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Abstract 

 

This paper examines the distribution of patenting activity across cities in 

the OECD, using a sample of 218 cities from 2000 to 2008. We obtain 

three main results. First, patenting activity is more concentrated than 

population and GDP. Second, patenting activity is less persistent than 

population and GDP. Third, patenting exhibits mean-reversion, and is 

positively associated with GDP, the fragmentation of local government, 

and population density. Our results suggest that policymakers can 

influence the amount of innovative activity through the use of appropriate 

policies.  
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“The mysteries of the trade become no mysteries; but are as it were in the 

air…” 
Alfred Marshall, Principles of Economics, Chapter 10.  

 

1. Introduction 

 

Since at least Marshall (1890) it has been argued that forces of agglomeration may 

lead to the formation of industrial clusters, and by extension, cities. As has been 

discussed in greater detail elsewhere (Krugman, 1991, Fujita et al, 1999), Marshall 

identified three reasons for the spatial concentration of economic activity: knowledge 

spillovers, thick markets for specialised skills, and the backward and forward linkages 

associated with large local markets. Because of the presence of knowledge spillovers, 

cities are not only the centre of economic activity, but also the focal point of 

innovative activity. Indeed, if it is argued that innovative activity makes use of all 

three of Marshall’s external economies, then innovative activity should be even more 

concentrated than economic activity in general. Anecdotal evidence supports this 

idea; for instance, Tokyo, the largest city in our sample, in 2008 had 27 percent of 

Japan’s population, but 32.3 percent of GDP, and 34.3 percent of the number of 

patents. 

 

This paper explores the distribution of patenting activities across cities, the 

persistence and growth of patenting in cities, and the determinants of patenting 

activity. In so doing, we make use of methods developed for the analysis of city 

populations, and city population thus acts as a useful benchmark to compare with 

our analysis of patents. We make use of a sample of 218 cities from OECD countries, 

from 2000 to 2008, and obtain three main results. First, patenting is more unevenly 

distributed across cities than population or GDP. Second, patenting is less persistent 

than both population and GDP. Third, even after controlling for the endogeneity of 

some explanatory variables, the number of patents is positively associated with 

GDP, population density, and the degree of local government fragmentation. Taken 

together our results suggest that it may be possible for policymakers to implement 

policies that encourage innovation in cities.  

 

This paper is related to three strands of the literature. First, the literature on the 

production of knowledge in cities is discussed in Audretsch and Feldman (1996, 

1999) and has been surveyed in Audretsch and Feldman (2004). This line of research 

is mainly focussed on the impact of industrial concentration and diversity on the 

productivity of R&D (“spillovers”). A closely related line of work in Glaeser et al 
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(1992, 1995) investigates the effects of different industrial composition on economic 

growth in cities. Unlike this literature, our focus is not on R&D spillovers, but rather 

on the distribution of innovation across cities, and the factors that may explain the 

distribution.  

 

There is also an associated branch of the literature which examines innovative and 

creative activities in cities. This includes OhUallachain (1999), Berry and Glaeser 

(2005), Bettencourt et al (2007, 2010), and Strumsky and Thill (2013). However, 

much of this literature focuses on US cities, and is primarily interested in describing 

the distribution of innovative activity across cities. In the present paper, we use an 

international dataset comprising the largest cities in the OECD, thus allowing us to 

see whether any trends that we observe operate across national boundaries. In 

addition, whilst we are also interested in how innovative activity is distributed across 

cities, we extend the analysis to consider the persistence and evolution of innovative 

activity over time.  

 

Methodologically, since the paper presents evidence on the distribution and growth 

of innovation in cities, it is related to the literature on the size distribution and 

growth of cities, as discussed in Gabaix and Ioannides (2004), Eaton and Eckstein 

(1997), Black and Henderson (2003), Dobkins and Ioannides (1999, 2001), Ioannides 

and Overman (2001, 2003, 2004), Soo (2005, 2007), and Bosker et al (2008) . On the 

distribution of innovation in cities, we make use of the concept of Zipf’s Law (Zipf, 

1949), that the size of cities follows a Pareto distribution. Gabaix and Ibragimov 

(2011) develop a simple way of improving the performance of OLS estimates of Zipf’s 
Law. On the persistence of innovation in cities, we make use of the concept of 

transition probability matrices. Finally, on the growth of innovation over time, we 

make use of both parametric and non-parametric approaches to describe the growth 

patterns of innovation, and the determinants of innovative growth.  

 

The next section discusses the data used in this paper. This is followed in Section 3 

by the analysis of the distribution of innovative activity, in Section 4 by the 

persistence of innovative activity, in Section 5 by the growth of innovative activity, 

and in Section 6 by the determinants of innovative activity. Because of the wide 

range of methods used, they will be discussed within each section to maximise 

clarity. The final section concludes.   
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2. Data 

 

The data is obtained from the OECD Metropolitan Database, which contains data 

for metro areas with a population of 500,000 or more across OECD countries. Metro 

areas are defined following a harmonised functional definition developed by the 

OECD in OECD (2012). There are a total of 275 cities from 28 OECD countries. 

Patent data is available for 218 metro areas from 16 countries from 2000 to 2008, 

and represents a count of the number of patent applications by the city of the 

inventor2. The dataset also includes other variables, such as population, geographical 

and administrative information, labour markets, and GDP (measured in US$ in 

constant prices and constant PPPs with a base year of 2005).  

 

Table 1 shows the distribution of cities across countries in the data. Most major 

OECD countries are represented, with the notable exceptions being Canada, Korea, 

Spain and the United Kingdom, for which patent data are not available. Table 2 

reports the correlation between patenting activity, economic activity as measured by 

GDP, and population in our sample, for 2008. There is high correlation between all 

three variables; large cities are also cities with lots of economic activity, and lots of 

innovative activity. Figures 1 and 2 graphically represent the same information as in 

Table 23.  

 

Table 3 presents the ten cities with the largest number of patents in 2008, along with 

their population and GDP, with their 2000 ranks in parentheses. Although in general 

the cities with the most patents also have the most population and the highest GDP, 

there are some anomalies. For instance, San Francisco is associated with Silicon 

Valley, and has a larger number of patents than would be predicted by its 

population or GDP. Similarly, Boston is associated with biotechnology and the IT 

cluster of Route 128, while San Diego is a centre for biotechnology and 

communications technology. Two other features of Table 3 are noteworthy. First, 

comparing rankings between 2008 and 2000 shows that populations are persistent 

over time, whereas GDP and patents are less so; we shall return to this in Section 4 

below. Second, cities in the United States dominate the table, occupying seven of the 

top ten patenting cities in 2008; the equivalent number in 2000 was five of the top 

ten from the United States. This emphasises the United States’ dominance in 

                                                           
2 Are patents an input or an output in the knowledge creation process? Griliches (1990) provides an 
insightful discussion on the use of patent statistics in Economics, and concludes that, in the absence of 
detailed R&D data, patent data can be used as an indicator of both inventive input and output.   
3 A simple regression of the natural log of patents against the natural log of population for any one 
year yields a coefficient which is always larger than 1; this implies that a 1 percent increase in 
population has a greater than 1 percent effect on patents. A similar result is obtained for a regression 
of the natural log of patents against the natural log of GDP.  
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innovation, although it may be partially driven by cities in countries which have 

been omitted from our sample due to lack of data, for instance London and Seoul.  

 

3. The distribution of innovative activity 

 

In this section we compare the distribution of patents across cities with the 

distribution of population and economic activity. If the idea behind Marshall’s 
external economies is correct, then we would expect that patents are going to be 

more highly concentrated than economic activity in general, and that economic 

activity is in turn going to be more highly concentrated than population. To perform 

this comparison, we make use of Zipf’s Law, which states that the size distribution 

follows a simple Pareto distribution with shape parameter equal to 1. To 

operationalise this idea, let:  

𝑅𝑅 = 𝐴𝐴𝑆𝑆−𝛼𝛼,      (1) 

where 𝑅𝑅 is the rank of a city in terms of its size (with the largest city being ranked 

1), 𝑆𝑆 is the size of the city used in constructing 𝑅𝑅, and 𝐴𝐴 and 𝛼𝛼 are parameters. 

Taking natural logs of equation (1) and adding a random error term 𝜖𝜖 gives:  

ln𝑅𝑅 = ln𝐴𝐴 − 𝛼𝛼 ln 𝑆𝑆 + 𝜖𝜖.     (2) 

Thus the Zipf’s Law prediction is that there is a linear relationship between the 

natural log of the rank and the natural log of the size. The parameter 𝛼𝛼 is a measure 

of the inequality of the distribution; the larger is 𝛼𝛼, the more equal is the 

distribution across cities.  

 

Figure 3 plots the scatter diagram of the rank of a city versus its size as measured by 

population, GDP and number of patents, for 2008, on a log scale with the largest 

value normalised to 1. The figure shows that, whilst there appears to be a roughly 

linear relationship between log of rank and log of population, there is pronounced 

curvature for GDP and especially for patents. Another observation that can be made 

from Figure 3 is that, overall, population is more equally distributed than GDP, 

which in turn is more equally distributed than patents. If Marshall’s external 

economies argument is correct, then this is what we would expect; that larger cities 

are more productive than smaller cities, and this is especially true for innovative 

activity where proximity to other innovating agents will yield greater external 

economies than other types of economic activity.  
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Gabaix and Ioannides (2004) show that OLS estimation of equation (2) leads to 

biased results, while Gabaix and Ibragimov (2011) show that a simple way to 

improve OLS estimation of equation (2) is instead to estimate the following equation:  

ln �𝑅𝑅 − 1
2
� = ln𝐴𝐴 − 𝛼𝛼 ln 𝑆𝑆,      (3) 

with the standard error of 𝛼𝛼 being given by (2 𝑛𝑛⁄ )1 2⁄ 𝛼𝛼, where 𝑛𝑛 is the number of 

cities. The results of estimating equation (3) for each year for population, GDP and 

patents are presented in Table 4, which reports the values of 𝛼𝛼. Comparing across 

the three measures, the coefficients for population are always larger than for GDP, 

which in turn are always larger than for patents. This confirms the visual inspection 

of Figure 3 discussed above; population is the most equally distributed across cities, 

followed by GDP, with patents being the most unequally distributed. Comparing the 

coefficients across time, the coefficient for population is almost constant over time. 

The coefficient for GDP shows greater variation over time (although part of the 

variation is driven by data availability), while the coefficient for patents shows the 

greatest variation over time. Especially for patents, there appears to be a trend of 

rising coefficients, which indicates that patenting activity is becoming more dispersed 

over time. This may indicate that the Marshallian external economies in innovative 

activity are becoming weaker over time, perhaps in response to developments in 

communication technology. In terms of Zipf’s Law (the hypothesis that 𝛼𝛼 = 1), for 

this sample of cities, Zipf’s Law holds for GDP, but not for population and patents. 

City populations are more equal in size than would be predicted by Zipf’s Law, 

whereas patents are less equally distributed than the Zipf’s Law prediction.  

 

As noted above, Figure 3 shows that the Pareto distribution may not be the most 

appropriate one to describe the size distribution of cities, especially in terms of GDP 

or patents. Eeckhout (2004) suggested that a lognormal distribution may be a more 

appropriate distribution. To investigate this, we proceed in the following way. First, 

following Soo (2012), we make use of the Shapiro-Wilks and Shapiro-Francia tests of 

normality to see if population, GDP and patents are lognormally distributed. The 

results of these tests are reported in Table 5, for the years 2000, 2004 and 2008. In 

all years, the null hypothesis that each of these variables is lognormally distributed 

can be rejected at any conventional significance level. The second way in which we 

compare the distribution of the variables to the lognormal distribution is through the 

use of normal probability plots. These are presented in Figure 4, for 2008. If a 

variable follows a lognormal distribution, then the observations should lie along the 

upward-sloping straight line. In none of the three cases do we observe this. Hence we 
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can conclude that none of the variables: population, GDP and patents, follows a 

lognormal distribution.  

 

4. The persistence of innovative activity 

 

In this section we examine how persistent is innovative activity, relative to 

population and GDP. We make use of transition probability matrices first introduced 

into the economic growth literature by Quah (1993), and used in the city population 

literature by Eaton and Eckstein (1997), Dobkins and Ioannides (2000), and Black 

and Henderson (2003). We group the sample of cities into ten cells in each year. Let 

𝐹𝐹𝑡𝑡 be a 10 × 1 vector which denotes the distribution of sizes across cities at time 𝑡𝑡. 

Assume that 𝐹𝐹𝑡𝑡 evolves according to:  

𝐹𝐹𝑡𝑡+1 = 𝑀𝑀𝐹𝐹𝑡𝑡,      (4) 

where 𝑀𝑀 is a 10 × 10 transition probability matrix, mapping the assignment from 

period 𝑡𝑡 into an assignment in period 𝑡𝑡 + 1. Following Dobkins and Ioannides (2000), 

we define the vector 𝐹𝐹𝑡𝑡 based on the deciles of the distribution4. Since we have data 

from 2000 to 2008, and since population changes only slowly, we present results for 

the 8-year transition matrix between 2000 and 20085.  

 

Table 6 presents the results, arranged so as to make the comparison between the 

three variables (population, GDP and patents) as clear as possible. Overall, patents 

exhibit less persistence than population and GDP; the diagonal elements of the 

matrix (in bold type) are, on average, smaller for patents than for population and 

GDP. On the other hand, population and GDP appear to be quite similar in terms of 

how persistent they are over time6. Indeed, the mobility of a city both up and down 

the distribution of patents is quite large; a city which in the year 2000 was between 

the 60th and 70th percentiles of the distribution of patents, could by the year 2008 lie 

anywhere between 30th and 90th percentiles.  

 

                                                           
4 Ioannides and Overman (2001) discuss further the implications of this way of defining 𝐹𝐹𝑡𝑡 as 
compared to that used by Eaton and Eckstein (1997) and Black and Henderson (2003), which is based 
on fractions of the contemporaneous mean. In this paper, since we are comparing the distributions of 
different variables, a decile-based definition seems more appropriate.  
5 Many of the papers which make use of transition probability matrices on city populations go on to 
obtain the long run, implied ergodic distribution of city sizes. We do not do so, because the relatively 
short time period of our sample means there are relatively few off-diagonal elements of the transition 
matrices, making the calculations sensitive to the choice of cell boundaries. In addition, it would 
require 𝐹𝐹𝑡𝑡 to be defined based on fractions of the contemporaneous mean (see the previous footnote) 
as opposed to our decile-based definition.  
6 Because of the many zero entries in the table, it is not possible to perform a chi-squared test of the 
similarity between the distributions of the three variables.  
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Nevertheless, where patenting activity does exhibit considerable persistence, is at 

both ends of the distribution. Cities in the bottom 10th percentile of the distribution 

of patents in the year 2000 only had a 13.6 percent chance of moving up to the 20th 

percentile by 2008, which is a lower likelihood of transition than for both population 

and GDP. A similar though less pronounced pattern can be observed at the top of 

the distribution. What this suggests is that cities that start off with low levels of 

patenting activity, struggle to develop any innovation capacity (or perhaps choose to 

specialise in non-innovation-intensive activities); cities with lots of patenting activity 

benefit from Marshallian external economies, while cities in between may end up in 

either a virtuous or a vicious cycle of innovation.  

 

5. The growth of innovative activity 

 

In this section we make use of both parametric and nonparametric approaches to 

examine the growth of innovative activity. Perhaps a natural starting point is to 

assume that city growth and city size are independently distributed; that is, that city 

growth obeys Gibrat’s Law. We follow Black and Henderson (2003) in estimating the 

following equation:  

ln(𝑆𝑆𝑖𝑖𝑖𝑖+1) − ln(𝑆𝑆𝑖𝑖𝑖𝑖) = 𝛽𝛽𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝛾𝛾 ln(𝑆𝑆𝑖𝑖𝑖𝑖) + 𝜖𝜖𝑖𝑖𝑖𝑖,   (5) 

where 𝛽𝛽𝑖𝑖 are city fixed effects and 𝛿𝛿𝑡𝑡 are time fixed effects. The null hypothesis 

implied by Gibrat’s Law is that 𝛾𝛾 = 0. Given the null hypothesis of Gibrat’s Law, the 

error term cannot be serially correlated, so we use a conventional fixed-effects model 

to estimate equation (5)7. Here, unlike in the previous section, we make use of data 

on an annual basis.  

 

The estimated values of 𝛾𝛾 for population, GDP and patents are reported in Table 7. 

Standard errors are clustered by city to allow for heteroskedasticity and within-city 

correlation in the residuals, and all results reported include both year and city fixed 

effects. For all three variables of interest, the Gibrat’s Law null hypothesis that 

𝛾𝛾 = 0 is rejected in favour of the alternative that 𝛾𝛾 < 0. That is, rather than random 

growth, we find evidence of mean-reversion; large cities grow more slowly than small 

ones. The coefficient is largest in absolute terms (hence mean reversion is the 

quickest) for patents, followed by GDP and population. Similarly to the results of 

                                                           
7 Equation (5) is of course just the equation that is estimated in a panel unit root test. Conventional 
panel unit root tests cannot be used for our data because of the limited time dimension and the fact 
that we have an unbalanced panel for GDP. See for instance Bosker et al (2008) for an application of 
tests of this type to German city sizes.  
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the previous section, patents exhibit less persistence than GDP and especially 

population.  

 

However, parametric models such as equation (5) do not give a complete picture of 

the relationship between size and growth of cities. Therefore, we supplement 

equation (5) with a non-parametric, local linear estimator. This is an extension of the 

Nadaraya-Watson local mean smoothing approach used by Ioannides and Overman 

(2003); instead of using mean values, we use fitted values from a local linear 

regression to determine the conditional expectation. Fan (1992) shows that the local 

linear estimator suffers from less bias than the Nadaraya-Watson approach. To 

implement this estimator, we standardise the size and growth of cities by subtracting 

the annual mean from the raw data and dividing by the standard deviation. This 

allows us to pool observations across years. We use the Epanechnikov kernel, and the 

bandwidth chosen is obtained using the rule-of-thumb method of bandwidth 

selection.  

 

Figure 5 reports the results of the nonparametric estimates, for the three variables 

population, GDP and patents, together with a 95 percent confidence interval; the 

scatterplot of data points has been omitted for clarity. From this figure it can be 

seen that GDP most closely follows the Gibrat’s Law null hypothesis of no 

relationship between GDP and GDP growth. Even here there is some evidence that 

cities with larger GDP exhibit slower growth than cities with smaller GDP. For 

population, cities in the middle of the population distribution grow faster than those 

at both ends of the distribution. For patents, the confidence bands are much 

narrower than for the other two variables, and, consistently with the parametric 

results in Table 5, it is cities with the fewest patents that experience the fastest 

patent growth rates. However, cities between 1 and 2 standard deviations below the 

mean experience slower patent growth rates on average. This may indicate the 

presence of multiple equilibria; whilst it may be relatively easy for cities with few 

patents to rapidly increase their patenting rate, it may be more difficult to step up 

to the next level and join the ranks of the major innovating centres.  

 

6. The determinants of innovative activity 

 

In the previous section, one general conclusion that emerged was that cities with 

relatively fewer patents, experience more rapid growth in patenting activity. In this 

section we explore this further, and investigate the possible determinants of 

innovative activity in a city. Similarly to Black and Henderson (2003), we rearrange 
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and extend equation (5) in the previous section to include additional explanatory 

variables:  

ln(𝑆𝑆𝑖𝑖𝑖𝑖+1) = 𝛽𝛽𝑖𝑖 + 𝛿𝛿𝑡𝑡 + (1 + 𝛾𝛾) ln(𝑆𝑆𝑖𝑖𝑖𝑖) + 𝜓𝜓𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖,   (6) 

where 𝑋𝑋𝑖𝑖𝑖𝑖 may include both time-varying and time-invariant variables. Including the 

lagged dependent variable in equation (6) means that conventional OLS, fixed- and 

random-effects estimates are all biased. We therefore use the Blundell and Bond 

(1998) system GMM method in its asymptotically efficient, two-step form. The 

method estimates a system of two equations; the equation in levels, and in 

orthogonal deviations (each observation is subtracted from the average of all future 

available observations). Because of the inclusion of the levels equation, it is possible 

to recover the coefficients on time-invariant explanatory variables. The reported 

standard errors are clustered by city so are robust to heteroskedasticity and arbitrary 

serial correlation within panels, and are corrected for downward bias using the 

Windmeijer (2005) correction. Time dummies are included in all regressions to 

reduce the contemporaneous correlation across cities.  

 

The lagged dependent variable is assumed to be endogenous and needs to be 

instrumented. Under standard system GMM, the variables in the levels equation are 

instrumented with lags of their own first differences, while the variables in the 

orthogonal transformed equation are instrumented with lags of the variables in 

levels. However, this results in the number of instruments being quadratic in the 

time dimension. To avoid the problem of too many instruments in system GMM (see 

Roodman (2009b)), we follow the recent literature (Mehrhoff (2009), Kapetanios and 

Marcellino (2010), Bai and Ng (2010)) and replace the GMM instruments with their 

principal components. Principal components analysis is run on the correlation matrix 

of the GMM instruments, and the principal components with the largest eigenvalues 

are selected as instruments. Additional statistics reported in Table 8 show that in 

each specification the principal components explain most of the variation in the 

instruments, and that they perform well based on the Kaiser-Meyer-Olkin measure of 

sampling adequacy.  

 

The results of estimating equation (6) are presented in Table 8. As a benchmark for 

comparison, column (1) reports the results of estimating equation (6) using 

conventional fixed effects estimation, including both city and year fixed effects, but 

no additional controls. The coefficient on the lagged dependent variable is 0.201, 

which shows strong evidence of mean reversion. However, as noted above, this 

estimate may be biased. Column (2) reports the results for the same equation using 

the Blundell and Bond (1998) system GMM method described above. The coefficient 
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increases dramatically, to 0.921, and providing much weaker evidence of mean 

reversion. That controlling for variable endogeneity often changes the magnitude if 

not the direction of the result, suggests that endogeneity is an important issue.  

 

The remaining columns of Table 8 include additional controls. In columns (3) and 

(4), population and GDP are included. In column (3), these two variables are 

assumed to be exogenous, while in column (4) they are assumed to be endogenous 

and are instrumented in the same way as the lagged dependent variable. Including 

population and GDP reduces the size of the coefficient on lagged patents, although it 

is still positive and highly significant. Controlling for the other two variables, 

population has no significant effect on patents, while GDP has a positive and 

significant effect. This suggests that economic activity is more strongly associated 

with innovative activity than the mere presence of a larger population.  

 

Columns (5) and (6) include additional controls. This includes the number of local 

governments per 100,000 inhabitants of the metropolitan area (capturing the 

fragmentation of local government), the number of non-contiguous core areas in the 

metro area (the polycentricity of the city), the share of the total metropolitan 

population living in the core areas of the city, the population density, and an 

indicator for whether there is a top-100 university in the city. By including core 

population, population density and polycentricity, we seek to explore whether the 

concentration of people (Marshall’s knowledge spillovers) affects the degree of 

innovative activity. The fragmentation of local government may affect the 

coordination of government policies across local governments, which again may 

influence innovation. In column (5), all these additional variables are assumed to be 

exogenous, whereas in column (6), population density and the share of the total 

metropolitan population living in the core areas of the city are treated as endogenous 

and are instrumented in the usual way.  

 

Including the presence of a top-100 university as an explanatory variable comes from 

the idea that knowledge spillovers from university research and research 

collaborations with local universities may spur private sector research. Early research 

on such relationships includes Jaffe (1989), and more recently Abramovsky et al 

(2007). There are three major global university rankings: the Academic Ranking of 

World Universities (ARWU or the Shanghai Ranking), the Times Higher Education 

World University Rankings, and the QS World University Rankings. The QS World 

University Rankings were not available for our sample period, and the other two 

rankings are available only since 2003 (ARWU) and 2004 (Times). The results 
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reported below make use of the ARWU rankings in 2008, and we code all cities with 

a top-100 university according to this ranking equal to 1, and all other cities equal to 

zero. A total of 32 cities in our sample includes at least one top-100 university 

according to this measure8.  

 

Once the endogeneity of population density and population share of the core are 

controlled for in column (6), the degree of local government fragmentation and 

population density are positively and significantly associated with patenting activity. 

The first result may suggest that competition among local governments may spur 

them to implement innovation-friendly policies to attract firms. The second result 

suggests that if Marshall’s knowledge spillovers are active, one channel via which 

they operate is through increased interaction because of greater population density. 

The other three additional variables – the degree of polycentricity, the share of 

metropolitan population living in the core and the presence of a top-100 university – 

do not have statistically significant effects on patenting, although there is a 

suggestion that polycentricity is negatively related to patenting, while population 

share in the core and the presence of a top-100 university are both positively related 

to patenting. Inclusion of these additional variables reduces the size of the previous 

coefficients, but they retain their level of statistical significance.  

 

We also include a set of diagnostic statistics in Table 8. First, we report the number 

of instruments used, which ranges from 21 to 37 instruments. These are fairly low, 

which should mitigate the problem of having too many instruments (see Roodman 

(2009b)), and as discussed above, is because we have used the principal components 

of the GMM instruments; if we had not done so, column (6) of Table 8 would have 

had over 150 instruments. Second, we report the Sargan and Hansen tests of over-

identification; we report both tests since the Sargan test, whilst not robust to 

heteroskedasticity, is not weakened by increasing numbers of instruments, whereas 

the Hansen test is robust to heteroskedasticity, but is weakened by having many 

instruments. We can see that the Sargan test becomes insignificant as we include 

more variables and instruments, whereas the opposite occurs for the Hansen test, 

which is insignificant in the baseline column (2), but becomes significant as more 

variables and instruments are included. Overall these tests suggest cautious 

confidence in our instruments. A third set of statistics is the Arellano and Bond 

(1991) tests for first- and second-order serial correlation in the first-differenced 

residuals. We find evidence of first-order serial correlation, but not second-order 

                                                           
8 Results using the Times ranking are qualitatively similar, with the exception that the degree of 
fragmentation loses significance.  
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serial correlation, across all specifications in Table 8. First-order serial correlation is 

expected in a dynamic panel; that we do not find second-order serial correlation 

provides evidence that our use of lags as instruments is valid.  

 

7. Conclusions 

 

Competition among firms drives innovation in a capitalist economy, as firms seek to 

gain a competitive edge over their rivals. Hence as urbanisation proceeds and 

economic activity becomes increasingly concentrated in cities, so too does innovative 

activity. What this paper has set out to do, is to describe and explain the 

distribution of innovative activity across OECD cities. Although there has been 

much research on innovation in cities, to our knowledge this is the first paper to 

compare the distribution of innovation to the distribution of population and 

economic activity across cities.  

 

Our first main result is that innovation is more highly concentrated than both 

population and general economic activity. This is suggestive of the role of Marshall’s 
knowledge spillovers as a key driver of innovation. Our second main result is that 

innovation is less persistent than population or economic activity. Even in the 

relatively short time period in our sample, cities can become much more (or less) 

innovative. This gives policymakers hope, that government policy can influence how 

innovative a city is. Our third main result is that, even after controlling for the 

endogeneity of some explanatory variables, innovation is positively related to general 

economic activity, population density, and the degree of fragmentation of local 

government. Again this gives policymakers a handle on what types of policies may be 

more effective at promoting innovation.  

 

From the policymaker’s perspective, the present paper’s focus on cities as centres of 

innovative activity is a double-edged sword. On the one hand, cities are undoubtedly 

important; in the OECD, the vast majority of the population lives and works in 

cities. So thinking about government policies in terms of cities may be the more 

natural unit of analysis. On the other hand, precisely because cities have not 

historically been the default unit of analysis, our analysis suffers from data 

limitations that not only restrict our sample, but also prevent us from digging deeper 

into the determinants of innovative activity as in Audretsch and Feldman (1996, 

1999). Such data is available for different geographical units, and analysis using this 

data should serve as an important next step in this line of research.  
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Table 1: Distribution of cities across countries in the sample.  

Country Number of cities 

Austria 3 
Belgium 4 
Denmark 1 
Estonia 1 
Finland 1 
France 15 
Germany 24 
Italy 11 
Japan 36 
Mexico 31 
Netherlands 5 
Norway 1 
Portugal 2 
Spain 8 
Sweden 3 
United States 72 

Total 218 

 

 

Table 2: Correlation between patents, GDP and population, 2008 (N = 218).  

 
Patents GDP Population 

Patents  1.000 
  GDP 0.833 1.000 

 Population 0.797 0.939 1.000 
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Table 3: Top 10 cities with the largest number of patents in 2008.  

City  Population  Rank  Patents Rank  GDP  
(million US$) 

Rank 

Tokyo  34,482,744 1(1)  8,727.0 1(2)  1,316,049 1(-) 
San Francisco  6,778,659 10(10)  5,138.2 2(1)  463,435 7(5) 
Osaka  17,211,140 4(4)  4,451.1 3(4)  534,747 5(-) 
San Diego  3,036,850 35(37)  2,689.3 4(10)  160,635 23(18) 
Paris  11,529,670 7(7)  2,467.6 5(7)  575,983 4(3) 
Boston  3,616,814 29(28)  2,207.5 6(3)  241,083 12(8) 
New York  16,453,331 6(5)  2,001.7 7(6)  977,119 2(1) 
Los Angeles  16,742,427 5(6)  1,957.7 8(5)  768,032 3(2) 
Minneapolis  3,212,176 34(34)  1,672.5 9(11)  174,234 18(16) 
Houston  5,363,803 16(17)  1,590.1 10(16)  323,819 9(7) 

Notes: Figures in parentheses are ranks in 2000. (-) indicates that data was not available in the year 
2000.  
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Table 4: Zipf regressions for population, GDP and patents, by year.  

 (1) (2) (3) 
Year Population GDP Patents 

2000 1.246 1.041 0.330 
 (0.119)** (0.121) (0.032)*** 
2001 1.247 1.026 0.350 
 (0.119)** (0.107) (0.033)*** 
2002 1.248 1.025 0.375 
 (0.119)** (0.107) (0.036)*** 
2003 1.247 0.927 0.358 
 (0.119)** (0.089) (0.034)*** 
2004 1.248 0.927 0.370 
 (0.119)** (0.089) (0.035)*** 
2005 1.247 0.926 0.384 
 (0.119)** (0.089) (0.037)*** 
2006 1.246 0.928 0.387 
 (0.119)** (0.089) (0.037)*** 
2007 1.245 0.928 0.397 
 (0.119)** (0.089) (0.038)*** 
2008 1.244 0.932 0.426 
 (0.119)** (0.089) (0.041)*** 

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Statistical significance is in 
terms of the null hypothesis that the coefficient is equal to 1. N = 218 for all years in columns (1) and 
(3); N = 148 in 2000, N = 184 in 2001 and 2002, N = 217 in 2003 to 2007, and N = 218 in 2008 in 

column (2). The values reported are the values of 𝛼𝛼 estimated using the Gabaix and Ibragimov (2011) 
approach in equation (3). Standard errors in parentheses are calculated using the Gabaix and 
Ibragimov (2011) approach.  

 

 

Table 5: The Shapiro-Wilks and Shapiro-Francia tests for lognormality.  

Year Variable Shapiro-Wilks test Shapiro-Francia test 
  z p-value z p-value 

2000 Population 7.147 0.000 6.617 0.000 
 GDP 3.761 0.000 3.523 0.000 
 Patents 6.104 0.000 5.614 0.000 

2004 Population 7.182 0.000 6.645 0.000 
 GDP 4.314 0.000 4.114 0.000 
 Patents 5.779 0.000 5.339 0.000 

2008 Population 7.111 0.000 6.581 0.000 
 GDP 4.348 0.000 4.140 0.000 
 Patents 4.911 0.000 4.542 0.000 

Notes: The null hypothesis is that each variable follows a lognormal distribution. N = 218 for all years 
for population and patents; N = 148 in 2000, N = 217 in 2004, and N = 218 in 2008 for GDP.  
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Table 6: Transition probability matrices for population, GDP and patents, 2000-
2008.  

2000 2008 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.10 Population 71.43 25.00 3.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
GDP 85.71 14.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
Patents 86.36 13.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.20 Population 25.93 51.85 18.52 3.70 0.00 0.00 0.00 0.00 0.00 0.00 

 
GDP 15.00 65.00 15.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
Patents 13.64 63.64 22.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.30 Population 0.00 17.86 53.57 28.57 0.00 0.00 0.00 0.00 0.00 0.00 

 
GDP 0.00 20.00 55.00 15.00 10.00 0.00 0.00 0.00 0.00 0.00 

 
Patents 0.00 13.64 36.36 31.82 9.09 9.09 0.00 0.00 0.00 0.00 

0.40 Population 0.00 0.00 25.93 48.15 25.93 0.00 0.00 0.00 0.00 0.00 

 
GDP 0.00 0.00 25.00 55.00 20.00 0.00 0.00 0.00 0.00 0.00 

 
Patents 0.00 4.55 18.18 18.18 22.73 27.27 4.55 4.55 0.00 0.00 

0.50 Population 3.57 0.00 0.00 17.86 67.86 10.71 0.00 0.00 0.00 0.00 

 
GDP 0.00 0.00 5.00 25.00 65.00 5.00 0.00 0.00 0.00 0.00 

 
Patents 0.00 4.76 14.29 38.10 28.57 14.29 0.00 0.00 0.00 0.00 

0.60 Population 0.00 3.70 0.00 0.00 7.41 66.67 22.22 0.00 0.00 0.00 

 
GDP 0.00 0.00 0.00 0.00 4.76 85.71 9.52 0.00 0.00 0.00 

 
Patents 0.00 0.00 9.09 4.55 27.27 31.82 27.27 0.00 0.00 0.00 

0.70 Population 0.00 0.00 0.00 0.00 0.00 21.43 64.29 14.29 0.00 0.00 

 
GDP 0.00 0.00 0.00 0.00 0.00 10.00 65.00 25.00 0.00 0.00 

 
Patents 0.00 0.00 0.00 9.09 9.09 18.18 36.36 22.73 4.55 0.00 

0.80 Population 0.00 0.00 0.00 0.00 0.00 0.00 14.81 81.48 3.70 0.00 

 
GDP 0.00 0.00 0.00 0.00 0.00 0.00 25.00 55.00 20.00 0.00 

 
Patents 0.00 0.00 0.00 0.00 0.00 0.00 31.82 54.55 13.64 0.00 

0.90 Population 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.57 89.29 7.14 

 
GDP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 75.00 5.00 

 
Patents 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.18 68.18 13.64 

1.00 Population 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.41 92.59 

 
GDP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 95.00 

 
Patents 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.29 85.71 

Notes: N = 275 for population, N = 202 for GDP, and N = 218 for patents. The number in each cell 
shows the probability of transitioning from one decile in 2000 to the corresponding decile in 2008. The 
values in bold are the percentages of cities that remain in the same decile between the two years.  
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Table 7: Test of Gibrat’s Law.  

 (1) (2) (3) 
Variable Population GDP Patents 

ln(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑡𝑡−1 -0.053   

 (0.023)**   

ln(𝐺𝐺𝐺𝐺𝐺𝐺)𝑡𝑡−1  -0.108  

  (0.018)***  

ln(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑡𝑡−1   -0.814 

   (0.058)*** 

R2 0.18 0.22 0.44 
N 2,475 2,235 1,744 
City fixed effects Yes Yes Yes 
Year fixed effects Yes Yes Yes 

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Estimation is via OLS with 
city and year fixed effects, with standard errors clustered by city.  
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Table 8: The determinants of patenting activity (dependent variable: ln(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑡𝑡).  

 (1) (2) (3) (4) (5) (6) 
Estimation method FE Blundell-Bond (1998) System GMM 

ln(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑡𝑡−1 0.201 0.921 0.739 0.588 0.665 0.451 

 (0.057)*** (0.071)*** (0.095)*** (0.079)*** (0.125)*** (0.103)*** 

ln(𝑝𝑝𝑝𝑝𝑝𝑝)𝑡𝑡   -0.321 -0.329 1.802 -0.103 

   (0.630) (0.740) (1.428) (0.583) 

ln(𝐺𝐺𝐺𝐺𝐺𝐺)𝑡𝑡   1.105 1.534 0.198 1.085 

   (0.398)*** (0.360)*** (0.613) (0.609)* 

ln(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝑡𝑡     -1.385 1.621 

     (4.009) (1.673) 

ln(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)𝑡𝑡     0.003 0.647 

     (0.710) (0.207)*** 

ln(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)𝑡𝑡     -2.954 -3.228 

     (6.529) (2.665) 

ln(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)𝑡𝑡     0.386 0.643 

     (0.802) (0.356)* 
Top 100 university     3.144 2.053 
     (3.072) (2.154) 

R2 0.33      
N 1,968 1,968 1,879 1,879 1,671 1,671 
Number of cities 246 246 246 246 218 218 
Year dummies Yes Yes Yes Yes Yes Yes 
Instruments  21 23 27 31 37 
Sargan Test p-value  0.00 0.00 0.30 1.00 0.99 
Hansen Test p-value  0.20 0.02 0.00 0.00 0.00 
AB AR(1) Test p-value  0.00 0.00 0.00 0.00 0.00 
AB AR(2) Test p-value  0.26 0.38 0.46 0.42 0.57 
PCA R2  0.97 0.97 0.89 0.90 0.93 
Kaiser-Meyer-Olkin   0.89 0.89 0.94 0.94 0.96 

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Estimation is via fixed effects 
with standard errors clustered by city in column (1), and via the two-step Blundell-Bond (1998) 

System GMM with Windmeijer (2005) corrected standard errors in columns (2) to (6). 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the 

concentration of population in the metropolitan core. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is population density. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the 

degree of polycentricity of the city. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the degree of fragmentation of local government. Top 
100 university is an indicator for whether there is a top-100 university in the city, as ranked by 
ARWU. The Sargan and Hansen tests are the tests of over-identifying restrictions. The Sargan test is 
not robust to heteroskedasticity but is not weakened by many instruments, whereas the Hansen test is 
robust to heteroskedasticity but is weakened by many instruments. The Arellano and Bond tests (AB) 
are tests for serial correlation in the first-differenced errors, of orders 1 and 2. PCA R2 is the fraction 
of the variance explained by the principal components, and Kaiser-Meyer-Olkin is a measure of the 
sampling adequacy of the principal components.  
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Figure 1: Scatterplot of patent applications and population, 2008 (N = 218).  

 

 

 

Figure 2: Scatterplot of patent applications and real GDP, 2008 (N = 218).  
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Figure 3: Zipf plots of population, patents and GDP, for 2008, log scale, normalised 

to the size of the largest city.  
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Figure 4: Normal probability plots for population, GDP and patents, in 2008.  
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Figure 5: Nonparametric estimates of the relationship between city size and city 

growth.  

  

 

 

Notes: The shaded area indicates the 95% confidence interval. Bandwidth indicates the bandwidth 
used for the smoothing, while pwidth indicates the bandwidth used for the confidence interval.  
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