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Abstract 

Background: The absence of conflict in a country has been cited as a crucial factor affecting the operational feasibil-
ity of achieving malaria control and elimination, yet mixed evidence exists on the influence that conflicts have had on 
malaria transmission. Over the past two decades, Africa has seen substantial numbers of armed conflicts of varying 
length and scale, creating conditions that can disrupt control efforts and impact malaria transmission. However, very 
few studies have quantitatively assessed the associations between conflicts and malaria transmission, particularly in a 
consistent way across multiple countries.

Methods: In this analysis an explicit geostatistical, autoregressive, mixed model is employed to quantitatively assess 
the association between conflicts and variations in Plasmodium falciparum parasite prevalence across a 13-year period 
in sub-Saharan Africa.

Results: Analyses of geolocated, malaria prevalence survey variations against armed conflict data in general showed 
a wide, but short-lived impact of conflict events geographically. The number of countries with decreased P. falciparum 
parasite prevalence (17) is larger than the number of countries with increased transmission (12), and notably, some of 
the countries with the highest transmission pre-conflict were still found with lower transmission post-conflict. For four 
countries, there were no significant changes in parasite prevalence. Finally, distance from conflicts, duration of con-
flicts, violence of conflict, and number of conflicts were significant components in the model explaining the changes 
in P. falciparum parasite rate.

Conclusions: The results suggest that the maintenance of intervention coverage and provision of healthcare in con-
flict situations to protect vulnerable populations can maintain gains in even the most difficult of circumstances, and 
that conflict does not represent a substantial barrier to elimination goals.
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Background
The number of ongoing armed conflicts in the world 
has declined steadily through the 1990s and early 2000s, 
with a 40 % reduction from peak years shortly after the 
end of the Cold War [1]. However, this trend ended in 

the mid-2000s and the annual frequency of major armed 
conflicts has stabilized at around 35 in recent years, with 
most concentrated in Asia and Africa [2]. Over the past 
two decades, at least 20 African countries have been 
involved in armed conflicts of various types and levels 
of intensity (e.g., civil wars, interstate wars and violence 
against civilians) [2]. These conflicts continue to exert 
assorted detrimental effects, including many deaths, 
substantial economic losses and large numbers of for-
cibly displaced people [3, 4]. It is estimated that armed 
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conflicts cost Africa approximately $18 bn per year and 
have shrunken each conflict-afflicted African nation’s 
economy by 15 % on average since 1990 [5]. By the end 
of 2011, Africa hosted more than a quarter (2.7 million) 
of the world’s 10.4 million refugees [6] and one-third (9.7 
million) of the world’s 26.4 million internally displaced 
persons [7], while only constituting 15  % of the world 
total population [8].

The challenges that armed conflicts pose on public 
health are widely acknowledged, not only the direct inju-
ries and deaths among military personnel and civilians, 
but also the indirect effects on the physical and socio-eco-
nomic environments that exacerbate morbidity and mor-
tality [9–11]. Infectious disease, including malaria, is often 
a significant health problem during and after conflicts 
[12], as multiple risk factors flourish that enhance disease 
emergence and transmission, including displacement of 
large non-immune populations to endemic areas [13, 14], 
resettlement of refugees to deteriorated environments that 
favour vector breeding (e.g., inadequate sanitation, mar-
ginal land) [9], disruption of disease control programmes, 
breakdown of health systems [15, 16], and impeded access 
to populations for timely delivery of medical supplies [17–
19]. For example, the civil war in Tajikistan during 1992–
1993 led to an increase in annually reported malaria cases 
from 200 in 1992 to almost 30,000 in 1997 [20].

Several studies have examined the effects of armed 
conflicts on malaria transmission [21–24] and explored 
barriers and strategies for malaria interventions and con-
trol in conflict situations [18, 25]. The majority of theories 
and findings suggest that armed conflicts are associated 
with increased malaria risk [17, 18, 21, 26, 27]. How-
ever, there are also studies indicating a negative asso-
ciation between level of conflicts and malaria risk [22]; 
describing successful malaria control in conflict-affected 
regions, such as Sri Lanka, which has almost eliminated 
malaria despite nearly 30 years of civil war [25, 28]. Gen-
erally, most studies examining the relationship between 
armed conflicts and malaria transmission are descriptive 
or limited to individual countries. As such, there is a lack 
of research investigating the association between con-
flicts and malaria quantitatively over large areas.

Given declines in malaria prevalence in Africa [29], a 
renewed international focus on malaria eradication, and 
that the absence of internal and external conflicts can 
be a crucial factor affecting the operational feasibility of 
malaria elimination [30], there is a need to understand 
and quantify the relationships between armed conflicts 
and malaria by analysing the influence of the proxim-
ity of conflicts (in space and time) on the temporal vari-
ability of malaria transmission. To explore if significant 
increases in malaria transmission during or after con-
flicts have been seen in Africa, the most comprehensive 

geo-referenced databases of Plasmodium falciparum par-
asite rate (PfPR) surveys [31] (Fig. 1c, d) and armed con-
flict events (Fig. 1a, b) were integrated for the 1997–2010 
period and their spatial relationships investigated.

Methods
Data
Geo-located PfPR community surveys across sub-Saha-
ran Africa were obtained from the Malaria Atlas Project 
database [32, 33] (Fig. 1d). Among the various metrics of 
malaria transmission, PR is the most commonly reported 
and reliable metric for P. falciparum malaria endemicity 
[34] and sensitive across a broad range of the transmission 
spectrum [35]. The logistically intensive process of search-
ing for, identifying and geo-referencing the PfPR surveys 
has been documented elsewhere [33, 36], with all of the 
surveys geo-located and not duplicated within 3 months at 
the same site. As PfPR follows a pattern related to age and 
is generally reported across different age ranges [37, 38], 
an algorithm described by Smith et al. [39] was applied to 
standardize the values of PfPR to a single and epidemio-
logically important age group (2–10 years). Of the surveys 
in Africa, in particular, the majority were conducted after 
2000 (79  %, Fig.  1c) and diagnosed through microscopy 
(71  %). The sample size of these surveys varies and more 
than half of them (52 %) are larger than 50. At the time of 
analysis, a total of 15,213 PfPR surveys undertaken between 
1997 and 2010 were available for sub-Saharan Africa [33].

The conflict data were obtained from the Armed Con-
flict Location and Event Dataset (ACLED) [40], which 
assembles and codes reported violent events in unstable 
and warring states and has been shown to be robust for 
continental and regional studies [41, 42]. This dataset, 
which covers all of the countries in Africa (Fig. 1a), pro-
vides detailed information on the dates, locations, event 
type, groups involved, information sources, and fatalities 
for armed conflicts [40]. Specifically, it focuses on track-
ing rebel, militia and government activities, identifying 
territorial transfers and collecting information on riot-
ing, protests and non-violent events [40]. By 31 Decem-
ber, 2010, 48,261 events in Africa had been recorded by 
ACLED with 44  % being battles between government, 
rebels and militias, 36 % violence against civilians, 14 % 
riots and protests, and 6 % non-violent events (Fig. 1b). 
Each entry in this disaggregated dataset is ‘atomic’, in the 
sense that events which took place over multiple days are 
recorded as consecutive events on a specific day and in 
an exact location [40].

Methods
General model
An autoregressive, additive, geostatistical, linear mixed model 
was applied to the malaria surveys and the surrounding 
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conflict locations. Autoregressive components are often used 
in spatiotemporal analyses of malaria prevalence [43, 44], and 
enable relative (to its initial value) measures of the PfPR varia-
tion to be produced. Spatial and spatiotemporal autocorrela-
tion has been found to be significant in other conflicts [11, 42, 
45] and malaria studies [31, 44, 46].

A preliminary analysis was carried out to test if the dif-
ferences in PfPR (in the 2–10  age range) before (PfPRb) 
and after (PfPRa) conflicts, ΔP, were more accurately 
explained by the model than using PfPRa as the depend-
ent variable. The results showed that using ΔP increased 

the explanatory power of the model by 12 %. In addition, 
fitting ΔP enabled removal of some uncertainties due to 
the transformation of PfPRa to ΔP in the post-modelling 
stage. Therefore, for each conflict location, ΔP was calcu-
lated as:

where PfPRa and PfPRb are obtained from each malaria 
survey within 5° and 10  months from the conflict 

(1a)∆P = Pf PRb − Pf PRa − Sm

(1b)Sm = A+ (B sin (θ ·m)) m = 1, . . . ,T

Fig. 1 Datasets used in the analyses. Recorded conflict events 1997–2010 in Africa for different years (a) and type (b); P. falciparum parasite rate 
(PfPR) surveys 1997–2010, standardized to the 2–10 years age group for different years (c) and type (d)
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location. In other words only PfPR collected in different 
times at the same location are considered (6205 malaria 
surveys). In fact, taking into account single surveys 
(PfPR surveyed only once in a location) and averaging 
their values with those from other surveys within 5° and 
10 months from a conflict event, reduced the explanatory 
power of the model (−26 %).

The values of 5° (parameter ϕ) and 10 months (param-
eter ρ) were obtained from a Monte Carlo simulation in 
which, at each iteration, 20 % of the ΔP values were ran-
domized in space and time. At each of the 10,000 itera-
tions, the gamma variance for each combination of spatial 
and temporal lags (spatial lags, ϕ, spanning from 0.1° to 
10° between conflict location and malaria surveys; and 
temporal lags, ρ, spanning from 1 to 100 months between 
conflict starting date, c, and the time of the malaria sur-
veys) were calculated by fitting the γ-variances (known as 
experimental variogram):

with a non-separable, spatiotemporal, exponential func-
tion and applying the non-linear minimization method 
nml [47]:

where d and h are the spatial Haversine distance and 
the temporal distance, respectively, between conflicts 
and malaria settings. Five degrees and 10  months are 
the average spatial and temporal lags obtained from the 
Monte Carlo simulation. Equation [2] differs from the 
canonical equation of the variogram in the lag param-
eters, as they express the spatial and temporal distances 
between malaria survey locations and the conflict and 
not the distance between malaria surveys.

The parameter Sm in Eq. (1b) is the seasonality in the 
PfPR modelled as sinusoidal function of the scaling param-
eter A, the parameter controlling the amplitude (B) and 
the parameter controlling the phase (θ); finally, m is the 
moment along the time series of total length T. To obtain 
Sm, the average monthly PfPR from 1997 to 2010 was fit-
ted with a sinusoidal curve (1b). The parameters A = 0.31, 
B = 0.1 and θ = 1.8 were obtained through applying a least 
square method to the time series. While the average cor-
rection is only 0.04 of the prevalence rate, the use of the 
de-seasonalized data in Eq. (4a) improved the Akaike 
Information Criterion (AIC) from −17,356 to −19,516.

A method for accounting for the effects of season-
ality was implemented in order to avoid the situation 
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where the period before and after conflict may include a 
seasonal effect. For example, if PfPR tends to be higher 
due to seasonality when conflict occurs and lower when 
measured ‘after conflict’ then the outcome (a measur-
able decline in PfPR) may simply reflect seasonal effects. 
Other methods, i.e., the use of covariates in order to 
simulate seasonality (i.e., precipitation and temperature) 
may be useful [48], however, this does not solve intrinsic 
periodicities in endemic-malaria countries, and requires 
user-defined qualitative (i.e., spatial scale of the seasonal-
ity for pre-defined regions) and quantitative parameteri-
zation of the model. The complexity of modelling malaria 
seasonality in Africa, in terms of the time of the year, 
amplitude and phase is discussed elsewhere [49]. Global, 
rather than local, corrections for the periodicities in the 
data are typically applied [43, 44], but more often the sea-
sonal component is not modelled or removed in national 
or sub-national prevalence mapping studies [50]. Finally, 
the use of an explicit seasonality component, rather than 
including the seasonality in the covariance function is 
due to the use of a correlation matrix dependent on the 
distance from conflict settlings to malaria surveys and 
not from malaria surveys to malaria surveys (see below 
term γ̂ in Eq. 4c).

The PfPR differences at each conflict location and 
malaria survey were fitted using an additive, geosta-
tistical, linear mixed model containing an autoregres-
sive component (PfPRb); a matrix of covariates X (fixed 
effects); a matrix of random effects W; a spatiotemporal 
correlation effect, Z; and an error component ε:

where the subscripts q and t indicate the location and the 
time of the conflict event, respectively; β0 and β1 are the 
regression coefficients for PfPRb and (a vector of coef-
ficients) for X, respectively; b is a one column vector of 
aspatial normally distributed random effects with mean 
zero and covariance matrix Σb, given by the product of 
the variance σ 2

b  and the identity matrix I [51]; Z is a one 

(4a)�Pq,t = β0PfPRb(q,t) + β1X + bW + Z + ε

(4b)b ∼ N (0,Σb)

(4c)Z ∼ N
(

0, σ 2
z γ̂ (ϕ, ρ)

)

(4d)ε ∼ N
(

0, σ 2
e I
)

(4e)

�Pq,t ∼ N
(

β0PfPRb(q,t) + β1X ,WΣbW
T
+ σ 2

z γ̂ (ϕ, ρ)+ σ 2
e I

)

(4f)Σb = σ 2
b I
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column vector with spatiotemporal normally distributed 
random effects with mean zero and a covariance matrix 
given by the product of the spatial variance, σ 2

z , and the 
correlation matrix, γ̂. As shown above, γ̂ is expressed as 
a function of the spatial correlation parameter, ϕ, defin-
ing the spatial range of ΔP from the conflict location; and 
the temporal correlation, ρ, defining the temporal range 
of ΔP from the conflict location (Eq. 3). Finally, ε is the 
independent and identically normally distributed error, 
with error variance σ 2

e  I. The covariates in X are: number 
of conflicts experienced at the malaria survey location, 
its distance from conflicts and duration of the conflicts 
at the conflict location. In addition, the typology of con-
flicts is considered in X in form of dummy variables (1, 
Battle-Government regains territory; 2, Battle-no change 
of territory; 3, Battle-non-state actor overtakes territory; 
4, Headquarters or base established; 5, Non-violent activ-
ity by a conflict actor; 6, Non-violent transfer of territory; 
7, Riots/protests; 8, Violence against civilians; see [52] for 
conflict-type definition). Environmental and socio-eco-
nomic variables are not taken into account because this 
analysis focuses only on the relationships between spatial 
and temporal dimensions in conflicts and malaria preva-
lence surveys (point to point analyses). Including non-
conflict variables can likely explain additional variance in 
the differences in PfPR but it is unlikely to alter the con-
tribution of the conflict variables in prevalence changes. 
In order to account for country characteristics, the ran-
dom effect is the country of the malaria survey location 
and the macro area. For the latter, a dichotomous variable 
with values ‘East Africa’ and ‘West Africa’ was employed 
due to the differences in prevalence sample sizes [53].

Model (4a) was the best model from various alterna-
tives where different types of dependent variables (PfPR, 
at malaria locations and conflict locations), fixed effects 
(e.g., longitude and latitude of conflict, longitude and 
latitude of malaria surveys), spatiotemporal effects (e.g., 
without Z, only spatial, using parameters obtained from 
the canonical variogram of malaria or from the vari-
ogram of conflicts) and random effects (only country or 
macro-area, no random effects) were considered.

Validation
To evaluate the accuracy of the model, it was re-run 
keeping out 20  % of the records for which it was esti-
mated the �P̂ and compared with real ΔP through the 
following statistics:

1. Mean error 

(5)ME =
1

Q

Q
∑

q=1

�Pq −�P̂q

2. Mean squared error 

3. Mean squared deviation ratio 

where 
(

σ 2
k

)

s
 is the kriging variance at location q. The 

ideal values for ME, MSE and (1 − MSDR) are zero. 
For the latter, this means that MSE equals the kriging 
variance (hence MSDR = 1).

�P̂ Africa map
A country-level measurement of �P̂ was produced by 
averaging the fitted �P̂ values for each country (Fig. 2a). 
The countries are classified in the following four catego-
ries: places where PfPR was predicted to be increasing 
in relation to conflict events (�P̂ +  standard error < 0); 
places where PfPR was predicted to be decreasing in 
relation to conflict events (�P̂ − standard error  >  0); 
and places where �P̂ estimations are affected by a large 
standard error and hence cannot be categorized. A fourth 
category is for those countries which data are not enough 
for estimation. Here, the standard error represented the 
uncertainty in the values of the covariance and error 
noise components.

Results
When considering Africa as a whole, a pattern emerged 
with west Sub-Saharan Africa and southeast Africa 
showing increases in PfPR following conflicts, and the 
greater Horn of Africa (with the exception of Djibouti) 
and Central Africa showing decreases in PfPR after con-
flict (Fig.  2; Table  1). Even for some of the most con-
flict-affected countries, such as Zimbabwe, Somalia, 
Democratic Republic of Congo, and Sudan, significantly 
lower prevalences were evident in the months after con-
flict events, compared to before. In 17 out of the 33 sub-
Saharan African countries for which PfPR post-conflict 
estimation was possible and significant, decreases in 
prevalence were evident when comparing pre- to post-
conflict levels (Table 1). For the other four countries, the 
model was not able to find significant changes in PfPR 
after conflict. Assessments of existing evidence were not 
all positive. Thirty-six per cent of the countries (gener-
ally those affected by high-medium transmission levels) 
did not show an immediate ability to bounce back from 
periods of major conflict and showed an increase in PfPR 
post-conflict (Table  1). Interestingly, large increases/
decreases were always associated with low uncertainty 
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(Fig. 2b), however, even when the uncertainty was large 
the estimates were still significantly different from 
zero, with the exception of Ghana, Liberia, Mali, and 
Mozambique.

Thus, what are the determinants of this ΔP pattern? 
The applied model, for which accuracy was high (valida-
tion statistics returned a ME = −0.0007, MSE =  0.002 
and 1 − MSDR = 0.12), suggests that increases in ΔP (i.e., 
a decrease in PfPR) are associated with lower numbers of 
conflicts around the malaria surveys, shorter duration 
of conflicts and longer distance from conflict locations. 
Regarding the typology of the conflict, the absence of 
violence against civilians, riots/protests, battles with no 
change of territory, and non-violent transfer of territory 
(Table  2) are associated with decrease in post-conflict 
PfPR, while battles in which government retain territory, 
non-violent activity by a conflict actor, headquarters and 
base established, and battles with non-state actors over-
taking territory (categories defined by ACLED [52]) were 
not significantly correlated with changes in PfPR. There-
fore, the four types of conflicts that have caused 94 % of 
deaths from all types of armed conflicts (93  % just vio-
lence against civilians and riots/protests), are also those 
that are influencing the variations in PfPR.

The model trend component (defined by the conflicts 
variables and autoregressive term) explains 45.5 % of the 
overall variability, while 18.8  % is explained by the sea-
sonality component and 23.9  % from the autocorrela-
tion. Overall, the model explains 88.2 % of the variability, 
suggesting that other factors are influencing the present 
results. This can also be inferred by the strong relation-
ship between PfPRb and ΔP (Table 2), the significant sea-
sonality and autocorrelation, and the amount of model 
noise. The strong correlation between PfPRb and ΔP 
meant that part of the ΔP was explained by an intrinsic 
variability in PfPR, which may be due to other factors, 
such as health systems, malaria interventions, climate 
variations, human displacement, etc., as found elsewhere 
[24, 29]. These factors can also affect the spatially (hid-
den trends) and especially non-spatially correlated vari-
ance (known as the nugget variance in geostatistics, or 
measurement error), which account for 11  % of the sill 
(the total amount of variance given by the sum of non-
spatially correlated variance and spatially correlated vari-
ance in the residuals) [54]. On the other hand, the large 
amount of spatially correlated variance (the remaining 
89  %) confirms the importance of spatiotemporal auto-
correlation in malaria surveys [55] and conflict events 

Fig. 2 Per-country estimated change in PfPR from before to after conflict events over the 1997–2010 period, �P̂. a Estimated �P̂, larger positive/
negative values indicate larger decrease (if positive) or increase (if negative) in PfPR after conflict. b Standard error in �P̂ estimation; where the 
standard error is larger than 100 % of the estimated �P̂, the country decrease/increase in PfPR is not considered (Liberia, Mali, Mozambique, and 
Sudan)



Page 7 of 11Sedda et al. Malar J  (2015) 14:500 

[56] and in general for malaria transmission statistical 
analyses [11, 31, 42, 45, 57]. In this study, the optimiza-
tion of the variogram based on the distances between 
conflicts and variance in the malaria surveys (Eq. 2), 
shows that conflicts were more likely to influence ΔP 
over short time periods (less than a year) and large spatial 
scales (up to 500 km). This indicates that malaria surveys 
closer to the conflicts are likely to have similar values, 
which are influenced by the type, duration and number 
of conflicts (the variables of the trend model compo-
nent) and unknown factors. The differences between 
PfPRs increase with the spatiotemporal distance from the 

conflicts, and the relative contribute of the conflict type 
and intensity to their variation is relatively lower. In this 
context, interventions rapidly deployed over short time 
periods especially in the less violent conflicts, can result 
in no-changes in ΔP or even its improving.

Discussion
The period between 1997 and 2010 saw substantial num-
bers of armed conflicts across Africa, of varying length, 
intensity and type (Fig. 1a, b). Widespread evidence of the 
disruptive impacts of conflicts on malaria control efforts 
and transmission exist, but the impacts across large areas 
and over time have never been quantitatively explored. 
This research aimed to quantify the link between vio-
lence and increase in malaria.

With many African countries harbouring elimination 
ambitions and global eradication on the international 
agenda, understanding how much of a barrier conflicts 
place in terms of transmission changes becomes impor-
tant. Analyses here show that, in general, locations 
affected by larger number of longer and closer conflicts 
with significant amounts of violence and deaths, are more 
likely to see an increase in P. falciparum prevalence. An 
example is Sierra Leone (increase in malaria transmission 
of 60 % compared to the level pre-conflict) for which the 
war from 1991 to 2001 was not only characterized by a 
large number of conflicts, but also by an unprecedented 
trail of atrocities [58]. However, the majority of the 
overall variability in PfPR is not explained by the armed 
conflicts, but other factors such as seasonality, autocorre-
lation and the level of PfPR before conflict events (which 
are probably a proxy for other variables not considered in 
this analysis) contribute to explain the changes in malaria 
transmission. This is the reason why for some of the most 
conflict-affected countries, such as Zimbabwe, Demo-
cratic Republic of Congo, and Somalia significantly lower 
PfPR values were evident in the months after conflict 
events (or in Liberia, Mozambique, and Sudan no signifi-
cant changes), compared to before [22, 59, 60]. In Sudan, 

Table 1 Averaged-country differences in  PfPR before 
(PfPRb) and after (PfPRa) conflicts (diff) and its model esti-
mation (est diff) and model standard errors (stand error)

Country Diff PfPRb PfPRa Est diff Stand  
error

Zimbabwe 0.321 0.532 0.211 0.337 0.015

Zambia 0.280 0.547 0.267 0.272 0.014

Burundi 0.144 0.383 0.239 0.133 0.011

Congo (Democratic 
Republic of the)

0.136 0.341 0.205 0.140 0.013

Kenya 0.129 0.340 0.212 0.131 0.014

Uganda 0.113 0.355 0.242 0.099 0.014

Tanzania 0.109 0.258 0.150 0.109 0.015

Rwanda 0.085 0.308 0.223 0.067 0.014

Somalia 0.078 0.106 0.028 0.080 0.017

Equatorial Guinea 0.078 0.174 0.097 0.081 0.013

Sao Tome and Principe 0.077 0.131 0.054 0.077 0.014

Nigeria 0.065 0.165 0.101 0.063 0.014

Gabon 0.049 0.073 0.024 0.086 0.012

Ethiopia 0.049 0.064 0.015 0.047 0.015

Eritrea 0.039 0.058 0.019 0.035 0.012

Ghana 0.035 0.706 0.671 −0.011 0.020

Cameroon 0.033 0.229 0.196 0.044 0.010

Sudan 0.006 0.035 0.029 0.006 0.016

Mali −0.008 0.375 0.382 −0.009 0.014

Mozambique −0.009 0.278 0.287 −0.001 0.018

Malawi −0.031 0.358 0.389 −0.121 0.014

Madagascar −0.039 0.196 0.235 −0.042 0.027

Liberia −0.046 0.319 0.365 0.011 0.012

South Africa −0.057 0.283 0.340 −0.087 0.020

Djibouti −0.089 0.013 0.102 −0.208 0.008

Swaziland −0.093 0.293 0.386 −0.165 0.017

Burkina Faso −0.101 0.595 0.696 −0.102 0.013

The Gambia −0.102 0.136 0.239 −0.098 0.016

Guinea −0.105 0.210 0.315 −0.066 0.014

Sierra Leone −0.125 0.210 0.335 −0.114 0.012

Senegal −0.184 0.083 0.267 −0.177 0.016

Cote D’Ivoire −0.184 0.379 0.563 −0.202 0.016

Guinea-Bissau −0.199 0.115 0.313 −0.229 0.011

Table 2 Estimated coefficients for  the independent vari-
ables used into the model

Coefficients Estimate Standard 
error

p value

PfPRb 0.78580 0.00587 <0.001

Number of conflicts −0.00008 <10−6 <0.001

Distance from conflict 0.00142 0.00086 <0.001

Duration of the conflict −0.00002 0.00001 <0.001

Violence against civilians −0.12909 0.00412 <0.001

Riots/protests −0.10311 0.00467 <0.001

Battle: no-change of territory −0.07233 0.00387 <0.001

Non-violent transfer of territory −0.02687 0.00735 <0.001
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for example, the impact of conflicts on malaria were bal-
anced by disease surveillance, early warning and response 
systems implemented during the battles [17, 61].

Despite many of the most conflict-affected countries 
showing a decrease in PfPR, others showed a strong 
increase. Guinea-Bissau, Cote d’Ivoire, Senegal, Sierra 
Leone, Guinea, Malawi, and Madagascar showed a large 
number of conflicts and increases in PfPR due, in part, 
to the intervention coverage interruptions that followed 
[62]. Specifically, in Cote d’Ivoire (48 % increase in PfPR), 
the 2002/2003 civil war [11] resulted in serious health 
system failures in the northern, western and central 
regions of the country, with more than 60  % of trained 
health personnel fleeing [63]. Moreover, lower levels 
of conflict were associated with increases in P. falcipa-
rum transmission. For example, in Burkina Faso (17  % 
increase in PfPR), where most of the conflicts were asso-
ciated with violence.

What lies behind the unexplained variation in PfPR 
or hidden in other model components (PfPRb, season-
ality and autocorrelation)? Each region and conflict, of 
course, has its own unique conditions and drivers, but 
just as the relative effect size of the negative impacts of 
climate change on malaria can be dwarfed by those of 
control efforts [55], so it seems can post-conflict impacts. 
The burden of malaria in many African countries has 
declined substantially in the past decade [29, 64], coin-
ciding with (1) the scaling up of malaria interventions 
supported by increased international funding for malaria 
control [29, 65, 66, 67], and (2) increasing urbanization 
and development [68]. In 2000, only 1.8 % African chil-
dren slept under insecticide-treated nets (ITNs) in stable 
endemic areas, and this rose to 18.5 % by 2007 [69], and 
continues to rise today [29, 70]. Therefore, the changes 
in malaria transmission brought by expanding cover-
age of malaria intervention likely outweigh the negative 
impacts of armed conflicts over the timescales examined 
here. Moreover, while violent events undoubtedly result 
in misery and devastation for almost all involved, con-
flicts can often result in improved coordination and effort 
among key actors in the health field and bring more 
attention from humanitarian organizations [71, 72], pro-
ducing a sustained impact that lasts beyond the ceasing 
of conflict. Finally, the longer term trends of rising urban-
ization and development all point towards sustained 
reductions in transmission [68], likely overriding any 
shorter term impacts of conflict. Resilience to the nega-
tive effects of conflict on malaria across much of Africa 
is evident, offering hope for the longer term prospects of 
control and elimination of the disease in the face of any 
future violence.

While clear patterns in the association between con-
flict and P. falciparum malaria exist, limitations in the 

analyses presented do remain. The short temporal range 
found after adjusting for seasonality may be due to the 
variability of intervention and control measures in place 
[46], which can introduce noise in the temporal depend-
ence between conflict events and malaria surveys and, 
therefore, shorten the temporal influence of conflicts on 
ΔP. In addition, the seasonal model is global and hence 
local variations (country by country) may have been 
smoothed as well as not taking into consideration local 
climate factors. For example, climate anomalies can 
affect: (1) the timing and duration of the transmission 
season which influences both the malaria prevalence 
and planned interventions [48, 73], and (2) the level 
of conflict and risk of violence in an area [41]. If avail-
able, sample weights could help in improving the accu-
racy of the association between conflict variables and 
changes in malaria prevalence; however, at the inferen-
tial stage their effects are limited by the use of thousands 
of conflict-to-malaria point associations. Additionally, 
data quality represents a potential source of uncertainty 
because, in conflict situations, it can be difficult to col-
lect reliable data on malaria prevalence and transmission 
[22, 74], though here the analysis is applied to pre- and 
post-conflict prevalence at same locations, so this issue 
is limited. In terms of conflict data, there are alterna-
tive databases, but each has their own limitations for a 
point-based spatiotemporal analysis. For example, the 
Uppsala database [75] contains less data on conflicts 
than ACLED; the HIIK conflict barometer [76] and the 
EM-DAT [77] do not provide conflict information with 
the same spatial resolution as ACLED [40]. Moreover, a 
more detailed local study could utilize other non-public 
sources of data, such as humanitarian funding appeals. 
Nevertheless, it has been demonstrated that ACLED 
likely represents the most reliable dataset for continental 
and national point data analyses [41, 78, 79]. However, 
while all types of conflict were significantly associated 
in space and time with PfPR variations, their impact is 
certainly likely to be different [59], and also the database 
does not account for other politically complex emergen-
cies [61] that are not recognized as conflicts. Finally, a 
key missing component in this analysis is the underlying 
population mobility, which if data were available, could 
improve the accuracy of this analysis [80], since it affects 
not only malaria prevalence, but also health infrastruc-
ture through movements of refugees [24, 81]. In fact, it 
is likely that temporary migratory movements of peo-
ple escaping from conflicts have concentrated malaria-
affected people in conflict-free areas and exposed 
refugees to malaria when they escape to rural, high-
endemicity areas [81–84]. This may have contributed 
to the positive fixed effect coefficient for the PfPRb (the 
autoregressive term) in which high levels of prevalence 
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before conflict are associated with high positive differ-
ences, and on the spatiotemporal autocorrelation noise 
(the nugget effect), but without reliable and consistent 
continent-wide data on refugee movements, it was not 
possible to account for them in this analysis.

Conclusion
This analysis shows that the gains made against malaria 
over the past decade can be maintained in even the most 
difficult of political and health circumstances [57, 85, 
86, 87]. For many parts of Africa, the concept that con-
flicts threaten malaria elimination aspirations in the long 
term may be another myth to add to those that block 
progress for the poor [88]. Conflicts are one important, 
but not the major component, in determining the PfPR 
post-conflicts; therefore, in presence of conflicts, in most 
places malaria prevalence keep decreasing from pre-
conflict level. However, the impact of the conflicts on 
malaria prevalence is stronger in the presence of violent 
events (e.g., violence against civilians and riots/protests). 
Although further analyses are needed to understand the 
mechanism by which violence influences malaria, this 
research showed the need for tackling the difficult task 
of maintaining intervention coverage in settings that are 
both under conflict and still suffering from high P. falci-
parum burden.

The world is becoming a more peaceful place [89], but 
further conflicts in endemic-malaria zones are inevita-
ble. While such disruptive events may divert attention 
and resources away from malaria control and elimination 
efforts temporarily, they need not effect permanent or 
long-term damage to prospects for a malaria-free world.
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