Estimating per-pixel thematic uncertainty in remote sensing classifications

Brown, K. M. and Foody, G. M. and Atkinson, P. M. (2009) Estimating per-pixel thematic uncertainty in remote sensing classifications. International Journal of Remote Sensing, 30 (1). pp. 209-229. ISSN 0143-1161

Full text not available from this repository.


Standard methodologies for estimating the thematic accuracy of hard classifications, such as those using the confusion matrix, do not provide indications of where thematic errors occur. However, spatial variation in thematic error can be a key variable affecting output errors when operations such as change detection are applied. One method of assessing thematic error on a per‐pixel basis is to use the outputs of a classifier to estimate thematic uncertainty. Previous studies that have used this approach have generally used a single classifier and so comparisons of the relative accuracy of classifiers for predicting per‐pixel thematic uncertainty have not been made. This paper compared three classification methods for predicting thematic uncertainty: the maximum likelihood, the multi‐layer perceptron and the probabilistic neural network. The results of the study are discussed in terms of selecting the most suitable classifier for mapping land cover or predicting thematic uncertainty.

Item Type:
Journal Article
Journal or Publication Title:
International Journal of Remote Sensing
Additional Information:
M1 - 1
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
10 Dec 2015 11:28
Last Modified:
20 Sep 2023 00:49