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Abstract

Many real-world situations involve queueing systems in which customers may abandon
if service does not start sufficiently quickly. We study a comprehensive model of multi-class
queue scheduling accounting for customer abandonment, with the objective of minimizing the
total discounted or time-average sum of linear waiting costs, completion rewards and aban-
donment penalties of customers in the system. We assume the service times and abandoning
times are exponentially distributed. We solve analytically the case in which there is one server
and there are one or two customers in the system and obtain an optimal policy. For the gen-
eral case, we use the framework of restless bandits to analytically design a novel simple index
rule with a natural interpretation. We show that the proposed rule achieves near-optimal or
asymptotically-optimal performance both in single- and multi-server cases, both in overload
and underload regimes, and both in idling and non-idling systems.

1 Introduction

Abandonment (aka reneging) is a ubiquitous phenomenon in a multitude of systems. It may
happen due to customers’ impatience, mobility, perishability, obsolescence, or other reasons. For
instance, customers can abandon after waiting for too long in a queue, Internet users may give up
a transfer if the connection is slow, or external factors may cause customers not to be amenable
to service anymore. Abandonment is especially important in call centers (Gans et al. 2003, Aksin
et al. 2007) and health care (Argon et al. 2010). Other application areas in which abandonment
may have a significant impact are real-time systems where data received after certain hard dead-
line is useless (Buttazzo 2011), or inventory systems with perishable goods (Graves 1984).

∗An early version of this paper appeared in Ayesta et al. (2011).

1



Customer abandonment has a very negative impact on performance both from the cus-
tomer’s and the system’s perspective. A customer who decides to abandon perceives that the
system is poorly managed or not well dimensioned, which may lead to switching to a competi-
tor. In health care, abandonment may be used to model irreversible deterioration of patients’
health. From the system’s point of view the abandonment might imply that resources have been
wasted by allocating them to a customer that decided to abandon anyway. For this reason it is
important to design efficient scheduling policies in the presence of abandonment.

Mathematically, abandonment can be studied by queueing models, but as a consequence
of the complexity, the problem of how to schedule impatient customers is not completely under-
stood. For instance, very little is known about how to schedule customers in order to optimize a
performance criteria that may depend on the number of customers waiting and on the number
of customers that abandon the queue. This is an important question, for which no general so-
lution is known, and it is likely to be computationally infeasible. The main focus of the present
paper is to design a simple implementable scheduling rule for multi-class systems that shows a
nearly-optimal performance.

The literature on models that incorporate customer abandonment is rich, and there has been
a surge in recent years motivated by their application in health-care, call-centers and the Internet.
As an illustration of the latter we can mention the recent Special Issue in Queueing Systems de-
voted to queueing systems with abandonments Hasenbein and Perry (Eds). An important stream
of works investigate the performance of single-server systems in the presence of abandonment
(see for example Iravani and Balcioğlu 2008, Baccelli et al. 1984, Brandt and Brandt 2004, Brill
and Posner 1977, Ata and Tongarlak 2013), and there is also a significant body of literature deal-
ing with the multi-server case (see for example Boxma and de Waal 1994, Boots and Tijms 1999,
Whitt 2004). We also refer to Dai and He (2012) for a recent survey on multi-server systems with
abandoning customers. Abandonment systems have also been looked at from a game-theoretic
perspective (see Hassin and Haviv 2003, Chapter 5, and references therein). More relevant to our
work are the papers that deal with the control of systems in the presence of abandonment (see,
for example, Harrison and Zeevi 2004, Glazebrook et al. 2004, Argon et al. 2010, Down et al. 2011,
Jouini et al. 2010, Atar et al. 2010). The most common objectives are either service completion
reward maximization or waiting cost and abandonment penalty minimization. In Glazebrook
et al. (2004) the authors consider three different models for service completion reward maximiza-
tion, and derive heuristic rules using a variety of techniques. Argon et al. (2010) study how to
schedule optimally in a patient triage problem. Down et al. (2011) deals with a two-class system
and derives sufficient conditions for a classic priority rule to be optimal. In Jouini et al. (2010) the
authors derive scheduling policies for call centers with two classes of customers.

1.1 Problem Description

In this paper we aim at solving the problem of multi-class multi-server customer scheduling for a
system in which we allow for abandonment. The objective is to maximize the total discounted or
time-average revenue from customers in the system, where the revenue is defined as the sum of
service completion rewards minus waiting costs and abandonment penalties. In contrast to Atar
et al. (2010) and most of the previous literature, the customers in service are also charged a waiting
cost, which as we will see, will have significant consequences.

Let M denote the number of servers, or machines. There are K classes of customers, which
arrive to the system according to a Poisson arrival process with mean λk for class k ∈ K :=
{1, 2, . . . ,K}. Every customer incurs a waiting cost while in the system, an abandonment penalty
in case of abandonment, and yields a service completion reward in case of service completion.
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Service completion times and abandonment times are exponentially distributed. Thus, the class-
k customer’s behavior is completely characterized by the mean service time 1/µk (with service
rate µk > 0 while served), the mean abandonment time 1/θk (with abandonment rate θk > 0 while
not served), the waiting cost rate ck (possibly negative), the abandonment penalty dk (possibly
negative), and the service completion reward rk (possibly negative). Future costs, penalties and
rewards are discounted with exponential discount rate α ≥ 0.

We emphasize that we assume that the customers in service cannot abandon, though our
approach could easily be adapted to the other possibility. We also assume that a customer can
only receive service from one server at a time. Customers are assumed independent of each
other, i.e., we assume that at any moment and independently of everything else, every customer
(except for those in service, if any) may abandon the system, while a customer in service leaves
the system if her service is completed.

It is further permitted to allocate each server to an alternative task (such as idling, battery
recharging or service maintenance), for which we obtain an alternative-task reward rate κ. Thus
we assume there are M alternative tasks — one for each server. For instance, the role of this
alternative task with a positive κ could be to allocate a server to it when all the customers in the
system have a relatively low profitability (e.g., low service completion reward, low waiting cost,
and low abandonment penalty). On the other hand, by setting this parameter to a large negative
value we may force a server to be non-idling (whenever there are waiting customers). If κ = −∞,
then the alternative task will never be engaged, and we call this the non-idling variant. Finally, if
κ = 0, then the alternative task represents the classic possibility of server idling and we call this
the idling variant.

The joint goal is to maximize the expected aggregate rate of service completion rewards
and alternative-task rewards minus the waiting costs and abandonment penalties, over an infinite
horizon. The server is assumed to be preemptive (i.e., the service of a customer or of the alternative
task can be interrupted at any moment). Thus, the servers continuously decide which customer
(if any) to serve.

The most relevant paper for our work is Atar et al. (2010), where the authors investigate
this model under the time-average criterion and introduce the cµ/θ-rule for the in-queue cost
minimization problem (i.e., the customers in service do not incur the waiting cost):

Rule 1 (cµ/θ-rule) Assign to each customer of class k in the system the following index rate: (ck+dkθk)µk
θk

and allocate the servers to the M customers with the highest rates.

It is shown in Atar et al. (2010) (and extended in Atar et al. (2011) to a general service dis-
tribution for a non-preemptive server) that the cµ/θ-rule minimizes asymptotically (in the multi-
server fluid limit sense) the time-average in-queue waiting cost in the overload case (i.e., when the
system would be unstable if no abandonment were possible) under Poisson arrivals.

If there is no abandonment (i.e., θk = 0 for all classes k), then this problem recovers the
classic job scheduling problem considered in Cox and Smith (1961), Smith (1956), Fife (1965),
Buyukkoc et al. (1985), for which the following rule is optimal in a single-server setting (M = 1)
under Poisson arrivals, for both the discounted and time-average criterion:

Rule 2 (cµ-rule) Assign to each customer of class k in the system the following index rate: ckµk and
allocate the servers to the M customers with the highest rates.

For a given class k, ckµk measures the expected savings in waiting costs if a customer of
class k is served. Thus, the cµ-rule allocates the server to the customers who contribute most
efficiently to the minimization of the expected aggregate waiting cost. If M ≥ 2, this rule may not
be optimal, but the suboptimality gap is usually very small.
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1.2 Main Contributions

The most important contributions of the paper are as follows:

• We develop a new versatile modeling framework to optimize the performance of non-work-conserving
queueing systems, by formulating the system with abandonments as a multi-armed restless
bandit problem, which is relatively easily generalizable to include more complex system
features;

• Using this stochastic optimization framework, we derive a novel, robust, and simple scheduling
rule, and provide its intuitive interpretation;

• We show that the proposed rule achieves near-optimal and asymptotically-optimal performance
both in single- and multi-server cases, both in overload and underload regimes, and both
in idling and non-idling systems, which apart from its own sake validates the framework.

The most interesting case for practical implementation is the time-average criterion on
which we focus next. Let us denote byCk := rk+dk−ck (1/µk − 1/θk) the expected total profit, since
it is the difference between the expected total revenue if serving the customer always (rk− ck/µk)
and the expected total revenue if not serving her at all (−dk − ck/θk). Our stochastic optimization
approach yields the following Whittle Index rule (WI rule) that we propose to be implemented in
practice:

Rule 3 (WI rule) Assign to each customer of class k in the system the following index rate: Ckµk, if
Ck ≥ 0 and Ckθk, otherwise, and to each alternative task k the following index rate: κ, and allocate the
servers to the M options with the highest rates.

There is a simple interpretation of the WI index rate, as measuring the expected profit rate,
since the expected total profitCk is divided by the expected time the customer stays in the system,
which is 1/µk if it is preferable to serve and 1/θk if it is preferable not to serve.

We also emphasize the fundamental differences between our approach and results and
those of the existing literature on control of systems with abandonments, to the best of our knowl-
edge:

• this is the first paper that tries to solve the original stochastic problem. Previous literature focused
on solving simpler limiting regimes such as deterministic fluid limits, equilibria in overload,
or diffusions;

• this is the first paper that considers the discounted criterion, and we derive our rule under both
the discounted and the time-average criterion. Moreover, our rule is optimal if θk → 0 (it
reduces to the cµ rule) and gives a simple priority index in general;

• this is the first paper that relaxes the assumption of non-idling policies. Note that though, for
many scheduling problems, idling is not optimal when preemption is permitted, because
we assume no abandonment during service and the waiting cost is paid during service,
we may want to idle, e.g., when the abandonment rate is high and the penalty is low. In
prior work either the model assumptions are such that idling is not optimal, or policies
are restricted to be non-idling. Both of these approaches may be inadequate in practice,
and are taken to make the problem tractable. We show simple examples in which idling
may be optimal for our modelling assumptions. Thus, our rule will be superior to existing
non-idling rules in these cases. Moreover, our rule is often superior even when idling is not
optimal.
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1.3 Paper Structure

The problem as described above is hard to solve for optimality, and therefore we approach it by
solving it approximately by using several levels of problem relaxation. Section 2 contains the
formulation of the problem without arrivals as a Markov Decision Process after its uniformiza-
tion and discretization. This formulation can be seen as a generalization of the job sequencing
problem with geometrically distributed service times formulated in Cox and Smith (1961), who
showed that the index rule based on the cµ index is optimal. The modeling framework is known
as the multi-armed restless bandit problem, an extremely difficult optimization problem that has
been proven PSPACE-hard (Papadimitriou and Tsitsiklis 1999), that is, its complexity grows ex-
ponentially in time and in memory requirements. The term restless refers to the fact that, as a
consequence of abandonment, the state of all customers in the system varies in time regardless of
whether they are served or not. Restless problems can be solved analytically only in a few cases
(typically with largely restricted dynamics), and this explains to some extent why optimality re-
sults on scheduling in systems with abandonment are so scarce in queueing theory.

In Section 3 we solve analytically the case in which there are one or two customers in the
system. The case with one customers gives a fundamental insight into the problem and provides
an interpretation of Ck. For the case with two customers we characterize in closed form the
optimal switching curve which gives rise to a simple rule. This rule is not an index rule because
it is not separable - the decision to serve one customer cannot be made by just comparing indices
for each customer where the index for one customer depends only on that customer’s parameters
and not those of the other one.

To approach the intractable case with more than two customers, we follow the approach
of Whittle (1988) which allows us to derive a scheduling rule for any number of customers and
servers by calculating the Whittle indices as described in Niño-Mora (2007). In Section 4 we
introduce the relaxed formulation of the original problem. The main idea is to relax the sample
path constraint (that imposes that exactly M options be served at a time) by letting the time-
average/discounted number of options served in a period be M . This relaxation significantly
simplifies the problem. The optimal policy of the relaxed formulation becomes now separable
across options, that is, we can calculate for each customer the Whittle index value (that depends
only on the customer’s parameters and on whether she is still waiting or not), and the optimal
scheduler serves in every period the customers with actual Whittle index value higher than a
threshold (the value of the threshold ensures that the time-average number of customers served
is precisely M ).

Section 5 contains the main contribution of this paper, that is, the analysis of the relaxed
problem and the heuristic rule for the original stochastic optimization formulation. The optimal
policy for the relaxed problem need not be feasible for the original problem, yet it allows us .
We calculate the Whittle index values, which can be interpreted as dynamic shadow prices, in
closed form, and derive their equivalents for the continuous-time problem in order to construct
a heuristic Whittle index rule for the original problem with arrivals. The Whittle index rule is
feasible (at mostM customers are served at a time) and is typically reported to have an extremely
good performance (Niño-Mora 2007). In addition, it was shown in Weber and Weiss (1990) that
such a heuristic approaches optimality in the limit as the number of customers and the number
of servers grows (under certain additional assumptions).

In Section 6 we perform computational experiments for a wide variety of scenarios and we
compare the performance of various scheduling policies. In the experiments section we consider
a more realistic scenario where customers arrive randomly according to a Poisson process. Simu-
lation results suggest that the performance of the WI rule is extremely good, and is optimal for a
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broad range of parameters and scenarios. From this section we can conclude that: (i) the WI rule
outperforms or is equivalent to the cµ/θ-rule, (ii) when there is a class of customers with θ larger
than µ, or when c’s differ across classes, then the WI rule can significantly outperform cµ/θ, (iii)
in cases in which the optimal scheduling policy chooses to idle instead of serving, the WI rule is
much better than cµ/θ or cµ, (iv) in many scenarios the WI rule is equal to the optimal policy for
a broad setting of the parameter values.

Proofs are deferred to the appendix to streamline the paper.

2 MDP Formulation

Since the cµ-rule is optimal both under Poisson arrivals and under no arrivals, we set out to an-
alyze the continuous-time model without arrivals. Our aim is to obtain a rule accounting for
abandonment whose performance in the continuous-time model with arrivals we later evaluate
by means of numerical experiments. We set the model in the framework of the dynamic and sto-
chastic resource allocation problem, closely following Jacko (2009). We assume there are initially
K customers, i.e. one of each class.

We will uniformize and discretize the problem described in the previous section. Let us
consider any sufficiently large uniformization rate (per second) γ, which can be interpreted as
the number of periods per second. In other words, 1/γ is the expected duration in seconds until
the next event happens, which will be taken in the discretization as the duration of a discrete-
time period. The uniformization and discretization is described in Table 1. In the following we
suppose that the parameters are uniformized and discretized.

Remark 1 In our model without arrivals we require γ ≥ M maxk∈K µk + K maxk∈K θk for both the
discounted and time-average problem. One might consider including the rate α in the uniformization in
order to use a common γ for both cases and then to set γ = 1 without loss of generality, so that the same
parameters can be interpreted as probabilities in the discrete-time, uniformized version. This would be
perfectly valid in the undiscounted case. However, we were unable to use similar tricks that would work
for the discounted case (which is central to our analysis). For instance, defining γ ≥ M maxk∈K µk +
K maxk∈K θk + α and setting γ = 1 prohibits consideration of the myopic case (in which α → +∞).
Even when we ignored the myopic case and tried to redo the whole analysis, we did not obtain the same
index. One of the important issues is that the index in the discretized case is a value “per period”, while in
the continuous case it is rate “per second”. We make this distinction in subsection 5.4 and relate it to the
Lagrangian parameter ν, which is the discretized work charge, and ξ, the corresponding rate.

After the problem has been uniformized, we formulate the problem as a discrete time
Markov Decision Process (MDP). Consider the time slotted into epochs t ∈ T := {0, 1, 2, . . . }
at which decisions can be made. The time epoch t corresponds to the beginning of the time pe-
riod t. At t = 0 there are K customers (labeled by k ∈ K) and M alternative tasks (labeled by
k ∈ M := {K + 1, . . . ,K + M}) awaiting service. Thus, there are K + M competing options,
labeled by k ∈ K+ := K ∪M. At each time epoch t, the decision-maker allocates each server to
exactly one (distinct) option.

2.1 Customers

Every customer k ∈ K can be allocated either no or one server. We denote by A := {0, 1} the
action space, i.e., the set of allowable levels of server allocation. Here, action 0 means allocating
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Parameter per second Parameter per period

arrival rate λk arrival probability λ′k := λk/γ
service completion rate µk service completion probability µ′k := µk/γ

abandonment rate θk abandonment probability θ′k := θk/γ
exponential discount rate α geometric discount factor β := γ/(α+ γ)

alternative task reward rate κ alternative task reward κ′ := κ/(α+ γ)
waiting cost rate ck waiting cost c′k := ck/(α+ γ)
work charge rate ξ work charge ν := ξ/(α+ γ)

abandonment penalty dk abandonment penalty dk
service completion reward rk service completion reward rk

Table 1: Uniformization and discretization of continuous-time parameters for the discrete-time
model with uniformization factor γ.

zero servers (i.e., “not serving”), and action 1 means allocating one server (i.e., “serving”). This
action space is the same for every customer k.

Each customer k is defined independently of other customers as the tuple(
Nk, (W a

k)a∈A , (R
a
k)a∈A , (P

a
k)a∈A

)
,

where

• Nk := {0, 1} is the state space, where state 0 represents a service already completed or aban-
doned, and state 1 means that the service is uncompleted and not abandoned;

• W a
k :=

(
W a
k,n

)
n∈Nk

, where W a
k,n is the (expected) one-period capacity consumption, or

work required by customer k at state n if action a is decided at the beginning of a period; in
particular, for any n ∈ Nk,

W 1
k,n := 1, W 0

k,n := 0;

• Ra
k :=

(
Rak,n

)
n∈Nk

, where Rak,n is the expected one-period revenue earned by customer k at

state n if action a is decided at the beginning of a period; in particular,

R1
k,0 := 0, R1

k,1 := −c′k,
R0
k,0 := 0, R0

k,1 := −c′k − βdkθ′k;

• P a
k :=

(
pak,n,m

)
n,m∈Nk

is the customer-k stationary one-period state-transition probability ma-

trix if action a is decided at the beginning of a period, i.e., pak,n,m is the probability of moving
to state m from state n under action a; in particular, we have

P 1
k :=

( 0 1

0 1 0

1 µ′k 1− µ′k

)
, P 0

k :=

( 0 1

0 1 0

1 θ′k 1− θ′k

)
.
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The dynamics of customer k is thus captured by the state process Xk(·) and the action process
ak(·), which correspond to state Xk(t) ∈ Nk and action ak(t) ∈ A at all time epochs t ∈ T .
As a result of deciding action ak(t) in state Xk(t) at time epoch t, the customer k consumes the
allocated capacity, earns the revenue, and evolves its state for the time epoch t+ 1.

Remark 2 The attentive reader might wonder why to allow serving in state 0. This is assumed for com-
patibility with the methodology derived in the previous literature. It turns out that the index value of state
1 we obtain below would be the same even if serving in state 0 was not allowed because the one-period
revenue is zero in this absorbing state under both actions. Moreover, the heuristic we propose below only
relies on the index value of state 1.

Note that we have defined the customer with a zero completion reward. This is without
loss of generality, because the customers with a non-zero completion reward can be normalized
to a cost-only customer as follows. The following proposition follows trivially from the model
description.

Proposition 1 The expected one-period revenue for a customer with service rate µ̃k, abandonment rate
θ̃k, service completion reward r̃k, waiting cost c̃k and abandonment penalty d̃k is equal to the one-period
revenue for a customer with service rate µk = µ̃k, abandonment rate θk = θ̃k, revenue rk = 0, waiting
cost ck = c̃k − βr̃kµk, and abandonment penalty dk = d̃k + r̃k

µk
θk

.

2.2 Alternative Tasks

We model each alternative task as a static κ-customer with a single state 0 and with reward κ′ if
served, i.e., such a task k ∈ M is defined by Nk := {0},W a

k,0 := a,Rak,0 := κ′a, pak,0,0 := 1 for all
a ∈ A.

2.3 Unified Optimization Criterion

Before describing the problem we first define an averaging operator that will allow us to discuss
the infinite-horizon problem under the traditional β-discounted criterion and the time-average
criterion in parallel. Let ΠX,a be the set of all the policies that for each time epoch t decide (pos-
sibly randomized) action a(t) based only on the state-process history X(0), X(1), . . . , X(t) and on
the action-process history a(0), a(1), . . . , a(t− 1) (i.e., non-anticipative). Let Eπτ denote the expecta-
tion over the state process X(·) and over the action process a(·), conditioned on the state-process
history X(0), X(1), . . . , X(τ) and on policy π.

Consider any expected one-period quantity Qa(t)
X(t) that depends on state X(t) and on action

a(t) at any time epoch t. For any policy π ∈ ΠX,a, any initial time epoch τ ∈ T , and any discount
factor 0 ≤ β ≤ 1 we define the infinite-horizon β-average quantity as1

Bπτ
[
Q
a(·)
X(·), β,∞

]
:= lim

T→∞

T−1∑
t=τ

βt−τ Eπτ
[
Q
a(t)
X(t)

]
T−1∑
t=τ

βt−τ

. (1)

The β-average quantity recovers the traditionally considered quantities in the following
three cases:

1For definiteness, we consider β0 = 1 for β = 0.
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• expected time-average quantity when β = 1.

• expected total β-discounted quantity, scaled by constant 1− β, when 0 < β < 1;

• myopic quantity when β = 0.

Thus, when β = 1, the problem is formulated under the time-average criterion, whereas when
0 < β < 1 the problem is considered under the β-discounted criterion. The remaining case when
β = 0 reduces to a static problem and hence is considered in order to define a myopic policy. In the
following we consider the discount factor β to be fixed and the horizon to be infinite, therefore
we omit them in the notation and write briefly Bπτ

[
Q
a(·)
X(·)

]
.

2.4 Optimization Problem

We now describe in more detail the problem we consider. Let ΠX,a be the space of random-
ized and non-anticipative policies depending on the joint state-process X(·) := (Xk(·))k∈K+ and
deciding the joint action-process a(·) := (ak(·))k∈K+ , i.e., ΠX,a is the joint policy space.

For any discount factor β, the problem is to find a joint policy π maximizing the value func-
tion given by the β-average aggregate revenue starting from the initial time epoch 0 subject to the
family of sample path allocation constraints, i.e.,

V (X(0)) := max
π∈ΠX,a

Bπ0

 ∑
k∈K+

R
ak(·)
k,Xk(·)

 (P)

subject to Eπt

 ∑
k∈K+

ak(t)

 = M, for all t ∈ T

Note that the constraint could equivalently be expressed in words as that for all t ∈ T :∑
k∈K+ ak(t) = M under policy π and for any possible joint state-process historyX(0),X(1), . . . ,X(t).

We say that a policy is Markovian deterministic if it chooses the vector a(t) according to
a fixed rule based solely on the current system state X(t). Let ΠMD denote the set of Marko-
vian deterministic policies. From standard results in Markov decision processes (Puterman 2005,
Chapter 6) it follows that there is no loss of generality in restricting our attention to the policies
in ΠMD.

The solution to problem (P) can be found by determining the unique solution V (·) to Bell-
man’s equation, which for β < 1 is

V (x) = max
a s.t.

∑
k∈K+ ak=M

∑
k∈K+

Rakk,xk + β
∑
y

qax,yV (y)

 (2)

where qax,y denotes the probability of having a transition from state x to state y in one time-period
under action profile a. As a consequence of the uniformization procedure, it follows that there
can be at most one transition in every one-time period, that is, either a service completion, an
abandonment, or a dummy transition due to the uniformization.
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3 Optimal Solution for Special Cases

Problem (P) is hard to solve in its whole generality, but we have identified special cases that
admit an analytical solution of the Bellman equation, summarized in this section. To the best of
our knowledge these particular have not been considered previously in the literature.

Let us first denote by

Ck : = β
c′k(µ

′
k − θ′k) + dkθ

′
k(1− β + βµ′k)

(1− β + βθ′k)(1− β + βµ′k)

=
ck(µk − θk) + dkθk(α+ µk)

(α+ θk)(α+ µk)
.

(3)

Proposition 2 Ck is the difference between the expected total revenue if serving the customer always and
the expected total revenue if not serving her at all.

We remark that in the undiscounted case Ck simplifies as follows:

Ck = dk − c′k
(

1

µ′k
− 1

θ′k

)
= dk − ck

(
1

µk
− 1

θk

)
. (4)

3.1 Single Customer at a Single Server

In the single server case with a single customer competing with a single alternative task, we
introduce the following index value (1U):

ν1U
k := Ck. (5)

This index value thus inherits the interpretation from Ck, so it is positive if and only if serving
the customer always is more profitable than not serving her at all.

Proposition 3 Let K = 1, M = 1 and the alternative task reward κ′ = 0. The solution to Problem (P) is:

(i) If ν1U
1 ≥ 0, then it is optimal to serve customer 1;

(ii) If ν1U
1 ≤ 0, then it is optimal to allocate the server to the alternative task (k = 2).

It is important to note that the above result means that idling may be optimal for a very
impatient customer.

3.2 Two Customers at a Single Server

In the case of two customers competing among themselves (2U) for a single server, due to the
technical complexity of the problem we focus on the undiscounted case (α = 0, i.e., β = 1). We
introduce the following non-separable index value for customer k = 1, 2 with respect to the other
customer (3− k):

ν2U
k :=

Ckθ
′
k

θ′k + µ′3−k
. (6)

We note that this expression is not separable since it depends on the other customer’s parameters,
though only through the service rate µ′3−k, so does not lead to an index rule in the traditional
sense.

We obtain the following characterization of the optimal policy in this case, under the addi-
tional assumption that there is no alternative task, or equivalently that κ′ = −∞.
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Proposition 4 Suppose that K = 2 and Ck ≥ 0 for k ∈ K. The following holds for problem (P) with
M = 1, α = 0, and the alternative task reward κ′ = −∞:

(i) If ν2U
1 ≥ ν2U

2 , then it is optimal to serve customer 1;

(ii) If ν2U
1 ≤ ν2U

2 , then it is optimal to serve customer 2.

4 Relaxations and Decomposition

For larger values of K and M , the problem is analytically intractable, and therefore we approach
it in a different way. The main idea is to solve a relaxed version of the problem (P). It turns out
that the relaxation will in fact allows decomposition of the problem, and the optimal solution
to the relaxed problem can be obtained by solving parametric single-option subproblems. In
Section 5 we will then show how the solution of the relaxed problem can be used to construct a
nearly-optimal heuristic for the original problem (P).

4.1 Relaxations

We can use the fact thatW ak(t)
k,Xk(t) = ak(t) (cf. definitions in Section 2) and instead of the constraints

in (P), for notational reasons, we consider the sample path consumption constraints Eπt
[∑

k∈K+ W
ak(t)
k,Xk(t)

]
=

M, for all t ∈ T . These constraints imply the epoch-t expected consumption constraints,

Eπ0

 ∑
k∈K+

W
ak(t)
k,Xk(t)

 = M, for all t ∈ T (7)

requiring that the capacity be fully allocated at every time epoch if conditioned on X(0) only.
Finally, we may require this constraint to hold only on β-average, as the β-average capacity con-
sumption constraint

Bπ0

 ∑
k∈K+

W
ak(·)
k,Xk(·)

 = Bπ0 [M ] . (8)

Using Bπ0 [M ] = M , we obtain the following relaxation of problem (P),

max
π∈ΠX,a

Bπ0

 ∑
k∈K+

R
ak(·)
k,Xk(·)

 (PW)

subject to Bπ0

 ∑
k∈K+

W
ak(·)
k,Xk(·)

 = M.

This relaxation was introduced in Whittle (1988), and it gives us the following result.

Proposition 5 Problem (PW) is a relaxation of problem (P). Moreover, (PW) provides an upper bound for
the optimal value of problem (P).
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The Whittle relaxation (PW) can be approached by traditional Lagrangian methods, intro-
ducing a Lagrangian parameter, say ν, interpreted as the work charge, to dualize the constraint,
obtaining the following Lagrangian relaxation,

max
π∈ΠX,a

Bπ0

 ∑
k∈K+

R
ak(·)
k,Xk(·) − ν

∑
k∈K+

W
ak(·)
k,Xk(·)

+ νM. (PL
ν )

The classic Lagrangian result is the following:

Proposition 6 For any ν, problem (PL
ν ) is a relaxation of problem (PW), and further a relaxation of problem

(P). Moreover, (PL
ν ) for every ν provides an upper bound for the optimal value of both problem (PW) and

problem (P).

4.2 Decomposition into Single-Option Subproblems

We now set out to decompose the optimization problem (PL
ν ) as is standard for Lagrangian re-

laxations, considering ν as a parameter. Notice that any joint policy π ∈ ΠX,a defines a set of
single-option policies π̃k for all k ∈ K+, where π̃k is a randomized and non-anticipative policy
depending on the joint state-process X(·) and deciding the customer-k action-process ak(·). We
will write π̃k ∈ ΠX,ak . We will therefore study the customer-k subproblem

max
π̃k∈ΠX,ak

Bπ̃k0

[
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

]
. (9)

5 Solution

In this section we explain our approach in order to derive a nearly-optimal scheduling discipline
for the original problem (P). In subsection 5.1 we will identify a set of optimal policies for prob-
lem (9), which will be used in subsection 5.2 to solve problem (PW). In subsection 5.3 we will
then construct a joint policy that is feasible but not necessarily optimal for problem (P), while
subsection 5.4 is dedicated to designing policies for the original, continuous-time problem.

5.1 Optimal Solution to Single-Option Subproblem via the Whittle Index

We will identify a set of optimal policies π̃∗k for (9) for all options k. Problem (9) falls into the
framework of restless bandits and can be optimally solved by assigning a set of Whittle index
values νk,n to each state n ∈ Nk under certain conditions (Niño-Mora 2007), which we prove
valid for our problem.

Let us denote for customer k ∈ K, νk,0 := 0, and

νk,1 :=

{
Ck(1− β + βµ′k), if Ck ≥ 0,

Ck(1− β + βθ′k), if Ck < 0,
(10)

where Ck is given in (3), and for alternative task k ∈ M, νk,0 := κ′. The following is the main
theoretical result of the paper.

Theorem 1 For problem (9), the following hold (where, in the case of equality, both actions are optimal):

(i) it is optimal to serve waiting customer k ∈ K if and only if ν ≤ νk,1;
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(ii) it is optimal to serve customer k ∈ K when it is already completed or abandoned if and only if
ν ≤ νk,0;

(iii) it is optimal to serve the alternative task k ∈M if and only if ν ≤ νk,0;

The proof of this proposition is based on establishing indexability of the problem and com-
puting the index values, following the survey Niño-Mora (2007). The full proof is presented in
Appendix D.

5.2 Optimal Solution to Relaxations

The vector of policies π∗ := (π̃∗k)k∈K+ identified in Theorem 1 is formed by mutually indepen-
dent single-option optimal policies. Therefore this vector is an optimal policy to the Lagrangian
relaxation (PL

ν ).
Since a finite-state MDP admits an LP formulation using the standard state-action frequency

variables (as observed in Niño-Mora (2007)), strong LP duality implies that there exists ν∗ (pos-
sibly depending on the joint initial state) such that the Lagrangian relaxation (PL

ν∗) achieves the
same objective value as (PW). Further, if ν∗ 6= 0, then LP complementary slackness ensures that
the β-average capacity constraint (8) is satisfied by any optimal solution to (PL

ν∗).

5.3 Whittle Index Rule for Discretized Problem

Since the discrete-time problem (P) requires us to allocate each server to exactly one option (a
customers or an alternative task), Whittle (1988) proposed the following heuristic.

Rule 4 (Whittle Index Rule:) Assign to each customer of class k in the system and to each alternative
task k the Whittle index value νk,Xk(t), and allocate the servers to the M options with the highest actual
Whittle index values.

5.4 Index Rules for Original Continuous-Time Problem

For the original continuous-time problem, we obtain the continuous-time Whittle index rates (per
second) ξk,n from the discretized Whittle index values (per event) νk,n multiplying them by the
rate α + γ, i.e., ξk,n := νk,n(α + γ), as now these come from the model with work charge rate ξ
rather than the work charge ν. The obtained Whittle index rates thus become independent of the
uniformization rate. For customer k ∈ K,

ξk,1 :=


[
dkθk
α+ θk

− ck
(

1
α+ µk

− 1
α+ θk

)]
(α+ µk), if Ck ≥ 0,[

dkθk
α+ θk

− ck
(

1
α+ µk

− 1
α+ θk

)]
(α+ θk), if Ck < 0.

(11)

and for alternative task k ∈ M, ξk,0 := κ. Note that the Whittle index rule remains consistent, as
it maintains the order of the Whittle index rates the same as the order of the Whittle index values.

In the undiscounted case (α = 0), we obtain the time-average version of the Whittle index
rate of customer k, which we call WI throughout the paper

ξWI
k,1 :=


Ckµk = [dk − ck (1/µk − 1/θk)]µk, if Ck ≥ 0

Ckθk = [dk − ck (1/µk − 1/θk)] θk, if Ck < 0

(12)
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where we have used Ck = dk − ck(1/µk − 1/θk). As already mentioned earlier, this allows to
interpret that WI is positive if and only if the expected total revenue from serving forever is
greater than the expected total revenue from not serving ever, i.e., Ck > 0. In Section 6 we
consider this undiscounted index rule and investigate its performance in systems with customer
arrivals through computational experiments.

We remark that any class without abandonment (i.e., having θk = 0 as in the classic job
scheduling problem) has the Whittle index that reduces to the Gittins index (see Gittins 1989)

νcµk,1 :=
c′kµ
′
k

1− β
, ξcµk,1 :=

ckµk
α

, (13)

which is just the classic cµ index scaled by a constant. The WI of such a class is +∞, hence this
class gets an absolute priority over any class with positive abandonment rate under the time-
average criterion.

We further note that α → +∞, i.e., β → 0 gives rise to the myopic version of the Whittle
index, which is

ν
Myopic
k,1 := 0, ξ

Myopic
k,1 := dkθk. (14)

5.5 Relation among Index Policies

For completeness, we denote the 2U (for two users) rate by

ξ2U
k =

Ckθk
θk + µ3−k

. (15)

Recall from Proposition 4 that the 2U rule is optimal in the non-idling system with two customers
satisfying Ck ≥ 0 for k = 1, 2.

We further remark that it was shown in Atar et al. (2010) that for a non-zero abandonment
penalty, the cµ/θ index rate is

ξ
cµ/θ
k,1 := [dk + ck/θk]µk. (16)

We also note that the WI index rate of equation (12) can equivalently be written as ξWI
k,1 = [dk + ck/θk]µk−

ck if Ck ≥ 0, and ξWI
k,1 = [dk − ck/µk] θk + ck if Cl < 0. In the case Ck ≥ 0 both the WI and the cµ/θ

rules are very close. If in addition ck = 1 for all k, then the two rules are identical. However, both
rules can also yield very different behavior. For example let us assume Ck < 0 and set dk := 0,
which implies that the WI index becomes ξWI

k,1 = ck(−θk/µk + 1), as compared to ξcµ/θk,1 = ckµk/θk.
With cµ/θ, the server always chooses serving rather than idling, whereas under the WI rule, the
server might prefer to idle if θk > µk since the index value becomes negative (there is no benefit
in serving a customer that is more likely to abandon than complete service).

Although we obtain an index rule different from the cµ/θ rule, our main contribution rather
lies in developing a framework based on the restless bandit problem using Whittle’s approach to
design a heuristic that can handle abandonments and that is relatively easily generalizable to more
complex features. For instance, if we modify the model so customers in service do not incur a
holding cost, the WI index becomes equivalent to the cµ/θ rule as defined in (16). Similarly, if
the customer in service can also abandon we obtain two additional indices: if all customers incur
a holding cost the WI index is again given by (16), and if only customers in the queue incur a
waiting cost, then the index becomes [dk + ck/θk]µk + ck.
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As a final remark we note that in Atar et al. (2010) the cµ/θ rule was obtained as the rule
that optimizes a (deterministic) fluid-model of a multi-server queue in overload. Our approach
allows us to obtain index rules without assuming an overload regime. This is relevant because the
fluid-based technique does not apply under this regime, since in the underload case the fluid
converges to 0 regardless of the scheduling policy.

6 Computational Experiments

In this section we report on an exhaustive study of numerical experiments of the continuous-time
model. We consider a system with two classes of customers. Each class k is characterized by a set
of values for the parameters µk, θk, ck and dk as before, and the mean rate λk of Poisson arrivals.

Remark 3 Even though the WI rule is obtained by solving a model without arrivals, existing literature
gives strong evidence to support the claim that the WI rule may perform very well also in the presence
of arrivals, particularly if the arrival process is memory-less (Bernoulli or Poisson). Indeed, it has been
shown in a wide variety of models that the optimal scheduling policy with a fixed number of customers is
also optimal in the case of arrivals. See for example Sevcik (1974) and Gittins (1989, Theorem 3.28) for the
M/G/1 queue, Smith (1956) and Fife (1965), Buyukkoc et al. (1985) for the cµ-rule, Meilijson and Weiss
(1977) for a single-server queue with feedback and Gittins and Jones (1974), Gittins (1989) and Whittle
(1981) for the multi-armed bandit problem.

We truncate the state space by allowing a maximum number of customers in each class,
and we then use the uniformization technique in order to obtain a discrete-time representation of
the model. Note that all the policies are independent of the uniformization factor. Using value
iteration (Puterman 2005) we obtain numerically the optimal policy, and we then calculate the
relative suboptimality gap produced by the WI, cµ/θ, cµ, 2U and Myopic rules (see subsection 5.4
for the definitions). Recall that, using our notation, the cµ/θ index of Atar et al. (2010) becomes
(ck+dkθk)µk

θk
. In our study we make sure that the truncation levels are large enough so that the op-

timal policy obtained in this way is almost surely the optimal policy in the original non-truncated
problem.

We will evaluate the performance of the above policies both for idling and non-idling sys-
tems, where, in non-idling systems, the server is not allowed to idle when customers are present.
Before doing so, we first define the performance evaluation measures we use to report the exper-
imental results.

6.1 Performance Evaluation Measures

Let Dπ denote the time-average objective value when policy π is employed in every period. Fur-
ther, by solving (P) optimally by value iteration we obtain the maximizing policy, which yields
the optimal objective valueDmax. The relative suboptimality gap of policy π, often used in literature,
is defined as

rsg(π) =
Dmax −Dπ

|Dmax|
. (17)

Clearly, as long as Dmax 6= 0, we have 0 ≤ rsg(π) ≤ Dmax−Dmin

|Dmax| , where rsg(π) = 0 is obtained
by the maximizing policy. However, the worst-case, minimizing policy may have a non-zero
objective value. We can therefore conclude that this measure may overestimate the quality of π
by reporting a small value even for the worst-case policy.
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µ1 µ2 θ1 θ2 c1 c2 d1 d2 λ1 = λ2

Scenario 1 0.7 0.3 [0, 1] 0.2 27 27 1 1 1
Scenario 2 0.4 0.59 [0, 2] 4 1 1 1 1 1
Scenario 3 0.8 0.7 1.2 2.7 1 1 [0, 3] 1 1
Scenario 4 0.8 0.7 1.2 2.7 1 1 [0, 10] 5 1
Scenario 5 0.4 0.1 0.5 0.8 1 [0.01, 20] 0.035 0.035 1
Scenario 6 0.4 0.22 0.1 0.2 1 [0.01, 40] 1 1 1
Scenario 7 0.4 0.3 0.001 0.03 1 [0.01, 60] 1 1 1
Scenario 8 0.4 0.3 0.001 0.03 1 1 1 1 [0, 2]

Table 2: Parameters for all the scenarios in numerical experiments.

In our experiments we have also considered another measure, the adjusted relative subopti-
mality gap of policy π, defined as

arsg(π) =
Dmax −Dπ

Dmax −Dmin
, (18)

whereDmin is the worst-case (minimizing) policy. With this measure we always have 0 ≤ arsg(π) ≤
1 (as long as Dmax −Dmin 6= 0), and both limiting values can be achieved.

The results we have obtained for both measures do not differ from each other substantially,
and we thus only report on the results for rsg(π).

6.2 Single-server Idling System

First we consider a system that can idle (κ = 0). This assumption has an influence on the char-
acterization of the optimal policy, the worst-case policy and also the WI and 2U rules, where
idling gets priority over any customer with a negative index rate. It does not affect the policies
defined by the rest of the rules (cµ, cµ/θ and Myopic) because these rules choose some customer
whenever there is any.

Given the number of parameters that we can choose from, the number of scenarios one
can construct is virtually unbounded. We have investigated a wide range of settings for the
parameters in hundreds of scenarios, and we report here the results of six representative scenarios
in order to provide a global panorama. We further present two additional scenarios with unique
and peculiar results. In most of the scenarios, only a single parameter is varied in order to easily
illustrate the effect. In Table 2 we present the parameters considered in each of the scenarios. We
say that the system is in overload if

λ1

µ1
+
λ2

µ2
≥ 1,

which implies that abandonment is required in order to stabilize the system. Note that the system
is in overload (as in Atar et al. 2010) in Scenarios 1–7. The system in Scenario 8 is in underload
for smaller values of λ and in overload for larger values of λ.

There are some general conclusions that we can draw:

• WI is optimal for the majority of values of the varied parameter in all the scenarios;

• WI is almost always equivalent to or outperforms cµ/θ, which is in turn almost always
equivalent or outperforms cµ;
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Figure 1: Relative suboptimality gap in Scenario 1.
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Figure 2: Relative suboptimality gap in Scenario 2.

• In cases in which the optimal policy chooses to idle instead of serving, WI is much better
than cµ/θ or cµ;

• The switching point of 2U is often very close to WI, but usually its suboptimality region is
larger;

• If both the 2U and WI policies give priority to class 1, then it is almost always optimal to
serve class 1.

The first six scenarios illustrate these general conclusions.

Scenario 1. (Figure 1) In this scenario the WI and cµ/θ rules are optimal and the performance
of the 2U rule is equivalent except for small values of θ1. The performance of cµ is good only for
lower values of θ1, and the difference with respect to WI and cµ/θ is the switching point where the
other policies start to serve class-2 customers while cµ does not, which makes its suboptimality
grow.

Scenario 2. (Figure 2) Because of class-2 high abandonment rates, it is never optimal to serve
class 2 and it is optimal to serve class 1 only for lower values of θ1. The 2U and WI policies
capture this feature and are optimal. The cµ-rule always gives priority to class 2, while the cµ/θ-
rule correctly prioritizes class 1 for lower values of θ1, but then switches to class 2, which leads to
poor performance.
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Figure 3: Relative suboptimality gap in Scenario 3.
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Figure 4: Relative suboptimality gap in Scenario 4.

Scenario 3. (Figure 3) For values of d1 smaller than approximately 0.42, the optimal policy does
not serve any customer, which is captured by WI and 2U. The other policies however perform
dramatically worse. For larger values it is optimal to serve class 1 customers (or to idle if no class
1 customer is present). All the policies give priority to class 1, with the only difference being that
WI and 2U idle if there is no class 1 customer, whereas cµ and cµ/θ serve class 2 in such a case.

Scenario 4. (Figure 4) Though the only difference between this scenario and the previous one
is that the value of d2 is now 5 instead of 1, there is a significant difference in the results. Even
though the θ’s are still larger than the µ’s, in this case the performance of 2U and WI differ during
a non-negligible range of values for d1. The optimal policy is to serve class 2 and then switch to
serve class 1. The cµ-rule always serves class 1, the Myopic rule always serves class 2, and the
other policies start serving class 2 (as a consequence of high d2), and switch to serve class 1 (first
WI together with cµ/θ, and afterwards 2U) as the value of d1 grows.

Scenario 5. (Figure 5) The optimal policy is to idle. Policies WI and 2U give priority to idling.
The policies cµ and cµ/θ for small values of c2 serve class 1. As the value of c2 increases, the
policies cµ and cµ/θ switch to give priority to class 2, what makes a sudden increase in the cost
function. The performance of WI and 2U is optimal. The key difference is that WI depends on the
difference µ2 − θ2 (which is negative), and thanks to this it chooses not to serve class 2 regardless
of the value of c2.
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Figure 5: Relative suboptimality gap in Scenario 5.
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Figure 6: Relative suboptimality gap in Scenario 6.

Scenario 6. (Figure 6) This is a particularly interesting scenario. Service rates are larger than
abandonment rates, and the policy WI has again better performance than the other policies. In
fact, WI is optimal for all values of c2 with the exception of a small range around 32. The optimal
policy starts serving class 1 in almost all joint states, but it starts serving class 2 in more joint states
as the value of c2 increases. The WI policy serves class 1 with strict priority for values of c2 smaller
than 32, and class 2 from that moment on. The upward jump for the other indices happens when
they start giving priority to class 2 (first cµ switches, then cµ/θ and then 2U).

The following two scenarios illustrate some specific and uncommon phenomena we have
found in our experiments.

Scenario 7. (Figure 7) In this scenario the abandonment rate is very small, say negligible. We
recall that without abandonment, the cµ-rule is optimal (Cox and Smith 1961, Buyukkoc et al.
1985). In the numerical experiments we see that, with a rather surprising exception for c2 = 1,
the cµ-rule is indeed optimal in this case and the 2U rule is equivalent to cµ. Policies WI and cµ/θ
start serving class 1, and switch later on to class 2 when the value of c2 becomes sufficiently large.

We emphasize that this is the only scenario we have found where the decision pattern of 2U
and WI differs completely and also the only one in which cµ/θ outperforms WI (for values of c2

between 40 and 44).

Scenario 8. (Figure 8) We have tested a wide variety of scenarios in underload; the qualitative
properties of WI do not differ notably from overloaded systems, and there was no sharp jump in
performance when crossing the frontier. For illustration of a rare phenomenon, we have selected
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Figure 7: Relative suboptimality gap in Scenario 7.
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Figure 8: Relative suboptimality gap in Scenario 8.

a scenario, in which all the rules are optimal in underload, but suboptimal in overload, which is
in contrast with, e.g., the results of asymptotic optimality of cµ/θ.

This scenario is in underload at the beginning and becomes overloaded as λ1 and λ2 grow.
The optimal policy is to give priority to class 1 and then switch to class 2 in some joint states. The
Myopic rule always serves class 2 and all the other rules always serve class 1. This scenario thus
illustrates that the arrival rates should be taken into account for optimal scheduling, though it is
very uncommon to observe such a huge effect.

6.3 Single-server Non-idling System

In this case we do not allow the system to idle, that is, if there are customers in the system, the
scheduler must necessarily select one to serve. The policies cµ, cµ/θ and Myopic have the same
priorities as before, but the optimal policy, the worst-case policy and the WI and 2U rule may
behave differently.

We have performed numerical experiments for the same scenarios as in the idling case (see
Table 2). The qualitative performance of the policies is analogous, but whenever there is subopti-
mality of any policy, it is in general higher than in the idling case. To illustrate this we discuss the
results obtained for Scenarios 2 and 5. In these two scenarios it was optimal to idle in the idling
system, which is not allowed now.

Non-idling Scenario 2. (Figure 9) The WI rule is no longer optimal for larger values of θ1, since
it prioritizes class 1 until approximately 1.8, when it switches to class 2. Nevertheless for a non-
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Figure 9: Relative suboptimality gap in non-idling Scenario 2.
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Figure 10: Relative suboptimality gap in non-idling Scenario 5.

negligible interval the WI rule is better than or equivalent to the cµ, cµ/θ and Myopic rules. When
its performance is inferior to the other policies, the suboptimality in absolute terms is small.

Non-idling Scenario 5. (Figure 10) WI and 2U are no longer optimal for a small interval of c2

values, but they still outperform the cµ/θ, cµ and Myopic rule, because they do not switch to
prioritize class 2, while all the other policies do.

6.4 Multi-server Idling System

In order to study the Whittle index rule in the multi-server case, we evaluate the performance of
all the rules and the optimal policy for 2 servers. We believe that this sheds light on the expected
performance of these rules even for more servers. Due to the curse of dimensionality we have not
evaluated the optimal policy for more servers.

We investigated the same scenarios (see Table 2) as previously. Performance of the rules in
the two-server case is very similar qualitatively to the single-server system. The WI rule is again
almost always optimal, and the eventual suboptimality is small. However, the main difference
is that the relative suboptimality gap of the other rules becomes more severe. We illustrate this
in Figure 11 for Scenario 2 and in Figure 12 for Scenario 5, where the relative suboptimality gap
approximately doubled.

Therefore, we believe that in the multi-server case the observations we have drawn for the
single-server case are still valid and the benefit of proposed WI rule should rise with the number
of servers.
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Figure 11: Multi-server relative suboptimality gap in idling Scenario 2.
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Figure 12: Multi-server relative suboptimality gap in idling Scenario 5.

7 Conclusion

We have investigated the problem of scheduling of customers with abandonment. We have pro-
posed a comprehensive model accounting for completion rewards, linear waiting costs and aban-
donment penalties. For the problem with one or two customers in the system, we have obtained
an optimal solution, which is not in the form of an index rule. For the more general case with
multiple customers, we have applied Whittle’s relaxation methodology to derive the WI rule, a
heuristic scheduling rule which has a very simple structure.

Numerical experiments indicate that WI performs exceptionally well: it is often optimal,
and if not, then its suboptimality is small. They also show that in most cases the WI rule out-
performs the alternative cµ/θ and cµ rules. This is a robust result, that holds in both idling and
non-idling systems, independently of system overload conditions, and for the vast majority of
scenarios that we have tested. The biggest improvement of WI over cµ/θ and cµ is achieved
when it is sometimes optimal to idle, for instance when the abandonment rate is large relative to
the service rate. In this case WI may be optimal while the cµ/θ can be performing as the worst
policy. Important differences can also be observed when the waiting costs differ across classes.
Interestingly, our scheduling rule is well-grounded, as it recovers known optimal policies in some
special cases of the problem. For instance, our rule becomes the cµ-rule if there is no abandon-
ment. In many cases the performance of 2U is comparable to the performance of WI, however,
2U cannot be easily extended to more than two classes because it is not a simple index rule.

The performance advantage of the WI rule over the cµ/θ rule is primarily due to the fact
that the WI rule is designed for our model, where waiting costs are paid while customers are in
service as well as in queue, and abandonment does not occur during service, whereas the cµ/θ
rule is designed for a model in which waiting costs only apply to the time in the queue. This
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suggests that much care is needed in appropriately modeling and defining the objective function
for a particular system.

An important question for future research is to determine under what conditions the WI
rule is optimal or asymptotically optimal. Based on our numerical experiments, we believe that
if the WI index values are sufficiently different across classes, then the WI rule is optimal.

The multi-class and/or multi-server problem is much more complex and time- and memory-
consuming to simulate due to the curse of dimensionality. We believe that the performance of the
WI rule should improve with the number of servers, as suggested by the asymptotic optimality
of cµ/θ in overloaded multi-server systems. Moreover, the Whittle and Lagrangian relaxations
apply to the multi-server case as well, and the Whittle index rule was shown to be asymptotically
optimal when the number of servers grows (under certain technical conditions not satisfied by
our model) in Weber and Weiss (1990).

The WI rule is likely to be generalizable to other distributions of service and abandonment,
and non-linear waiting costs. The WI index can be interpreted as the expected profit rate, since
it is given as the ratio of the expected total profit and the expected service time (or the expected
abandonment time).
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A Proof of Proposition 2

Proof. It is straightforward to obtain that the expected total revenue if serving the customer
always equals

−
c′k

1− β + βµ′k
,

and that the expected total revenue if not serving her at all equals

−
c′k + βdkθ

′
k

1− β + βθ′k
.

By taking the difference and rearranging we obtain

c′k
1− β + βθ′k

+
βdkθ

′
k

1− β + βθ′k
−

c′k
1− β + βµ′k

,

which can be further rewritten as

β
c′k(µ

′
k − θ′k) + dkθ

′
k(1− β + βµ′k)

(1− β + βθ′k)(1− β + βµ′k)
= Ck.

�

B Proof of Proposition 3

Proof. There are only two possible states of the system: (0) meaning that the system is empty,
and (1), meaning that the customer is in the system. For this particular case, from (2) we get
V (0) = 0, and

V (1) = max{ − c′1 + β(1− µ′1)V (1);

− c′1 − βd1θ
′
1 + β(1− θ′1)V (1)},

where the first term refers to serving the customer, and the second term to serve the alternative
task. It follows that serving the customer is better than or equivalent to serving the alternative
task if and only if

−V (1)(µ′1 − θ′1) + d1θ
′
1 ≥ 0. (19)

We solve the Bellman equation and evaluate the value function assuming that serving the
customer is optimal, and we get

V (1) =
−c′1

1− β + βµ′1
. (20)

Substituting (20) into (19) yields (i).
Claim (ii) is obtained analogously. The only difference is that now serving the alternative

task is optimal, and thus the value function is equal to:

V (1) =
−c′1 − βd1θ

′
1

1− β + βθ′1
.

�
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C Proof of Proposition 4

Proof. Since κ′ = −∞, it will never be optimal to engage the alternative task (as long as there
is at least one customer in the system), and thus it will have no effect on the characterization of
the optimal policy. Further, we can assume that the problem is over once the system is empty, i.e.
V (0, 0) = 0. Since there are two customers, equation (2) becomes

V (1, 1) = max{−c′1 − c′2 + µ′1V (0, 1) + θ′2(−d2 + V (1, 0))

+ (1− µ′1 − θ′2)V (1, 1);

− c′1 − c′2 + θ′1(−d1 + V (0, 1)) + µ′2V (1, 0)

+ (1− θ′1 − µ′2)V (1, 1)}

(21)

In states in which there is only one customer present, that is (1, 0) and (0, 1), the optimal
action is to serve the customer present because the alternative task reward κ′ = −∞ and Ck ≥ 0.
From Bellman’s equation we directly obtain that V (1, 0) = −c′1/µ′1 and V (0, 1) = −c′2/µ′2, as in
the proof of Proposition 3. Substituting these equalities in the above expression we get

0 = −c′1 − c′2 + max

{
− µ′1

c′2
µ′2
− θ′2

(
d2 +

c′1
µ′1

)
− (µ′1 + θ′2)V (1, 1);

−θ′1
(
d1 +

c′2
µ′2

)
− µ′2

c′1
µ′1

−(θ′1 + µ′2)V (1, 1)}

When serving customer 1 is optimal, then the first term within the brackets is equal to the
left-hand side and greater than or equal to the second term. It is straightforward to obtain that
this is equivalent to

c′1(µ′1 − θ′1) + d1θ
′
1µ
′
1

µ′1(θ′1 + µ′2)
≥ c′2(µ′2 − θ′2) + d′2θ

′
2µ
′
2

µ′2(θ′2 + µ′1)
.

We have thus obtained that the index value ν2U
k given in (6) characterizes which customer it is

optimal to serve. �

D Proof of Theorem 1

Proof. The proof of this theorem is based on establishing indexability of the problem and comput-
ing the index values following the survey Niño-Mora (2007). We will rewrite our minimization
problem as a maximization one. Indexability is in fact equivalent to existence of the quantities
with stated properties, and is valid because any binary-state MDP is indexable.

Let us denote the optimal value function by Vk,n for customer k in state n. The Bellman
equation for state 1 and customer k ∈ K, after plugging in the definitions of the action-dependent
parameters for a state becomes:

Vk,1 = max{R1
k,1 − νW 1

k,1 + β[µ′kVk,0 + (1− µ′k)Vk,1];

R0
k,1 − νW 0

k,1 + β[θ′kVk,0 + (1− θ′k)Vk,1]},
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After plugging in the formulas for expected one-period revenues and expected one-period
capacity consumption, we obtain:

Vk,1 = max{ − c′k − ν + β[µ′kVk,0 + (1− µ′k)Vk,1]; (22)
− c′k − βdkθ′k + β[θ′kVk,0 + (1− θ′k)Vk,1]},

where the first term in the curly brackets corresponds to serving and the second term corresponds
to not serving the customer. Note that the Bellman equation for Vk,0 is:

Vk,0 = max{R1
k,0 − νW 1

k,0 + βVk,0;R0
k,0 − νW 0

k,0 + βVk,0}
= max{−ν + βVk,0;βVk,0}.

For ν ≥ 0, it is straightforward to obtain that Vk,0 = 0. Analogously for ν < 0 we obtain:

Vk,0 = − ν

1− β
.

Statement (ii) follows immediately. Next we prove (i), dividing the proof into two cases.

Case ν ≥ 0 In statement (i), we want to show when it is optimal and when it is not optimal to
serve waiting customer k. We derive the value of Vk,1. When we choose to serve the customer, we
get:

Vk,1 = −c′k − ν + β[µ′kVk,0 + (1− µ′k)Vk,1],

and it is straightforward to obtain:

Vk,1 = −
c′k + ν

1− β + βµ′k
.

We substitute the expressions Vk,0 and Vk,1 in (22) to obtain, after rearranging, a condition
for serving customer k:

β
c′k(µ

′
k − θ′k) + dkθ

′
k(1− β + βµ′k)

1− β + βkθ
′
k

≥ ν.

Since ν ≥ 0, this is equivalent to νk,1 ≥ ν.
Analogously to above we can show that if it is optimal not to serve waiting customer k, then

νk,1 ≤ ν.

Case ν < 0 We can similarly prove that statement (i) also holds if ν < 0. All the steps will be
similar, but note that we now have Vk,0 = − ν

1−β .
If serving is optimal, from equation (22),we have

Vk,1 =
−c′k − ν − βµ′k

ν
1−β

1− β + βµ′k
. (23)

We next substitute the expressions of Vk,0 and Vk,1 in the equation (22). We want to derive a
condition to determine when it is optimal to serve. I.e., when the first term in (22) is greater or
equal to the second. After rearranging, we obtain:

ν ≤ β c
′
k(µ
′
k − θ′k) + dkθ

′
k(1− β + βµ′k)

1− β + βµ′k
.

Since ν < 0, this is equivalent to νk,1 ≥ ν.
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Statement (iii) The proof for the last statement can be done formally, but can better be seen in
an intuitive way. We know that ν is a cost and νk,0 = κ′ is a reward for using a server during one
period. It is obvious that when ν ≤ νk,0, we choose to allocate the server to the alternative task k.
Analogously, when ν ≥ νk,0, we choose not to allocate the server to the alternative task k. �
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