduce σr, because registration error is systematic across any one image.  
Thus, averaging over ~30 features also results in i ≈ 5. Such analysis can help determine processing strategy, but equally, for longer 
sequences, gives an indication of the expected duration over which systematic change (i.e. ice motion) could be reliably detected. 
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Thus, at Sólheimajökull, we would expect to require a duration of ~2.5 days to get reasonable ice velocity measurements and, 
therefore, ~25 days in order to determine variations of 10% with the same confidence (as reflected in Figure 9b). 

Re-projected uncertainties 
Although such a broad error analysis is useful for consideration of measurement strategy, it does not specifically consider 

error variability within sequences and across images. Such variability is captured by the Monte Carlo approach, where camera 
orientation uncertainty is determined for each image, and directly applied to each specific feature measurement. Examination of 
the uncertainty in camera orientation angles shows that it is generally well represented by Gaussian probability distributions, and 
can thus be appropriately defined by statistics such as standard deviation. However, only under restricted circumstances and with 
a flat DEM surface, will the use of these distributions to re-project image features onto a DEM result similarly near-normally 
distributed geographic coordinates. Consequently, in most scenarios, the uncertainties associated with planimetric positions are 
not normally distributed so, although there are limited practical alternatives, the association of point co-ordinates and velocities 
with standard deviations should be treated with caution. 

In our analyses, we focus on down-sequence variability, and thus neglect the constant errors in overall geo-referencing, the 
DEM and camera model. For a rigorous treatment of absolute error, the use of static ground control points is recommended as 
one of the best ways to incorporate overall geo-referencing precision into the error propagation. In many cases, repeat, high 
resolution TLS data may not be available, and only a single low resolution DEM (e.g. 10’s m) may be available. In this case, 
Pointcatcher can still be used for tracking, registration, geo-referencing and re-projection, but separation of horizontal and vertical 
velocity components will only be possible for specific camera orientations. The errors associated with using a low resolution DEM 
could be assessed by applying offsets to the DEM and considering the variation in re-projected point positions. For relative 
measurements over long viewing distances at favourable angles, errors may be deemed acceptable. 

Ice velocity variation at Sólheimajökull 
The synchronous velocity variations detected for the different points measured on Sólheimajökull indicate systematic 

velocity changes during the image sequence (Figure 9). Horizontal velocities varied by ~5-10%, over timescales of ~25 days, and 
had changes that were asynchronous with those in the vertical component, suggesting process independence. Such independence 
may be due to time delays incurred from surface meltwater transit to the glacier bed where water pressurisation can promote 
localised reduction in basal drag, or a longitudinal coupling of ice dynamics in which local movement is driven by upstream 
conditions independent of local surface melt dynamics. A detailed understanding, to include any basal melting contribution from 
Katla will require additional measurements, which we leave for future work. 

CONCLUSIONS 
We present new software to facilitate quantitative measurement from oblique time-lapse imagery of glaciers. As well as 

providing a straightforward feature tracking application, the software enables integration of time-lapse data with DEMs, and 
includes error analysis based on the projection of Monte Carlo-based uncertainties onto DEM surfaces. Using this, we implement a 
novel approach for deriving independent horizontal and vertical ice velocity components using only two DEMs acquired at 
different times within the image sequence. Illustrating the process on a 144-image sequence from Sólheimajökull, indicates a 
mean ice velocity of 0.170 m day-1 (19 measurements, standard deviation of 0.022 m day-1) at distances greater than ~200 m from 
the glacier edge during May-July, 2013. Normalising cumulative point displacements by their overall path lengths enables 
averaging to be used to mitigate measurement noise and revealed systematic variations in horizontal ice velocity of ~5-10% which 
were asynchronous with vertical velocity changes.  

Pointcatcher, our software for carrying out time-lapse feature tracking, down-sequence image registration, Monte Carlo 
error analysis, geo-referencing and DEM integration is freely available over the web: http://tinyurl/pointcatcher. Future work will 
build on this framework to include direct registration of cameras using control point resection, and implement image-only 3D 
measurements through stereo image sequences (James & Robson, 2014). 
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FIGURES 
Figure 1. (a) The Mýrdalsjökull area of Iceland (location arrowed in inset). The box outlines the snout and pro-glacial regions of the 
outflow glacier Sólheimajökull shown in the shaded relief map (b) derived from 2010 airborne lidar data (Staines and others, 
2015). In (b), the box indicates the surveyed region shown in Figure 8a, with the black circle giving the location of the TLS and 
time-lapse camera. Coordinates are given in Icelandic National Grid (metres). 
 
Figure 2. Workflow outline for data acquisition and processing, with greyed boxes indicating processes carried out within the 
Pointcatcher software. 
 
Figure 3. Panoramic view (30 April, 2013) looking approximately North East over Sólheimajökull, showing the TLS during data 
collection. Inset shows the time-lapse camera (left arrow) and solar panel (right arrow), when viewed from the direction of the 
glacier. 
 
Figure 4. Derivation of 3D point coordinates for a feature observed within an image sequence. (a) Image registration throughout 
the sequence allows the set of feature observations to be represented in one reference camera orientation, C. (b) For the 
observation made closest in time to the first TLS survey, 3D coordinates can be calculated by projecting the observation through 
the perspective centre of the camera, p, onto the DEM surface defined by the TLS data, DEM 1. (c) The same procedure is carried 
out with the last point observation and the second DEM, DEM 2. (d) The two 3D points are then used to define a vertical plane in 
which the point is assumed to lie at all other times. (e) 3D coordinates for all other image observations of that point are then 
calculated by intersecting their observation rays with the plane. 
 
Figure 5.  Example features tracked, as shown by patches of 31 × 31 pixels extracted at five different times and centred on the 
features’ locations. Feature number is given in top left of first image for each feature, and relates to the labels in Figure 6a. The 
consistency of the horizon-based static features (a) used for registration contrasts with the significant evolution of the glacier 
surface features (b). 
 
Figure 6. (a) Image (30 April, 2013) showing the position of tracked features adjusted for camera rotation; static points are shown 
by crosses located on the horizon, red for those used to derive camera orientation and white for those used as check points. (b) 
The number of static points visible and determined as inliers for orientation calculations, and the number of visible check points in 
each image.  (c) The relative camera rotation angles derived for each image, with the sharp step in Phi due to camera disturbance 
during data retrieval. The shaded bands represent the uncertainty in the angle estimations (see text), magnified by a factor of 10 
for visibility. The largest peaks in uncertainty (particularly in kappa, rotation around the optic axis) are due to cloud obscuring 
static points on one side of image.  (d) The quality of the image registrations are indicated by the RMS residuals on the 
transformed static (orientation) and check points, and are dominantly < 1 pixel. 
 
Figure 7. Image feature tracking for three points, using either correlation only (grey) or manually assisted correlation (black) 
tracking. In (a) track continuity through time is shown with the bars representing the periods in which the features were identified, 
and the arrows indicating when the reference template used in the automatic correlation-only tracking was either set or reset. For 
correlation tracking, a threshold of 0.6 was used to determine successful matches to the template. In (b) changes in feature image 
pixel coordinates are shown (after correction for camera orientation changes, and with tracks moved adjacent to one another for 
clarity).  
 
Figure 8. (a) Surface change in the boxed region of Figure 1b, between 30 April and 11 July, 2013. Elevation change, derived by 
differencing 2-m-resolution DEMs (generated from the TLS data using Surfer (v.9.11) software), is given by the shading. The 
position of points analysed in the time-lapse sequence are given by black dots, with the associated vectors showing their total 
horizontal displacement over the period (note the vector scale). The ellipses illustrate the uncertainty in the displacements (see 
text), and are magnified by a factor of 10 for visibility. Inset shows the full distribution of Monte Carlo displacements calculated for 
Point 2 (labelled). Plotting horizontal velocity magnitudes against Northing (b) illustrates the increase in velocity towards the 
glacier centreline. Velocities calculated directly from the horizontal displacements between the start and end point positions (i.e. 
as in (a)) are given in grey, with associated error bars representing ± one standard deviation, and the dashed line giving the mean 
value of the points it overlaps. For each point, the black symbol represents the velocity value obtained from straight line fits to all 
its displacement data. 
 
Figure 9. (a) Examples of point displacement measurements along the entire sequence (point numbers, corresponding to labels in 
Figure 6a, are given in the square brackets). The dashed lines show linear fit models to the displacement data, from which mean 
point velocities can be derived. For clarity, the vertical components have been offset by 1 m to separate the data. (b) Mean 
deviations in point displacement from the constant velocity models, with the grey bands illustrating the standard error of the 
mean at each epoch. Negative gradients indicate periods of slower-than-mean velocity and positive gradients indicate periods of 
faster-than-mean velocity. The dashed lines in the upper panel give linear fits to different periods, and are labelled with the 
relative change in velocity with respect to the overall mean. 
 



Figure 01

ba

Route 1

Mýrdals-
jökullEyjafjalla-

jökull

Katla

Vik

Sólheimajökull

Vik
N

10 km

0 600

Elevation (m)



Feature tracking
Static points           Glacier points

sequence geo-
referencing

3D glacier
point-tracks

relative image
co-registration

along sequence 

DEM 1 & 2 
(e.g. TLS
surveys) 

Time-lapse image sequence

Figure 02

reproject to
DEM surfaces

derive interm-
ediate points



Figure 03



Figure 04

a b c d e

C

DEM 1

DEM 2

DEM 1

p



2

7

23

119 137 155 173 189

Julian day

6

21

Figure 05

St
at

ic
 fe

at
ur

es
G

la
ci

er
 fe

at
ur

es

a

b



Julian day

RM
S 

re
si

du
al

 (p
ix

el
s)

120 130 140 150 160 170 180 190
0

1

2
orientation
check

db

N
o.

 o
rie

nt
at

io
n

po
in

ts
 (i

nl
ie

rs
)

N
o.

 c
he

ck
po

in
ts

 v
is

ib
le

0

10

20

30

0

2

4

6

Julian day
120 130 140 150 160 170 180 190

orientation check
Julian day

120 130 140 150 160 170 180 190

Ca
m

er
a 

or
ie

nt
at

io
n 

ch
an

ge
 fr

om
 re

fe
re

nc
e 

di
re

ct
io

n 
(°

) Omega
Phi
Kappa

c

−1

0

1

Figure 06

a

6

2

21

7 23



Figure 07

Fe
at

ur
e 

nu
m

be
r

b

Julian day
120 130 140 150 160 170 180 190

21

6

2

a

pixels
500

21

6
2

Fe
at

ur
e 

nu
m

be
r



Figure 08

Elevation change (m)

33
67

00
33

68
00

33
69

00
33

70
00

33
71

00

33
67

00
33

68
00

33
69

00
33

70
00

33
71

00482800 482900 483000

482800 482900 483000

0-5

a b

Velocity (m day-1)

0.2 m day-1

0 0.1 0.2

2



Figure 09

0

4

8

12

a
M

ea
n 

po
in

t d
is

pl
ac

em
en

t w
ith

 re
sp

ec
t t

o 
co

ns
ta

nt
 v

el
oc

ity
 m

od
el

 (%
 o

f p
at

h 
le

ng
th

)
Po

in
t d

is
pl

ac
em

en
t  

fr
om

 in
iti

al
 p

os
iti

on
 (m

)
horizontal

component

vertical
component

Julian day
120 130 140 150 160 170 180 190

-4

-2

0

-6

[2]  - 0.068 m d-1

[6]  0.063

[21]  -0.059 

horizontal

−2

0

2

4
b

-9%

+8%

-5% +8
3%

Julian day
120 130 140 150 160 170 180 190

-8

-4

0

vertical

16

[2]  0.20 m d-1

[6]  0.10

[21]  0.07


	James et al Pointcatcher preprint
	INTRODUCTION
	CURRENT TECHNIQUES AND CHALLENGES FOR ANALYSIS OF GLACIAL TIME-LAPSE IMAGES
	Image registration
	Glacier feature tracking
	Geo-referencing and 3D coordinates

	METHODS: DATA COLLECTION AND PROCESSING
	Study site
	Time-lapse image acquisition
	TLS data acquisition and processing
	Image registration
	Glacier feature tracking
	Geo-referencing and data integration
	Error estimates

	RESULTS
	Image registration
	Glacier feature tracking

	DISCUSSION
	Good features to track
	Interactive individual point tracking or automated image-pair matching?
	Re-projected uncertainties
	Ice velocity variation at Sólheimajökull

	CONCLUSIONS
	ACKNOWLEDGMENTS

	2432_0_merged_1432487797_figures_only
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9




