
Teaching Computer Science to 5-7 year-olds: An initial
study with Scratch, Cubelets and unplugged computing

Benjamin Wohl
Highwire DCT

Lancaster University, Lancaster, UK
b.wohl@lancaster.ac.uk

Barry Porter Sarah Clinch
School of Computing & Communications

Lancaster University, Lancaster, UK
b.f.porter | s.clinch@lancaster.ac.uk

ABSTRACT
Changes to school curriculums increasingly require the in-
troduction of computer science concepts to younger children.
This practical report compares three existing tools for teach-
ing computer science concepts: unplugged computing, tan-
gible computing and MIT’s Scratch. We specifically focus on
the use of these tools for school pupils aged 5-7. We describe
a comparative study with 28 pupils from three rural UK pri-
mary schools that explores engagement with, and effective-
ness of, each tool. As far as we are aware this is the first
such comparative study of its kind. We demonstrate that
the studied tools can be used to successfully introduce core
computer science concepts to pupils as young as 5 years of
age, that the methods used by teachers to deliver computing
curriculums may greatly impact the learning outcomes, and
that particular care needs to be taken to ensure that pupils
focus on learning concepts rather than learning tools.

Categories and Subject Descriptors
[Social and professional topics] Computing education –
Computer science education

Keywords
Scratch; unplugged, Cubelets; computing curriculum; pri-
mary education; early years; tangible computing

1. INTRODUCTION
In recent years organizations such as Computing at School

(CAS) have been advocating for more computer science to
be taught in UK schools [3]. In September 2014, revisions to
the English National Curriculum introduced computing as a
statutory requirement for children at all stages of schooling.
Although a positive development, many primary schools are
faced with the new challenge of delivering computer science
education to young pupils. The new UK Computing Cur-
riculum begins with pupils aged 5–7. However, to date, little
research has explored how to teach the complex concepts of
computing to children of this age.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WiPSCE ’15, November 09 - 11, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3753-3/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2818314.2818340

In this paper, we explore techniques for teaching comput-
ing in school to some of the youngest pupils, with particular
focus on delivery in small rural primary schools. We com-
pare three different methods for teaching basic concepts of
computer science to 5–7 year olds. Our research question is:
“What is the effectiveness of various methods of delivering
the UK computing curriculum to key stage one pupils in
small rural primary schools?”

Motivated by the introduction of computing to the UK
National Curriculum, the study was conducted in June 2014
(prior to implementation of the new curriculum in Septem-
ber 2014). We targeted three small schools in the North
West of England. Within the study, pupils and schools were
introduced to three different techniques for learning about
computer science: unplugged computing, tangible comput-
ing, and Scratch programming. All three techniques have
been used in prior work in the classroom or with children,
with a range of age groups, but rarely has the focus been
on assessing the effectiveness of delivering specific computer
science concepts to very young children. As well as a lack
of research in the area of teaching computing to this age
group, there is particular need to compare various methods
of classroom delivery of computational concepts, in order to
support the future teaching of these topics [7].

2. RELATED WORK
In recent years a range of new resources have been de-

veloped to engage young people in computing. These in-
clude tools such as unplugged computing, tangible comput-
ing and screen-based environments such as Scratch. How-
ever, there is limited study of the effectiveness of these tools
with younger pupils, and we are not aware of any research
that performs comparisons across all three methods.

2.1 Computer Science Unplugged
Computer Science Unplugged (CS Unplugged) is an ap-

proach to teaching computer science where the pupils them-
selves enact the algorithms. The approach was initially de-
veloped at the University of Canterbury in New Zealand,
with detailed descriptions of activities that use computa-
tional logic in an unplugged environment [4]. These activi-
ties range from creating algorithms to counting with binary.
Use of CS Unplugged has mainly been studied with older
children (high school and middle school) with a focus on
pupil interest in the subject of computer science as separate
from programming or ICT. However, the impact of this to
date has mixed reports in the literature [1, 6].

2.2 Tangible computing and Cubelets
Tangible interfaces have been shown to be effective for

teaching complex computation concepts, simulating simple
computation processes at a high levl of abstraction [18].

A number of tangible computation devices have been de-
veloped to be useable with little or no instruction, often
using a system that resembles Lego or stacking blocks that
allows the units to interact in a complex manner [10]. Tan-
gible interfaces have been shown to be particularly beneficial
for 5–6 years olds engaged in whole-class activities and dis-
cussion, although they seemed to be less effective when used
in small-group activities [8].

For this study we used a system called Cubelets, which
connect using magnets and transmit data and power be-
tween the blocks [16]. Cubelets have been used to some ex-
tent in the classroom and in settings like science museums;
however, there has been limited study of the effectiveness of
the Cubelets for teaching computer science [13].

2.3 Scratch
MIT’s Scratch programming language launched in 2007.

Initially developed for after-school clubs, Scratch allows users
to create programs within a semi-object-oriented environ-
ment. Scratch aims to be“more tinkerable, more meaningful
and more social” than any other programming environment
for young people [14]. Scratch has fostered an online commu-
nity where users can save and share their work online, and
where remixing each others’ programs is encouraged [11].

Scratch has been shown to be an effective way to in-
troduce programming and teach computer science concepts
with pupils aged 13-14 (with a few exceptions) [12].

2.4 Comparative Studies
There have only been a small number of studies which

compare methods of delivering computer science concepts
to young people.

One of the most relevant studies took place in 2005 and
worked with 4-6 year olds using a tangible ubiquitous com-
puter system versus a desktop based game to teach children
about various common hazards. This study found that tan-
gible interfaces were significantly more effective at deliver-
ing the content [5]. This study also highlighted the difficulty
of studying and comparing different environments. Another
study in a school context, involving age groups 5–6, 7–8, and
11–12, examined the use of a tangible computing interface
and an isomorphic screen-based interface for programming
a robot. The study found that the tangible interface was
easier to use and more enjoyable for the two youngest age
groups, while for the older age group the tangible interface
was considered to be more enjoyable but more difficult to
use than the screen-based alternative [15].

Finally, outside of an education setting, the study re-
ported in [9] demonstrates that tangible interfaces were also
found to be more attractive than screen-based environments
for families and young children to program a robot in an in-
formal museum environment.

All of these papers demonstrate the challenges of compar-
ing various delivery methods as it can be difficult to repro-
duce all aspects needed in one environment versus the other.
For example, in all of these examples efforts were made so
that the desktop and physical interfaces mirrored each other
at least in appearance if not functionality. As far as we are
aware ours is the first study to compare techniques for de-

livering specific computational concepts, rather than using
computing interfaces to deliver other teaching outcomes.

3. METHODOLOGY AND APPROACH
This project focused on the three main concepts from the

UK computing curriculum: ‘algorithms’, ‘logical prediction’
and ‘debugging’ [17]. Our aim was not to evaluate the value
of teaching these concepts to this age group, but rather to
study the effectiveness of three different methods of delivery.

As previous work has highlighted that teacher understand-
ing and engagement can be limited [2], in this study we pur-
posefully involved the classroom teachers in all sessions.

3.1 Schools and Participants
We conducted our study in three UK primary schools.

The schools were all located in rural Cumbria and each
served approximately 70 pupils (min 68, max 74). For the
purposes of this study we focused on pupils in“Year 1”(aged
5–6) and in “Year 2” (aged 6–7). Across the three schools,
we involved a total of 28 students aged 5–7 years (15 boys,
13 girls). Scratch and Cubelets sessions were conducted in a
normal classroom environment and unplugged sessions were
conducted in a school hall or outside.

School A. Our sessions at School A were conducted with
a group of ten students: five from Year 1 and five from Year
2 (3 boys and 2 girls from each age group). Sessions took
place in the morning running from 09:30–11:45, with a half
hour break beginning at 10:30, resulting in approximately 1
hour 45 minutes of class time.

School B. At School B the sessions were conducted with
the entire cohort of Year 1 pupils, 11 in total (4 boys and 7
girls); no Year 2 pupils participated in the sessions at this
school. Sessions took place in the morning running from ap-
proximately 09:30–12:00 with a break at 10:30 (i.e. around
2 hours of class time). Pupils in School B referred to ex-
tensively using computers to conduct research and produce
Publisher and PowerPoint documents.

School C. In School C the sessions were conducted with
the entire cohort of Year 2 pupils, 7 in total (5 boys and
2 girls); no Year 1 pupils participated in the sessions at
this school. Sessions took place in the afternoon running
from approximately 13:15–15:30, with a 15 minute break
beginning at 14:30, resulting in around 2 hours of class time.

3.2 Session Execution
All three sessions followed a similar structure, starting

with an introduction and reflection either on the pupils’
experience with technology (in the first session) or what
they remembered from the previous week (in subsequent
sessions). There was then a review of the main concepts,
followed by an introduction to the tool with a number of
short activities and a ‘paper model’ worksheet, followed by
time to complete a challenge with the tools.

For all three activities the challenge involved creating a
system which involved two inputs (for example movement
and light) and two outputs (for example sound and light).
All of the sessions were planned to take between 1 hour
45 minutes and 2 hours, with a break towards the middle
of the session. Typically the first hour was facilitator-led
learning, with the second half of the session (after the break)
allowing the pupils to explore the tool or technique with
minimal direction (see link at end of the paper for detailed
lesson plans of the sessions). Creating a paper model at the

halfway point provided an opportunity for the pupils to both
demonstrate their understanding of the technique and also
make prediction about how to solve the challenges.

The sessions were conducted the following order:
School A: Cubelets/Unplugged/Scratch;

School B: Scratch/Cubelets/Unplugged; and

School C: Unplugged/Cubelets/Scratch.
The first session in each school started with a 15 minute

introduction to the terms algorithm, logical prediction and
debugging. These terms were explained through the pupils
helping the facilitator to write an ‘algorithm’ for brushing
their teeth, they then were asked how they would know if
they had successfully brushed your teeth (logical prediction).
Finally they were asked to close their eyes and go through
the algorithm step by step, ‘debugging’ the algorithm.

Although this entire process was not repeated at the be-
ginning of following sessions the pupils were given a chance
to ‘refresh’ what these concepts meant in subsequent ses-
sion. They were also given a chance to recall what they had
done or learned from the previous session.

3.2.1 Unplugged
In these sessions the pupils were introduced to the concept

of ‘inputs’ and ‘outputs’ through the game of ‘Simon Says’.
The pupils were then split into pairs with one person as an
output (wearing a blindfold) and the other an input (told to
respond to a hand signal from the facilitator). The pupils
then sent a signal by holding hands. The pupils were then
introduced to the boolean concepts of ‘or’, ‘and’, ‘xor’ and
‘not’ and with the facilitator created more complex systems
which incorporated these concepts. The pupils worked in
groups of 4–5 (2 inputs, 1 or 2 logic gates, and one output).
To simulate a range of inputs, the facilitator used a range of
verbal and visual cues to signal to the ‘input’ children when
to run across to the logic gate. Pupils who were ‘outputs’
were given a small torch that they turned on or off depending
on the signal they received from the logic gate.

3.2.2 Cubelets
In these sessions, after an introduction to the Cubelets

system the class was split into two groups. Each group had
a similar set of four ‘think’ Cubelets, 2 ‘sense’ Cubelets,
three ‘act’ Cubelets and one battery. The groups were ini-
tially introduced to all of the output (act) and input (sense)
Cubelets and allowed to explore different combinations of
them. They were then introduced to the ‘think’ Cubelets
and were able to explore how these cubes changed the be-
haviour of their creations. As the groups had 3 different
inputs they could explore what happened when more than
one input was paired with a single output. The pupils were
then given a short amount of time to explore different com-
binations in their small groups.

3.2.3 Scratch
In these sessions we used the online version of the Scratch

software and the pupils worked in pairs. Before the session
the facilitator created a number of generic Scratch accounts
opened to a prepared project1 at the beginning of the ses-
sion. A select number of Scratch commands were already
available in ‘workspace’ for the pupils to work from. During
the Scratch session the pupils were first introduced to the

1http://scratch.mit.edu/projects/21482378/

different commands available in Scratch. They were then
shown a number of specific commands to move the Scratch
cat and allow the sprites to interact.

3.3 Paper Models
Paper models were initially used as a way of assessing the

pupils’ ability to make logical predictions about algorithms
(see Fig. 1). At the halfway point of the session the pupils
were asked to use these models to create a representation
of what they had already done and also a representation
of an algorithm that they had not done. After noting the
children’s response to the models the research team felt that
they could also be used as a proxy for understanding. Details
of all paper models are available online for reference2.

3.4 Data Collection
Data collection from the pupils was in two forms: paper

models and interviews. Paper models were used to assess un-
derstanding of the tool, both whether the pupils were able
to create a model that would work (based on their knowl-
edge) or reproduce one of the examples they had already
created. In each session the pupils had approximately 15
minutes to complete the paper model. The models were
marked as either Y (for showed understanding), N (did not
show understanding) or M (unclear if there was understand-
ing or not). Maybes included where the model was correct
but the pupil couldn’t explain it or vice-versa, or where it
was difficult to determine if understanding had been gained.

During the final half hour of the session the pupils were
interviewed in pairs or as a group of three. They were asked
to explain the three concepts and also to rate the session
for fun on a scale of 1-10. They were then asked 5 quali-
tative questions: 1.) What do you think you learned from
the activity? 2.) Would you like to do this activity again?
3.) How does this compare to the previous weeks activity/
previous experience with technology? 4.) Do you have any
questions about this activity or computer programming in
general? 5.) What do you want do next on your project?
In transcription the answers to questions 1) and 4) were
coded as either pertaining to the concept or the tool of each
session. Questions 2) and 3) were used as quantitative mea-
sures and the response to question 5) was coded as being
either relevant to the session or not.

4. FINDINGS AND DATA
Due to the nature of the study, focusing on small rural pri-

mary schools, the sample size was relatively small (28 pupils
over 9 sessions). Although qualitative and quantitative data
was recorded, a greater weight has been put on the quali-
tative results in combination with the quantitative findings.
The main quantitative measures examined were the under-
standing based on the paper models and the ‘fun’ scores
given by the pupils for the sessions. The data from the inter-
views was coded based on the pupils’ responses as: answered
without prompting (3), answered with some prompting (2)
or did not provide adequate answer (1).

4.1 Findings from Interviews (qualitative)
The results of comprehension scores based on coded inter-

views are shown in Figure 2.

2http://dx.doi.org/10.6084/m9.figshare.1381820

(a)

(b) (c)

Figure 1: Sample paper models for (a) an unplugged session; (b) a Cubelets session; and (c) a Scratch session. In (a),
light input and a distance input go to an ‘and’ gate which will turn on a light. The model in (b) represents a battery
cube, light output and a distance sensor (a functioning circuit), whilst that in (c) represents the commands needed to
make the ‘Scratch Cat’ move left, right and up.

Figure 2: Graph of pupils’ understanding, based on
coded interviews. The bars are arranged in the order
in which the sessions ran in each school. ‘C’, ‘S’ and ‘U’
refer to Cubelets, Scratch and unplugged respectively.
The size of a bar segment is calculated by summing the
values of the coded interview responses from each stu-
dent, where 3 means full understanding of that concept
and 1 means no understanding. For School A and B,
the maximum possible value for each bar segment is 15,
while for School C this is 9 (with fewer participants).

In School A, all interviews showed an understanding of the
concept of an algorithm. Understanding of logical predic-
tions increases slightly over time, though by the final session
it remains low compared to the other two concepts. Under-
standing of debugging also increases slightly and finishes in
line with the understanding of algorithms.

With School B, all pupils could define an algorithm after
the first session, though a single outlier seems to have lost
this comprehension after session two. School B showed no
increase in understanding of the concept of logical predic-

tion, but does show a consistent increase in understanding
of debugging. This was, however, at a slower rate than the
other schools such that it was not until the final session that
the whole group had a full understanding of debugging.

In School C, all interviews showed an understanding of
algorithms from the first session and throughout the subse-
quent sessions. In terms of the logical prediction concept,
one interview demonstrates a loss of understanding in the
second session (Cubelets) before rising again in the final
session. Similarly to the other schools, understanding of
debugging increases steadily over time, matching that of al-
gorithms by the end.

The qualitative questions also revealed that, depending
on the session, the pupils were more inclined to focus on ei-
ther the concept or the tool, and that some sessions elicited
more relevant questions and next steps than others. When
asked “what do you think you learned”, out of all 38 inter-
views pupils primarily answered with ‘tool’-based answers
after Scratch and with ‘concept’-based answers after un-
plugged; Cubelets sessions meanwhile yielded an even mix-
ture of concept- and tool-based answers.

Finally, we note that the order in which the sessions were
carried out does not appear to have affected overall concept
understanding as measured by interviews.

4.2 Findings from paper models and fun scores
(quantitative)

The results for pupil comprehension based on their com-
pletion of paper models are summarised in Figure 3. Al-
though the understanding of concepts here for the most
part shows a progression from session to session, there is no
observable relationship in understanding based on different
session orders. School B seemed to grasp the paper models
exercise more readily than the other schools; although this
may relate to the session order it is possible that it involves

Figure 3: Graph of pupils’ concept understanding, based
on paper models.

other factors such as using computers more in their regular
lessons. Across all schools the paper models revealed the
highest level of understanding after the unplugged session.

Breaking down this same data by year group there are
some interesting trends that emerge. Among year one pupils
(aged 5 and 6) there is a high number of ‘maybes’ during the
Scratch session. This may be due to the greater challenge
experienced by the younger students with cutting and past-
ing the more detailed Scratch elements. Among the year
one pupils there is also a strong pattern of greater under-
standing in the unplugged session. Among year two pupils
(aged 6-7) in Scratch the pupils separated evenly into either
understanding or not understanding. Half of these older
pupils showed understanding with Cubelets and unplugged
with a higher number of maybes for Cubelets. In general
the year two pupils showed more understanding through the
paper models than the year ones; this may indicate that
this is a better method of assessing understanding with the
older pupils. Although there is not much that can be gained
by looking closely at the breakdown of the data by gender,
the very strong increase of understanding based on the un-
plugged paper models among girls is of note.

Our main observation from the ‘fun scores’ is that they
generally decreased over time, presumably due to a decrease
in novelty factor of the sessions. Within this general trend
it is then interesting to observe that when starting with
‘Scratch’, the following session (Cubelets) was ranked as
more fun. There is also a notable difference for unplugged
when it was used first (9.7 highest score recorded) to when
it was the last session (6.36 lowest score recorded). Here, it
seems when unplugged is put in context of the more ‘tech-
nological’ sessions it is viewed as being less exciting. It can
be hypothesised from this that working with the technology
carries its own excitement and incentive, so for the children
moving from technology to ‘unplugged’ (effectiveness of de-
livering concepts aside) feels like a step backwards.

5. DISCUSSION AND ANALYSIS
5.1 Delivery of Key Concepts

Algorithm: the pupils understood this concept easily after
the initial introduction. When related to instructions (i.e.
an algorithm as a list or series of instructions) this concept
related to their everyday lives. The pupils found this concept

most difficult when it was only related to ‘Scratch’; although
Scratch is a very capable programming language this may
therefore make the delivery of basic concepts more difficult.

Making logical predictions: This was without a doubt the
hardest concept for the young people to understand. In
most cases even with prompting the pupils were unable to
define this concept. Some pupils seemed to be beginning
to understand this concept after having Scratch as a third
session. This may be because the abstraction that occurs
in Scratch makes ‘making predictions’ an implicit part of
the process. Cubelets on the other hand seem to encourage
a ‘learn through play/exploration’ response; this is highly
engaging but does not encourage ‘making predictions’.

Debugging : In School A and School C, which started
with Cubelets and unplugged respectively, the pupils were
able to understand the concept of debugging generally after
the second session. When starting with Scratch the pupils
took an additional session to build up a good understand-
ing of debugging. Although this concept was new to the
pupils and did not readily relate to any concept that they
were already familiar with, the physicality of ‘something
going wrong’ in the unplugged or Cubelet session allowed
the pupils to quickly build up an understanding. Often in
Scratch the errors they produced meant the program just did
not work (made nothing happen) whereas with unplugged
and Cubelets the debugging involved the unexpected hap-
pening and the pupils figuring out why.

5.2 Learning coded on concepts vs. tools
Based on the coded observations there were two clear

trends that show the value of the different tools. After the
unplugged session the pupils were most engaged in the con-
cepts of computer science. The unplugged session seemed
to demonstrate that young children can be introduced to
and engaged in relatively complex ideas. However after the
Scratch session the pupils had the most relevant ideas for
things to try next. Although Scratch was one of the most
difficult tools to implement as a teaching method (and in our
experience proved to be the most intimidating method for
teachers) it seemed to uniquely engage the pupils’ creativity.

5.3 Observations based on paper models
The creation of the paper models delivered valuable in-

sights and created a useful break in the session. However,
motor skills of younger pupils impaired the creation of these
models – the youngest children found the cutting and past-
ing more difficult and tended to need more than the 15 min-
utes provided to finish their paper model. Using the paper
modeling exercise as a proxy for a level of understanding
about the workings of the tool revealed a number of in-
sights. In particular, categorisation of the paper models for
learning levels suggested that for girls and younger pupils,
the unplugged session was particularly effective in promot-
ing understanding of the concepts.

5.4 Pupil preference
Based on observations and teacher feedback the pupils ap-

peared to enjoy all sessions equally and at the beginning of
each session were excited to find out what would be hap-
pening. However, the interviews did highlight a difference
here such that the strongest determinant of the ‘fun score’
was the session order. The level of ‘technology’ involved in
the session was also a strong determining factor; when it
was not the first session many pupils did not rank the un-

plugged session as particularly ‘fun’. The pupils also seemed
to greatly enjoy the physicality of the Cubelets, relating to
them much like toys. In fact the toy-like presentation of the
Cubelets may well have made them seem more like fun and
less like learning. Pupils’ previous experience/capability for
using a computer (mouse and keyboard) seemed to impact
on their enjoyment of Scratch. When directly asked to pick
a favourite session the pupils tended to pick Cubelets over
the other sessions; when Cubelets was not an option their
preference was Scratch.

6. CONCLUSION
This paper has presented an initial comparative study of

three different methods of teaching computer science con-
cepts to ages 5–7: Scratch, Cubelets and unplugged. Stu-
dent comprehension was measured by coded interviews and
by analysis of paper models. Overall, unplugged appeared
to generate the highest level of understanding of the con-
cepts of algorithms, logical predictions and debugging; while
Cubelets proved one of the most engaging methods; and
Scratch generated the most ‘tool’-based questions.

The order in which these methods were used does not
show a particularly high impact on comprehension in this
study, though using Scratch first may have had a slight neg-
ative effect. In terms of ‘fun’ ratings we observe a general
downward trend as each method is introduced to the same
group, with the most notable negative effect observed in us-
ing unplugged as the last teaching method.

In future work we hope to expand the scale of our study
and also apply more rigorous tests of the causes of higher
or lower student comprehension in relation to the different
levels of technology to which they are introduced.

7. ACKNOWLEDGMENTS
This project was funded through the HighWire CDT which

is part of the UKREs digital economy strand, and funded
through the EPSRC. Lesson plans, evaluation tools and raw
anonymised data are available to download at:
http://dx.doi.org/10.6084/m9.figshare.1381820.

8. REFERENCES
[1] T. Bell, J. Alexander, I. Freeman, and M. Grimley.

Computer science unplugged: School students doing
real computing without computers. The New Zealand
Journal of Applied Computing and Information
Technology, 13(1):20–29, 2009.

[2] H. Bort and D. Brylow. CS4Impact: Measuring
computational thinking concepts present in CS4HS
participant lesson plans. In Proceeding of the 44th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’13, pages 427–432, New York,
NY, USA, 2013. ACM.

[3] T. Crick and S. Sentance. Computing at school:
Stimulating computing education in the UK. In
Proceedings of the 11th Koli Calling International
Conference on Computing Education Research, Koli
Calling ’11, pages 122–123, New York, NY, USA,
2011. ACM.

[4] CSUnplugged.org. Computer Science Unplugged.
http://csunplugged.org/ [Accessed 14 Aug. 2014],
2014.

[5] J. A. Fails, A. Druin, M. L. Guha, G. Chipman,
S. Simms, and W. Churaman. Child’s play: A

comparison of desktop and physical interactive
environments. In Proceedings of the 2005 Conference
on Interaction Design and Children, IDC ’05, pages
48–55, New York, NY, USA, 2005. ACM.

[6] Y. Feaster, L. Segars, S. K. Wahba, and J. O.
Hallstrom. Teaching CS Unplugged in the high school
(with limited success). In Proceedings of the 16th
Annual Joint Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’11, pages 248–252, New York, NY, USA, 2011. ACM.

[7] G. Fessakis, E. Gouli, and E. Mavroudi. Problem
solving by 5-6 years old kindergarten children in a
computer programming environment: A case study.
Comput. Educ., 63:87–97, Apr. 2013.

[8] M. S. Horn, R. J. Crouser, and M. U. Bers. Tangible
interaction and learning: The case for a hybrid
approach. Personal Ubiquitous Comput.,
16(4):379–389, Apr. 2012.

[9] M. S. Horn, E. T. Solovey, R. J. Crouser, and R. J.
Jacob. Comparing the use of tangible and graphical
programming languages for informal science
education. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’09,
pages 975–984, New York, NY, USA, 2009. ACM.

[10] B. T. Kirby, M. Ashley-Rollman, and S. C. Goldstein.
Blinky blocks: A physical ensemble programming
platform. In CHI ’11 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’11, pages
1111–1116, New York, NY, USA, 2011. ACM.

[11] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The Scratch programming language and
environment. Trans. Comput. Educ., 10(4):16:1–16:15,
Nov. 2010.

[12] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.
Learning computer science concepts with Scratch.
Computer Science Education, 23(3):239–264, 2013.

[13] S. Pruchnicky. Cubelets and inquiry based learning by
stepan pruchnicky, the first FE contest winner post.
http://flexibilityenvelope.com/cubelets-and-inquiry-
based-learning-by-stepan-pruchnicky-the-first-fe-
contest-winner-post [Accessed 14 Aug 2014], 2012.

[14] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: Programming for all. Communications of the
ACM, 52(11):60–67, Nov. 2009.

[15] T. Sapounidis and S. Demetriadis. Tangible versus
graphical user interfaces for robot programming:
Exploring cross-age children’s preferences. Personal
Ubiquitous Comput., 17(8):1775–1786, Dec. 2013.

[16] E. Schweikardt. Modular robotics studio. In
Proceedings of the 5th International Conference on
Tangible and Embedded Interaction 2011, Funchal,
Madeira, Portugal, January 22-26, 2011, pages
353–356, 2011.

[17] UK Department of Education. The National
Curriculum in England Framework Document.
Technical report, London, 2013.

[18] J. M. Wing. Computational thinking and thinking
about computing. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and

Engineering Sciences, 366(1881):3717–3725, 2008.

