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Abstract 
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Degree: MBBS 
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Systems biology is an emerging science that combines high throughput investigation 

techniques to define the dynamic interplay between different biological regulatory 

systems in response to internal and external cues. Related technologies, genomics, 

epigenomics, transcriptomics, proteomics, metabolomics and toponomics have been 

applied to investigate models of carcinogenesis to identify committing initiating 

events. Vibrational spectroscopy has the potential to play an integral role within 

systems biology research approaches, as it is able to identify chemical bond 

alterations within molecules independent of where these molecules reside. Its 

integration with current “systems biology” methodologies can contribute in the 

identification of potential biomarkers of carcinogenesis and assist in their 

incorporation into clinical practice. 

Breast tissue undergoes cyclical and longitudinal molecular and histological 

alterations that are influenced by environmental factors. These factors may include 

diet and lifestyle in addition to parity, lactation and menopausal status and are 

implicated in carcinogenesis. Breast cancer may appear decades after the initial 

carcinogenic event. Available research in this area is limited to when early 

histological changes occur due to the difficulties imposed by the molecular and 

histological diversity of breast tissue. Vibrational spectroscopy in combination with 
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powerful chemometric techniques has identified spatial and temporal mammary 

alterations in benign tissue. 

Prostate cancer is influenced by environmental factors. Its incidence is higher in 

populations adopting a Westernised lifestyle and diet and has increased over the past 

generation. This leads to the assumption that prostatic tissue composition may exhibit 

chronological alterations. Vibrational spectroscopy techniques were applied to 

matching prostatic tissues with benign prostatic hyperplasia collected from 1983 to 

2013. Significant trans-generational segregation was identified. Spectral areas 

responsible for this segregation pointed towards epigenetic changes. 

Immunohistochemical studies for DNA methylation and hypomethylation supported 

these results. 

Vibrational spectroscopy techniques were also implemented to explore molecular 

changes between normal ovarian tissue, borderline ovarian tumours and malignant 

ovarian carcinomas. Different chemometric techniques were applied to discriminate 

cancers from controls. Similar techniques were able to segregate different types of 

epithelial ovarian carcinomas. The accurate diagnosis obtained using ATR-FTIR 

spectroscopy demonstrates its potential for development as an assisting tool for 

histopathological diagnosis. 

The endometrial-myometrial junction areas of benign uterine tissues were scrutinised 

by Synchrotron FTIR and FPA. These techniques in combination with multivariate 

analysis revealed clear segregation between the functionalis and basalis layers within 

the uterine crypts. The same techniques illustrated potential areas within these 

epithelial surfaces where different stem cell types may reside. Targeting the 
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activation/ inactivation of these stem cells may have applications in the diagnosis and 

treatment of early uterine cancer. 
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1.1 Introduction 

Vibrational spectroscopy techniques can be utilised for the interrogation of biological 

samples such as tissues and bio-fluids (plasma, serum, urine, saliva) to obtain 

significant biomolecular information. This spectral information is complex and its 

analysis requires powerful computational chemometric techniques. The choice of 

chemometric technique depends on the hypotheses explored and the datasets 

examined. For example different analysis would be employed for chemical image 

reconstruction than for classification of sub-populations. Nevertheless spectroscopic 

techniques coupled with computational analysis have the ability to decipher minute 

chemical variations within molecules. These variations can be exploited to distinguish 

benign from neoplastic samples or identify specific cellular lineages within 

histological areas. These techniques can be developed towards the extraction of 

specific responsible biomarkers. Other biomarker extraction techniques can then be 

applied to validate potential results. These biomarkers can be developed for use in 

clinical practice especially within screening programs 

Vibrational spectroscopy has a direct translatory potential into clinical practice as the 

techniques associated with it can be developed for use in vitro or in vivo depending on 

the setting. There is currently extensive research looking at incorporating Raman 

spectroscopy on endoscopes for the localisation of tissue changes (Bergholt et al., 

2010) and FTIR in the classification of cervical cytological samples (Gajjar et al., 

2014). 

Vibrational spectroscopy is able to identify chemical bond alterations between atoms 

independent of the molecules they form. It is therefore not specific to the genome, 

epigenome, transcriptome, proteome and metabolome. It is able to extract information 

from functional cell lines as well as supporting stroma in tissues. It is also applicable 
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in cellular smears and fluids. The diversity possessed by biospectroscopic 

technologies, along with the fact that they do not require extensive or destructive pre-

processing of the tested samples makes them prime candidates for incorporation into a 

“systems biology” setting. Their ability to direct towards chemical alterations that 

may be associated with functional cellular elements such as proliferation or apoptosis, 

or signalling between cells may secure them a position amongst “omics” technologies 

for research into systemic functional alterations in response to exogenous influences. 

This has direct implication is carcinogenesis research as it is now accepted that 

tumours appear as a consequence of several, cumulative events that cause cellular 

systems to acquire carcinogenic phenotypical and functional characteristics. 

These changes predate histological or cytological neoplastic and pre-neoplastic 

evidences and may therefore potentially be applied for the identification of very early 

chemical indicators of disease initiation. Such indicators may provide the stepping-

stones for the extraction of biomarkers suitable for utilisation as risk identification 

tests within population screening programs. In fact even if these techniques do not 

lead to biomarker extraction, their ability to correctly classify samples according to 

whether they poses early neoplastic changes or not may be enough to allow them to 

be incorporated or replace current screening tests. 

Within this writing the concepts of carcinogenesis will be explored from a 

biospectroscopic point of view. Chemical alterations within benign prostatic and 

mammary tissue that may be influenced by environmental factors will be examined. 

Also, the potential of vibrational spectroscopy in distinguishing benign from 

borderline and malignant ovaries will be verified. Uterine tissue will be interrogated 

to identify chemical variation within its functional layers as well as putative stem cell 

locations. 
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1.2 Systems biology towards screening biomarkers for cancer 

1.2.1 Carcinogenesis 

Carcinogenesis and its synonym oncogenesis are defined as the processes involved in 

initiating and promoting the development of cancer. These processes stimulate 

alterations of cellular functions that affect the balance between proliferation and 

apoptosis causing malignant tumour formation. This deregulation is progressive and 

implicates all cellular functions including alterations in growth signals and growth-

inhibitory signals, evasion of cell death, replicative potential, energy metabolism and 

immune destruction resistance (Hanahan & Weinberg, 2000). It is believed that the 

initiation step for carcinogenesis requires the presence of incipient cancer cells, which 

are genetically unstable (Hahn & Weinberg, 2002; Hanahan & Weinberg, 2000, 2011). 

Under the influence of endogenous and exogenous carcinogens such as hormonal and 

dietary influences, smoking, radiation viruses and oxygen free radicals these incipient 

cancer cells suffer more extensive DNA damage leading to cancer formation. 

Examples of carcinogens implicated in associated processes include the human 

papilloma virus (HPV) in cervical cancer, oestrogen in endometrial cancer and 

polycyclic aromatic hydrocarbons in lung cancer amongst many others. 

Many processes involved in carcinogenesis have been identified and extensively 

described, including some commonalities between all cancers. Several molecular 

mechanisms, such as point mutations, microsatellite instability, gene silencing, loss of 

heterozygosity of tumour suppressor genes, altered gene dosage and gene expression 

via aneuploidy have been postulated as possible important initiating steps.  These 

processes may involve the conversion of proto-oncogenes to oncogenes modifying 

their expression upsetting the cell cycle homeostasis and therefore increasing 
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carcinogenic potential. An example of such an oncogene is the Ras oncogene 

comprising of H-Ras, K-Ras and N-Ras mutations that are commonly found in human 

tumours (Bos, 1989). Tumour suppressor genes code for transcription factors that 

function to control cellular proliferation by suppressing mitosis. Tumour suppressor 

gene mutation or epigenetic inactivation results in “uncontrolled” proliferation with 

inadequate repair leading to carcinogenesis. Some of these mutations can be inherited, 

for example BRCA1 and BRCA2 mutations that are implicated in breast and ovarian 

cancers. In such cases it is believed that at least two mutations have to be present for 

cancer development; the inherited tumour suppressor gene mutation and a mutation 

that causes the inactivation of its allele. This theory has been suggested by Knudson 

and is known as Knudson two-hit hypothesis (Knudson, 1971). In addition non-

mutational changes to DNA can lead to pathogenic alterations in gene expression 

initiating cancer. Encountered changes are commonly DNA methylation, which is 

associated with tumour suppressor gene inactivation and histone acetylation, which is 

associated with oncogene activation (Zardo et al., 2002). The reasons for the genetic 

and epigenetic alterations that enable carcinogenesis are multivariate and involve all 

the cellular processes that result in creating an “advantageous” environment for the 

proliferation of malignant cells in the expense of normal ones (Merlo et al., 2006). 

 The period from the cancer initiation event to the progression to clinically defined 

cancer is termed “ the latency period”. A number of successive mutations have to 

accumulate in order for incipient cancer cells to enter and progress through this period 

(Foulds, 1954; Nowell, 1976). The latency period is different for different tumours 

and can last for as long as decades (Armitage & Doll, 1954; O'neill et al., 2003; 

Vogelstein & Kinzler, 1993). The diversity of the mutations occurring during this 

time explains the considerable genetic and phenotypic heterogeneity in cancer and the 
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time for their accumulation explains the varied speeds with which different cancers 

progress.  

The pathological deregulation associated with carcinogenesis is induced by dynamic 

intracellular and extracellular reactions to environmental influences (Hartwell et al., 

1999). The function of these alterations is to support the growth and progression of 

the malignancy. 

 

1.2.2 Screening 

The detection of early disease or increased risk of acquiring a disease through 

screening programs has led to better prevention measures, improved treatments and 

reduced morbidity and mortality.  

In 1951 the CCI conference on Preventative Aspects of Chronic Disease defined 

screening as “the presumptive identification of unrecognized disease or defect by the 

application of tests, examinations or other procedures which can be applied rapidly. 

Screening tests sort out apparently well persons who probably have a disease from 

those who probably do not. A screening test is not intended to be diagnostic. Persons 

with positive or suspicious findings must be referred to their physicians for diagnosis 

and necessary treatment” (Cohart, 1951). 

The UK NSC definition today is: “Screening is a process of identifying apparently 

healthy people who may be at increased risk of a disease or condition. They can then 

be offered information, further tests and appropriate treatment to reduce their risk 

and/or any complications arising from the disease or condition.” 
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Several screening programs are now in place for the identification of those with 

increased cancer risk or with pre-cancerous or very early cancerous changes. They 

have varying degrees of success depending on their ability to correctly pick up early 

disease and their socio-economic acceptability. The implementation of screening 

programs is a multi-dimensional task whose goal is the early identification of disease 

with minimal impact to the service provider and the population screened. 

The principles of screening were defined by the world health organization in 1968 and 

are often known as the Wilson Criteria (Wilson & Jungner, 1968). These principles 

are still valid today (Figure 1). 

Figure 1: Wilson Criteria (1968) 

The condition should be an important health problem.  

There should be a treatment for the condition.  

Facilities for diagnosis and treatment should be available.  

There should be a latent stage of the disease.  

There should be a test or examination for the condition.  

The test should be acceptable to the population.  

The natural history of the disease should be adequately understood.  

There should be an agreed policy on whom to treat.  

The total cost of finding a case should be economically balanced in relation to 

medical expenditure as a whole.  

Case finding should be a continuing process and not a "once and for all" project.  
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Developing a suitable screening biomarker is imperative for the establishment of an 

effective screening program (Gray et al., 2008). Current screening programs make use 

of potentially harmful or invasive techniques such as endoscopy or transvaginal 

ultrasonography and evidence regarding their value is continuously changing. 

Recent technological advances in high throughput omics technologies have opened 

new horizons in the search for new biomarkers of disease. The choice of biomarkers 

is ever expanding and selecting the most suitable involves considering all of the 

prerequisites that a screening program has to fulfil. Population screening involves a 

highly heterogeneous sample and cancer is a highly heterogeneous process by nature. 

Following "reductionist" approaches to search for suitable biomarkers within the 

genome, epigenome, transcriptome, metabolome and toponome, as well as vibrational 

spectroscopy, has so far proven imperfect. Systems biology is a promising, novel 

scientific field that integrates information derived from different high throughput 

technologies to understand models of biological mechanisms (Kitano, 2002). These 

models can be used to predict complex behaviours these mechanisms may adopt in 

response to internal and external stimuli. The structural and functional changes 

associated with these behaviours may harbour potential cancer biomarkers, which 

once identified may be applied within population screening programs. 
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1.2.3 Biomarkers 

In 1998, the National Institutes of Health Biomarkers Definitions Working Group 

defined a biomarker as “a characteristic that is objectively measured and evaluated as 

an indicator of normal biological processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention.”  

International Programme on Chemical Safety, led by the World Health Organization 

(WHO) and in coordination with the United Nations and the International Labour 

Organization, has defined a biomarker as “any substance, structure, or process that 

can be measured in the body or its products and influence or predict the incidence of 

outcome or disease”.  

The usefulness of a particular biomarker lies in its ability to provide early indication 

of presence or progression of disease (Srinivas et al., 2001). There are two general 

types of cancer biomarkers: biomarkers that identify risk of developing cancer and 

biomarkers that detect cancer in the pre-clinical stage. Biomarkers of risk identify 

individuals with a predisposition to develop cancer before tumourigenesis. They 

usually detect gene alterations that dictate familial predisposition to cancer 

development. Examples of such genes include BRCA1 and BRCA2 in breast cancer 

and MLH and MSH2 in familial non-polyposis coli syndrome.  

Biomarkers are designed to identify early disease after the biological onset of 

carcinogenesis and before symptoms occur.  They rely on the occult neoplastic 

process producing a signature that can be identified and quantified.  
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Five phases of biomarker development have been proposed each aiming to examine 

particular desirable attributes of the test without jeopardising safety or wasting 

resources (Figure 2) (Pepe et al., 2001).  

  

Figure 2: Phases of biomarker development, adapted form (Pepe et al., 2001) 

The success of a biomarker within a screening program depends on several factors 

including population compliance, effect of treatment on cancer and economic viability. 

If any of these elements are poor the chances of failure of the screening program will 

prevent its establishment.  

The most pivotal attribute of an ideal biomarker for use in cancer screening would be 

its ability to accurately identify the earliest change that defines commitment to disease. 

Such a biomarker would distinguish those individuals who will eventually get cancer 

if left untreated from those that will never get cancer despite their being at increased 

risk. In order to produce such a biomarker the lifecycle of cancer needs to be 

understood.  
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1.2.4 Systems Biology 

Systems biology involves multidisciplinary approaches for investigating all-inclusive 

functions within biological systems. It involves the bringing together of diverse 

sciences including biology, biomedicine, engineering, analytics and computational 

science to examine specific hypotheses considering biological functions. This concept 

is in contrast to reductionist approaches where a specific portion of a biological 

system is examined in isolation usually using only one approach. In systems biology a 

cycle of operational protocols involving theoretical, analytic and computational 

models are utilized to propose specific testable hypotheses about a biological system. 

These hypotheses then undergo experimental validation. This cycle is repeated with 

specific refinements at each stage depending on the accumulation of knowledge on 

involved cellular processes. The expansive nature of this type of investigation has the 

potential to examine dynamic biological systems as whole entities and therefore 

acquire integral models of there functions (Kolch & Kholodenko, 2013). To achieve 

this, the methodology uses high throughput investigating technologies to identify the 

genomic, epigenomic, transcriptomic, proteomic, metabolomic, and toponomic make-

up of a functional cellular system amongst others (Figure 3).  
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Discipline Definition  

Phenomics Studies of the set of observable 

characteristics or traits 

Genomics Studies the complete DNA sequence 

Epigenomics Studies alterations on gene transcriptional 

activity that is not related to DNA 

sequence changes 

Transcriptomics Studies the complete compliment of RNA 

generated by a cell 

Proteomics Studies the full complement of proteins 

contained in cells 

Metabolomics Studies end-products of cellular 

metabolism 

Toponomics Studies the location of protein networks 

in relation to phenotypic alterations 

 

Figure 3: Science integration model for systems biology research 

Bio-informatics is an associated science that brings together data produced by high 

throughput technologies. Bio-informatics can be distinguished into computer science, 

computational analysis, biology, chemo-metrics and statistics. These sciences 

combine to develop powerful computational algorithms that aim to identify cellular 

components that are implicated in specific cellular functions under investigation. 

Examples of such algorithms are gene finding, motif recognition, similarity searches, 

multiple sequence alignment, protein structure prediction and phylogenetic analysis 

amongst others (Baxevanis, 2001; Mount, 2001). In order for investigators to have 

access to as diverse datasets as possible data storage facilities are available online. 

Such services include the Pathway Interaction database (NCI Nature Curated), 

Reactome, Biocarta, KEGG or Protein Lounge. Several integration software packages 
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are available to combine these datasets, for example the Human Pathway Database 

(HPD), Pathlist, PathSys, Integrated Pathway analysis pathway (IPAD), Human 

annotated and predicted protein interactions (HAPPI) and KEGG converter. 

Subsequent analysis of the resulting data is dependent on the use of these data. 

Classification techniques can be used to identify cellular functions that are related 

with a particular phenotype while feature extraction techniques can detect cellular 

component alterations that may drive particular cellular functions. 

Systems biology is especially useful in carcinogenesis research. Cancer development 

is a complex and lengthy process that involves several functional alterations in tissue 

microenvironment. Systems biology has the potential to identify these alterations and 

create models of carcinogenesis recognizing key elements that may be used as 

biomarkers for use in screening or diagnosis. Isolating crucial steps in carcinogenic 

processes may also assist in therapeutics by providing specific targets for the 

development of pharmacological agents. The ultimate objective of systems biology in 

cancer is to establish methodologies to identify the committing steps to cancer 

development. This could lead in the invention of personalized interventions to prevent 

or halt cancer formation before it surfaces. 
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1.3 The ovary 

1.3.1 Anatomy and physiology 

The ovaries (female gonads) are small (4X3X2cm) whitish, paired organs located in 

the pelvis in the ovarian fossae in close association with the external and internal iliac 

arteries and the ureter.  

They consist of 3 layers. The medulla is composed of supporting stroma that contains 

neurovascular structures. The cortex contains thousands of primordial follicles 

supported by connective tissue stroma. The surface is covered by cuboidal epithelium 

called the germinal epithelium. They are not covered by peritoneum. The suspensory 

ligament of the ovary attaches it to the pelvic sidewall and transmits its neurovascular 

bundle. The ovary is also attached to the broad ligament via the mesovarium and the 

uterine fundus via the ovarian ligament. 

Embryologically the ovary is partially formed from the gonadal ridge and partially 

from the mesonephros. At approximately 5 weeks of gestation the medial part of the 

mesonephros develops into the urogenital (gonadal) ridge. The coelomic thickening 

forms the ovarian epithelium while the subcoelomic mesoderm forms the ovarian 

stroma. The primordial germ cells migrate to the gonadal ridges from the yolk sac. 

They undergo successive mitotic divisions and organise within the ovarian cortex. By 

the seven month of foetal life there are about 7 million primordial follicles in the 

ovarian cortex but by birth only 2 to 4 million remain. Primordial follicles do not 

undergo meiosis unless they undergo ovulation. The ovaries descend into the pelvis 

guided by the gubernaculum in the 3rd month of foetal life. The gubernaculum 

eventually forms the ovarian and round ligaments. Because of origin of the ovaries 

their blood supply originates from the aorta close to the renal arteries. 
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The ovarian follicles are the functional units of the ovary. They contain the oocytes 

and they secrete hormones (oestrogen and progesterone) required to develop the 

secondary sexual characteristics, control the menstrual (ovarian) cycle and prepare the 

uterus for ovulation.   

 

1.3.2 Ovarian cancer 

1.3.2.1 Epidemiology 

Ovarian cancer is the seventh most common cancer in females worldwide but the fifth 

most common in Europe and the UK. The crude incidence rate in the UK is 22 per 

100,000 women. The incidence rises with age from about 35 years and peaks at 80 

years. 75% of ovarian cancers are diagnosed in those ages over 55 years old. There is 

significant variation in the incidence between different ethnicities, with Americans 

and Europeans having a higher incidence than Japanese, East Indians and Latinos. 

The incidence in Japan has been steadily increasing since the 1990’s, reflecting the 

effect of a “Westernised lifestyle” on ovarian cancer risk. 

 

1.3.2.2 Aetiology 

Ovarian cancer risk increases with age and as mentioned earlier is commoner in 

Europe and America than South East Asia and commoner in Caucasians.  

It is also genetically driven. The risk of ovarian cancer in those with one affected first 

degree relative is 5% and those with two affected relatives is 7% (Hoffman, 2012). 
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This risk also increases with a family history of endometrial cancer, colon cancer and 

with HNPCC (Aarnio et al., 1999).  

Mutations in the BRCA genes are also associated with an increased risk as part of 

“ Hereditary Breast-Ovarian Cancer Syndrome”. The risk of developing ovarian 

cancer with a BRCA mutation is 5-10% with 52% of those related to BRCA1, 32% to 

BRCA2 and 16% to yet unidentified genes (Ford et al., 1998). BRCA mutation related 

ovarian cancers develop on average 15 years earlier than their sporadic counterparts 

(Aarnio et al., 1999). 

Endogenous and exogenous oestrogen is also associated with an increase in ovarian 

cancer risk. Infertility due to polycystic ovarian syndrome and therefore anovulation 

has been found to increase this risk (Rossing et al., 1994). Treatment with clomiphene 

citrate, human menopausal gonadotropin and other fertility medication is associated 

with an increased risk of ovarian cancer (Shushan et al., 1996). Hormone replacement 

therapy with unopposed oestrogen has also been implicated in the development of 

ovarian cancer (Beral et al., 2007).  

Westernised lifestyle and diet have been reported to be associated with an increased 

risk, in several studies (Cramer et al., 1984; Shu et al., 1989). It has been proposed 

that lactose in dairy products may be linked to ovarian cancer (Cramer et al., 1989). 

Also high fat dietary intake has a dose response to the increase in malignancy risk. 

Certain factors are protective against ovarian cancer. These include oral contraception 

and pregnancy due to the interruption of oestrogenic influence (Whittemore et al., 

1992). Tubal ligation and hysterectomy have also been shown to reduce ovarian 

cancer risk (Chiaffarino et al., 2005). It is believed that this occurs due to the 

prevention of ascending migration of potential carcinogens.  
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1.3.2.3 Presentation 

NICE recommends that women presenting repetitively with the following symptoms 

warrant further investigations: abdominal distension; fullness or loss of appetite; 

pelvic or abdominal pain; increased urinary frequency or urgency; symptoms 

suggestive of irritable bowel syndrome in the previous 12 months; unexplained 

weight loss, fatigue, or changes in bowel habit. They recommend that women with 

symptoms suggestive of ovarian cancer should have a CA125 test. Those with a 

concentration of 35IU/mL or more should have an abdominal and pelvic ultrasound 

scan. The ultrasound scan features, menopausal status and CA125 levels are inputted 

into an algorithm called the “risk malignancy index” (RMI) to estimate their risk of 

having ovarian cancer (Jayson et al., 2014). RMI is calculated by multiplying scores 

given for menopausal status, ultrasound features and the levels of CA125 (Figure 4). 

Those with a score of 250 or more should be referred to a specialist team. 

Other algorithms have been proposed to identify those at high risk of ovarian cancer 

in primary care but have not been incorporated to clinical practice (Hamilton et al., 

2009; Hippisley-Cox & Coupland, 2012). 
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Figure 4: Risk malignancy index (RMI). This algorithm combines ultrasound 

findings with menopausal status and CA125 levels to identify the risk of 

malignancy when an ovarian mass is identified. 

Feature Score  
Ultrasound findings: 

• Multilocular cyst 
• Solid areas 
• Ascites 
• Metastases 
• Bilateral 

abnormalities 

Ultrasound score: 
• None = 0 
• 1 abnormality = 1 
• ≤ abnormalities = 3 

Menopausal status Menopausal score: 
• Premenopausal =1  
• Postmenopausal =2 

CA125 Levels (U/mL) 
  

 

1.3.2.4 Screening and diagnosis 

Unfortunately, most ovarian cancers are not symptomatic, until at an advanced stage, 

usually stage III. RMI has not been proved to be reliable for population screening as it 

is not sensitive (81%) or specific (75%) enough (Jacobs et al., 1990). Also because of 

the very low prevalence of ovarian cancer the potential harms of such a non-specific 

screening tool would outweigh the benefits (Zurawski et al., 1988). Two large 

randomised control trials have been conducted to evaluate the efficacy of CA125 and 

ultrasound for population screening. The American PCLO study did not identify any 

improvement in mortality from yearly screening (Buys et al., 2011). Preliminary 

results from the British UKTOCS study show that screening has encouraging 

sensitivity in picking up ovarian cancer (Menon et al., 2009). 
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It has also been proposed that transvaginal ultrasound performed on a yearly basis 

may be able to identify ovarian cancer at early stage when it is more successfully 

treatable (Depriest et al., 1994). This approach is also not viable because of the 

extensive costs associated with it. 

Human epididymis protein 4 (HE4) has also been suggested as an alternative to 

CA125 but has not shown better sensitivity or specificity (Nolen & Lokshin, 2010). 

When HE4 and CA125 are used together to form a tumour marker panel for a 

potential screening test the sensitivity and specificity of the test increases but does not 

surpass the sensitivity of RMI (Moore et al., 2010). 

Several other biomarker panels have been proposed for ovarian cancer screening but 

have not been employed in a clinical setting (Yurkovetsky et al., 2010). 

Ovarian cancer diagnosis is by histological evaluation of biopsy or surgical excision 

sample. Several types of ovarian cancer exists but these are broadly distinguished to 

epithelial, stromal and germ cell tumours (these are discussed in the molecular 

pathology section). 

Staging of ovarian cancer is surgical according to the FIGO staging system (Figure 5). 

To adequately stage these tumours, a total hysterectomy, bilateral 

salpingooopherectomy, omental biopsy, pelvic lymphnode biopsies and peritoneal 

washings or biopsies have to be performed. This is because of the potential of 

micrometastases (30%) even with stage 1 ovarian malignancy (Jayson et al., 2014). 

Tumours are graded according to their degree of differentiation. Grade 1 cancers are 

well differentiated, grade 2 are moderately differentiated and grade 3 are poorly 

differentiated. In addition borderline tumours may be graded as grade 0. 
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Figure 5: Ovarian cancer staging 

IA Tumour limited to 1 ovary with an intact capsule and no surface tumour 

and negative peritoneal washings 

IB Tumour has similar features to 1A but involves both ovaries 

IC1 Tumour limited to 1 or both ovaries with surgical spill 

IC2 Tumour limited to 1 or both ovaries with capsule rupture before surgery or 

tumour on the surface 

IC3 Tumour limited to 1 or both ovaries with malignant cells in peritoneal 

washings or ascites 

IIA Extension to uterus and/ or fallopian tubes 

IIB Extension to other pelvic intraperitoneal tissues 

IIIA1 Positive peritoneal lymph nodes 

• IIIA1(i) -  metastasis 10mm 

• IIIA1(ii)- metastasis 10mm 

IIIA2 Microscopic, extrapelvic, peritoneal metastasis +/- positive retroperitoneal 

lymph nodes 

IIIB Microscopic, extrapelvic, peritoneal metastasis 2cm +/- positive 

retroperitoneal lymph nodes. Includes extension to the capsule of liver or 

spleen. 

IIIC Microscopic, extrapelvic, peritoneal metastasis 2cm +/- positive 

retroperitoneal lymph nodes. Includes extension to the capsule of liver or 

spleen. 

IVA Pleural effusion with positive cytology 

IVB Hepatic and / or splenic parenchymal metastasis, metastasis to extra-

abdominal organs, including inguinal and extra-abdominal positive lymph 

nodes 
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1.3.2.5 Molecular pathology 

Epithelial ovarian cancer is the commonest type especially in postmenopausal women. 

It arises from the ovarian cortex. There are several subtypes of epithelial ovarian 

malignancy: high-grade serous, low-grade serous, mucinous, endometrioid, clear cell, 

mixed epithelial tumours and carcinosarcomas. In addition borderline tumours are 

also of epithelial origin but have a lower malignant potential.  

The above subtypes have been grouped into two types of epithelial ovarian carcinoma. 

Type 1 are comprised of low-grade serous, endometrioid, clear cell, mucinous 

carcinomas and Brenner tumours. They have a generally slow course, as they are 

genetically stable. They are characterised by specific mutations involving KRAS, 

BRAF, ERBB2, CTNNB1, PTEN PIK3CA, ARID1A, and PPPR1A, which target 

specific cell signaling pathways. Type 2 tumours are comprised of high-grade serous, 

high-grade endometrioid tumours and carcinosarcomas (Kurman & Shih Ie, 2011). 

They are mostly associated with TP53 mutations and BRCA mutations(Ahmed et al., 

2010; Senturk et al., 2010). Serous ovarian tumours are believed to arise from 

malignant implants originating in the fallopian tube epithelium (Przybycin et al., 

2010). Similarly endometrioid and clear cell ovarian tumours may be associated with 

retrograde bleeding causing endometriosis (Malins et al, 1997).  

Sex cord tumours arise from the stroma of the ovary specifically from the granulosa 

cells, theca cells and fibrocytes. They usually present at early stages and are usually 

unilateral and confer an excellent prognosis. They appear in childhood presenting as 

precocious puberty, in adulthood with ovarian accidents (torsion or hemorrhagic 

cysts) and postmenopausally with postmenopausal bleeding due their secretion of 

high amounts of oestrogen. 
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Germ-cell tumours include dysgerminomas, teratomas, endodermal sinus tumous, and 

choriocarcinomas. Dysgerminomas have a good prognosis but occur more commonly 

in younger women. Endodermal sinus tumours have a poor prognosis and 

choriocarcinomas metastasize early. These tumours have specific tumour markers due 

to their secretions. Dysgerminomas are detected by LDH and more recently AMH, 

endodermal sinus tumours by AFP and choriocarcinomas by b-HCG.  

1.3.2.6 Management 

Surgery is used for treatment and staging. The type of surgery planned depends on 

pre-staging by imaging usually using MRI. For stage IA cancers unilateral 

saplingoopherectomy can be performed with peritoneal washings, for women wishing 

to conserve their fertility. This renders staging incomplete and therefore has a small 

risk of “missing” micrometastases (Jayson et al., 2014). In postmenopausal women 

complete staging procedures are recommended independent of preliminary staging. In 

children who commonly present with dysgerminomas preservation of one ovary is 

recommended to allow for complete development of sexual characteristics. Advanced 

stage III and IV ovarian cancer is treated by cytoreductive surgery with or without 

neo-adjuvant chemotherapy. The radicality of such procedures is currently under 

review but it is accepted that the more complete the cytoreduction the better the 

outcomes (Dauplat et al., 2000). Adjuvant chemotherapy is commonly administered 

postoperatively in the form of carboplatin alone or in combination with taxols (Jayson 

et al., 2014). 

Radiation therapy used to be the preferred treatment for dysgerminomas as they are 

very radiosensitive, but as this caused infertility chemotherapy is favoured for these 

tumours also nowadays (Michael, 2012). 
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1.4 The prostate 

1.4.1 Anatomy and physiology 

Embryologically the prostate is formed at 13-16 weeks gestation from five paired 

epithelial buds that project posteriorly from the urethra into the urogenital sinus under 

the influence of dihydrotestosterone (DHT). The top pairs are derived form mesoderm 

and form the transformation and peri-urethral zones and the lower pairs are derived 

from endoderm and form the peripheral zone.  

Anatomically the prostate is about 20 to 30ml in volume and weighs approximately 

20g (Terris & Stamey, 1991). It surrounds the urethra with is base being in continuity 

with the bladder and its apex forming the external urethral sphincter. It is related 

anteriorly with the pubis symphysis, posteriorly with the rectum and inferiorly with 

the perineal membrane. Its primary blood supply is a branch of the inferior vesical 

artery, arising from the anterior branch of the internal iliac artery. Additional blood 

supply is derived from the middle rectal and internal pudendal arteries. Venous 

drainage is into the dorsal venous complex and the middle rectal veins. Lymphatic 

channels drain into the internal and external iliac and obturator lymph node groups. 

Histologically the prostate is composed by 70% simple columnar and cuboidal 

epithelium and 30% fibromuscular stroma. The columnar epithelium forms papillary 

projections into glandular acini and is surrounded by the cuboidal layer. 

Approximately 70% of the glandular elements reside in the peripheral zone, 25% in 

the central zone and 5 to 10% in the transitional and periurethral zones (Figure 6). 

These zones are surrounded by a 3-layered facia and capsule composed of collagen, 

elastin and smooth muscle. 
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Figure 6: Histology of the prostate 
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The epithelial cells of the glandular elements provide secretions that empty through 

glandular ducts into the urethra to form the major component of the seminal plasma of 

the ejaculate (Frick & Aulitzky, 1991). The extracellular matrix plays an important 

role in the development and control of cellular functions including secretion (Figure 

7). The muscular prostatic capsule plays a role in ejaculation and micturition as both 

the urethra and ejaculatory ducts pass through the prostate. 

The maintenance of prostatic size and function is testosterone dependent. 

Testosterone is enzymatically transformed to dihydrotestosterone to activate RNA-

polymerace and eventually lead to the production of several proteins amongst others 

(Frick & Aulitzky, 1991). Endogenous testosterone or other androgens have not been 

shown to have a relationship with prostate cancer (Morgentaler, 2006) 

 

Figure 7: Prostatic secretions 

Proteins Other 

Acid Phosphatase Citrate 

PSA Spermine 

Leucine aminotransferace Spermidine 

Diamine oxidase Putrescine 

B glucuronidase Zinc 

Plasminogen activator Myoinositol 

Complement C3 and C4 Cholesterol 

Transferrin  

Growth factors  

Annexin1  
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1.4.2 Benign prostatic hyperplasia 

Over half of men aged over 50 years have BPH. A third of these men present with 

lower urinary tract symptoms  (LUTS) that range from urinary tract infection to 

urinary retention to renal insufficiency (Thorpe & Neal, 2003) A direct relationship 

between the BPH and  LUTS is not fully evidenced (Lepor, 2005). Although most 

men will have histological BPH by the age of 80 the term involves prostates with 

volume more than 25ml (Kaplan et al., 2006). BPH refers to a dysfunctional 

proliferative process of both the stromal and epithelial elements within the 

periurethral and transitional zones (Mcneal, 1983). In fact it has been suggested that 

symptomatic BPH is related to an increased stromal: epithelial ratio as well as 

percentage smooth muscle (Lepor, 2005). Therefore the mechanisms involved in 

related urinary symptoms include bladder outlet obstruction and prostate smooth 

muscle dysfunction. 

The treatment of BPH can be medical or surgical. Medical therapies are targeted 

towards diminishing bladder outlet obstruction by decreasing prostatic volume and 

relaxing prostatic smooth muscle. A1 adrenergic antagonists, like Doxazosin or 5a-

reductase inhibitors like finasteride and their combination have been shown to 

alleviate BPH related symptoms but not directly through reducing prostatic volume 

(Kaplan et al., 2006). Surgically both transurethral resection of the prostate and 

radical prostatectomy have been shown to improve BPH related LUTS (Lepor, 2005). 

Other minimally invasive therapies such as laser coagulation, vaporisation or 

enucleation are also recommended by the European Association of Urology (EAU) 

(Madersbacher et al., 2004). 
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1.4.3 Prostate cancer 

 

1.4.3.1 Epidemiology 

Prostate cancer is the second most commonly diagnosed cancer in males and the sixth 

leading cause of cancer death worldwide (Torre et al., 2015). In the United Kingdom 

it is the most commonly diagnosed cancer with 41,700 diagnoses in 2011 and 10,800 

deaths from the disease in 2012 (Cancer Reserch Uk, 2014). It develops in men aged 

more than 50 years. It is estimated that by the age of 80 years about 80% of men will 

have evidence of prostatic neoplasia (Breslow et al., 1977). In most of these cases, 

cancer follows an indolent course without any attached symptomatology, therefore it 

usually doesn’t warrant treatment.  Prostate cancer exhibits considerable variation 

between ethnicities and countries (Breslow et al., 1977). It is most common in black 

men and least common in Asians. Also it is most common in America and least 

common in South-East Asia independent of ethnicity (Breslow et al., 1977; Parkin et 

al., 2010; Parkin et al., 1999).  These differences may exist because of genetic 

variation, lifestyle dissimilarities or differing detection rates (Haas & Sakr, 1997; 

Potosky et al., 1995). 

1.4.3.2 Aetiology and risk factors 

The only established risk factors for prostatic cancer are age, family history and as 

mentioned earlier ethnicity (Bratt, 2002). Men with an affected first-degree relative 

have double the risk of acquiring prostate cancer later in life (Zeegers et al., 2003). 

Other associations with increased risk include obesity (Buschemeyer & Freedland, 

2007), high blood pressure (Martin et al., 2010) and lack of exercise (Friedenreich et 

al., 2010). 
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The exact aetiology of prostatic cancer is not well understood but is believed to result 

from a complex series of initiation and promotion events under both genetic and 

environmental influences (Witte, 2009). Some studies have identified an increase in 

risk amongst men with BRCA1/ BRCA2 mutations (Agalliu et al., 2007; Gayther et al., 

2000). Genetic variations in the biosynthesis and metabolism of androgens have also 

been suggested. These involve the activity of androgen receptor within the prostate, 

which depends on the length on CAG repeats (Gu et al., 2012). Other factors likely 

influencing prostate cancer development include endogenous hormone imbalances 

especially considering androgens and oestrogens  (Wu et al., 1991). Exogenous 

influences may include calcium and vitamin D consumption in dairy products (Aune 

et al., 2015), dietary fat (Park et al., 2007) and phytoestrogens (Barnes, 2001). 

Prostate cancer has also been linked with sexually transmitted infections (STI) most 

notably with human papilloma virus (HPV-2, HPV-16 and PHV-18) and is commoner 

in individuals with many previous sexual partners (Dennis et al., 2009; Dennis & 

Dawson, 2002). 

1.4.3.3 Presentation 

Prostate cancer rises from the glandular epithelial cells and is therefore considered an 

adenocarcinoma. It most usually appears in the peripheral zone. The symptoms it 

causes are similar to those of BPH; commonly hesitancy, poor urine stream, dysuria, 

post-micturition dribbling, recurrent urinary tract infections and sexual dysfunction. 

Additionally it may cause haematuria, lower back and pelvic pain, urinary and faecal 

incontinence depending on its stage (Miller et al., 2003). On per-rectum examination, 

positive findings would include asymmetrical lobar enlargement and nodularity.  
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1.4.3.4 Screening and diagnosis 

Prostate screening is controversial. Currently digital rectal exam followed by a blood 

test for prostate specific androgen (PSA) levels are the most acceptable options. In the 

UK there is no established population-screening programme but the “ Prostate Risk 

Management” program has been introduced as an informed choice programme 

(Figure 8) based on the findings of the “European Randomized Study of Screening for 

Prostate Cancer” (ERSPC). This study assigned individuals to a control group and a 

group undergoing four yearly screening tests by PSA levels. It concluded that within 

9 years of screening there was a reduction in the rate of deaths from prostate cancer 

by 20% with a number needed to treat of 24 (Roobol et al., 2009). When these 

numbers were projected to 25 years the number needed to treat falls to 5 men (Gulati 

et al., 2011). The Prostate, Lung, Colorectal and Ovarian (PCLO) study, conducted in 

the United States, concluded that regular screening did not differ significantly from 

opportunistic screening in relation to prostate cancer specific mortality due to the very 

small number of deaths in the studied population (Andriole, 2014). 
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Figure 8: “Prostate risk management program”. Frequently asked questions and 

answers to provide information for informed consent. 

 

 

 

Adopted from PSA (prostate specific antigen) testing for prostate cancer. An 
information sheet for men considering PSA test.  This patient information sheet was 
updated by Dr Deborah Burford and Dr Joan Austoker from the Cancer Research UK 
Primary Care Education Research Group, University of Oxford, and Professor 
Michael Kirby, Visiting Professor to the Faculty of Health and Human Sciences, 
University of Hertfordshire. The information on this sheet is based on material from 
the booklet Prostate Cancer Risk Management Programme information for primary 
care; PSA testing in asymptomatic men (NHS Cancer Screening Programmes, 2009).  

  

Should I have a PSA test? 

Benefits Limitations 

It may reassure you if the test result is 

normal. 

It can miss cancer and provide false 

reassurance. 

It may give you an indication of cancer 

before symptoms develop. 

It may lead to unnecessary worry and 

medical tests when there is no cancer.  

 

It may find cancer at an early stage 

when treatments could be of benefit. 

It cannot tell the difference between 

slow-growing and fast-growing cancer.  

 

If treatment is successful, the worst 

possible outcomes of more advanced 

cancer, including death, are avoided.  

It may make you worry by finding slow-

growing cancers that may never cause 

any symptoms or shorten your life.  

 

Even if the cancer is more advanced 

and treatment is less successful, it will 

usually extend life. 

48 men will undergo treatment in order to 

save one life.  
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The gold standard for the diagnosis of prostate cancer is by histological examination 

of per rectum core biopsies (Essink-Bot et al., 1998). These biopsies are undertaken 

under ultrasound (US) or magnetic resonance imaging guidance (MRI) (Natarajan et 

al., 2011). The tissues are stained with H&E for light microscopy. Staging of prostate 

cancer is radiological and follows the TNM system (Figure 9). In the presence of 

neoplasia the Gleason score is most commonly applied to grade the abnormality 

(Figure 10). 

 

Figure 9: TNM prostatic cancer staging 

 

Tumour Lymph nodes Metastasis 

T1          Not palpable Nx        Not checked M0              No spread 

T2a        ½ of one lobe 

T2b        >½ of one lobe 

T2c        Both lobes 

N0        No involvement M1a            Lymphnodes 

                   outside pelvis 

M1b           Spread to bone 

M1c           Other organ 

                   spread 

T3a        Capsule breached 

T3b        Spread to seminal 

              vesicles 

N1        Involved  

T4          Metastasis   
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Figure	10:	Gleason	score	

																																	 	
Pattern	 of	
differentiation	

Small	
uniform	
glands	

Increased	
stroma	
between	
glands	

Infiltration	
of	 cells	
from	
glands	 at	
margins	

Irregular	
masses	 of	
neoplastic	
cells	 with	
few	
glands	

Occasional	
glands	
between	
sheets	 of	
cells	
	

Primary	grade	 Dominant	pattern	(>50%)	

Secondary	

grade	

Next	most	frequent	pattern	(5<50%)	

Tertiary	grade	 Small	component	with	more	aggressive	pattern	

Gleason	 score	 =	 primary	 grade	 +	 secondary	 grade	 	 	 	 (if	 only	 2	 patterns	

witnessed)	

Gleason	score	=	primary	grade	+	tertiary	grade									(if	a	tertiary	grade	is	seen)	
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1.4.3.5 Molecular pathology of prostate adenocarcinoma 

 

Several molecular alterations have been implicated in the development and 

progression of prostate cancer. The potential of these alterations in determining 

malignancy has not been confirmed but is under consideration with extensive research 

being undertaken in these areas. Several molecules that regulate the cell cycle 

including division and apoptosis have been studied but they have not been directly 

linked to prostate carcinogenesis. These include inactivation of P53 (Osman et al., 

1999), variable expression of P27 (Macri & Loda, 1998), and positivity of Bcl-2 

oncoprotein (Keshgegian et al., 1998). PTEN is a tumour suppression gene commonly 

inactivated in sporadic and high-grade prostate tumours implying close links with 

their development (Mcmenamin et al., 1999; Whang et al., 1998). Several growth 

factors have also been linked to the development of prostate malignancy. The control 

of these growth factors by androgens may be lost causing deregulated cellular 

proliferation (Chung et al., 1997). Perhaps the closest association is between Insulin-

like growth factors (IGF) I and II. Population studies have shown that IGF-I plasma 

levels increase in prostate cancer and improve the detection rate over PSA alone 

(Chan et al., 2002). In addition IGF-II levels are increased in malignant prostatic cells. 

Other growth factors implicated in the development and progression of prostate 

cancer are listed in figure 11. 
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Figure 11: Growth factors implicated in prostate cancer 

Transforming growth factor-b (TGF-β) 

Fibroblast growth factors (FGF) 

Epidermal growth factors (EGF) 

Insulin-like growth factors (IGF) 

Platelet-derived growth factors (PDGF) 

Vascular endothelial growth factors (VEGF) 

Neurotensin 

Endothelins 

Colony-stimulating factors 

 

 

Adapted from Holland-Frei Cancer Medicine. 6th edition. Kufe DW, Pollock RE, 
Weichselbaum RR, et al., editors. Hamilton (ON): BC Decker; 2003 
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A. Normal prostate at high magnification showing the columnar epithelial 
papillae and the “corpora amylacea” which are laminated concretions within 
the lumen of the acini. 

B. Benign prostatic hyperplasia at medium magnification showing preservation 
of the columnar epithelial arrangement around the lumina. 

C. Prostatic intraepithelial neoplasia (high grade) at high magnification with 
cellular proliferation around a single or a small number of acini. This suggests 
the presence of overt adenocarcinoma in 50% of cases. 

D. Prostatic adenocarcinoma at low power showing a residual glandular element 
surrounded by densely packed neoplastic cells exhibiting prominent nucleoli 
and lacking intervening stroma. 
 

 

Figure 12: Histopathological features of the normal prostate, benign prostatic 
hyperplasia, prostatic intraepithelial neoplasia and prostatic adenocarcinoma 
Adapted from “the internet pathology laboratory for medical education, Mercer 
University School of Medicine, Savannah (accessed on 11/02/2015) 
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1.4.3.6 Management  

The management options for prostate carcinoma depend on the age of the patient, the 

symptoms as well as the aggressiveness of the cancer (Gleason score), stage and PSA 

level. “Active monitoring” is a valid option for older men with comorbidities, slow-

growing cancers or those who would not accept potential treatment side effects. This 

surveillance involves serial PSA level testing and repeated biopsies to identify 

progression of the disease, which would prompt re-discussion of the management 

options. Surgical options involve radical prostatectomy, which can be undertaken by 

retropubic, perineal, and laparoscopic or robotic approaches. The major side effects of 

such operations are erectile dysfunction and urinary incontinence. Robotic nerve 

sparing procedures reduce the risk of such side effects but do not eliminate them. 

Radiotherapy can be used as adjuvant or stand-alone treatment and can be in the form 

of external beam or brachytherapy. Other options commonly used in early prostate 

cancer include high intensity focused ultrasound (HIFU) and cryosurgery. For later 

stages where the tumour has extended beyond the prostate capsule or has exhibited 

metastases, chemotherapy, immunotherapy or hormonal therapy or a combination 

thereof is used (Gerritsen, 2012; Yagoda & Petrylak, 1993). Finally palliative care 

aims to improve quality of life when the disease is deemed terminal. One of the 

commonest and most severe symptoms is bone pain from spinal metastases. This is 

usually treated with a combination of opioids, steroids, bisphosphonates and radiation 

therapy (Thompson et al., 2007). 
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1.5 The female mammary gland 

 

1.5.1 Anatomy and physiology 

The breast consists of glandular lobules drained by 15 to 20 lactiferous glands that 

open onto the nipple. The nipple is surrounded by the areola, which contains 

sebaceous glands for lubrication. The glandular lobules are surrounded by adipose 

tissue and are separated by connective tissue septae. Suspensory ligaments made of 

connective tissue and called Cooper’s ligaments attach the deep skin layer to the 

pectoralis facia to provide support. For clinical reasons the breast is divided into four 

anatomical quadrants: superolateral, superomedial, inferomedial and inferolateral. 

Blood supply to the breast is primarily by the internal mammary artery.  Breast 

lymphatics drain into the supra-clavicular, infra-clavicular, internal mammary and 

axillary lymph nodes. 

Embryologically, breast tissue is formed from ectoderm and mesenchyme. The 

epidermal ectoderm develops into the primitive mammary ridges or milk lines by the 

sixth week of gestation. The mammary ridges of the pectoral area develop into the 

mammary buds. These incrementally develop into lactiferous ducts that canalise 

prenatally to give rise to glandular alveoli and ducts. The mesenchyme gives rise to 

connective tissue and vessels as well as the nipple. The areola develops around the 

nipple as the epidermal mammary pit that originates from the original mammary 

ridges (Figure 13).  
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Figure 13: Embryological development of the breast 

Adapted from “Embryology and Anatomy of the Breast” (Skandalakis, 2009) 

4-6 weeks of gestation Development of the ectodermal 

mammary ridges (milk lines) 

10 weeks of gestation Development of the pectoral part of the 

milk lines 

20 weeks of gestation Development of the areola and 15-20 

solid cords 

3rd trimester  Development of the lactiferous ducts 

from the milk lines 

After birth Visible nipple 

Puberty Ducts develop acini in their ends 

 

The mammary glands remain underdeveloped until puberty as Tanner stage 1. At 10 

to 11 years of age thelarche starts with the formation of the breast buds and areolar 

hyperplasia signifying Tanner stage 2. Within approximately 12 months Tanner stage 

3 occurs when breast tissue extents beyond the areolae. In stage 4 the nipples and 

areolae form a secondary mount causing contour separation. In adulthood, stage 5, the 

breast is fully developed with a single contour (Figure 14) (Marshall & Tanner, 1969). 
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Figure 14: Breast development stages as proposed by Tanner  

Adapted from Kappy MS, Allen DB, Geffner ME: Paediatric practice: 
Endocrinology: www.accesspediatrics.com, the McGraw-Hill Companies 

 

From a cellular point of view, stromal fatty and fibrous tissue proliferation occurs 

before ductal elongation and branching under oestrogenic and progestogenic influence 

(Russo & Russo, 2004). The primary ducts branch into segmental and sub-segmental 

ducts that lead to terminal duct formation that further branch to several acini. The 

terminal ductal lobular unit (TDLU) is composed of the acini emerging from a single 

terminal duct and their surrounding stroma (Figure 15). Also under pubertal 

oestrogenic influence, the alveolar epithelium becomes bilayered with glandular 

luminal cells and myoepithelial basal cells (Tiede & Kang, 2011). 
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Figure 15: Ductal system of the mammary gland  

Adapted from Hindle WH: Breast care, P34. New York, Springer-Verlag, 1999 

 

 

The breast reaches maturation by the age of 20 years and consists of lobules with 

short terminal ducts ending in a small number of alveoli. These lobules are termed 

type-1 lobules. Type-4 lobules are only seen after pregnancy and lactation and consist 

of terminal ducts branching into several ductules and containing large numbers of 

alveoli. Type-2 lobules emerge during pregnancy and type-4 during lactation (Howard 

& Gusterson, 2000). 

The breast functions as a nutritional organ after parturition by secreting milk for 

breastfeeding.  The production of milk (galactopoesis) is a complex process that starts 
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in the second trimester of pregnancy under the influence of several hormones. 

Oestrogen and progesterone stimulate growth and differentiation of the TDLUs 

(Mohrbacher & Knorr, 2012). Prolactin and to a lesser extent growth hormone are 

also involved in the TDLU differentiation but also control the production of breast 

milk. Oxytocin causes the contractions of myoepithelial basal cells for milk ejection. 

Other hormones involved in breast tissue differentiation and lactation include, human 

placental lactogen, thyroid stimulating hormone, adrenocorticotrophic hormone, 

follicle stimulating and luteinizing hormones. The process of menopausal breast 

involution is divided into the pre-climacteric phase and the postmenopausal phase. 

These phases are continuous and progressive and result from rises in FSH and 

oestradiol fluctuations. From approximately 35 years of age the mammary glandular 

epithelium is gradually replaced by adipose tissue and the stromal connective tissue 

by condensed collagen. Postmenopausally, only the major branches of the lactiferous 

ducts can be seen surrounded by few lobules within fibrotic tissue. As the interlobular 

connective tissue is reduced the breast adopts a shrunken contour (Mansel, 2009). 
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1.5.2 Breast cancer 

1.5.2.1 Epidemiology 

Globocan estimates breast cancer incidence to be 1.67 million cases in 2012 

worldwide. This makes breast cancer the commonest cancer in women. It is also the 

most common cause of death from cancer in less developed countries and the second 

cause of cancer death in developed regions after lung cancer. Incidence rates vary 

considerably across the world with Western Europe having a rate of 96 per 100,000 in 

contrast to East Asia that has a rate of 27 per 100,000 (Ferlay et al., 2015).  In the UK, 

breast cancer incidence is the sixth highest in Europe. Data from the “Office of 

National Statistics” reveal that 49,936 women and 349 men were diagnosed with the 

disease in 2011. 41% of breast cancers diagnosed in the UK are stage 1, 45% are 

stage 2, 9% stage 3 and 5% stage 4 (Lyratzopoulos et al., 2012). Breast cancer related 

mortality in the UK was 9,698 per 100,000 females and 58 per 100,000 males in 2012. 

Mortality has greatly decreased since the 1970’s due to the introduction of population 

screening, increased specialisation of care and more effective surgical and medical 

treatments (Kingsmore et al., 2003). 

1.5.2.2 Aetiology 

Several risk factors have been implicated in the development of breast cancer. 

Increased oestrogen exposure features extensively as a predisposing factor (Pike et al., 

1993). This is evident by the increased risk associated with early menarche and late 

menopause, nulliparity, the use of oral contraception and hormone replacement 

therapy. Also pregnancy at an early age and breast-feeding have a protective effect as 

they reduce the overall period of oestrogen exposure (Adami et al., 1995). Other risk 

factors include obesity, lack of exercise, increased alcohol intake and radiation 
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exposure. Genetic variation plays a major role in the susceptibility for breast cancer. 

Women with a positive family history are at higher risk especially if they harbour 

BRCA1 or BRCA2 mutations. Several other mutations have also been identified 

including TP53, PTEN, STK11, CDH1, PALB2 and other lower penetrance variants 

(Mavaddat et al., 2010). Of course, even in the case of BRCA carrier families the 

estimated lifetime risk of developing breast cancer is 65% for BRCA1 and 45% for 

BRCA2 (Antoniou & Easton, 2006). This indicates that susceptibility to breast cancer 

is mediated through variants in many genes as well as environmental influences, each 

conferring an increase in the risk for disease (Yager & Davidson, 2006). There is 

evidence that women from South-East Asia who have a lower risk of breast cancer 

than Western Caucasians also have lower urine and blood levels of oestrogen (Wu & 

Pike, 1995). This has not been related to fat intake or body weight (Martin-Moreno et 

al., 1994). Also it cannot be attributed to genetic make-up. The rate of breast cancer in 

Asian migrants to America and Japanese-Americans is 70% of the rate in White 

Americans (Miller et al., 1989). A similar increase is noticed in urban areas within 

Japan. These changes were not related to age at menarche, age at first birth, age at 

menopause, and parity (Nagata et al., 1997). 
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1.5.2.3 Presentation 

The commonest symptom of breast cancer is a new mass. This can be hard or soft, 

tender or painless, irregular or rounded. A hard irregular painless fast-growing mass 

has a higher risk of being malignant. Other signs include skin irritation, puckering, 

swelling, erythema and peau d’orange. The nipple may be thickened, swollen, 

discoloured or retracted. There may be discharge from the nipple. Also associated 

with breast cancer is lymphadenopathy with enlarged lymphnodes, usually in the 

axillary area. 

 

1.5.2.4 Screening and diagnosis 

Breast cancer screening can be divided to universal population screening and high-

risk screening. One of the methods for population screening is self-examination. This 

is currently promoted in the UK through the breast awareness campaign, it has not 

been proven to reduce breast cancer related deaths (Kosters & Gotzsche, 2003). It 

involves regular inspection and palpation of the breast to notice any changes as 

described previously and reporting them without delay. Mammography is used for 

universal screening from the age of 50 to 70 years in three-yearly intervals in the UK 

and currently being extended in England to include the ages of 47 to 73 years. A 

mammogram consists of essentially two x-rays of each breast whose images are 

digitally processed to reveal any masses that are denser than the surrounding tissue. A 

positive mammogram either leads to a repeat examination, another form of imaging 

such as MRI, or a biopsy. The effectiveness of a mammogram has been disputed in a 

2011 Cochrane review. The authors concluded that although the relative risk 

reduction is 15% the absolute risk reduction is only 0.5%, and these numbers may be 
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skewed by self-selection and other biases (Gotzsche & Nielsen, 2011). Also, 

mammography leads to 30% increase in overdiagnosis and overtreatment, especially 

for those aged below 50 years. Therefore it was concluded that the risks of 

mammography outweigh the benefits in younger (<50years) women (Gotzsche & 

Nielsen, 2011). For younger women mammography can be used as a diagnostic test. 

Due to the higher tissue density in younger women, ultrasonography or MRI testing 

are considered better imaging methods. In fact, MRI is very sensitive and has a high 

negative predictive value; so a negative MRI should discourage any invasive tests. 

The disadvantage is that it is less specific than mammography as benign conditions 

such as fibromas and adenomas may have similar radiological characteristics to 

malignant lesions (Hrung et al., 1999). It is also more expensive and requires the 

injection of metal, radiopaque substances such as gadolinium. BRCA testing can be 

used for screening in high risk families were at least one member of the family has 

been affected by a BRCA mutation (Gabai-Kapara et al., 2014).  

The gold standard for the diagnosis of breast cancer is histological. Biopsies for 

histological examination can be retrieved by fine needle aspiration, stereotactic biopsy, 

ultrasound or MRI guided core biopsy, and excisional biopsy.  

There are a re several classification methods for breast cancer. One of the easiest ones 

to understand is based on anatomical location of the tumour as described in (Figure 

16). Breast cancer staging is based on TNM classification but also has a prognosis 

based staging system (Figure 17,18). 
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Figure 16: Classification of breast cancer based on anatomical location  

Adapted from “The American Joint Committee on Cancer: the 7th edition of the 
AJCC cancer staging manual and the future of TNM” (Edge & Compton, 2010) 

 

Tumor Location Histologic Subtype 

Carcinoma, NOS   

Ductal Intraductal (in situ) 

Invasive with predominant component 

Invasive, NOS 

Comedo 

Inflammatory 

Medullary with lymphocytic infiltrate 

Mucinous (colloid) 

Papillary 

Scirrhous 

Tubular 

Other 

Lobular Invasive with predominant in situ component 

Invasive  

Nipple Paget disease, NOS 

Paget disease with intraductal carcinoma 

Paget disease with invasive ductal carcinoma 

Other Undifferentiated carcinoma 

Metaplastic 
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Figure 17: Classification of breast cancer based on the TNM system  

Adapted from “The American Joint Committee on Cancer: the 7th edition of the 
AJCC cancer staging manual and the future of TNM” (Edge & Compton, 2010) 

TX Primary tumor cannot be assessed. 

T0 No evidence of primary tumor. 

Tis Carcinoma in situ. 

Tis 

(DCIS) 

DCIS. 

Tis 

(LCIS) 

LCIS. 

Tis 

(Paget) 

Paget disease of the nipple NOT associated with invasive carcinoma 

and/or carcinoma in situ (DCIS and/or LCIS) in the underlying breast 

parenchyma. Carcinomas in the breast parenchyma associated with 

Paget disease are categorized based on the size and characteristics of the 

parenchymal disease, although the presence of Paget disease should still 

be noted. 

T1 Tumor ≤20 mm in greatest dimension. 

T1mi Tumor ≤1 mm in greatest dimension. 

T1a Tumor >1 mm but ≤5 mm in greatest dimension. 

T1b Tumor >5 mm but ≤10 mm in greatest dimension. 

T1c Tumor >10 mm but ≤20 mm in greatest dimension. 

T2 Tumor >20 mm but ≤50 mm in greatest dimension. 

T3 Tumor >50 mm in greatest dimension. 

T4 Tumor of any size with direct extension to the chest wall and/or to the 

skin (ulceration or skin nodules). 

T4a Extension to the chest wall, not including only pectoralis muscle 

adherence/invasion. 

T4b Ulceration and/or ipsilateral satellite nodules and/or edema (including 

peau d'orange) of the skin, which do not meet the criteria for 

inflammatory carcinoma. 

T4c Both T4a and T4b. 

T4d Inflammatory carcinoma. 
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NX Regional lymph nodes cannot be assessed (e.g., previously removed). 
N0 No regional lymph node metastases. 
N1 Metastases to movable ipsilateral level I, II axillary lymph node(s). 
N2 Metastases in ipsilateral level I, II axillary lymph nodes that are clinically 

fixed or matted. 
OR 
Metastases in clinically detected ipsilateral internal mammary nodes in 
the absence of clinically evident axillary lymph node metastases. 

N2a Metastases in ipsilateral level I, II axillary lymph nodes fixed to one 
another (matted) or to other structures. 

N2b Metastases only in clinically detected ipsilateral internal mammary nodes 
and in the absence of clinically evident level I, II axillary lymph node 
metastases. 

N3 Metastases in ipsilateral infraclavicular (level III axillary) lymph node(s) 
with or without level I, II axillary lymph node involvement. 
OR 
Metastases in clinically detected ipsilateral internal mammary lymph 
node(s) with clinically evident level I, II axillary lymph node metastases. 
OR 
Metastases in ipsilateral supraclavicular lymph node(s) with or without 
axillary or internal mammary lymph node involvement. 

N3a Metastases in ipsilateral infraclavicular lymph node(s). 
N3b Metastases in ipsilateral internal mammary lymph node(s) and axillary 

lymph node(s). 
N3c Metastases in ipsilateral supraclavicular lymph node(s). 
 

M0 No clinical or radiographic evidence of distant metastases. 
cM0 
(i+) 

No clinical or radiographic evidence of distant metastases, but deposits 
of molecularly or microscopically detected tumor cells in circulating 
blood, bone marrow, or other non-regional nodal tissue that are ≤0.2 mm 
in a patient without symptoms or signs of metastases. 

M1 Distant detectable metastases as determined by classic clinical and 
radiographic means and/or histologically proven >0.2 mm. 
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Figure	 18:	 Classification of breast cancer based according to prognosis and 
correlation with the TNM system 

Adapted from “The American Joint Committee on Cancer: the 7th edition of the 
AJCC cancer staging manual and the future of TNM” (Edge & Compton, 2010) 

 

Stage T N M 
0 Tis N0 M0 
IA T1b N0 M0 
IB T0 N1mi M0 
  T1b N1mi M0 
IIA T0 N1c M0 
  T1b N1c M0 
  T2 N0 M0 
IIB T2 N1 M0 
  T3 N0 M0 
IIIA T0 N2 M0 
  T1b N2 M0 
  T2 N2 M0 
  T3 N1 M0 
  T3 N2 M0 
IIIB T4 N0 M0 
  T4 N1 M0 
  T4 N2 M0 
IIIc Any T N3 M0 
IV Any T Any N M1 
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1.5.2.5 Molecular Pathology	

The majority of neoplastic breast diseases arise from the TDLU independent of 

histological type. Therefore the designations ductal and lobular lesions reflect cellular 

morphology rather than origin (Simpson et al., 2003). The difference in cellular 

morphology can be explained by differences in the genetic alterations associated with 

these lesions. Lobular lesions are associated with the loss of E-Cadherin, a cell 

adhesion molecule, from a genetic alteration in position 16q22 further associated with 

promoter methylation. Ductal lesions are not associated with these changes (Roylance 

et al., 2003; Simpson et al., 2003). In addition pleomorphic lobular carcinomas 

express genetic changes associated with both aforementioned types and also show 

overexpression of human epithelial growth factor 2 (Her-2) (Middleton et al., 2000).  

Histological classification of breast cancer is not a good predictor of outcome. Grade 

is a more reliable prognostic factor and also better reflects the associated genotypic 

and phenotypic patterns (Roylance et al., 1999; Simpson et al., 2003). In fact two 

pathways have been modelled for breast cancer progression: the “low grade” arm 

compromises of well-differentiated ductal carcinoma is situ progressing to invasive 

ductal carcinoma and lobular carcinoma in situ progressing to invasive lobular 

carcinoma. These tumours are usually oestrogen (ER) and progesterone receptor 

(PgR) positive and Her-2 negative. Tumours in the “high grade” arm are usually 

hormone receptor (ER and Pgr) negative and either Her-2 positive or negative. 

Pleomorphic lobular carcinoma has features of both but is usually high grade 

(Simpson et al., 2005). 
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1.5.2.6 Management  

The management of breast cancer depends on the stage the disease is at the time of 

diagnosis. Therefore a positive biopsy prompts a pre-operative staging of the axillary 

lymph nodes by ultrasound. Any abnormal lymph nodes are biopsied. Also MRI 

scanning is considered in order to confirm size and extend of the disease. For 

precancerous lesions such as DCIS conservative surgery is considered involving at 

least 2mm radial excision margins. For Paget’s disease of the breast, excision of the 

nipple and surrounding areola is an alternative to total mastectomy. In addition to 

breast surgery axillary lymph node status has to be evaluated by sentinel lymph node 

biopsy for all invasive cancers. Patients with involved axillary lymph nodes should be 

offered axillary lymph node dissection (ALND).  

Adjuvant therapy is considered depending on the ER, PgR and HER2 status and other 

prognostic and predictive factors. There are several therapy types that can be chosen 

alone or in combination according to the tumour characteristics. Endocrine therapy 

includes Tamoxifen for ER-positive tumours with or without chemotherapy and 

ovarian suppression. Aromatase inhibitors like Anastrozole are used as either primary 

therapy or in addition or as a replacement of Tamoxifen in postmenopausal women. 

Patients who had conservative surgery for invasive carcinoma should have 

radiotherapy as should those with a complete mastectomy and are at high risk of 

recurrence. Axillary radiotherapy can be added if ALND is not possible after sentinel 

node biopsy. Adjuvant radiotherapy is used in the area if more than three lymph nodes 

are involved or there are lymph nodes involved and poor prognostic factors. Breast 

cancer survivors are followed-up by annual mammography or other imaging to detect 

recurrence at the same time controlling side-effect like lymphoedema of the arms and 

menopausal symptoms. 
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1.6 The uterus, cervix and fallopian tube 

1.6.1 Anatomy and Physiology 

The uterus is a fibromuscular organ situated in the pelvis when not gravid. The uterine 

corpus is muscular. The fundus forms the proximal part of the uterus and contains two 

openings termed ostia, leading to the fallopian tubes. The lower part termed the 

isthmus leads to the fibrous cervix that ends in the vagina (Figure 19).  

 

Figure 19: Diagram of the uterus, cervix, vagina, fallopian tubes and ovaries 

 

 

The uterine wall consists of three layers: the endometrium, myometrium and serosa. 

The endometrium consists of the inner stratum functionalis, and stratum basalis. The 

stratum functionalis develops during the proliferative phase of the menstrual cycle 

and consists of the stratum compactum and stratum spongialis. The myometrium has 
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three layers from inside out: the stratum infra-vasculare, stratum vasculare and 

stratum supra-vasculare that continues to the fallopian tubes and round ligaments. The 

serosa is the outer peritoneal covering. 

The fallopian tube emerges from the uterus at the isthmus continuing to the ambula 

and ending at the fimbriated infundibulum. The fallopian tube has three layers: the 

serosa, the muscularis mucosa and the mucosa. The mucosa consists of ciliated cells 

and secretory peg cells. 

The cervix measures 2.5 to 3cm in length in the adult nulligravida. The vaginal 

portion is termed the exocervix and contains the external cervical os that connects to 

the uterine cavity via the cervical canal. The cervical stroma is a mixture of fibrous, 

muscular and elastic tissue. The cervical canal is lined by columnar epithelium while 

the exocervix is lined by squamous epithelium. The junction of the two epithelia 

where squamous metaplasia occurs is called the transformation zone. 

Embryologically, the uterus develops from the paramesonephric (Müllerian) ducts. 

Each duct develops on the side of their respective Wolffian duct. Their common 

origin develops into the fallopian tube ostium. In the third month of gestation the 

caudal part of the Müllerian ducts fuse to form the uterus and vagina. The proximal 

parts remain separate to form the fallopian tubes. The cervix develops in the fifth 

month as a constriction at the distal uterus (Moore Kl, 1998).  

The endometrium and to some extend the myometrium are under cyclical hormonal 

control by LH, FSH, oestrogen and progesterone. In the proliferative stage FSH 

causes endometrial thickening due to connective tissue proliferation and development 

of glandular structures. Oestrogen drives vascular proliferation. Ovulation marks the 

start of the secretory phase that is governed by LH and progesterone secretion. This 
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causes the glandular crypts to become corkscrew shaped and secrete glycogen. 

Menstruation is signalled by a reduction in LH and progesterone. Here the stratum 

functionalis degenerates due to spiral arteriole retraction and dislodges due to their 

rupture. The stratum basalis remains largely unaffected (Figure 20). 

  

Figure 20: Diagram illustrating the effect of the hormones controlling the 
menstrual cycle to the endometrium 

Adopted from: 
http://www.netwellness.org/healthtopics/pregnancy/pregmenstrualcycle.cfm 
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1.6.2 Uterine cancer 

1.6.2.1 Epidemiology 

Uterine cancer was the 6th most common cancer in women worldwide and the 4th most 

common in the UK in 2011 with a crude incidence rate of 26 per 100,000 women 

(Ferlay et al., 2013). Its incidence is highest in North America and lowest in South-

East Asia (Ferlay et al., 2013). In the United Kingdom there is no significant variation 

in incidence between different ethnicities. 

73% of uterine cancers are diagnosed between the ages of 40 and 74 years with the 

incidence rising sharply from 40 years, peaking at 70 to 74 years and declining 

thereafter.  

1.6.2.2 Aetiology 

Unopposed oestrogen, either endogenous or exogenous, has been implicated in the 

increase of endometrial cancer risk (Evans et al., 2011). Early menarche, late 

menopause, nulliparity and anovulation increase oestrogen exposure leading to 

increased cancer risk (Allen et al., 2008). Hormone replacement therapy given for 

post-menopausal symptoms causes an estimated 1% of uterine cancer (Parkin, 2011). 

Only unopposed oestrogen HRT has been shown to be associated endometrial 

hyperplasia and neoplasia and it is dose and duration dependent (Furness et al., 2012; 

Grady et al., 1995). Combined or cyclic sequential HRT with adequately opposed 

oestrogen is not associated with increased risk (Brinton & Felix, 2014). Obesity is of 

special interest as a risk factor due to its increasing prevalence. The risk of 

endometrial cancer is 3.3 times higher in women with a BMI of more than 25 and an 

extra 2.5 times higher in those with BMI of more than 30 (Zhang et al., 2014). 
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Endometrial cancer risk is associated with diabetes as in this population obesity is 

commoner. Polycystic ovarian syndrome also increases the risk because it causes 

anovulation and therefore prolonged oestrogen exposure. Tamoxifen administration in 

breast cancer survivors increases uterine cancer risk by three times (Early Breast 

Cancer Trialists' Collaborative et al., 2011). Diethylstilbestrol exposure in utero has 

been linked to endometrial cancer also. Endometrial cancer risk has been shown to be 

lower in women who have used the combined oral contraceptive pill for more than 5 

years (Mueck et al., 2010). 

Hereditary non-polyposis coli (HNPCC) or Lynch syndrome is an autosomal 

dominant condition associated with a 40-60% risk of uterine malignancy in addition 

to other colonic and extra-colonic cancers (Hoffman Bl, 2012). Most uterine 

carcinomas associated with HNPCC are endometrioid (>80%) the rest being clear cell 

carcinomas, carcinosarcomas and uterine papillary carcinomas (Broaddus et al., 2006). 

1.6.2.3 Presentation 

Most women with endometrial cancer have early-stage disease at presentation. This is 

because of the early appearance of related symptoms. The most frequent symptom is 

postmenopausal or abnormal uterine bleeding. About 10% of women presenting with 

postmenopausal bleeding will be diagnosed with endometrial cancer (Gredmark et al., 

1995). For pre-menopausal women the risk of endometrial cancer presenting as 

abnormal bleeding increases with the presence of associated risk factors (tamoxifen, 

HRT, PCOS etc.). The commonest investigation protocols in the UK for women with 

suspected endometrial cancer involve transvaginal ultrasound scanning for 

endometrial thickness and presence of masses impinging the endometrial cavity. An 

endometrial thickness of less than 3-5mm is associated with very low risk of 
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malignancy. If the endometrium is thicker than 5mm a biopsy is warranted 

(Dijkhuizen et al., 1996; Smith-Bindman et al., 1998). This can be performed using a 

Pipelle biopsy as a blind procedure or a biopsy under hysteroscopic view. A Pipelle 

biopsy has a high sensitivity and specificity for endometrial hyperplasia or neoplasia 

and a hysteroscopy can aid visualisation of other bleeding causes like submucous 

fibroids and polyps (Dijkhuizen et al., 2000). 

 

 

1.6.2.4 Screening and Diagnosis 

Diagnosis of endometrial cancer is performed by histological examination of biopsy 

samples. There is currently no well population-screening program for endometrial 

cancer as investigating high-risk individuals with symptoms usually identifies 

endometrial cancer at an early stage. Occasionally endometrial pathology may be 

identified on a cervical screening cytology sample but this is not part of the official 

cervical screening program.  

Histological type and grade of endometrial cancer are important prognostic factors. 

There are two general types with different pathogenic origins: type 1 develops from 

complex atypical hyperplasia of the endometrium due to excess/ unopposed oestrogen. 

Type 2 develops from atrophic endometrium, is not oestrogen dependent and has a 

worse prognosis due to higher rate of recurrence, and a more aggressive pattern of 

spread than type 1 (Figure 21). 

Uterine cancers can also arise from the stromal or muscular layers, termed stromal 

sarcomas or leimyosarcomas respectively. 
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Although endometrial cancer is surgically staged radiological staging is used to assist 

with planning for the appropriate surgical procedure. MRI is used to estimate the 

extent of the disease into soft tissues while CT has a better sensitivity for involved 

lyphnodes and distant metastases. Surgical staging is used for treatment purposes and 

to plan further treatment in terms of radiotherapy or chemotherapy (Figure 22, 23). 

Figure 21: Endometrial carcinoma histological subtypes 
Type 1 Type 2 
Endometrioid (75%–80%) Uterine papillary serous (<10%) 
Ciliated adenocarcinoma 
 

Clear cell (4%) 

Secretory adenocarcinoma 
 

Poorly differentiated 

Papillary or villoglandular Endometriod Grade 3 
Adenocarcinoma with squamous differentiation. 
(Adenoacanthoma, Adenosquamous) 
 

 

Mucinous (1%) 
 

 

Squamous cell (<1%) 
 

 

Mixed (10%) 
 

 

 

Figure 22: Endometrial cancer grade 

Grade 1 Gland forming tumour with <5% neoplastic cells forming solid sheets 

Grade 2 5-50% of neoplastic cells form solid sheets  

Grade 3 > 50% of neoplastic cells form solid sheets 

∗ In tumours showing squamous differentiation, the squamous elements should 
be excluded from the architectural assessment  

∗ Presence of notable nuclear atypia, inappropriate for the architectural grade 
should prompt upgrading from grade 1 to grade 2. 
 

 

 



	 61	

Figure 23: Endometrial cancer stage by FIGO 

Stage IA Tumour confined to uterus, <50% myometrial invasion  

Stage IB Tumour confined to uterus, ≥50% myometrial invasion  

Stage II Cervical stromal invasion 

Stage IIIA Tumour invasion into serosa or adnexa 

Stage IIIB Vaginal or parametrial involvement 

Stage IIIC1 Pelvic node involvement 

Stage IIIC2 Para-aortic node involvement 

Stage IVA Tumour invasion into bladder or bowel mucosa 

Stage IVB Distant metastases (including abdominal metastases) or inguinal 

lymph node involvement  

 

 

 

 

 

1.6.2.5 Management 

Treatment options include surgery, radiotherapy and systemic therapy. Surgery can be 

performed via the open or laparoscopic routes. Low stage and grade, type 1 

endometrial cancer, up to stage IA and grade 1 can be treated by hysterectomy, 

bilateral salpingooopherectomy and trachelectomy. Higher stage or grade cancers are 

usually treated with additional pelvic and/or paraaortic lymphadenectomy, 

omentectomy, peritoneal biopsy and peritoneal fluid cytology. Type 2 endometrial 

cancer regularly spreads to the pelvic and paraaortic lymphatics and therefore 

lymphadenectomy in these cases is imperative (Thomas et al., 2007). High stage 

uterine cancers of any type can be treated with surgical cytoreduction followed by 

adjuvant chemotherapy (Bristow et al., 2001). Radiotherapy, either external or 

brachytherapy, is also used as adjuvant therapy to treat lymphatic micrometastases. 
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This treatment modality is added to surgery when stage is more than II and grade is 3, 

when lymphadenectomy has been performed. Vaginal brachytherapy may also be 

considered for localised recurrence (Pearcey & Petereit, 2000). Adjuvant 

chemotherapy has not been shown to provide better outcomes than surgery alone for 

early stage cancers (Morrow et al., 1990). It is used in a palliative setting where it has 

been shown to have a small survival benefit (Randall et al., 2006). Progesterone, or 

progesterone alternating with Tamoxifen have been shown by phase II trials to result 

in prolonged complete response and are used when performance status does not allow 

surgical input (Fiorica et al., 2004). 

 

1.6.2.6 Molecular pathology 

 

Type 1 endometrial cancer usually arises on a background of endometrial hyperplasia, 

and is preceded by atypical hyperplasia, also called endometrial intraepithelial 

neoplasia. The risk of developing cancer in women diagnosed with endometrial 

hyperplasia is 1%, 3%, 8% and 28%, respectively, in cases of simple hyperplasia 

without atypia, complex hyperplasia without atypia, simple hyperplasia with atypia 

and complex hyperplasia with atypia, respectively (Kurman et al., 1985). 

Type 2 endometrial carcinoma is unrelated to oestrogen and may be associated with 

“serous endometrial intraepithelial carcinoma” arising from atrophic endometrium or 

polyps. 

Different molecular alterations are associated with the 2 types of endometrial 

malignancy. Type 1 is associated with microsatellite instability and mutations in the 

PTEN, K-RAS, PIK3CA and CTNNB1 (beta-catenin) genes. Type 2 cancers exhibit 
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alterations of p53, loss of heterozygosity (LOH) on several chromosomes and less 

commonly molecular alterations (STK15, p16, E-cadherin and c-erb-B2) (Prat et al., 

2007).  

PTEN loses its function in 50% of endometrioid carcinomas leading to an up-

regulation of PI3k/Akt/mTOR pathway of cellular proliferation (Colombo et al., 

2013). PTEN mutation is associated with 20% of endometrial hyperplasia suggesting 

it’s involvement in the early stages of carcinogenesis (Latta & Chapman, 2002).  

K-RAS gene mutations also lead to uncontrolled proliferation through abnormal 

signaling pathways. They are also associated with endometrial hyperplasia leading to 

type 1 endometrial cancer [97].  

Beta-catenin gene mutations are found in 14 to 44% of type 1 endometrial cancers. 

These mutations cause alterations in cellular differentiation and signaling pathways 

(Koul et al., 2002).  

PIK3CA is a commonly encountered mutation in the PI3K  (phosphatidylinositol 3-

kinase) enzyme that is involved in the regulation of proliferation and cellular 

metabolism (Suh et al., 2014).  

Microsatellite instability is common in women with Lynch syndrome (HNPCC) and 

therefore associated with type-1 endometrial cancers. It is secondary to MLH-

promoter hypermethylation, which causes the accumulation of mutations within these 

short segments of DNA where some important coding sequences for endometrial 

carcinogenesis reside (Colombo et al., 2013). 

P53 mutations are commonly associated with type 2 tumours (90%), especially serous 

carcinomas and confer a poor prognosis. They are present in about 10% of type 1 
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grade 3 tumours (Tashiro et al., 1997).  The P53 pathway can either be activated or 

deactivated leading to tumour progression (Catasus et al., 2009) (Figure 24). 

Loss of heterozygosity is commonly found in type 2 tumours. Chromosomal gains or 

losses occur to due up regulation of genes such as STK15, BUB1 and CCNB2 that are 

involved in the mitotic spindle checkpoints and therefore essential for chromosome 

segregation (Tritz et al., 1997). Amplification of c-erb-B2 (HER-2) and Reduced 

expression of E-cadherin also cause deregulation of spindle formation causing 

chromosomal instability. 

Figure 24: Molecular alterations associate with endometrial cancer 

 

 

The commonest molecular alterations associated with Type 1 (EEC) and Type 2 
(NEEC) endometrial cancers (Matias-Guiu & Prat, 2013).  
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1.7 Infrared spectroscopy 

1.7.1 Background 

Spectroscopic techniques are used to identify the chemical consistency of materials. 

They exploit the fact that materials absorb, emit or scatter electromagnetic radiation at 

specific frequencies when atomic bonds within them vibrate and resonate.  These 

resonance frequencies are characteristic and representative of changes in dipole 

moment that depend on atomic mass, bond strength and bond symmetry. They 

produce a characteristic spectrum of intensity of absorbance, transmittance or scatter, 

depending on the technique used, against the wavelength or wavenumber (frequency) 

where resonance occurs. The features of an IR spectrum (number of infrared 

absorption bands, their intensities and their shapes) are directly related to the 

molecular structure of a compound. Each bond in these molecules can vibrate in 

different ways: stretch, scissor, rock, wag or twist. The more complex the molecule 

the more complex the vibrational model it possesses and therefore the more complex 

the characteristics of the electromagnetic spectrum produced. Biospectroscopy is the 

utilisation of vibrational spectroscopy techniques for the study of biological materials. 

To examine these compounds the mid-IR spectral region (1800cm-1 to 90cm-1) is used 

as it provides relevant information about the chemical structures they consist of. This 

spectral region is termed the “biochemical fingerprint” region. The complexity of 

biological materials requires specific instrumentation and computation in order to 

extract sensible and applicable information (Kelly et al., 2011).  

There are two commonly used spectroscopic approaches: Fourier-Transform infrared 

spectroscopy and Raman spectroscopy. 
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1.7.2 Fourier transform infrared spectroscopy 

Infrared spectroscopy was revolutionised by the advent of the “Michelson 

interferometer” (Figure 25). This instrument has made the procedure faster, more 

precise and more sensitive. It allows the simultaneous measuring of all relevant 

infrared frequencies. It uses a beam splitter to divide the infrared beam into two. One 

beam is reflected on a stationary mirror and the other on a moving one. The beams are 

made to intersect and their interaction causes interference. The resulting signal is 

termed the interferogram, which contains information about every infrared frequency 

contained within the beam emitted from the globar infrared source. The resulting 

interferogram is internally calibrated against very stable laser light. To interpret the 

interferogram into a graph where the y-axis represents absorption or transmittance 

intensity and the x-axis the corresponding wavenumber a Fourier transformation 

algorithm is used (Figure 26).  A sample under examination will reflect or transmit 

specific electromagnetic frequencies depending on the chemical bonds it contains. 

Background frequencies, measured without the sample are subtracted. The remaining 

frequencies undergo Fourier transformation to form the infrared spectrum. 

Focal plain array infrared spectroscopy is essentially the same technique but instead 

of using one sensor to detect the spectral signals a panel of sensors is used. These 

sensors are usually arranged in a 128 × 128 or 256 × 256 pattern (CCD). The 

advantage of this technique is the rapid acquisition of the complete spectrum at each 

spatial point of the area of sample under investigation. This results in the formation of 

a “hypercube” which contains information in two spatial dimensions (pseudo-image) 

and one spectral dimension (the spectrum for each point of that image). 
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Figure 25: The Michelson interferometer 

  

Figure 26: Conversion of an interferogram to an FTIR spectrum 

 

 

 

  

Fourier	transform	

Interferogram	 Spectrum	
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1.7.3 Synchrotron-based FTIR spectroscopy 

Synchrotron-based FTIR is commonly used in transmission mode as this gives more 

information than transflection. It makes use of a highly collimated, intense beam 

arising by accelerating electrons using powerful magnets in a circular arrangement 

and extracting the resulting infrared light by using optical gates (Whelan et al., 2013). 

This beam is then directed similarly to a bench-top spectrometer onto the sample 

(Figure 27). The beam characteristics allow for much narrower apertures and 

therefore a much higher definition of the spectrum with resolutions as small as 2µm. 

The benefit of this is that chemical bond alterations can be localised within different 

cellular compartments when processing tissue or bio-fluids (Tobin et al., 2004). 

 

Figure 27: Diagram of a Synchrotron facility set-up 
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1.7.4 Attenuated Total Reflection Fourier Transform Spectroscopy 

 

Attenuated total reflection Fourier transform spectroscopy (ATR-FTIR) is based on 

the production of evanescent waves arising from the infrared beam when it is 

reflected at the interface between a high refractive index diamond crystal and a lower 

refractive index sample. The evanescent wave penetrates the sample by 0.2µm to 5µm 

causing a shift in the energy state of the chemical bonds within the sample molecules. 

This energy change is detected and quantified similarly to transmission or 

transflection FTIR (Kazarian & Chan, 2013). The advantages of ATR-FTIR include 

simple instrumentation, relatively short measurement times, sampling of large areas 

(250µm × 250µm), minimal non-destructive preparation to samples, and minimal use 

of consumables. 
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1.7.5 Raman Spectroscopy 

Raman spectroscopy is based on inelastic light scattering. This effect was discovered 

by Raman in 1928 (Raman, 1928).  When a monochromatic laser light is directed 

onto a material it can cause a shift of the system energy into a virtual state. This 

energy can return to a normal vibrational state causing elastic (Rayleigh) light 

scattering. If the energy of the resulting photons is altered after this interaction 

inelastic light scattering (Raman) is produced. Stokes Raman scattering happens when 

the energy emitted is lower than the incoming photon while anti-Stokes scattering 

happens when the energy emitted is higher (Figure 28). 

Raman spectroscopy is complimentary to FTIR. It can analyse symmetrical molecules 

as it can polarise the electrons of the symmetrical chemical bonds within them.  

For biological samples a laser of 785nm is commonly used as it has the appropriate 

frequency and wavelength to penetrate the sample enough while achieving high 

spectral resolution. The resulting spectrum provides a similar biological fingerprint to 

other methods of biospectroscopy (Wachsmann-Hogiu et al., 2009) (Figure 29). It is 

unaffected by water, and noes not damage tissue in the right settings and therefore can 

be used in vivo.  

The Raman effect can be very weak especially when analysing biological fluids and 

large molecules. To enhance the Raman signal, gold or silver nanoparticles are added 

to the sample (Nie & Emory, 1997). Their close proximity to the molecules has an 

enhancing effect in the electronic excitations therefore improving the resulting 

spectrum. 
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Figure 28: Raman scattering 

 

 

Figure 29: Spectrum derived by Raman scattering 

 



	 72	

1.7.6 Spectral pre-processing 

There are several factors interfering with the spectrum acquired with any of the 

acquisition methods. These include, the instrumentation itself, the sample preparation 

and minute changes in background environment. In order to minimise the influence of 

these parameters on the spectrum they are pre-processed. The type of pre-processing 

depends not only on the interference that needs to be removed but also the 

information that is required to be extracted. Spectra from FTIR techniques are usually 

cut to retain the biochemical fingerprint region only between 1800 and 900cm-1. The 

baseline of the spectra is corrected to remove artefacts due to sloping or oscillation 

caused by infrared dispersion or Mie scattering. These corrections are made by 

methods such as ‘rubberband’ and “Mie scattering” correction so that the baselines of 

spectra are of similar intensities (Bassan et al., 2010).  

Normalisation aims to correct spectra in the horizontal dimension. This is usually 

done by scaling spectra to a specific peak (usually Amide I) or by vector 

normalization according to their individual Euclidian norms. This processing is 

performed to counteract variability that arises due to differences in sample thickness 

or concentration.  

Raman data are usually cut between 1,750 and 800cm-1. Background fluorescence is 

subtracted from the spectra using an automatic baseline correction method (Whittaker 

filter) (Trevisan et al., 2012). 
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1.7.7 Multivariate analysis 

Spectra extracted from biological specimens are very complex due to the amount of 

different molecules they contain. This complexity does not allow exploration by 

univariate analysis but requires multivariate analytical approaches that examine the 

potential subtle but multiple biochemical discrepancies between the samples 

compared (Wang & Mizaikoff, 2008). 

Principal component analysis (PCA) is one of the most commonly used multivariate 

analysis approaches. It is important as a biological exploratory tool as its operation 

can be thought of as revealing the internal structure of the data in a way that best 

explains the variance within the data. PCA is mathematically defined as an orthogonal 

linear transformation that transforms data to a new coordinate system such that the 

greatest variance by some projection of the data comes to lie on the first coordinate 

(called the first principal component (PC)), the second greatest variance on the second 

coordinate, and so on. This causes multidimensional data to become reduced to a 

single point relating to their variability called the “score”. The second score is derived 

by the same method after all correlation to the first PC has been subtracted from the 

system. PCA scores, where each axis represents a PC, can be plotted for the most 

relevant PCs. Scores that co-cluster are considered similar and scores that segregate 

are dissimilar. Scores plots can be one, two or three-dimensional and use different PC 

combinations depending on their relevance. Each PC has a corresponding loadings 

plot that corresponds to the coefficients of the linear combination that formed each PC. 

These coefficients are derived from a line that passes through the multidimensional 

mean and minimizes the sum of squares of the distances of the points from that line. 

PCA is an unsupervised technique and therefore will only detect significant variability 

if it exists. One of the disadvantages that it has when used on biological samples is 
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that an excessive number of PCs can reveal arbitrary variability that is not relevant to 

the hypothesis. 

Linear discriminant analysis (LDA) is a generalization of Fisher’s linear discriminant. 

It expresses observations within classes as linear combinations of their features called 

linear discriminants (LDs). It is a supervised technique requiring pre-assignment of 

the classes to be compared. The resulting combination of characteristics can be used 

as a linear classifier to identify intra-class cohesion and inter-class variation. A 

loadings vector exists for each LD, which identifies the wavenumbers responsible for 

discrimination between classes (Martin et al., 2007). LDA can be internally cross 

validated when it can be utilised as a stand-alone technique. 

PCA and LDA can be combined to reduce the number of variables to points in 

hyperspace and arrange them so that similar ones co-cluster while dissimilar ones 

segregate. Loadings plots can then identify the features (wavenumbers) most 

responsible for segregation. 

 

1.7.8 Evolutionary algorithms 

1.7.8.1 Genetic algorithm 

Genetic algorithm is a heuristic that mimics Mendelian genetics.  Here the properties 

of candidate solutions to a problem are represented similarly to chromosomes making 

up the phenotype of an individual. A number of these candidate solutions are selected 

and their fitness to solve the problem at hand is tested. The fittest of those candidates 

are selected to be tested in the next generation. The properties of the fittest candidates 

can be modified by crossover or mutation; to optimise them before entering the next 
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generation were the process is repeated. The algorithm continues until a satisfactory 

fitness level has been reached for the population or the maximum number of 

generations has been produced.  In biospectroscopy a number of wavenumbers is 

chosen that best classify the population. Successive generations form different and 

more relevant wavenumber combinations, which better solve the problem of 

classification. Once sufficient classification is reached the algorithm stops and its 

output represents the most relevant wavenumbers.  

 

1.7.8.2 Sequential progressions algorithm  

This algorithm utilises a bottom-up search procedure were a number of features is 

added to an initial one until a final feature set is reached. Each number of features has 

to be “fit for purpose” i.e. be able to help with the problem solution. The initial 

feature set is termed the null set. Each additional feature set added is aimed to 

maximise the selection criteria. When adding new features makes the feature set 

worse fitting than the previous one the algorithm terminates. If that doesn't happen a 

maximum set of features is set by a cost versus function algorithm. SPA can be cross-

validated at every stage. Its main disadvantage is that it does not include a mechanism 

for excluding features from the feature sets after they have been added (Andrew R. 

Webb, 2011). 
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1.7.9 The role of biospectroscopy in screening and diagnosis of cancer 

The molecular alterations that are involved in cancer development contain associated 

chemical bond alterations. These alterations can be exploited using biospectroscopic 

techniques to attempt classification of subject populations for screening or diagnostic 

purposes. The same methods have the ability to extrapolate the types of molecules 

most responsible for classification therefore identifying potential biomarkers. These 

biomarkers can be validated by other technologies and can be applied in clinical 

settings using simple spectroscopic or other instrumentation. 

 1.7.9.1  Gastrointestinal cancers 

Vibrational spectroscopy technologies have been used to study areas of the 

gastrointestinal tract including the colon, stomach and oesophagus.  

In vitro studies have shown that Raman spectroscopy can differentiate between 

normal mucosa, metaplastic and adenomatous polyps and adenocarcinomas arising in 

the colonic epithelium with sensitivities and specificities of more than 90% 

(Mahadevan-Jansen & Richards-Kortum, 1996). Similar studies have been performed 

in vivo with the help of fibre-optics through a colonoscopic port to achieve accuracies 

of 95% (Molckovsky et al., 2003). Also, FTIR micro-spectroscopy was used to 

differentiate normal from adenomatous polyps and malignant cells for in vitro colonic 

tissue with a percentage success of 89%, 81% and 83% respectively. In this study the 

major discriminating factors were associated with spectral differences in the 

phospholipid, phosphate stretching and DNA/RNA bands (Argov et al., 2002), which 

could prove to be valuable biomarkers within a potential screening test. Mackanos et 

al performed a similar study intending to classify colonic mucosa as normal, 

hyperplastic or dysplastic (Mackanos et al., 2009). This group demonstrated correct 
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classification with a sensitivity of 96%, specificity of 92%, accuracy of 93% and 

predictive value of 82%.  

Efforts have also been made to identify rapidly dividing cells within the colonic 

epithelial crypts where carcinogenesis may occur using synchrotron based FTIR. 

Walsh et al (Walsh et al., 2009) identified positions where stem cells may reside 

within bowel crypts and their relationship with nearby epithelial cells. The proposed 

stem cells are located at the base of the crypts and exhibit genetic changes associated 

with colon cancer (Van De Wetering et al., 2002). These cells where differentiated 

from surrounding cells by wavelengths corresponding to protein phosphorylation 

(970cm- 1) and symmetric (1080cm- 1) and asymmetric (1250cm- 1) phosphate 

stretching. These DNA conformational changes may be important markers for 

identifying cells with a central role in carcinogenic processes. 

Barrett’s oesophagus is a premalignant condition defined by dysplasia of the 

oesophageal epithelium. Raman techniques have successfully been used to identify 

biomarkers that discriminate normal and inflamed epithelium from dysplastic and 

cancerous epithelium in rats, both in vitro and in vivo (Boere et al., 2003; Hattori et al., 

2007). Mazia et al has demonstrated the ability of FTIR techniques to identify cellular 

molecular changes that differentiate normal from cancerous cells in the oesophagus 

(Maziak et al., 2007). 

The potential of both Raman and FTIR technologies for the identification of 

molecular changes associated with evolution of gastric cancer has also been studied 

(Li et al., 2005) 
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1.7.9.2 Urological cancer 

Vibrational spectroscopy techniques have been used in the past to identify biomarkers 

that discriminate bladder inflammation from bladder cancer. Crow et al were able to 

classify benign and malignant bladder tissue with 84% accuracy. They used Raman 

fibre-optics to examine 29 snap-frozen bladder tissue samples and identified 

differences in amide I and II, C-C stretch and CH2 bend and twist (Crow et al., 2005). 

A similar study using FTIR on samples from 10 patients detected obvious 

spectroscopic discriminatory changes in the proteins (1650, 1550 cm-1), lipids (2925, 

2850 cm-1) and nucleic acids (1080, 1236 cm-1) (Nafie A. Al- Muslet, 2011). 

Biomarkers of commitment to cancer may reside within these spectral differences as 

biochemical changes happen before morphological changes. 

Prostatic cancer has received substantial attention due to its prevalence and the 

inadequacies of current proposed screening biomarkers (Mistry & Cable, 2003). Crow 

et al recorded Raman spectra from 38 snap-frozen prostate samples from trans-

urethral resections. They found that Raman fibre-optic techniques are able to 

distinguish benign prostate samples from malignant ones with 86% accuracy (173). A 

recent study by Patel at al compared benign prostate samples derived from two 

separate demographic cohorts (India and United Kingdom) with different incidence of 

invasive prostatic cancer by both Raman and infrared techniques. This study has 

shown that biochemical variations within prostatic DNA and protein structure, which 

may account for differences in cancer risk between the two cohorts, are identifiable 

by both techniques in association with multivariate analysis (Patel et al., 2011). Future 

similar studies may identify similar biomarkers within a more homogenous 

population that may be used a part of screening programs. 

  



	 79	

1.7.9.3 Gynaecological cancers: 

Cervical cancer screening technologies have been studied extensively because of the 

availability of an effective treatment in its pre-invasive stage (Quinn et al., 1999). 

Current screening programs are effective in reducing mortality from cervical cancer 

(Peto et al., 2004) but suffer from a low specificity leading to over-treatment (Nanda 

et al., 2000). FTIR and Raman approaches have proved to be valuable for the 

exploration of potential screening biomarkers of cervical dysplasia (Walsh et al., 

2007). A recent study by Gajjar et al has demonstrated that ATR-FTIR spectroscopy 

identified cytological atypia more consistently than conventional cytological 

examination when both techniques were correlated to histological diagnosis (Gajjar et 

al., 2014). This may be due to the fact that biochemical alterations happen before 

morphological changes. The spectroscopic variations responsible for identifying 

different grates of atypia may potentially provide biomarkers that can identify cervical 

pre-malignant disease even earlier and with higher specificity than current tests. 

Ovarian cancer is of special interest as the five-year survival associated with it 

remains at around 30% and no effective screening tool has so far been identified. 

Current ovarian screening has several limitations including very low positive 

predictive value of combined Ca125 and ovarian ultrasonic picture for early stage 

disease (Menon et al., 2009). Both Raman and FTIR approaches have been used to 

extract biomarkers to discriminate normal and cancerous ovarian tissue (Krishna et al., 

2007; Mehrotra et al., 2010). Krishna et al identified differences between malignant 

and benign ovarian tissue within the DNA, lipid, amide I and amide II spectral 

regions using FTIR. When using a Raman approach they identified changes within 

similar bands including amide I and III. They also noticed that ovarian tissue with 
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benign disease had separate spectroscopic differences within different wavelengths 

involving polysaccharide and protein bands (Krishna et al., 2007).  

Endometrial cancer has an excellent prognosis when identified and treated in the early 

stages. Current screening involves high risk and symptomatic individuals and 

incorporates trans-vaginal ultrasound testing, hysteroscopy and endometrial biopsy. 

This is time and resource consuming, intrusive and disturbing to the patients. The 

discovery of biomarkers that could be used as part of a population-screening program 

would alleviate these issues and probably reduce the mortality associated with the 

disease even further. A study of 76 patients undergoing hysterectomy identified 

spectral biomarkers able to distinguish between benign endometrium and 

endometrioid and non-endometrioid cancer. The major discriminating wavenumbers 

included amide I and II, symmetric and asymmetric PO2- stretching, carbohydrate, 

glycogen and protein phosphorylation bands (Taylor et al., 2011). 

A more recent study by Gajjar et al interrogated serum and plasma using ATR-FTIR 

coupled with a classification machine to discover potential biomarkers for the 

diagnosis of ovarian and endometrial cancer with very promising accuracies. 

Extraction of biomarkers using blood products can be used effectively and is easily 

translated into practice. Also classification machines may be of value in cases where 

one classification method does not provide robust answers. 

Vibrational spectroscopy has the ability to be used for cancer diagnosis and screening 

over conventional approaches. The resulting data can be used to form hypothetical 

initiating carcinogenic processes. Specific events within these processes can be 

extracted as biomarkers of disease and be incorporated successfully into clinical 

practice. 
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1.8 Aims and objectives 

The main focus of this thesis is to evaluate the potential of biospectroscopy as a group 

of novel techniques for screening and diagnosis of cancer. In addition, the associated 

methods, ATR-FTIR, synchrotron-based FTIR and Raman spectroscopy, in 

conjunction with suitable analytical techniques have been utilised to investigate 

potential differences between benign tissues which may in turn harbour putative 

biomarkers of increased risk of cancer. The same techniques have been used in an 

effort to identify stem cell locations to be targeted for diagnosis and treatment. 

The objectives of this thesis are therefore the following: 

• To explore the role that biospectroscopy can play in a “systems biology” 

setting for the exploration of carcinogenic processes and the identification of 

related putative biomarkers. 

• To investigate the use of biospectroscopy methods in discriminating 

between benign, borderline and malignant ovarian tumours as well as 

differentiating the subtypes of ovarian carcinomas.  

• To identify similarities and differences that may exist within the 

histological compartments of mammary glands of women of similar ages 

and with advancing age. Also to identify the potential locations of stem 

cells within the terminal ductal lobular units. 

• To investigate potential trans-generational differences in benign human 

prostatic tissue harvested from similarly aged men. To further evaluate 

those differences utilising immunohistochemical techniques. 
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Abstract 

Surgical management of ovarian tumours largely depends on their histo-pathological 

diagnosis. Currently, screening for ovarian malignancy with tumour markers in conjunction 

with radiological investigations has a low specificity for discriminating benign from malignant 

tumours. Also, pre-operative biopsy of ovarian masses increases the risk of intra-peritoneal 

dissemination of malignancy. Intra-operative frozen section, although sufficiently accurate in 

differentiating tumours according to their histological type, increases operation times. This 

results in increased surgery-related risks to the patient and additional burden to resource 

allocation. 

We set out to determine whether attenuated total reflection Fourier-transform infrared 

(ATR-FTIR) spectroscopy, combined with multivariate analysis can be applied to discriminate 

between normal, borderline and malignant ovarian tumours and classify ovarian carcinoma 

subtypes according to the unique spectral signatures of their molecular composition. 

Formalin fixed, paraffin-embedded ovarian tissue blocks were de-waxed, mounted on 

Low-E slides and desiccated before being analysed using ATR-FTIR spectroscopy. 

Chemometric analysis in the form of principal component analysis (PCA), successive 

projection algorithm (SPA) and genetic algorithm (GA), followed by linear discriminant 

analysis (LDA) of the obtained spectra revealed clear segregation between benign versus 

borderline versus malignant tumours as well as segregation between different histological 

tumour subtypes, when these approaches are used in combination. 

ATR-FTIR spectroscopy coupled with chemometric analysis has the potential to 

provide a novel diagnostic approach in the accurate diagnosis of ovarian tumours assisting 

surgical decision making to avoid under-treatment or over-treatment, with minimal impact to 

the patient. 
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Introduction 

 

 Ovarian cancer is the fifth most common gynaecological cancer (incidence of 18 per 

100,000) and the fourth most common cause of cancer death (mortality of 8.8 per 100,00) in 

women in the UK (Cancer Research Uk, 2011). In 2009, 5,900 women were diagnosed with 

ovarian cancer; 3,500 died from the disease the year after. The high related mortality is a 

consequence of late presentation and diagnosis at stage III or IV resulting in five-year survival 

rates of 20% and 6% respectively (Cancer Research Uk, 2011). 

 Ovarian cancer refers to a heterogeneous group of tumours, as indicated by differences 

in epidemiological and genetic risk factors, precursor lesions, patterns of spread, molecular 

events during oncogenesis, response to chemotherapy and prognosis (Prat, 2012). 90% of 

ovarian cancers are malignant epithelial tumours termed carcinomas, the remainder being 

germ cell and sex cord-stromal tumours (Lee Kr, 2003). The commonest types of ovarian 

carcinomas are high-grade serous carcinoma (HGSC), low-grade serous carcinoma (LGSC), 

mucinous carcinoma (MC), endometrioid carcinoma (EC), clear cell carcinoma (CCC), 

carcinosarcoma (CS) and mixed tumours (MT). Ovarian carcinomas are graded according to 

their cellular differentiation from normal tissue. This does not apply to HGSC and LGSC as 

they are considered different entities (Prat, 2012). Borderline epithelial tumours comprise 

approximately 15% of epithelial ovarian tumours and have a good prognosis. With the 

implementation of the “international classification of diseases for oncology (ICD-O-3)”, these 

tumours are no longer considered malignant (Cadron et al., 2006). 

 The complexity and heterogeneity of ovarian cancer with regards to risk factors, 

precursor lesions, morphological and clinical manifestations has hindered the development of 

robust population-based screening programs. Currently, in the UK, the assessment for ovarian 

cancer is based on “Risk Malignancy Index” (RMI 1 or 2), which encompasses menopausal 
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status, ultrasonographic ovarian presentation and blood levels of the tumour marker Ca125 

(see E.S.I. Table S1) (Jacobs et al., 1990; Tingulstad et al., 1996). Other blood derived 

biomarkers with similar accuracy to RMI have been suggested, for example HE4 and ROMA, 

but have not been established in practice (Karlsen et al., 2012). Also, magnetic resonance 

imaging (MRI), Doppler ultrasound and computed tomography (CT) have shown accuracies 

of 80% for the diagnosis of malignancy and 80-90% for the detection of abdominal spread 

(Brown et al., 1994; Buist et al., 1994; Outwater et al., 1996). 

 Prognostic factors for ovarian cancer include stage and grade of cancer at diagnosis 

and residual disease after primary staging surgery (Brun et al., 2000). Histopathological 

tumour type is important when considering personalised treatment options. This plays a major 

role in chemotherapy responsiveness and therefore in overall survival rate (Brun et al., 2000; 

Sugiyama et al., 2000). For example HGSC demonstrates much better response to platinum 

based chemotherapy than CCC. This results in CCC having a lower 5-year survival than 

HGSC (Du Bois et al., 2003). 

 It is obvious that current methods of ovarian cancer diagnosis and management have 

significant limitations. This is therefore a field that can benefit from research to identify novel 

methods of detecting and categorizing ovarian cancer to aid personalized intra- and post-

operative management while also minimizing patient risk and resource expenditure. 

 Vibrational spectroscopy is a bio-analytical tool that has the potential to classify 

normal and pathological tissue according to their chemical and molecular differences (Martin 

F L, 2011) Related techniques including Fourier-transform infrared (FTIR) and Raman 

spectroscopy have been utilised in the past few years to detect structural alterations that occur 

in molecules within cells according to their chemical bonds. (Baker et al., 2014; H. Y. Holman 

et al., 2000; Jackson et al., 1997; Mourant et al., 2003; Taillandier & Liquier, 1992) The 
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resulting spectral differences may be used to distinguish benign from cancerous processes and 

classify cancer subtypes. Examples of areas studied by these methods include breast (Kelly et 

al., 2011), endometrial (Taylor et al., 2011), cervical (Gajjar et al., 2014), prostatic (Baker et 

al., 2009) and brain cancers (Gajjar et al., 2012).   

 We utilised ATR-FTIR to interrogate ovarian tissue harvested from women 

undergoing oophorectomies for several reasons including pelvic pain, postmenopausal 

bleeding, menorrhagia or dysfunctional uterine bleeding, premenstrual tension, risk reduction 

due to breast cancer or positive family history and imaging revealing ovarian cysts/ masses. 

We hypothesized that interrogation of ovarian tissue with ATR-FTIR spectroscopy will allow 

diagnostic segregation of benign, borderline and cancerous tumours. Additionally, this method 

will allow classification of epithelial ovarian cancer subtypes. The complex resulting spectral 

datasets were analysed using multivariate analysis in the form of principal component analysis 

followed by linear discriminant analysis (PCA-LDA) and variable selection techniques in the 

form of successive projection algorithm (SPA) and genetic analysis (GA) again followed by 

linear discriminant analysis (SPA-LDA, GA-LDA). These chemometric techniques intended 

in reducing the complexity of the spectral datasets and allowing visual representation. They 

were combined to form a classification machine capable of significant classification. 

Additionally, we analysed our spectral datasets using multivariate control charts based on 

principal component analysis (PCA) to examine whether biospectroscopy could correctly 

classify normal, borderline and cancerous ovaries. 
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Methods 

 

Tissue collection and preparation 

Ovarian specimens were acquired from the Royal Preston Hospital bio-bank with appropriate 

ethics clearance (REC reference 10/H0308/75). They included 35 histologically benign 

ovarian samples, 30 samples containing borderline ovarian tumours and 106 samples with a 

diagnosis of epithelial carcinoma. The ovarian carcinomas were further subdivided to HGSC 

(n=46), LGSC (n=9), EC (n=15), MC (n=12), CCC (n=13), CS (n=7) and MT (n=4). Table 1 

lists the specific histological diagnoses for these samples. The tissue samples were embedded 

in paraffin. 10-µm-thick tissue sections were floated onto Low-E IR reflective slides (Kevley 

Technologies, Chesterland, OH, USA) slides. These were de-waxed by serial immersion in 

three sequential fresh xylene baths for five minutes and washed in an acetone bath for a 

further five minutes (57). The resulting samples were allowed to air dry and placed in a 

desiccator until analysis.  4 µm thick parallel tissue sections were floated to glass slides and 

stained with hematoxylin and eosin for histological comparison when needed. 

Classification of ovarian tissues according to their histophathological characteristics 

Figure 1 shows a benign ovarian tumour (mucinous cystadenoma) (Figure 1a), a borderline 

tumour (Figure 1b) and different ovarian carcinoma subtypes stained (Figure 1 c to i) with 

H&E. The World Health Organization (WHO) criteria for classification of epithelial ovarian 

tumours are based on optical microscopy after H&E staining. They describe the tissues these 

carcinomas resemble and how they differ from each other in general terms. The World Health 

Organization (WHO) lists general criteria to assist the differentiation between the different 

subtypes (see E.S.I. Table S2) (Chen et al., 2003; Lalwani et al., 2011). 
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Figure 1: Benign and malignant ovarian tumour examples stained with H&E. (a) 

Mucinous cystadenoma (benign) (b) Mucinous borderline tumour (c) High-grade serous 

carcinoma (d) endometrioid carcinoma (e) Low-grade serous carcinoma (f) Carcinosarcoma 

(g) serous borderline carcinoma (h) Mucinous carcinoma (i). Clear cell carcinoma 
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ATR-FTIR spectroscopy 

IR spectra were obtained using a Bruker Vector 27 FTIR spectrometer with a Helios ATR 

attachment containing a diamond crystal (≈250µm × 250µm sampling area) (Bruker Optics 

Ltd., Coventry, UK). Spectra were acquired from 10 different locations across each specimen. 

A new background measurement was taken for every sample processed. The ATR crystal was 

cleaned with distilled water and dried with dry tissue paper before the acquisition of spectral 

background. The spectral resolution was 8cm-1 with 2X zero filling of the interferogram giving 

data spacing of 4cm-1. Spectra were co-added for 32 scans; these were converted into 

absorbance by Bruker OPUS software. Absorbance spectral images were converted to suitable 

digital files (.txt) for input to Matlab software. 

 

Computational analysis 

The ATR-FTIR datasets were processed using an in-house produced toolbox (iRootlab) 

(Trevisan et al., 2013) and PLS toolbox 7.8 (Eigenvector Research, Inc.3905 West Eaglerock 

Drive, Wenatchee, WA 98801) within a MATLAB R2014a environment (Mathworks Inc, 

Natick, MA, USA). The wavenumber regions inputted were between 4,000cm-1 and 600cm-1. 

Spectra were then cut to include the regions between 1,800-900cm-1. PCA-LDA reduces the 

complex spectral dataset into single points in hyperspace, while maximizing inter-class 

variation and minimizing intra-class variation. The disadvantage of this method is the 

potential over fitting of spectra causing arbitrary separation and therefore positive results. This 

can be counteracted by using large spectral datasets of more than five times the number of 

variables.  
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For PCA-LDA, SPA-LDA and GA-LDA model, the samples were divided into 

training (70%), validation (15%) and prediction sets (15%) by applying the classic Kennard-

Stone (KS) uniform sampling algorithm to the IR spectra (Kennard, 1969). Training samples 

were used in the modelling procedure (including variable selection for LDA), whereas the 

prediction set was only used in the final evaluation of the classification. The optimum number 

of variables for SPA-LDA and GA-LDA was determined from the minimum cost function G 

calculated for a given validation dataset: 

                                                                                                             (1) 

where  is defined as 

                                                                                      (2) 

and )(nI  is the index of the true class for the nth validation object nx . ng is defined as risk of 
misclassification of the nth validation object nx , n =1, ..., VN ). In this definition, the 
numerator is the squared Mahalanobis distance between object nx (of class index nI ) and the 
sample mean )(nIm  of its true class. The denominator in Eq. (2) corresponds to the squared 
Mahalanobis distance between object nx  and the center of the closest wrong class.	

The GA routine was carried out during 100 generations with 200 chromosomes each. 

Crossover and mutation probabilities were set to 60% and 10%, respectively. Moreover, the 

algorithm was repeated three times, starting from different random initial populations. The 

best solution (in terms of the fitness value) resulting from the three realizations of the GA was 

employed. For this study, LDA scores, loadings, and discriminant function (DF) values were 

obtained for the specimens. The first LDA factor (LD1) was used to visualize the alterations in 

the sample in 1-dimensional (1D) score plots that indicate the main biochemical alterations.  
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Multivariate control charts were based on PCA. When the PCA model is applied on 

data collected when only common use variation is present, the future data behavior can be 

referenced against this “in-control” model. In this sense, new multivariate observations can be 

projected onto the plane defined by the PCA loading vectors to obtain their scores (

) and the residuals , where , is the (A × 1) 

vector of scores from the model and is the (q × A) matrix of loadings. The presence of 

samples within the ±2s control limits in the Shewhart control chart built using the relevant PC 

scores. Trends and systematic behaviors in the score plot are clear indications of “out-of-

control” processes (in this case, normal ovarian tissue, borderline ovarian tissue and different 

ovarian carcinoma subtypes). 
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Results 

Classification of normal ovaries, borderline ovarian tumours and ovarian carcinomas 

using PCA-LDA, SPA-LDA and GA-LDA following ATR-FTIR 

To discriminate between normal ovaries, ovaries with borderline tumours and ovaries with 

carcinomas, the spectral dataset was pre-processed using 1st order Savitzky-Golay smoothing, 

(Order 2; Window 15) (Figure 2). Overall the IR spectra appear to overlap in the biochemical 

fingerprint area (1800cm-1 to 900cm-1). On closer inspection there are subtle but significant 

differences identified in the regions 1150-1000cm-1 (glycogen and nucleic acids), 1300-

1200cm-1 (asymmetric phosphate and Amide III), 1550-1450cm-1 (protein moieties), 1600 to 

1540cm-1 (Amide I region and DNA base region) and 1730-1630cm-1 (phospholipids and 

other lipids). 
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Figure 2: Analysing ovarian tissues by ATR-FTIR and pre-processing resulting datasets. 

(a) 10µm thick ovarian tissue sections (b) Sample in close proximity with the ATR diamond 

(c) Unprocessed spectra (d) Resulting spectra after pre-processing. 

 

To examine these visible differences and attempt classification of the 3 categories, 3 types of 

chemometric analysis were used. Classification was achieved using PCA-LDA, SPA-LDA 

and GA-LDA. 70% of the spectra were used to train the algorithm, 15% to test it internally 

and 15% to validate it externally (see E.S.I. Table S3). On comparing the spectra using PCA-

LDA, 7 principal components where used as this number provided significant classification 

(P<0.001) without the introduction of arbitrary separation. Figure 3 



	 137	

c shows the 2-D scores plot derived by PCA-LDA. It reveals segregation of cancerous tissue 

from normal and borderline tumours, with the latter classes completely overlapping. The 

majority of the difference between the normal and cancerous ovaries was attributed to Amide I 

(1674cm-1), nucleic acids (1620cm-1), different conformations of phenyl rings (1585cm-1, 

1504cm-1), polysaccharides (1431cm-1) and symmetric phosphate stretching (1096cm-1) 

(Figure 3a). The chemometric technique that classified the three classes most successfully 

[66.4%] was GA-LDA using 29 variables determined from the minimum cost function G 

(Figure 3 g & h) (see E.S.I. Table S4). The related 2-D scores plot illustrates that spectral 

points from different classes dissociate while spectral points from the same class co-cluster 

(Figure 3i). SPA-LDA also achieved considerable classification [55.9%] with separation of 

classes on a 2-D scores plot (Figure 3f) when applied using 23 variables (Figure 3d) again 

using the minimum cost function G (Figure 3e) (see E.S.I. Table S4). All three techniques 

identified differences that aided classification within similar spectral regions. These 

differences were tentatively identified in the spectral regions of  =1400cm-1 (protein), = 

1740cm-1 (lipid), =1045cm-1(phosphate), =1545cm-1(carbohydrate). 
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Figure 3: Classification of benign, borderline and malignant ovarian tissue by spectral 

analysis using PCA-LDA, SPA-LDA and GA-LDA. (red=cancer, green= borderline, 

blue= benign) (a) Loadings plot identifying the major discriminant wavenumbers for the three 

classes. The X-axis is cm-1 and the Y-axis represents absorbance coefficient.  The five 

wavenumbers contributing to the most segregation were derived from the points furthest away 

from the X-axis. (b) Cost/ function plot identifying the optimal number of PCs to be used for 

PCA (c) Scores plot graphically representing classification by PCA-LDA. The X-axis 

represents LD1 and the Y-axis LD2 (d) Wavenumber selection for SPA-LDA. (e) Cost/ 

function plot identifying the optimal number of wavenumbers to be used for the SPA 

algorithm (f) Scores plot graphically representing classification by SPA-LDA. The X-axis 

represents LD1 and the Y-axis LD2 (g) Wavenumber selection for GA-LDA. (h) Cost/ 

function plot identifying the optimal number of wavenumbers to be used for the GA algorithm. 

(i) Scores plot graphically representing classification by GA-LDA. The X-axis represents LD1 

and the Y-axis LD2. 
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Lipid to protein ratio, phosphate to carbohydrate ratio and RNA to DNA ratio 

To further evaluate the importance of the above spectral regions in classifying the ovarian 

tumours to benign, borderline and malignant, intensity ratios of important for classification 

spectral areas when using the pre-mentioned approaches were measured.  

Figure 4a shows the lipid to protein ratio, which is obtained by calculating the ratio of band 

intensities at 1750cm-1 to 1730cm-1 (lipids) and 1410cm-1 to 1390cm-1 (protein). The lipid to 

protein ratio was higher in neoplastic tissue and lower in borderline and benign tissue. Normal 

and benign tissue exhibited similar ratios.  

The parameters used for the tentatively assigned phosphate to carbohydrate ratio in each IR 

spectrum were derived from the intensity of phosphate at 1055cm-1 to 1045cm-1 and of 

carbohydrate at 1555cm-1 to 1535cm-1. The phosphate to carbohydrate ratio is mildly 

increased in ovarian carcinomas relative to borderline and benign tissue and the difference is 

also significant (P<00001) (Figure 4b). 

Similarly, when comparing the intensity ratios of RNA (1111cm-1 to 1131cm-1) to DNA 

(1010cm-1 to 1030cm-1), the ovarian carcinomas exhibited slightly lower ratio (Figure 4c). 
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Figure 4: Classification of ovarian tumours to benign, borderline and malignant using 

spectral intensity ratios. (a) Intensity ratio of lipid to protein. (b) Intensity ratio of phosphate 

to carbohydrate. (c) Intensity ratio of RNA to DNA. 

 

Classification of normal ovaries, ovaries with borderline tumours and ovaries with 

ovarian carcinoma using multivariate control charts were based on PCA following ATR-

FTIR 

Multivariate control charts are commonly used in industry for quality control of chemical 

substances. A similar approach may be used in biospectroscopy. Tissue from benign ovaries 

can act as “control tissue” against which borderline and neoplastic tissues are compared. The 

control is represented by a line at zero, and another line is drawn usually at 2 standard 

deviations. How far from normal this line is from 0 depends on the variability that exists 
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within the examined tissue. When comparing borderline and malignant tissue with benign 

control tissue everything outside the standard deviation lines is considered abnormal.  

Interestingly, control charts, derived from the PCA analysis already performed are able to 

distinguish between normal and neoplastic ovaries (Figure 5a) and normal and ovaries with 

borderline tumours (Figure 5b).  

 

Figure 5: Classification of ovarian tumours to benign, borderline and malignant using 

Shewhart control charts after PCA. (a) Benign ovarian tissue VS malignant tissue (b) 

Benign ovarian tissue VS borderline tissue. (The blue dotted line is drawn at 2 standard 

deviations).  
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Classification of ovarian carcinoma subtypes using PCA-LDA, SPA-LDA and GA-LDA 

following ATR-FTIR 

Similar chemometric techniques have been used to classify epithelial ovarian carcinomas 

according to their subtypes. The aforementioned pre-processing of the spectral datasets was 

applied in this case also. 7 PCs were used for PCA (6b), 23 wavenumbers for SPA (Figure 6d) 

and 44 (Figure 6g) wavenumbers for GA (see E.S.I table S5). The number of wavenumbers to 

be used was again determined by the minimum cost function G (Figure 6 e & h).  PCA, SPA 

and GA followed by LDA were not adequately successful when comparing the spectral 

datasets of all cancer subtypes together as revealed by the associated 3-D scores plots (Figure 

6 c, f & i). There was however visible separation between clear cell carcinoma (cyan), 

carcinosarcoma (pink) and high-grade serous carcinoma (blue) subtypes when analysed SPA-

LDA and separation between clear cell carcinoma (cyan), carcinosarcoma (pink) spectral 

classes when analysed by GA-LDA. Unfortunately there was not adequate visual separation 

between classes with PCA-LDA. 
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Figure 6: Classification of ovarian carcinoma subtypes by spectral analysis using PCA-

LDA, SPA-LDA and GA-LDA. (blue= high grade serous, red= low grade serous, black= 

endometrioid carcinoma, yellow= mixed, green= mucinous, cyan= clear cell, 

pink=carcinosarcoma) (a) Pre-processed spectral dataset. Each colour represents a particular 

neoplastic subtype. (b) Cost/ function plot identifying the optimal number of PCs to be used 

for PCA (c) Scores plot graphically representing classification by PCA-LDA. The X-axis 

represents LD1 and the Y-axis LD2 (d) Wavenumber selection for SPA-LDA. (e) Cost/ 

function plot identifying the optimal number of wavenumbers to be used for the SPA 

algorithm (f) Scores plot graphically representing classification by SPA-LDA. The X-axis 

represents LD1 and the Y-axis LD2 (g) Wavenumber selection for GA-LDA. (h) Cost/ 

function plot identifying the optimal number of wavenumbers to be used for the GA algorithm. 

(i) Scores plot graphically representing classification by GA-LDA. The X-axis represents LD1 

and the Y-axis LD2. 
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Two category discriminant analysis of ovarian carcinoma subtypes using PCA-LDA, 

SPA-LDA and GA-LDA following ATR-FTIR 

To increase the classification success rate, spectral datasets representing different epithelial 

tumour subtypes were compared in pairs. The three chemometric techniques previously 

mentioned where utilised again. Similar validation methods were used with 70% of the data 

being used to train the system, 15% for internal validation and 15% for external validation. 

The optimum number of principal components for PCA and variables for SPA-LDA and GA-

LDA was determined by power versus cost calculation using the minimum cost function G 

(See E.S.I. Figure S1). Electronic supplementary information (E.S.I.) Figures S2, S3 and S4 

represent graphically the 2-D scores plots derived by PCA-LDA, SPA-LDA and GA-LDA 

respectively following comparison of all the carcinoma subcategories after processing by 

ATR-FTIR. The three analytical techniques were not equally successful at distinguishing 

between the categories compared. Figure 7 presents the percentage success for classification 

with each method. In general distinguishing between the different carcinoma subclasses was 

more successful when using GA-LDA. 
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Figure 7: Percentage successful classification of ovarian carcinoma subtypes when 

compared in pairs using 3 chemometric analyses:  PCA-LDA, SPA-LDA, GA-LDA. Red 

boxes represent the most successful technique for each particular pair analysed. Amber colour 

represents the second most successful technique and green the least. 
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Discussion 

Our study demonstrates that ATR-FTIR in conjunction with powerful chemometric 

approaches has the potential to distinguish between normal, borderline and neoplastic ovarian 

tissue. It also has the potential to distinguish between different ovarian epithelial carcinoma 

subtypes.  

The most conspicuous differences are between normal ovaries and overt carcinoma as 

identified by the mentioned chemometric techniques. This finding is significant due to its 

potential for translation into clinical practice. Currently, histological identification is the gold 

standard in the diagnosis of ovarian cancer and therefore essential for surgical decision-

making. Benign ovarian masses do not require extensive surgery while ovarian carcinomas 

will usually be managed by “staging” surgery involving a bilateral salpingooopherectomy, 

hysterectomy, omentectomy and pelvic lymphadenectomy. Pre-operative biopsy methods have 

been suggested to obtain histological diagnosis before embarking in major surgery. For 

example, image guided fine needle aspiration cytology (FNAC) and core biopsy using 

ultrasound, CT or MRI imaging have been shown to be effective with a diagnostic accuracy of 

80.9% and 93% respectively (Mehdi et al., 2010; Spencer et al., 2006). These diagnostic 

modalities are usually preserved for women with co-morbidities that prohibit primary staging 

surgery or where imaging has revealed potentially inoperable disease. The reason for this is 

the risk of upstaging the disease by causing intra-peritoneal spillage of cancerous cells. Where 

there is a high clinical suspicion of ovarian cancer, a “staging procedure” is performed, which 

includes bilateral salpingo-oopherectomy, hysterectomy, omentectomy and pelvic 

lymphadenectomy.  

 In cases where clinical suspicion alone is not enough to embark in staging surgery, 

intra operative consultation by a pathologist is pursued. This utilises “frozen section” of the 
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specimen, which is then stained, usually with haematoxylin and eosin (H&E) and is examined 

by optical microscopy. Frozen section distinguishes benign from malignant tumours very 

accurately, but is less accurate for borderline tumours (Brun et al., 2008; Medeiros et al., 

2005). It prevents morbidity associated with surgical staging procedures in benign cases and 

under-treatment of malignant tumours, which would otherwise require restaging surgery or 

chemotherapy. Frozen section has several limitations that include sampling difficulties, 

interpretation errors and communication breakdown (Jaafar, 2006). It also causes increases in 

surgical times, with resultant morbidity to the patient. ATR-FTIR in conjunction with 

chemometric analysis allows the identification of molecular biomarkers that can be adapted 

for easy discrimination between benign and neoplastic tissue during surgery. Indeterminate 

ovarian masses that would otherwise require a frozen section may be processed using ATR-

FTIR. Multivariate control charts may be used to distinguish the ovarian tumours would 

require extensive surgery from those that will not. 

 The clinical importance for the diagnosis of ovarian carcinoma subtypes lays with their 

implications in immediate and subsequent management, medical or surgical, their follow-up 

and genetic counselling. Patients with early stage (1a) mucinous or endometrioid carcinoma 

can be treated with surgery alone. Patients with high-grade serous carcinoma will routinely 

have adjuvant chemotherapy. Patients with mucinous, endometrioid, and clear cell carcinomas 

may have adjuvant or neo adjuvant combination radiotherapy and chemotherapy. High grate 

serous adenocarcinoma is also associated with BRCA mutation therefore patients may be 

referred for genetic testing and if proven positive their families would be screened. ATR-FTIR 

coupled with a chemometric machine has the potential of being adopted as an assisting tool 

for pathological interpretation of ovarian carcinomas.  
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Conclusion 

The purpose of this study was to identify spectral differences within ovarian tissues with the 

capability of classifying the in accordance to their histopathological status. Utilising ATR-

FTIR n=171 ovarian tissues were examined. Morphological and molecular alterations within 

these tissues have already been associated with neoplasia. Spectroscopic analysis of these 

tissues reveals specific molecular alterations linked to malignancy. The responsible molecular 

changes for this segregation were primarily alterations in the tentatively assigned lipid (1740 

cm-1) to protein (1400cm-1) ratio with a marked increase associated with carcinomas. IR 

spectroscopy coupled with chemometric analysis has the potential to differentiate not only 

neoplastic from borderline and benign tissues but also distinguish between different carcinoma 

subtypes. Further validation of these approaches exploiting other biospectroscopy techniques 

and using larger architecturally robust datasets is required. 
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Table 1: Histopathology	of	the	ovarian	tissues	interrogated:	Borderline	tumours	and	
malignant	epithelial	carcinomas	are	similarly	staged	according	 to	FIGO	Ovarian	Cancer	
Staging	2014 

 

	

 

 

 

  

Benign	Ovaries	(n=35)	
Follicular	
cysts	

Endometriosis	 Involved	in	adhesions	 Normal	

2	 2	 2	 29	
Borderline	ovaries	(n=30)	
Stage/	
Subtype	

Serous	 Sero-mucinous	 Mixed	epithelial	

1a	 10	
(2×	micro-invasion)	

1	 1	

1b		 1	 	 	
1c	 10	 	 	
2a	 1	 	 	
3a	 4		

(1×	micro-papillary)	
	 	

3b	 2	
(1×	micro-papillary)	

	 	

Ovarian	cancer	(n=109)	
Stage/	
Subtype	

High	
grade	
serous	

Low	
grade	
serous	

Endometrial	 Mixed	
ovarian	
tumour	

Mucinous	 Clear	 cell	
carcinoma	

Carcino-
sarcoma	

1a	 2	 2	 3	 	 6	 4	 	
1b	 1	 	 	 	 	 	 	
1c	 15	 2	 8	 	 6	 3	 2	
2a	 2	 	 2	 1	 	 	 1	
2b	 	 	 	 1	 	 	 	
2c	 	 	 	 	 	 1	 	
3a	 2	 	 2	 1	 	 3	 	
3b	 5	 2	 	 	 	 1	 	
3c	 18	 3	 	 1	 	 1	 4	
4	 1	 	 	 	 	 	 	
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Attenuated total reflection infrared spectroscopy coupled with chemometric analysis 
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Table	 S1.	Risk	Malignancy	 index	 (RMI):	Women	with	ovarian	cysts	or	vague	
abdominal	symptoms	undergo	screening	using	the	“Risk	malignancy	index”.	This	
predicts	the	risk	of	an	ovarian	mass	being	malignant	and	dictates	further	surgical	
or	medical	management		

	

Feature	 RMI	1	 RMI	2	

Ultrasonic:	

• Bilateral	lesions	
• Ascities	
• Multilocular	cysts	
• Solid	areas	
• Metastases		

• No	 positive	 ultrasound	
features=	0	

• 1	abnormality=	1	
• 2	abnormalities=	2	

	

• No	positive	ultrasound	
features=	0	

• 1	abnormality=	1	
• 2	abnormalities=	2	

	

Premenopausal	 1	 1	

Postmenopausal	 3	 4	

Ca125	 U/ml	 U/ml	

RMI=	Ultrasound	score	×	Menopausal	score	×	Ca125	in	U/ML	

RMI	 Risk	 Women	(%)	 Risk	of	cancer	(%)	

<25	 Low	 40	 <3	

25-250	 Moderate	 30	 20	

>250	 High	 30	 75	
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Table	 S2.	 Histopathological	 classification	 of	 ovarian	 epithelial	 tumours:	
Descriptive	 criteria	 for	 classification	 of	 ovarian	 carcinomas	 according	 to	 the	
World	Health	organization	(WHO),	2003.	Carcinosarcoma	is	not	included	in	the	
main	five	categories	due	to	its	rarity.	

	

Carcinoma subtype Description 
Serous Composed of cells ranging in appearance from those resembling 

fallopian tube epithelium in well-differentiated tumours to 
anaplastic epithelial cells with severe nuclear atypia in poorly 
differentiated tumours 
 
Low grade High Grade 
Uniform nuclei 3-fold variability in nuclear 

size 
<13/10 high field powers 
mitotic figures  

>13/10 high field powers 
mitotic figures 

Prominent nucleoli Small nucleoli 
Differentiated architecture 
with papillary growth 

Undifferentiated growth 

Numerous psammoma 
bodies 

Few psammoma bodies 
 

Mucinous Resembles intestinal or endocervical epithelium 
Endometrioid Closely resembles the common variant of endometrioid 

carcinoma of the uterine corpus 
Clear cell Composed of glycogen-containing clear cells and hobnail cells 

and occasionally other histological types 
Mixed surface  Composed of an admixture of two or more of the five major 

histological types, and the minor component(s) must comprise 
alone or together at least 10% of the tumour 

Carcinosarcoma Composed of both malignant epithelial and homologous (similar 
to Mullerian duct system) or heterologous (e.g. cartilage, bone, 
muscle) stromal elements 
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Table	 S3:	 Internal	 and	 external	 algorithm	 validation:	 70%	 of	 the	 spectra	
were	used	to	train	the	algorithm,	15%	to	test	it	internally	and	15%	to	validate	it	
externally	 	

	 Normal	 Borderline	 Cancer	 Total	
Train	 239×235	 207	×	235	 778	×	235	 1224	×	235	
Validation	 55	×	235	 45	×	235	 165	×	235	 265	×	235	
Test	 55	×	235	 45	×	235	 165	×	235	 265	×	235	
	

 

Table S4:	 Selected	 wavenumbers	 for	 SPA-LDA	 and	 GA-LDA.	 These	
wavenumbers	 were	 used	 to	 achieve	 classification	 of	 normal,	 borderline	 and	
malignant	ovarian	tissue.	

Classification into normal, borderline and malignant ovaries 
Chemometric 
analysis 

Wavenumbers selected 

SPA-LDA 900, 995, 1026,1068, 1111, 1165, 1230, 1377, 1404, 1446, 1462, 
1512, 1543, 1554, 1562, 1604, 1620, 1643, 1658, 1681, 1747, 1800 

GA-LDA 952, 983, 987, 1041, 1049, 1084, 1099, 1122, 1141, 1168, 1203, 
1219, 1346, 1365, 1419, 1446, 1450, 1512, 1527, 1539, 1546, 1558, 
1593, 1604, 1631, 1643, 1647, 1720, 759  

	

	

Table	 S5:	 Selected	 wavenumbers	 for	 SPA-LDA	 and	 GA-LDA.	 These	
wavenumbers	were	used	to	achieve	classification	of	ovarian	carcinoma	subtypes.	

Ovarian carcinoma subtype classification 
Chemometric 
analysis 

Wavenumbers selected 

SPA-LDA 964, 991, 1018, 1037, 1068, 1111, 1153, 1219, 1334, 1415, 1458, 
1485, 1504, 1539, 1562, 1597, 1624, 1635, 1654, 1662, 1697, 1724, 
1800 

GA-LDA 902, 941, 964, 999, 1003, 1018, 1022, 1084, 1099, 1103, 1122, 
1192, 1222, 1311, 1381, 1392, 1400, 1408, 1423, 1438, 1469, 1481, 
1485, 1489, 1492, 1504, 1516, 1531, 1535, 1554, 1562, 1570, 1589, 
1593, 1624, 1627, 1654, 1658, 1674, 1685, 1712, 1732, 1747, 1782 
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Abstract 

Prostate cancer is the most commonly diagnosed malignancy in males worldwide; 

however, there is marked geographic variation in its incidence. This may be 

associated with adoption of a Westernised lifestyle. We set out to determine whether 

attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy or 

Raman spectroscopy combined with principal component analysis-linear discriminant 

analysis (PCA-LDA) or variable selection techniques employing genetic algorithm 

(GA) or successive projection algorithm (SPA) could be utilised to explore 

differences between prostate tissues obtained from differing years. In total, 156 

prostate tissue samples from transurethral resection of the prostate (TURP) 

procedures for benign prostatic hyperplasia (BPH) were collected from 1983 to 2013. 

These were distributed according to the year of collection to form seven categories: 

1983-1984 (n=20), 1988-1989 (n=25), 1993-1994 (n=21), 1998-1999 (n=21), 2003-

2004 (n=21), 2008-2009 (n=20) and 2012-2013 (n=21). Ten-µm-thick tissue sections 

were floated onto Low-E (IR-reflective) slides for ATR- FTIR or Raman 

spectroscopy. Resulting scores plots for PCA-LDA, SPA-LDA or GA-LDA from 

ATR-FTIR data revealed marked segregation between the seven categories. In fact, 

there was a chronological development of prostate tissue spectroscopic alterations 

with successive categories. This classification was less evident following Raman 

spectroscopy but here also, a significant separation between categories was identified. 

Moreover, examination of the two categories that are at least one generation (30 

years) apart indicated highly significant segregation, especially at spectral regions 

containing DNA and RNA bands (≈ 1,000-1,490cm-1), involving nucleic acids, 

phosphate and deoxyribose modifications. This may point towards alterations that 

have occurred through chemical genotoxicity or through epigenetic modification of 
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chromatin structure. Immunohistochemical studies for global DNA methylation 

supported the results obtained by vibrational spectroscopy. This study points to a 

trans-generational phenotypic change in human prostate as a function of spectral 

alterations. 

 

Keywords: ATR-FTIR spectroscopy; Biospectroscopy; Classification analysis; 

Prostate cancer; Raman spectroscopy; Wavenumber selection 
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Introduction 

Prostate cancer is the most commonly diagnosed male malignancy in the 

world with an incidence rate of 214 cases per 100,000 and a mortality rate from 

associated metastatic disease of 30 in 100,000 (Jemal et al., 2008; Nichol et al., 2005). 

The percentage of prostate cancer amongst all male cancers is much higher in 

developed countries (15%) than in developing ones (4%), but there are also large 

regional differences in incidence rates (Ferlay et al., 2010; Parkin et al., 2010; Parkin 

et al., 1999).  

The only established risk factors for PC are increasing age, ethnic origin and 

heredity (Bratt et al., 2002; Dunsmuir et al., 1998; Ho et al., 2006). However, the 

effects of environment and lifestyle appear to be important towards its development 

(Alberti, 2010; Cancel-Tassin & Cussenot, 2005). The age-adjusted incidence trends 

for prostate cancer in the 20-year period from 1973 to 1992 were found to increase 

consistently in 15 countries (Hsing et al., 2000). Associated temporal lifestyle 

variations may include diet and exercise, with related factors in the prevalence of 

obesity, diabetes and metabolic syndromes, tobacco smoking and alcohol intake 

(Buschemeyer & Freedland, 2007; Giovannucci et al., 1993; Martin et al., 2009; 

Nilsen et al., 2006; Putnam et al., 2000; R. A. La Vallee, 2014; Rohrmann et al., 

2007; Whittemore et al., 1995). 

Working on the assumption that lifestyle changes are major players in the 

initiation and development of prostate cancer and that lifestyle and especially diet 

have changed dramatically in the past 20 y (within one generation), we set out to 

explore differences that may exist between prostates from different individuals 

obtained over a 30-y period.  
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Tissue from transurethral resection of the prostate (TURP) procedures for 

benign prostatic hyperplasia (BPH) provided the opportunity to study these temporal 

differences (Figure 1). The cancer risk in this population is comparable or marginally 

increased relative to the general population (Holman et al., 1999; Karlsson et al., 

2011). Although prostate tissue from TURP procedures may be histologically benign, 

it could harbour early molecular alterations that contribute to prostate cancer 

development. 

In the search for such molecular alterations, biospectroscopy may play an 

important role as it can identify structural alterations of cellular molecules based on 

chemical bonds (H. Y. Holman et al., 2000; Jackson et al., 1997; Mourant et al., 2003; 

Taillandier & Liquier, 1992). Recent studies have also examined its potential in 

identifying biomarkers for cancer screening (Fung Kee Fung et al., 1997; Harris et al., 

2009; Walsh et al., 2007). Attenuated total reflection Fourier-transform infrared 

spectroscopy (ATR-FTIR) and Raman spectroscopy were used to interrogate prostatic 

tissue. The resulting spectral data were analyzed using multivariate analysis in the 

form of principal component analysis followed by linear discriminant analysis (PCA-

LDA) and variable selection techniques in the form of sequential progression 

algorithm (SPA) or genetic analysis (GA), again followed by LDA (SPA-LDA, GA-

LDA).  

Currently there is a lack of research evaluating potential prostatic molecular 

changes that have occurred in the past 30 y (>1 generation). This study set out to 

determine if spectral differences in prostate tissue of men of similar ages have 

occurred from the 1980’s to the present day. This could lend insights into distinct 

associations between modern adopted lifestyle and risk of prostate cancer. 
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Methods 

Tissue collection 

Archival benign prostate tissue specimens from TURP procedures were 

collected from one centre. They comprised of prostatic tissue chippings that were 

formalin-fixed, dehydrated and paraffin-embedded. These tissue blocks (n=156) were 

obtained from the Royal Preston Hospital bio-bank. Appropriate ethics clearance 

(REC reference 10/H0308/75) was obtained. These specimens were matched for age 

between sixty and sixty-nine years old. They were also matched for ethnicity with all 

being “British Caucasian”. Histology of these samples identified only BPH and no 

other abnormality. The specimens were examined using routine histopathology 

procedures and found to be free from prostate cancer and other abnormalities other 

than BPH.  

In total 156 specimens were collected from 1983 to 2013. These samples were 

distributed according to the year of collection to form seven categories: 1983-1984 

(n=20), 1988-1989 (n=25), 1993-1994 (n=21), 1998-1999 (n=21), 2003-2004 (n=21), 

2008-2009 (n=20) and 2012-2013 (n=21). Ten-µm-thick tissue sections were floated 

onto Low-E IR reflective slides (Kevley Technologies, Chesterland, OH, USA) slides 

for ATR-FTIR spectroscopy. These were de-waxed by serial immersion in three 

sequential fresh xylenes baths for five minutes and washed in an acetone bath for 

another five minutes (Matthew J. Baker et al., 2014). The resulting samples were 

allowed to air dry and then placed in a desiccator until analysis (Fig. 1B, 1C). Parallel 

H&E sections were obtained for histological comparison to ensure relevant areas were 

examined (Fig. 1D). 
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ATR-FTIR spectroscopy 

IR spectra were obtained using a Bruker Vector 27 FTIR spectrometer with a 

Helios ATR attachment containing a diamond crystal (≈250 µm × 250 µm sampling 

area) (Bruker Optics Ltd., Coventry, UK). Spectra were acquired from 10 different 

locations across each specimen with a new background taken for every new sample. 

The ATR crystal was cleaned with distilled water and dried with dry tissue paper 

before the acquisition of spectral background. The spectral resolution was 8cm-1 

giving data spacing of 4cm-1. Spectra were co-added for 32 scans; these were 

converted into absorbance by Bruker OPUS software (Fig. 1E). 

Raman spectroscopy 

Raman spectra were acquired using an InVia Renishaw Raman spectrometer 

(Renishaw plc, Gloucestershire, UK). Its laser diode, operating at 35 mW, emits a 

mid-IR beam, whose exact wavelength is 785 nm. This was passed through a 

Rayleigh holographic edge filter. The spectrometer’s entrance slit of 50 mm 

combined with a diffraction grating of 1,200 lines per mm achieved a spatial 

resolution of 1cm-1. Raman scatter signals were directed onto a Master Renishaw 

Pelletier cooled charged couple detector (CCD). Spectra were acquired using a Leica 

microscope via a ×50 objective lens with a numerical aperture of 0.75, giving a spatial 

resolution of approximately 1 mm. A white light camera mounted on the microscope 

allowed the use of dark-field visualization of the locations of interest. The Renishaw 

system was calibrated with a Renishaw silicon calibration source for wavenumber 

shifts every time the spectrometer was turned on. Ten spectra were acquired from 

independent locations from each sample. A total of 1,437 spectra were acquired using 

100% laser power with an exposure period of 25 seconds and four repeat acquisitions 
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(Fig. 1F). Raman spectroscopy was always performed on the same tissue sections 

following ATR-FTIR spectroscopy. Independent regions were targeted to minimize 

any confounding influences due to tissue compression by the ATR crystal. 

Computational analysis 

The importing and pre-treatment of the spectral data and the construction of 

chemometric classification models were executed using PLS toolbox 7.8 (Eigenvector 

Research, Inc. 3905 West Eaglerock Drive, Wenatchee, WA 98801) and in-house 

written scripts (irootlab) (Trevisan et al., 2013) within a MATLAB R2013a 

environment (Mathworks Inc, Natick, MA, USA). 

ATR-FTIR spectra were cut to include wavelengths between 1,800 and 

900cm-1 (235 wavenumbers at 3.84cm-1 spectral resolution); the area associated with 

the biological spectral fingerprints. The resulting dataset was rubber band baseline-

corrected and normalized to the Amide I peak (i.e., ≈1,650cm-1) (Matthew J. Baker et 

al., 2014; Trevisan et al., 2012). 

 Raman spectra contained cosmic rays, which were removed using an in-house 

tool for Matlab. This algorithm excluded cosmic rays by statistically evaluating the 

whole spectral dataset (all samples) to identify abnormally high ‘spikes’ that did not 

present repeatedly. The spectral areas containing these spikes were replaced by 

appropriate values calculated as a function of intensities for the concerned areas for 

the rest of the data. The abrangence factor (k = 5) was adjusted to increase the 

sensitivity of the tool for spike removal. The resulting spectra were cut to include 

1,750-800cm-1 (692 data points). Subtraction of biological tissue auto-fluorescence 

was carried out using an automatic baseline correction method (Whittaker filter) 

(Trevisan et al., 2012). 
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Computational analysis consisted of three models: principal component 

analysis (PCA), sequential progression algorithm (SPA) and genetic algorithm (GA). 

All models were followed by linear discriminant analysis (LDA) (Matthew J. Baker et 

al., 2014). Before applying each analytical model, spectral data were divided into 

training (70%), validation (15%) and prediction (15%) sets by applying the classic 

Kennard-Stone (KS) uniform sampling algorithm (Kennard R. W., 1969). The 

number of samples colonising each set is presented in Electronic Supplementary 

Information (ESI) Tables S1 and S2 for ATR-FTIR and Raman, respectively. The 

training datasets were used in the modelling procedures (including variable selection 

for LDA), whereas the prediction dataset was only used for the final classification 

evaluation. The optimum number of variables for SPA-LDA and GA-LDA was 

determined from the minimum cost function G calculated for a given validation 

dataset: 

                                                                                                             (1) 

where  is defined as 

                                                                                      (2) 

and  is the index of the true class for the nth validation object . 

PCA is a multivariate analysis technique that aims to reduce the number of 

variables present in the spectral dataset. Principal components (PCs) can capture most 

of the variance (>95%) present in the original dataset. A power versus cost calculation 

identifies the number of PCs that correctly identifies variance within the dataset 
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without presenting artificial separation between the different classes. This optimum 

number was applied to classify the prostates depending on the year they were excised. 

SPA is a forward selection method (Martens & Næs, 1989). Its purpose is to 

select wavelengths whose information content is minimally redundant to solve co-

linearity problems. The model starts with one wavelength, then incorporates a new 

one at each iteration until it reaches a specified number N of wavelengths (Soares et 

al., 2011). SPA does not modify the original data vectors as PCA does. In this case 

projections are used only for selection purposes. Thus, the relation between spectral 

variables and data vectors is preserved. 

Genetic algorithms (GA) are combinational algorithms inspired by Mendelian 

genetics. They use a combination of selection, recombination and mutation to evolve 

a solution to a problem. They treat data as chromosomes allocating reproductive 

opportunities in such a way that those chromosomes, which represent a better solution 

to the target problem are given more chances to “reproduce” than those, which 

represent poorer solutions (Whitley, 1994). The GA routine was carried out utilising 

100 generations containing 200 chromosomes each. Crossover and mutation 

probabilities were set to 60% and 10%, respectively. Moreover, the algorithm was 

repeated three times, starting from different random initial populations. The best 

solution (in terms of the fitness value) resulting from the three realizations of the GA 

was employed. 

LDA was performed following the application of each of the analytical models. 

LDA scores, loadings, and discriminant function (DF) values were obtained. Usually, 

the first LDA factor (LD1) is used to visualize the main biochemical alterations 

within the sample on a 1-dimensional (D) scores plot. 
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Immunohistochemistry 

4mm thick, parallel sections of prostatic samples from the 1983-1984 (n=10) 

and the 2012-2013 (n=10) classes were de-waxed in xylene and taken to absolute 

alcohol. They were then placed in a warm Tris/ EDTA (Trizma Base, Sigma, T1503; 

Citric acid crystals, BDH277804L; Sodium hydroxide, BDH301675N) buffer and 

heated under pressure at 900W in a microwave for 4 minutes. They were then cooled 

under running water and rinsed with Tris buffer. They were treated with hydrogen 

peroxide blocking agent (Dako) for five minutes, drained and rinsed with Tris buffer. 

Normal blocking serum was then placed on the sections for twenty minutes followed 

by 5-methylcytosine as the primary antiserum (5-mc antibody, dilution 1:400; 

Genetext: GT4111) for sixty minutes. They were then rinsed with Tris buffer before 

adding the secondary antibody (Vectastain Universal Elite ABC Kit) for thirty 

minutes. After another wash with Tris buffer they were incubated in Strept-

ABComplex/ HRP (Vectastain Elite ABC Reagent) solution for thirty minutes and 

then washed again. One drop of chromogen was added to 1ml of Dako and placed on 

the sections for 10 minutes. They were then washed under running water before 

counterstaining with haematoxylin for 5 minutes, dehydrated in alcohol, cleared in 

xylene and mounted in styrolite. 
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Results 

ATR-FTIR spectral dataset 

Fig. 2A shows the pre-processed ATR-FTIR-derived spectra for prostate 

chippings according to the year they were collected, generating seven categories: [1] 

1983-1984 (n=20); [2] 1988-1989 (n=25); [3] 1993-1994 (n=21); [4] 1998-1999 

(n=21); [5] 2003-2004 (n=21); [6] 2008-2009 (n=20); and, [7] 2012-2013 (n=21). 

There is significant overlap between categories and visual inspection alone is limited 

with regards to identifying distinguishing features. 

In order to attempt classification of the prostate samples according to year of 

collection and to determine the biochemical markers responsible for any such 

classification, it is necessary to apply chemometric analysis techniques. PCA-LDA, 

SPA-LDA and GA-LDA were therefore adopted to systematically identify spectral 

differences between the pre-assigned categories. 

Fig. 2B shows a scores plot derived following PCA-LDA of the ATR-FTIR 

spectra. This model was carried out using the first six PCs, which account for >90% 

of the variance within the sample population. Scores plots identify the similarities and 

dissimilarities between different categories and present them as clusters of points. 

Loadings plots identify the distinguishing wavenumbers (as weightings). It is obvious 

that most spectral classes form a single cluster. It is also obvious that there is 

separation between the 1983-1984 (blue) and the 2012-2013 (pink) categories, which 

are >one generation (30 y) apart. This separation is significant (P <0.0001). The 

loadings plot (Fig. 2C) derived from PCA-LDA identifies the six primary 

wavenumbers, which are important for separation of the different age groups. These 
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include 1,227, 1,400, 1,574, 1,624, 1,674 and 1,720cm-1. ESI: Table S3 lists the 

molecular entities associated with these wavenumbers. 

SPA-LDA was applied to the dataset using the optimum number of variables 

derived by identifying the minimum cost from function G (Fig. 3B). The twenty-three 

wavenumbers selected were: 968, 1,018, 1,053, 1,153, 1,234, 1,315, 1,392, 1,415, 

1,446, 1,462, 1,489, 1,512, 1,539, 1,562, 1,593, 1,620, 1,631, 1,651, 1,666, 1,693, 

1,716, 1,735 and 1,797cm-1 [Fig. 3A; see (ESI) Table S4]. The resulting 3-D scores 

plot (Fig. 3C) identified significant segregation between categories (P <0.05). 

Spectral points from the same category tend to co-cluster and differing classes 

segregate. There is a clear progression with time, with categories separated by one 

generation being furthest apart.  

Fig. 4C displays the scores plot for classification achieved utilising GA-LDA. 

The GA model was built based on the selection of 32 wavenumbers (Fig. 4A; see ESI 

Table S5) out of the available 234, determined by function G (Fig. 4B). These 

included wavenumbers:  987, 999, 1,002, 1,026, 1,029, 1,072, 1,191, 1,199, 1,299, 

1,303, 1,350, 1,353, 1,365, 1,373, 1,381, 1,388, 1,392, 1,404, 1,415, 1,458, 1,496, 

1,504, 1,512, 1,543, 1,554, 1,562, 1,589, 1,600, 1,647, 1,708, 1,720 and 1,751cm-1. 

Again, there is separation between the different categories that is significant  (P 

<0.05). 

When comparing the two categories separated by 28 y (1983-1984 and 2012-

2013), the distinction between them is much clearer. Fig. 5A shows the pre-processed 

ATR-FTIR spectra used for analysis applying the three previously mentioned 

techniques. The 2-D scores plot derived from PCA-LDA of these two categories 

identifies significant segregation between them (P <0.0001) (Fig. 5B). The associated 
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loadings plot (Fig. 5C) identifies the 6 principal segregating wavenumbers. The 

molecular entities assigned to these are listed in E.S.I. Table S6. 

Similarly SPA-LDA identified significant separation (P <0.05) between the 

two categories as shown by the related scores plot (Fig. 6C). This approach used four 

wavenumbers: 1,504, 1,620, 1,647 and 1,728cm-1 (Fig. 6A; see ESI Table S7), as 

determined by the min cost of function G (Fig. 6B). GA-LDA produced the best 

separation (Fig. 7C) using 17 variables, selected at the cost function minimum point 

(Fig. 7B). These were: 1,049, 1,053, 1,253, 1,415, 1,419, 1,423, 1,500, 1,504, 1,512, 

1,516, 1,519, 1,527, 1,531, 1,535, 1,539, 1,543 and 1,546cm-1 (Fig. 7A; see ESI Table 

S8). This separation was also significant (P <0.05). 

Raman spectral dataset 

Fig. 2D shows the pre-processed Raman spectra. Each colour represents a 

different category based on the year of collection. Similar to ATR-FTIR spectra, 

discrimination of categories requires reduction of the complexity of the spectral 

dataset. Therefore, PCA-LDA, SPA-LDA and GA-LDA were applied to segregate 

prostatic tissues based on their Raman spectra. 

The PCA-LDA models (Fig. 2E), using six PC scores accounting for >90% of 

variance, did not reveal any substantial separation (although P <0.05) and there was a 

large degree of overlap between all categories. The first six wavenumbers responsible 

for separation were identified by the associated loadings curve. They included 1,418, 

1,457, 1,576, 1,657, 1,704 and 1,739cm-1 (Fig. 2F ; see E.S.I. Table S9). 

Fig. 3F shows the SPA-LDA derived scores plot. This approach also exhibited 

limited segregation of the categories. The cost function minimum point was obtained 

at 17 wavenumbers (Fig. 3E). These included: 1,000, 1,001, 1,004, 1,062, 1,109, 
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1,244, 1,294, 1,295, 1,306, 1,336, 1,373, 1,376, 1,436, 1,437, 1,451, 1,671 and 

1,655cm-1 (Fig. 3D; see ESI Table S10). 

GA-LDA generated only a slight segregation between categories (Fig. 4F), 

when 49 selected wavenumbers were used, as directed by the cost function minimum 

point (Fig. 4E): 842, 845, 874, 892, 920, 946, 965, 967, 971, 997, 998, 1,010, 1,022, 

1,067, 1,087, 1,168, 1,182, 1,185, 1,201, 1,251, 1,265, 1,271, 1,272, 1,310, 1,342, 

1,373, 1,405, 1,421, 1,423, 1,457, 1,483, 1,496, 1,499, 1,507, 1,518, 1,560, 1,575, 

1,629, 1,652, 1657, 1,660, 1,666, 1,673, 1,700, 1,710, 1,729, 1,733, 1,741 and 

1,745cm-1 (Fig. 4D; see ESI Table S11). There was a slight improvement in 

separation in comparison with PCA-LDA and SPA-LDA approaches (P <0.05). 

Analysis of the Raman dataset for categories: 1983-1984 and 2012-2013 by 

the application of PCA-LDA, SPA-LDA and GA-LDA identified between-category 

segregation. PCA-LDA using the first six PCs revealed significant separation (P 

<0.0001) (Fig. 5E). The derived loadings plot shows the main segregating 

wavenumbers: 1,419, 1,459, 1,567, 1,654 and 1,742cm-1 (Fig. 5F). E.S.I. Table S12 

lists their tentative assignments. SPA-LDA analysis using three wavenumbers, as 

directed by the minimum cost of function G (Fig. 6E): 891, 1,001 and 1,295cm-1 (Fig. 

6D; see ESI Table S13) also revealed between-category segregation (Fig. 6F) (P 

<0.05). GA-LDA of the same dataset generated similar results (Fig. 7F), which were 

also statistically significant (P <0.05). In this case, 14 variables were used, at the 

minimum cost function point (Fig 7E): 861, 899, 920, 921, 971, 1,049, 1100, 1,204, 

1,206, 1,261, 1,365, 1,447, 1,496 and 1,596cm-1 (Fig. 7D; see ESI Table S14). 
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Immunochemistry 

 To further evaluate potential epigenetic changes contributing to trans-

generational variability we performed immunohistochemistry in the form of 

methylation studies. The classes 1983-1984 (n=10) and 2012-2013 (n=10) were 

compared blindly. Methylation was graded according to the intensity of staining from 

0 to 3 (0=no staining, 1=weak staining, 2=moderate staining, 3=strong staining). The 

percentage of cells exhibiting the particular grade within different cellular 

compartments (epithelial, basal, stromal and vascular cells) was also recorded (see 

ESI, Table S15). The class of 1983-1984 exhibited global methylation with 8 samples 

displaying strong (3) and 2 moderate staining (2) in nearly 100% of cells for all 

cellular compartments. 6 samples from class of 2012-2013 exhibited strong staining a 

4 moderate staining. 
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Discussion 

This study aimed to identify spectral differences between benign prostate 

tissues acquired following TURP procedures carried out over the last 30 y on 

similarly-aged men. Such spectral differences could be the first evidence of 

phenotypic alterations from one generation to the next. A total of n=156 tissues were 

analysed using ATR-FTIR and Raman spectroscopy. The specific prostatic 

histological area examined was the transition zone as this is the tissue region excised 

at TURP (J. E. Mcneal, 1981). About 75% of prostate cancers originate in the 

peripheral zone, which is located postero-laterally to the urethra (Fig. 1) (Mcneal, 

1981). Some 25% of prostate cancers also arise in the transition zone and behave 

differently to peripheral zone cancers, both morphologically and functionally 

(Augustin et al., 2003). Micro-environmental cellular communication plays a 

significant role in cancer initiation and progression; (Hanahan & Weinberg, 2011) 

therefore examination of any part of the prostate may provide information that may 

lead to better understanding disease pre-disposing alterations, e.g., prostatic 

intraepithelial neoplasia (Bostwick, 2000). 

IR spectra were obtained from the mid-IR region from 900 to 1,800cm-1 as 

most bio-molecular spectral signatures reside within this area (Movasaghi et al., 2008). 

Raman spectra used contained wavenumbers from 750 to 1,500cm-1 for the same 

reason (Movasaghi et al, 2007). Computational analysis allowed discrimination of 

prostatic tissue according to the year of surgery. The rationale for this approach was 

to determine if a trans-generational change in the spectral phenotype of this tissue 

might be detectable. There was apparent separation between the clusters of different 

categories that became more pronounced as the period between sample collections 

became larger.  
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These three computational methods applied to the spectra obtained by both 

Raman or ATR-FTIR spectroscopy had varying degrees of success in correctly 

classifying the specimens into categories. For the ATR-FTIR spectral dataset, the 

weakest approach for classification was PCA-LDA with 49.9% of the population data 

correctly classified. Six PCs were used as they provided enough variance (>90%) 

without introducing unwanted noise and therefore arbitrary separation. The related 

scores plot (Fig. 2B) shows co-clustering between some of the categories, but also 

separation between the classes of 1983-1984 and 2012-2013. 

GA-LDA was the best method for classification of the ATR-FTIR dataset with 

92.3% of the sample correctly classified. SPA-LDA ranked second for classification 

proficiency (84.2%). Both approaches revealed segregation and a temporal 

progression between the different categories. Interestingly, both chemometric 

approaches identified a shift where the “1983-1984” category cluster is completely 

segregated from the “2012-2013” one.  

The Raman spectral data analysis also revealed significant segregation 

between the different categories. The different chemometric methods had varying 

success rates in correctly classifying the data. PCA-LDA and SPA-LDA correctly 

classified 35.8%, while GA-LDA correctly classified 38.6% of the sample population. 

Despite its weaker classification attainment, Raman spectroscopy pointed to spectral 

regions representing similar biochemical entities to ATR-FTIR; for example Amide I, 

Amide III, collagen and more importantly changes involving DNA/ RNA nucleotide 

bases and backbone. The markedly reduced variability exhibited by Raman 

spectroscopy in comparison to ATR-FTIR may be due to the area of tissue 

interrogated for the acquisition of each spectrum with each technique. The larger 

surface area sampled by the ATR probe (≈250 µm × 250 µm) has an averaging effect 
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which in this case may be advantageous as it delivers information on the biochemical 

signature over multiples of cells within the same histological region. Raman on the 

other hand acquires spectra from a much smaller area and therefore is affected more 

by micro topographical variations. Nevertheless, the two techniques are potentially 

complementary, highlighting variability within similar biomolecular regions. 

The hypothesis that the chemo-molecular make-up of the prostate gland has 

changed within one generation is supported by the biospectroscopic techniques 

employed in this study. The prostate tissues used originated from procedures to treat 

BPH, which is influenced by nutritional variations including alcohol, vegetables and 

red meat (Kristal et al., 2008; Lagiou et al., 1999). BPH also has potential causal 

relationships with features of metabolic syndromes like diabetes, hypertension, 

obesity, high insulin and low HDL-cholesterol (Giovannucci et al., 1994; 

Hammarsten et al., 1998; Ozden et al., 2007). These relationships may be determined 

by genetic or epigenetic events that develop due to hormone-driven events or 

chemical exposures causing the formation of DNA adducts (John et al., 2009; F. L. 

Martin, 2013). Both ATR-FTIR and Raman spectral analysis highlighted marked 

trans-generational variation in the spectral regions containing DNA and RNA bands 

(≈ 1,000-1,490cm-1) involving nucleic acids, phosphate and deoxyribose 

modifications. This may point towards alterations that have occurred through 

chemical genotoxicity or through epigenetic modification of chromatin structure (Lu 

& Thompson, 2012). Also interesting is that SPA and GA algorithms identified 

wavenumbers indicating variability within the protein region involving amino acid 

conformational changes in C-O, C-H and N-H. This could be due to post-translational 

modifications related to genetic and/ or epigenetic changes evident within the 

DNA/RNA spectral regions. Interestingly, the featured spectral areas may point 
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towards a genetic or epigenetic alterations with the variation becoming more 

pronounced as the period between sample acquisitions increases. Although the small 

population analysed by immunohistochemistry does not allow statistically significant 

results more samples from the 1983-1984 class showed significant methylation than 

from the 2012-2013 class. Global demethylation of the genome in parallel with CGI 

hypermethylation of particular genes with tumour-suppressor function associated with 

progression to prostatic cancer (Hoque, 2009). 

This study was performed using prostate tissues taken from TURP procedures. 

Although H&E parallel sections of the tissue blocks used for spectroscopy did not 

show any complicating diathermy effect, this might also need to be taken into account. 

We tried to select a homogeneous population for our sampling. All men were between 

60 and 69 y old. Age is the most important predictor of prostate cancer and its 

incidence rate increases sharply from 144/100,000 to 500/100,000 for men over the 

age of 65 (Kirby et al., 2010). We sampled a population that varied by 10 y in age in 

order to increase our sample size. The related confounding variability may have 

affected our results. 

All samples in our study were free from prostate cancer. Approximately 10 to 

20% of TURP procedures result in the incidental detection of invasive disease 

(Ornstein et al., 1997). Therefore a big portion of individuals with “silent” prostate 

cancer may have been excluded from the tested sample. The main limitation of the 

study is the lack of information regarding the actual lifestyle of our cohort. We 

unfortunately could not retrieve information on body mass index, weight, diet and 

alcohol consumption for all individuals. Also, we could not retrieve from their notes, 

relative comorbidities, for example diabetes or hypertension. What we wanted to test 

though was if there is any variability within prostate tissue with time of tissue 
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collection independent of other variables; therefore, knowing associated risk factors 

may have caused the introduction of unwanted bias to our study. 

Conclusion 

Prostate-related population diversity has not been significantly addressed to 

date. With this study we attempted to discover spectroscopic alterations that would 

classify prostate tissue from TURP procedures for BPH according to the year the 

operation was undertaken. We endeavoured to identify prostate variability that may 

be related to lifestyle changes that have happened within one generation13-15. 

Utilising two spectroscopic technologies coupled with three chemometric 

techniques, we observed significant discrimination of the prostate samples according 

to their year of collection. Also evident was complete segregation of the prostate 

tissues collected from two different generations nearly 30 y apart as well as 

progression through the years. Lifestyle changes during the studied generation have 

been extensively documented. Their association with changes in prostate tissue from 

individuals suffering from BPH is indicated by our study. 

More extensive research in this field is required to assess the ability of 

vibrational spectroscopy to identify the existence of variations in prostate tissue with 

time. A study that extends over several generations, say from the 1920s to the present, 

may unearth further alterations in the biochemical composition of the prostate gland. 

These alterations may harbour biomarkers associated with the increase in prostatic 

cancer incidence linked to a Westernised lifestyle adaptation. This in turn may assist 

the identification of lifestyle adjustments for the prevention of prostate cancer. 
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Figures 

Figure 1. Prostate anatomy, sample preparation and ATR-FTIR or Raman 

spectroscopy.  A) Prostate anatomy illustrating the different histological zones. TURP 

removes part of the transition zone. B) Low-E slide containing a prepared sample. C) 

Micrograph of a prostate sample as visualised during Raman spectroscopy. D) H&E 

stained section for histological comparison and to ensure no diathermy artefacts 

contaminate the sample. E) Unprocessed ATR-FTIR spectral dataset (x-axis: 

wavenumbers (cm-1), y-axis: absorbance) F) Unprocessed Raman spectral dataset. (x-

axis: wavenumbers (cm-1), y-axis: absorbance)  
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Figure 2. Processing of the ATR-FTIR and Raman derived spectral datasets for all 

categories by PCA-LDA. A) Pre-processed ATR-FTIR spectral dataset. B) Scores 

(DF1 × DF2 × DF3) plot calculated by PCA-LDA. C) Loadings plot derived from 

PCA-LDA. D) Prepossessed Raman spectral dataset. E) Scores (DF1 × DF2 × DF3) 

plot calculated by PCA-LDA. F) Loadings plot derived PCA-LDA. 
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Figure 3. Processing of the ATR-FTIR and Raman spectral datasets for all categories 

by SPA-LDA. A) Twenty three wavenumbers selected by the SPA-LDA model for 

the ATR-FTIR spectral dataset. B) Graph representing the power calculation used to 

identify the optimum number of wavelengths used for SPA. C) Scores (DF1 × DF2 × 

DF3) plot calculated by SPA-LDA. D) Seventeen wavenumbers selected by SPA-

LDA model for the Raman spectral dataset. E) Graph representing the power 

calculation used to identify the optimum number of wavelengths to be used for SPA. 

F) Scores (DF1 × DF2 × DF3) plot calculated by SPA-LDA.  
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Figure 4. Processing of the ATR-FTIR and Raman datasets for all classes by GA-

LDA A) Thirty two wavenumbers selected by GA-LDA model for the ATR-FTIR 

dataset. B) Graph representing the power calculation used to identify the optimum 

number of wavelengths to be used for SPA. C) Scores (DF1 × DF2 × DF3) plot 

calculated by using the variables selected by GA-LDA from ATR-FTIR spectra 

obtained from prostate tissues segregated into seven categories. D) Forty nine 

wavenumbers selected by GA-LDA model for the Raman spectral dataset. E) Graph 

representing the power calculation used to identify the optimum number of 

wavelengths to be used for SPA. F) Scores (DF1 × DF2 × DF3) plot calculated by 

using the variables selected by GA-LDA.  
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Figure 5: Processing of the ATR-FTIR- and Raman-derived spectral datasets for 

categories: 1983-1984 and 2012-2013 by PCA-LDA. A) Pre-processed ATR-FTIR 

spectral dataset. B) Scores (DF1 × DF2) plot calculated by PCA-LDA. C) Loadings 

plot derived from PCA-LDA. D) Prepossessed Raman spectral dataset. E) Scores 

(DF1 × DF2) plot calculated by PCA-LDA. F) Loadings plot derived PCA-LDA.		

 

 

 

 

	  



	 202	

Figure 6: Processing of the ATR-FTIR and Raman spectral datasets for categories: 

1983-1984 and 2012-2013 by SPA-LDA. A) Four wavenumbers selected by the SPA-

LDA model for the ATR-FTIR dataset. B) Graph representing the power calculation 

used to identify the optimum number of wavelengths used for SPA. C) Scores (DF1 × 

DF2) plot calculated by SPA-LDA. D) Three wavenumbers selected by SPA-LDA 

model for the Raman spectral dataset. E) Graph representing the power calculation 

used to identify the optimum number of wavelengths to be used for SPA. F) Scores 

(DF1 × DF2) plot calculated by SPA-LDA.  
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Figure 7: Processing of the ATR-FTIR and Raman spectral datasets for categories: 

1983-1984 and 2012-2013 by GA-LDA A) Seventeen wavenumbers selected by GA-

LDA model for the ATR-FTIR spectral dataset. B) Graph representing the power 

calculation used to identify the optimum number of wavelengths to be used for SPA. 

C) Scores (DF1 × DF2) plot calculated by using the variables selected by GA-LDA 

from ATR-FTIR spectra obtained from prostate tissues segregated into seven classes. 

D) Fourteen wavenumbers selected by GA-LDA model for the Raman spectral 

dataset. E) Graph representing the power calculation used to identify the optimum 

number of wavelengths to be used for SPA. F) Scores (DF1 × DF2) plot calculated by 

using the variables selected by GA-LDA.  
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Figure 8: Immunohistochemistry of samples form the 1983-1984 and 2013-2014 

classes. A) 8 out of 10 samples from the 1983-1984 class showed intense global 

methylation. B) 6 out of 10 samples from the 2012-2013 class showed intense global 

methylation. The rest of the samples showed moderate methylation in all cellular 

types. 
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Table S1: Number of training, validation and prediction specimens (or spectra) in 
each year of collections for prostatic tissues from the FTIR spectral data. 

Year of collection Set Training Validation Prediction 

1983-1984 140 30 30 

1988-1989 170 40 40 

1993-1994 141 30 30 

1998-1999 120 30 30 

2003-2004 150 30 30 

2008-2009 140 30 30 

2012-2013 144 32 32 
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Table S2: Number of training, validation and prediction specimens (or spectra) in 
each year of collections for prostatic tissues from the Raman spectral data.  

Year of collection Set Training Validation Prediction 

1983-1984 130 30 30 

1988-1989 170 40 40 

1993-1994 140 30 30 

1998-1999 129 25 25 

2003-2004 148 30 30 

2008-2009 140 30 30 

2012-2013 150 30 30 
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Table S3: Principal segregating wavenumbers for all categories derived from the 
loadings (LD1) curve associated with PCA-LDA of the ATR-FTIR spectral dataset. 

Wavelength 
(cm-1) 

Biological fingerprint 

1227 PO2
- asymmetric (phosphate I)  

1400 Symmetric stretching vibration of COO- group of fatty acids and 
amino acids  

1574 C=N adenine  
1624 Peak of nucleic acids due to the base carbonyl stretching and ring 

breathing mode  
1674 Unassigned band 
1720 C=O  
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Table	S4:	Selected	wavelengths	for	SPA-LDA	analysis	for	the	ATR-FTIR	dataset	
for	 all	 7	 classes.	 The	 model	 calculated	 that	 23	 wavelengths	 were	 needed	 for	
correct	segregation	without	the	introduction	of	noise. 

Wavelength 
(cm-1)  

Biological fingerprint 

968 Symmetric stretching mode of dianionic phosphate monoesters of 
phosphorylated proteins or cellular nucleic acids DNA  

1018 ν(CO), ν(CC), δ(OCH), ring (polysaccharides, pectin)  
1053 νs CO-O-C C-O stretching coupled with C-O bending of the C-OH of 

carbohydrates Glycogen  
1153 Stretching vibrations of hydrogen-bonding C-OH groups  
1234 Composed of amide III as well as phosphate vibration of nucleic acids 

CH'6, 20 a,a' rock  
1315 Amide III band components of Collagen  
1392 Carbon particle  
1415 Deformation C-H, N-H, stretching C-N  
1446 δ(CH2), lipids, fatty acids δ(CH) (polysaccharides, pectin)  
1462 Paraffin  
1489 In-plane CH bending vibration  
1512 In-plane CH bending vibration from the phenyl rings CH in-plane 

bend  
1539 Protein amide II absorption- predominately β-sheet of amide II  
1562 Ring base  
1593 C=N, NH2 adenine  
1620 Peak of nucleic acids due to the base carbonyl stretching and ring 

breathing mode  
1631 Amide I region  
1651 Amide I region  
1666 C5O stretching vibration of pyrimidine base  
1693 A high frequency vibration of an antiparallel b-sheet of amide I (the 

amide I band is due to in-plane stretching of the C=O band weakly 
coupled to stretching of the C-N and in-plane bending of the N-H 
bond)  

1716 C=O thymine Amide I (arises from C=O stretching vibration) C=O 
stretching vibration of DNA and RNA C=O stretching vibration of 
purine base  

1735 C=O stretching (lipids)  
1797 Lipids 
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Table	 S5:	Selected	wavelengths	for	GA-LDA	analysis	 for	the	ATR-FTIR	dataset	
for	 all	 7	 classes.	 The	 model	 calculated	 that	 32	 wavelengths	 were	 needed	 for	
correct	segregation	without	the	introduction	of	noise. 

Wavelength 
(cm-1) 

Biological fingerprint 

987 OCH3 (polysaccharides-cellulose)  
999 Ring stretching vibrations mixed strongly with CH in-plane bending  
1002 Unassigned band 
1026 Carbohydrates peak for solutions Vibrational frequency of CH2OH 

groups of carbohydrates (including glucose, fructose, glycogen, etc.) 
Glycogen  

1029 O-CH3 stretching of methoxy groups  
1072 Phosphate I band for two different C-O vibrations of Deoxyribose in 

DNA in disordering structure  
1191 Deoxyribose  
1199 Collagen Phosphate (P=O) band  
1299 Deformation N-H cytosine  
1303 Unassigned band  
1350 Unassigned band  
1353 Unassigned band  
1365 Stretching C-O, deformation C-H, deformation N-H  
1373 Stretching C-N cytosine, guanine  
1381 δCH3 Stretching C-O, deformation C-H, deformation N-H  
1388 Carbon particle  
1392 Unassigned band  
1404 CH3 asymmetric deformation  
1415 Deformation C-H, N-H, stretching C-N  
1458 δasCH3 of collagen  
1496 C=C, deformation C-H  
1504 In-plane CH bending vibration from the phenyl rings  
1512 In-plane CH bending vibration from the phenyl rings  
1543 Amide II  
1554 Ring base  
1562 Ring base  
1589 Ring C-C stretch of phenyl 
1600 C=N cytosine, N-H adenine  
1647 Amide I in normal tissues-for cancer is in lower frequencies  
1708 C=O thymine  
1720 C=O 
1751 ν(C=C) lipids, fatty acids  
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Table S6: Principal segregating wavenumbers for categories: 1983-1984 and 2012-
1013 derived from the loadings (LD1) curve associated with PCA-LDA of the ATR-
FTIR spectral dataset. 

Wavelength 
(cm-1) 

Biological fingerprint 

1231 Overlapping of the protein Amide III and the nucleic acid phosphate 
vibration  

1400 Symmetric stretching vibration of COO- group of fatty acids and 
amino acids 

1447 Asymmetric CH3 bending of the methyl groups of proteins  
1578 Ring C-C stretch of phenyl 
1624 Peak of nucleic acids due to the base carbonyl stretching and ring 

breathing mode  
1674 Unassigned band 
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Table S7: Selected wavelengths for SPA-LDA analysis for the ATR-FTIR dataset 
for classes 1983-1984 and 2012-1013. The model calculated that 4 wavelengths were 
needed for correct segregation without the introduction of noise. 

Wavelength 
(cm-1) 

Biochemical fingerprint 

1504 In-plane CH bending vibration from the phenyl rings  
1620 Peak of nucleic acids due to the base carbonyl stretching and ring 

breathing mode  
1647 Amide I in normal tissues-for cancer is in lower frequencies  
1728 C=O band  
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Table S8: Selected wavelengths for GA-LDA analysis for the ATR-FTIR dataset for 
classes 1983-1984 and 2012-2013. The model calculated that 17 wavelengths were 
needed for correct segregation without the introduction of noise. 

Wavelength 
(cm-1) 

Biochemical fingerprint 

1049 C-O stretching coupled with C-O bending of the C-OH of 
carbohydrates, Glycogen  

1053 νC-O & δC-O of carbohydrates Shoulder of 1121cm-1 band, due to 
DNA  

1253 Not assigned 
1415 Deformation C-H, N-H, stretching C-N  
1423 Not assigned 
1500 In-plane CH bending vibration from the phenyl rings  
1504 In-plane CH bending vibration from the phenyl rings  
1512 Not assigned 
1516 Amide II 
1519 Not assigned 
1527 Stretching C=N, C=C 
1531 Modified guanine 
1535 Stretching C=N, C=C  
1539 Not assigned 
1543 Amide II  
1546 Amide II (δN-H, νC-N)  
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Table S9: Principal segregating wavenumbers for all categories derived from the 
loadings (LD1) curve associated with PCA-LDA of the Raman spectral dataset. 

Wavelength 
(cm-1) 

Biological fingerprint 

1418 CH2 scissoring vibration (lipid band)  
1457 Deoxyribose  
1576 Nucleic acid mode  
1657 Triglycerides (fatty acids)  
1704 C=O stretching vibrations of cortisone  
1739 Ester group  
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Table S10: Selected wavelengths for SPA-LDA analysis for the Raman dataset for 
all 7 classes. The model calculated that 17 wavelengths were needed for correct 
segregation without the introduction of noise. 

Wavelength 
(cm-1) 

Biochemical fingerprint  

1000 Phenylalanine, Bound & free NADH  
1001 Phenylalanine  
1004 Phenylalanine (of collagen) νs(C-C), symmetric ring breathing, 

phenylalanine (protein assignment)  
1062 C-C skeletal stretch random conformation  
1109 Benzoid ring deformation  
1244 Amide III  
1294 Methylene twisting  
1295 Methylene twisting  
1306 CH3/CH2 twisting or bending mode of lipid/ collagen CH3/CH2 

twisting, wagging &/or bending mode of collagens & lipids  
1336 Polynucleotide chain (DNA purine bases) δ(CH3) δ(CH2)twisting, 

collagen (protein assignment)  
1373 T, A, G (ring breathing modes of the DNA/RNA bases)  
1376 Unassigned band 
1436 CH2 scissoring  
1437 CH2 deformation  
14551 CH2CH3 deformation  
1655 Amide I  
1671 Amide I  
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Table S11: Selected wavelengths for GA-LDA analysis for the Raman dataset for all 
7 classes. The model calculated that 49 wavelengths were needed for correct 
segregation without the introduction of noise. 

Wavelength 
(cm-1) 

Biochemical fingerprint 

842 Glucose  
845 Unassigned band 
874 C-C stretching, hypro (collagen assignment)  
892 Backbone, C-C skeletal  
920 C-C stretch of proline ring/glucose/lactic acid C-C, praline ring 

(collagen assignment)  
946 Unassigned band 
965 Hydroxyapatite  
967 Lipids 
971 ν(C-C) wagging  
997 C-O ribose, C-C  
998 ν45(CC), observed in the spectra of single human  

RBC  
1010 Unassigned band 
1022 Glycogen  
1067 Proline (collagen assignment)  
1087 ν1CO232, n3PO342, ν(C-C) skeletal of acyl back-bone in lipid 

(gauche conformation)  
1168 Lipids ν(C=C) δ(COH) (lipid assignment) n(C-C), carotenoid  
1182 Cytosine, guanine, adenine  
1185 Anti-symmetric phosphate vibrations  
1201 Nucleic acids and phosphates Aromatic C-O and C-N  
1251 Guanine, cytosine (NH2)  
1265 Amide III  
1271 Amide III  
1310 CH3/CH2 twisting, wagging &/or bending mode of collagens & 

lipids  
1342 G (DNA/RNA) CH deformation (proteins and carbohydrates)  
1373 T, A, G (ring breathing modes of the DNA/RNA bases)  
1405 νsCOO2 (IgG)  
1421 A, G (ring breathing modes of the DNA/RNA bases)  
1423 NH in-plane deformation  

1457 Deoxyribose  
1483 Unassigned band 
1496 Unassigned band 
1499 C=C stretching in benzenoid ring  
1507 Cytosine  
1518 ν(C=C), porphyrin,  

Carotenoid peaks due to C-C & conjugated C5C band stretch  
1560 Tryptophan  
1575 Ring breathing modes in the DNA bases G, A (ring breathing modes 

of the DNA/RNA bases)  
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1629 Ca=Ca stretch Amide C=O stretching absorption for the b-form  
polypeptide films  

1652 Lipid (C=C stretch)  
1657 Fatty acids  

Amide I (collagen assignment)  
Triglycerides (fatty acids)  

1600 Amide I 
1666 Collagen 
1673 Amide I 
1700 ν(C=O)OH (amino acids aspartic & glutamic acid)  
1710 One of absorption positions for the C=O stretching vibrations of 

cortisone  
1729 Ester group  
1733 One of absorption positions for the C=O stretching vibrations  
1741 Ester group 
1745 ν(C=O), phospholipids Triglycerides (fatty acids) ν(C=O) 

(polysaccharides, pectin)  
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Table S12: Principal segregating wavenumbers for categories: 1983-1984 and 2012-
1013 derived from the loadings (LD1) curve associated with PCA-LDA of the 
Raman spectral dataset. 

Wavenumber 
(cm-1) 

Biological fingerprint 

1419 Ester group  
1459 Deoxyribose δ(CH2)  
1567 Unassigned band 
1654 C=C stretch & the Amide I bands, Amide I  
1709 C=O stretching vibrations of cortisone 
1742 Ester group  
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Table S13: Selected wavelengths for SPA-LDA analysis for the Raman dataset for 
classes 1983-1984 and 2012-2013. The model calculated that 3 wavelengths were 
needed for correct segregation without the introduction of noise. 

Wavelength 
(cm-1) 

Biochemical fingerprint 

891 Saccharide band (overlaps with acyl band)  
1001 Symmetric ring breathing mode of phenylalanine  
1295 Not assigned  
 

 

Table S14: Selected wavelengths for GA-LDA analysis for the Raman dataset for 
classes 1983-1984 and 2012-2013. The model calculated that 14 wavelengths were 
needed for correct segregation without the introduction of noise. 

Wavelength 
(cm-1) 

Biochemical fingerprint 

861 Phosphate group  
899 Monosaccharides (β-glucose), (C-O-C) skeletal mode  
920 C-C stretch of proline ring/glucose/lactic acid C-C,  

praline ring (collagen assignment)  
921 Not assigned 
971 ν (C-C) wagging  
1049 Glycogen  
1100 C-C vibration mode of the gauche-bonded chain  
1204 Amide III & CH2 wagging vibrations from glycine backbone & 

proline side chains, collagen 
1206 Hydroxyproline, tyrosine (collagen assignment)  
1261 Not assigned 
1365 Tryptophan  
1447 CH2 bending mode of proteins & lipids  
1496 Not assigned 
1596 Not assigned 
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Table S15.  Methylation studies for classes of 1983-1984 and 2012-2013. An 
intensity score from 0 to 3 was given to each cellular type along with the percentage 
of cells showing that intensity.  

Class/ 
Sample 

 Epithelial 
cells 

Basal cells Stromal 
cells 

Vascular 
cells 

1983-1984 
 
1 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

1983-1984 
 
2 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

1983-1984 
 
3 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

1983-1984 
 
4 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

1983-1984 
 
5 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

1983-1984 
 
6 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

1983-1984 
 
7 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

1983-1984 
 
7 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

1983-1984 
 
7 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

1983-1984 
 
8 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

1983-1984 
 
9 

Percentage % 95 95 100 100 
Intensity 
score  

2 2 2 2 

1983-1984 
 
10 

Percentage % 0 0 0 0 
Intensity 
score  

0 0 0 0 

2012-2013 
 
1 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

2012-2013 
 
2 

Percentage % 100 100 100 100 
Intensity 
score  

2 2 2 2 

2012-2013 Percentage % 100 100 100 100 
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3 

Intensity 
score  

2 2 2 2 

2012-2013 
 
4 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

2012-2013 
 
5 

Percentage % 100 100 100 100 
Intensity 
score  

2 2 2 2 

2012-2013 
 
6 

Percentage % 100 100 100 100 
Intensity 
score  

1 1 1 1 

2012-2013 
 
7 

Percentage % 100 100 100 100 
Intensity 
score  

2 2 2 2 

2012-2013 
 
8 

Percentage % 100 100 100 100 
Intensity 
score  

2 2 2 2 

2012-2013 
 
9 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 

2012-2013 
 
10 

Percentage % 100 100 100 100 
Intensity 
score  

3 3 3 3 
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Summary  
 
Epidemiological evidence suggests that cancer with a pathogenesis attributable to 

exogenous carcinogenic agents may appear decades after initial exposure. 

Environmental factors including lifestyle and diet have been implicated in the 

aetiology of cancers of the breast cancer. Breast tissue undergoes continuous 

molecular and histological changes from the time of thelarche to menopause and 

thereafter.  These alterations are both cyclical and longitudinal, and can be influenced 

by several environmental factors including exposure to oestrogen through pregnancy 

or breastfeeding. Available research of latent stages of breast carcinogenesis has been 

limited to when hyperplastic lesions are present. Investigations to identify a 

biomarker of commitment to disease in normal breast tissue are hindered by the 

molecular and histological diversity of disease free-breast tissue. Benign tissue from 

reduction mammoplasties provides an opportunity to study biochemical differences 

between women of similar ages as well as alterations with advancing age. Herein, 

synchrotron radiation-based Fourier-transform infrared microspectroscopy (SR-FTIR) 

was used to examine the terminal ductal lobular epithelium (TDLU), intra- and inter-

lobular epithelium to identify spatial and temporal changes within these areas. 

Principal component analysis (PCA) followed by linear discriminant analysis of mid-

infrared spectra revealed unambiguous inter-individual as well as age-related 

differences in each histological compartment interrogated. Moreover, exploratory 

PCA of luminal and myoepithelial cells within the TDLU indicated the presence of 

specific cells, potentially stem cells. Understanding alterations within benign tissue 

may assist in the identification of alterations within the latent pre-clinical stage of 

breast cancer. 
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Introduction 

The clinical manifestation of breast cancer may be considered to be the final 

expression of a complex sequential process that begins with exposure to a causative 

agent (Grover & Martin, 2002). Tumour formation involves temporal alterations in 

genetic morphology or expression, which directly or indirectly disturbs normal 

cellular regulation of proliferation and growth inhibition, leading to malignancy 

(Pedraza-Farina, 2006). The period from the initiating event to tumour formation is 

termed the “latency period” (Rothman, 1981). This definition implies that cancers in 

which environmental exposures play a role arise several years after exposure (Grover 

& Martin, 2002; Land et al., 2003). This latency period may be of different length 

depending on the type, timing and length of exposure as well as inherent 

predisposition to the particular type of cancer (Armenian, 1987).  

 Exposure to carcinogens will certainly vary significantly between individuals 

as will their response to such an exposure (Johnson et al., 2011; Kahlenborn et al., 

2006). Factors that predispose women to a risk of breast cancer include early 

menarche, late menopause, nulliparity or delayed parity and, use of contraception and 

hormone replacement therapy (Broeders & Verbeek, 1997; Wohlfahrt et al., 1999). 

All these characteristics are associated with increased exposure to oestrogen. It is now 

accepted that “Westernized” lifestyle either through immigration or adoption of 

Western diet are likely causative factors for breast or other hormone-dependent 

cancers (Grover & Martin, 2002; Yager & Davidson, 2006). 

 Little is known regarding the molecular changes that may develop before the 

appearance of pre-clinical and clinical breast cancer (Allred et al., 2001). Changes 

that appear at the initiation stage or during the latency period may provide useful 

biomarkers for early identification of women at risk of developing breast cancer. 
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Also, these changes may be temporary, regressive, permanent or progressive (Allred 

et al., 2001; Arpino et al., 2005). Biomarkers that could identify lesions with a low 

risk of progression towards malignancy or even the chance of regression would be 

advantageous (Buyse et al., 2006; Esserman et al., 2011; O'donoghue & Esserman, 

2013). Women exhibiting high-risk alterations might be encouraged to make 

appropriate alterations in their lifestyle to try and “rectify” these changes (Blackburn 

& Wang, 2007). 

 In order to enable understanding of pathological processes involved in 

carcinogenesis, we first need to be able to identify physiological differences within 

breast tissue between similarly aged women as well as alterations that occur with 

increasing age. The areas wherein these variations are most interesting are within the 

terminal ductal lobular unit (TDLU) along with the supporting intra- and inter-lobular 

stroma (Figure 1a). These areas are thought to be responsible for cancer initiation 

process (Adriance et al., 2005; Allred et al., 2001; Ronnov-Jessen et al., 1996). The 

TDLU consists of terminal ductules ending in acini, bounded by luminal epithelial 

cells, which are surrounded by myoepithelial cells (Figure 1b). TDLUs have different 

compositions depending on their developmental stage from pre-puberty to menopause 

(Figure 1c). The pre-pubertal “simple” TDLU consists of one central ductule with 

three or four branches. After menarche, the TDLU’s morphology depends on the 

stage of the menstrual cycle with luminal cells growing in size as the cycle progresses 

from the follicular to the luteal phase. During pregnancy and lactation, the TDLU 

hypertrophies and remains in a similar state to the luteal phase.  
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Figure 1  (a) Diagram representing a lactiferous duct with an aggregation of TDLUs. 

The space between acini within the TDLU is occupied by intra-lobular stroma while 

the space between different TDLUs is occupied by inter-lobular stroma. (b) 

Diagrammatic interpretation of the terminal ductal lobular unit (TDLU), illustrating 

the types of cells that surround an acinus. (c) Diagrammatic description of the 

developmental progression of the TDLU with advancing age. (i) pre-pubertal, (ii) 

pubertal, (iii) Mature, (iv) lactating, (v) post-menopausal. (d) Example of principal 

component analysis and linear discriminant analysis (PCA-LDA) of TDLU, intra-

lobular stroma and inter-lobular stroma. The tissue section was selected from a 

subject within the 40-49 age group. (1) Parallel sections were stained with H&E for 

histological representation. (2) Numbered gridiron overlays were added to 

micrographs of the sections to aid specral selection. (3) Image maps were produced 

from which spectra were extracted. (4) Class means representing spectral differences 

between different cell types. (5) PCA-LDA scores plots of different cells where each 

spectral point is derived from the average of 5 IR spectra. 
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Postmenopausally, the lobule has fewer ductules and a denser intralobular stroma. 

With advancing age, the TDLU undergoes complete atrophy but the branching duct 

tree remains forever. In cancer, the micro-architecture of the TDLU is disturbed. 

 Breast tissue from reduction mammoplasties provides an opportunity to study 

spatial and temporal variation that may exist within the TDLU and surrounding areas 

of the mammary gland when there is no evidence of malignant or pre-malignant 

changes. The cancer risk in this population is comparable or marginally reduced 

relative to the general population (M. H. Brown et al., 1999; Hassan & Pacifico, 

2012).  

 In the pursuit for the discovery of these differences, biospectroscopy may play 

an important role as it can identify structural alterations of molecules within cells 

according to their chemical bonds (H. Y. Holman et al., 2000; Mourant et al., 2003). 

This technique has been used to detect molecular alterations associated with cancer in 

various tissues (Gajjar et al., 2012; Gajjar et al., 2013; German et al., 2006; Pichardo-

Molina et al., 2007; Tobin et al., 2004). Recent studies have also examined its 

potential in identifying biomarkers that can be used in screening for cancer (Harris et 

al., 2009; Walsh et al., 2007).  

Synchrotron radiation-based Fourier-transform infrared (SR-FTIR) 

microspectroscopy is superior to conventional FTIR spectroscopy for the detection of 

molecular biomarkers. The reason for this is that a synchrotron emits a collimated 

light beam that is more brilliant than that of a bench-top spectrometer. This provides 

an excellent signal-to-noise ratio (SNR) that is 1000 times greater to that of 

conventional IR sources and allows spatial resolutions as small as 10µm (L. M. Miller 

& Dumas, 2006; Tobin et al., 2004). 
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Interrogation of biological tissues by IR spectroscopy results in thousands of 

spectra due to the complex chemical composition of cells. The vast amount of data 

obtained by a typical spectroscopic experiment may be analysed using multivariate 

analysis. This aims to simplify this information for logical visual representation. Two 

of the commonly utilised multivariate analysis approaches are: principal component 

analysis (PCA) and linear discriminant analysis (LDA) or a combination of both 

(Martin F L et al., 2007). 

 This study aims to identify spectral differences in breast tissue of women of 

similar ages as well as changes with time. This could be the first step towards the 

recognition of the origins of breast cancer in the path that leads to its prevention. 

 

Materials and Methods 

Sample preparation 

Human breast tissue was obtained from eleven patients undergoing reduction 

mammoplasty for indications other than breast-related pathology. Consent was taken 

with ethical approval according to the Declaration of Helsinki. Five individuals were 

aged 20 to 29 years old, three were in their thirties and three in their forties. The 

breast tissue samples obtained were formalin-fixed and paraffin-embedded. Ten-µm-

thick tissue sections were floated onto 1cm × 1cm BaF2 slides (Photox Optical 

Systems). These were de-waxed by serial immersion in sequential fresh xylene baths 

(×3) for five minutes and washed in an acetone bath for another five minutes. 

Resulting samples were allowed to air dry and then placed in a desiccator until 

processing. 
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4-µm-thick parallel tissue sections were stained with H&E. These assisted with 

correct identification of the different cell types when overlaying mapping grids on the 

micrographs visualized through the SR-FTIR microscope (Figure 1d). 

Synchrotron radiation-based FTIR micro-spectroscopy 

Spectral images were acquired using a Bruker Vertex 80v spectrometer coupled to a 

Bruker Hyperion 3000 microscope containing a mercury cadmium telluride detector 

cooled with liquid nitrogen, on the 22 IR beam-line at the Diamond Light Source Ltd, 

UK (www.diamond.ac.uk). Spectra were collected in transmission mode via a 36× 

objective lens employing an aperture of 10 µm × 10 µm with a step size of 10 µm 

intervals, 256 co-additions were acquired; it was ensured that maps were generated 

within an acquisition time of ≈6 h. Background spectra were taken every 10 spectra to 

compensate for beam and atmospheric alterations. Spectra were then converted to 

absorbance using OPUS 8 software from Bruker Optics. 

Spectral pre-processing 

Absorbance spectral images were converted to suitable digital files (.txt) for input to 

Matalab software. Computational analysis was carried out using in-house written 

scripts for Matlab (Trevisan et al., 2013).  The wavenumber regions entered were 

between 4,000cm-1 and 600cm-1. Spectra were then cut to include the regions between 

1,800-900cm-1 as this is the spectral region associated with biologically active 

molecules (Movasaghi et al. , 2008). 

They were smoothed using the first derivative Savitzky-Golay filter, rubber-band-like 

baseline corrected, vector normalised and normalized to Amide I (1650cm-1). This did 

not affect the original spectral resolution. 
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Computational analysis 

The pre-processed spectral data were explored using PCA. This was carried out as an 

unsupervised technique using the first 10 principal components (PCs). Generally, the 

first 10 PCs account for approximately 99% of the variance within a sample 

population, without introducing excessive noise (Martin F L et al., 2007). The output 

from PCA was inputted into LDA. LDA is a supervised technique that maximizes the 

inter-category variance. The software analyses 90% of the data while using 10% of 

the data to train itself. This process is repeated 10 times in a cyclical fashion, so that 

all data are used for both analysis and system supervision. The statistical significance 

of each PC and LDA analysis contributing to class segregation was determined by the 

ANOVA test in Graphpad 7 when more than 2 classes were present. For visualization 

purposes, scores plots and loadings curves were generated. 

Scores plots, derived from PCA-LDA allow visualization of a spectrum as a 

single point, whose coordinates are its scores on a number of axes. This aims to 

simplify visualization of potential differences between the particular classes as well as 

identify co-clustering of similar spectral signatures. Loading curves allow 

identification of distinguishing wavenumbers when comparing classes with each 

other. The x-axis represents wavenumbers from 900 to 1800cm-1. The y-axis 

represents the absorbance coefficient. The highest peaks and troughs on this axis 

identify the wavenumbers that are most responsible for separation between selected 

classes. The 6 greatest absorbance coefficient deviations were selected. These 

wavenumbers were then compiled onto tables alongside tentative assignments. The 

resulting tables point to biochemical entities responsible for class segregation. 
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Results 

Using SR-FTIR microspectroscopy, samples from 11 patients were interrogated. A 

raster scan approach was applied to include terminal ductal lobular epithelial (TDLU) 

regions within the specimens. This allowed a high SNR with apertures close to the 

diffraction limit. The spatial resolution was 10µm × 10µm. The high resolution 

allowed separation of histologically different layers of the TDLU and surrounding 

regions. A micrograph of the involved areas with overlaid markers was used for 

identification of the specific regions of which spectra were acquired. Following 

interrogation, spectral differences were apparent between the location-derived spectra 

(Figure 1d). These differences allowed classification into inter-lobular stroma, intra-

lobular stroma and TDLU, which was further classified to myoepithelial cellular layer 

and luminal cellular layer. Correlation with parallel H&E tissue sections ensured 

correct selection of different cellular classes.  

 In total there were n=539 spectra within the inter-lobular stroma class, n=442 

spectra within the intra-lobular stroma class and n=591 spectra within the TDLU. 

Within the TDLU there were n=155 spectra from the luminal cellular layer and n=436 

from the myoepithelial layer. The very large number of individual spectra would 

impede easy visualization on scores plots. Therefore, for most classes every two, three 

or five spectra in chronological order were averaged (Table 1). The different areas 

were interrogated individually to identify putative spatial and temporal differences 

within our population. Furthermore, the myoepithelial and luminal cellular layers 

within the TDLU were separately examined to identify cells within these layers with 

divergent spectral signatures that may represent potential biomarkers of disease 

(Petersen et al., 2003). 
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Inter-individual variations 

The infrared spectra derived form the synchrotron maps were extracted and assigned 

to their pre-defined histological location (TDLU, inter-lobular stroma and intra-

lobular stroma). IR spectra from each individual woman represented a separate class. 

These classes were allocated to their designated age group: 3rd, 4th and 5th decade of 

life. Each location was analysed separately for each individual within every age group 

to investigate the existence inter-individual variation and identify the responsible 

wavenumbers. PCA-LDA cascade analysis was used to reduce each spectrum to a 

single point at the same time maximizing intra-category homogeneity and inter-

category heterogeneity. Derived scores plots identified clustering of spectra taken 

from the same individual independent of location (Figure 2). Moreover they identified 

clear separation between individuals of similar ages for all histological classes. This 

separation was highly significant and associated with different wavenumbers for 

different ages and histological locations. 
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Figure 2. PCA-LDA scores plots showing separation in every histological 

compartment tested between individuals in all age groups. The X-axis represents LD1 

and the Y-axis LD2.  Each spectral point is derived from PCA-LDA of the average of 

5 spectra. TDLU, Intra-lobular stroma and Inter-lobular stroma were examined 

separately. Each individual was processed as an independent category. 

 

 

 Figure 3 shows the loadings curves containing the 6 principal discriminating 

wavenumbers for each category. Table 2 illustrates the discriminating wavenumbers 

for each location and age category alongside their corresponding molecules. Different 

spectral signatures were responsible for maximum segregation between individuals 

for the different histological classes. It was noted that 2 molecules were responsible 

for inter-individual variation in all age groups: RHS Amide I (1,630cm-1) was 

responsible for segregation between the TDLU’s and DNA/ RNA (1,080cm-1) was 

responsible for segregation between intra-lobular stromata of individuals of all ages. 
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Figure 3. Loadings (LD1) plots derived from PCA-LDA comparing individuals from 

each age group for differences within each histological compartment. The X-axis is 

cm-1 and the Y-axis represents absorbance coefficient.  The five wavenumbers 

contributing to the most segregation were derived from the points furthest away from 

the X-axis. 



	 242	

Temporal variations 

Following the observation that the wavenumbers segregating TDLUs and intra-LS 

between individuals carried over all age groups, IR spectra were examined to 

determine the existence of variation between ages for the selected histological areas. 

This was performed using the same parameters and method of analysis (PCA-LDA 

using the first 10 PCs). The pre-processed spectral data was classified according to 

their allocated histological locations and age groups (instead of individuals within a 

group). Resulting scores plots  (Figure 4) revealed clustering within age groups but 

not as much segregation as was expected. Despite the overlap, the classes were 

significantly segregated (P <00001). 

 

 
Figure 4. (A) PCA-LDA scores plots showing separation between age groups in 

every histological compartment. The X-axis represents LD1 and the Y-axis LD2. (B) 

Loadings plots (LD1) showing the principal discriminating wavenumbers in graphical 

form. The X-axis is cm-1 and the Y-axis represents absorbance coefficient. 
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Corresponding loadings plots (Figure 4) identified the 6 wavenumbers 

responsible for maximum segregation between age groups for each histological 

location. Another spectral signature corresponding to RHS Amide I (1,456cm-1) was 

one of the segregating wavenumbers for the TDLU area. Therefore, RHS Amide I 

was responsible for segregation between individuals as well as between age groups 

within the TDLU location. In the case of Intra-LS, DNA/RNA (1,080 cm-1) alterations 

were not found to be responsible for segregation between age groups. Instead the 

principal segregating wavenumber was associated with ring base (1,554cm-1). 

All age groups were segregated in every histological class by glycogen (1040cm-1). 

 

Inter-individual and temporal variations within the TDLU 

Concentrating on the TDLU, spectra derived from point maps acquired via the 10 µm 

× 10 µm beam aperture were extracted and assigned to myoepithelial or luminal cells. 

Spectra from these histological areas were classified initially according to individuals 

within age groups and were analysed using a similar technique to the previous 

analyses to identify wavenumbers responsible for segregation between these more 

specific areas. There was some segregation between the different cellular classes, 

although with considerable overlap. This segregation was nevertheless significant (P 

<0.0002) in all age groups (Figure 5). 
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Figure 5. (A) PCA-LDA 1D scores plots showing some separation between luminal 

and myoepithelial cells within the TDLU for the different age groups. The X-axis 

represents LD1 (B) loadings plots showing the principal discriminating numbers. The 

X-axis is cm-1 and the Y-axis represents absorbance coefficient. (C) Tables of 

discriminating wavenumbers with their corresponding biochemical markers. 

 

 

After the confirmation that luminal and myoepithelial cells are segregated, each 

location was separately analysed to identify wavenumbers responsible for segregation 

between age groups within them (Figure 6). Amide I again featured as one of the 

significant segregating wavenumbers in both luminal and myoepithelial cell layers. 

Interestingly, within the myoepithelial layer one of the principal discriminating 

wavenumber was for PO2
- (1,094cm-1). This wavenumber has been found to be 

associated with stem cells in a variety of tissues including TDLUs in a previous study 

performed by this group and other studies (Brown et al., 1999; Patel et al., 2014). 
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Figure 6. (A) PCA-LDA scores plots showing separation between different age 

groups for the TDLU compartment with a table of the principal discriminating 

wavenumbers and corresponding biochemical markers. (B) PCA-LDA scores plots 

showing separation between different age groups for the luminal and myoepithelial 

cell regions. The X-axis represents LD1 and the Y-axis LD2. (C) Tables show the 5 

major segregating wavenumbers with their corresponding biochemical markers. 
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Exploratory PCA within the myoepithelial and luminal layers 

To further investigate the existence of spectral discriminating factors within the 

myoepithelial and luminal layers, IR spectra taken via the 10 µm × 10 µm aperture 

were extracted from the image maps of all individuals. These spectra were not 

averaged. They underwent exploratory PCA which is an unsupervised analytic 

technique using the first 10 PCs, which account for about 99% of variance. Three-

dimensional scores plots were extracted representing the 3 first PCs (Figure 7a). Each 

point on the resulting scores plots represented a single point on the image map. Both 

plots identified spectral points that segregated from the clustered spectra. These 

“outliers” were particularly obvious on the PC3 axis in the case of myoepithelial cells. 

Loadings plots for PC3 identified the wavenumbers responsible for the separation of 

“outliers” from the clustered spectra (Figure 7b). In a similar way PC1 was most 

responsible for spectral points segregating from clustered spectra on PCA scores plots 

for luminal cells. Loadings plots for PC1 were used to extract the first 6 segregating 

wavenumbers. The major discriminating factor in both cases was Amide I. 
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Figure 7. (A) 3-D scores plots of exploratory PCA using 10 first PCs examining 

luminal and myoepithelial cells separately to identify outliers which may represent 

residing stem cells. (B) Corresponding loadings plots for PC1 for luminal cells and 

PC3 for myoepithelial cells identify the major segregating wavenumbers. (C) Tables 

show the 6 major segregating wavenumbers with their corresponding biochemical 

markers. 

 

 

Discussion 

The purpose of this study was to identify spectral differences within normal breast 

tissue of women of similar ages as well as differences that occur with age. Using the 

IR radiation beam of a synchrotron facility, normal breast tissues from eleven healthy 

women were examined. Specifically the areas interrogated were terminal ductal 

lobular units (TDLU) and surrounding intra-lobular and inter-lobular stroma. 
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Morphological and molecular alterations within these areas have been shown to be 

directly associated with carcinogenesis in breast (Allred et al., 2001; Yang et al., 

2013). Spectroscopic analysis of these areas in healthy individuals may reveal specific 

molecular causes of the vast heterogeneity that exists within breast tissues. It may also 

reveal alterations that predate carcinogenesis as defined by primary pre-cancerous 

changes including hyperplasia, premalignant changes and carcinoma in situ (Yang et 

al., 2013). The SR-FTIR spectra obtained were from the mid-IR region of the 

spectrum from 900 to 1800cm-1 within which the spectral signatures of most bio-

molecules can be identified (Movasaghi et al., 2008).  

Computational analysis of the obtained spectra identified significant 

differences between individuals of similar ages. Some of the discriminating 

wavenumbers responsible for this variation were responsible for similar variation in 

all age groups. Namely, Amide I was responsible for inter-individual variability 

within the TDLU while DNA/RNA (O-P-O stretching) was responsible for separation 

of INTRA-LS in all age categories. Other spectral bio-molecular signatures were only 

associated with separation of specific histological locations only in one age group 

(Table 2). Also certain wavenumbers could identify inter-individual variations within 

age groups while others could identify inter-individual variation in all age groups, 

illustrating the vast heterogeneity that exists. Many factors contribute to this 

heterogeneity. They include: previous history of breast cancer, positive family history 

with or without BRCA mutations, nulliparity, late parity, high body mass index, use 

of hormonal contraception or hormone replacement therapy and menopausal status 

(Helmrich et al., 1983; Kelsey et al., 1981; Kelsey et al., 1993).  

When analysing spectral signatures of the same histological areas for temporal 

variations between the three defined age groups it was noted that there was co-
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clustering of spectra from the same age groups and segregation between groups for all 

areas (Figure 4). Histologically breast tissue undergoes several changes with age. 

These changes start at thelarche with the branching of the lactiferous ducts and reach 

maturity in puberty with the formation of the adult TDLU. Changes continue in a 

cyclical fashion with menstrual cycles. Pregnancy and lactation cause hyperplasia of 

the TDLU. After menopause the TDLU involutes but the pattern of involution is 

different for nulliparous and parous women. The morphological and functional 

differentiation of the mammary epithelium is directly dependent or systemic 

hormones (mainly oestrogen and progesterone) but also by local signalling by the 

adjacent stroma (Howlett & Bissell, 1993). Our study was able to identify potential 

spectral alterations that may be associated with age-related histological appearances. 

Some of these alterations were unique to particular histological areas (TDLU, Inter-

LS or Intra-LS) while some were responsible for separation between ages in all areas 

(Table 3). Spectral alterations within the TDLU and surrounding stroma, may provide 

evidence to support age related changes in the functional interaction between these 

areas. Furthermore these interaction alterations may be associated with the initial 

steps in breast carcinogenesis (Howlett & Bissell, 1993; Hu & Polyak, 2008; Ronnov-

Jessen & Bissell, 2009; Ronnov-Jessen et al., 1996). 

It is widely accepted that that the first morphological changes associated with 

cancer occur in the bi-layered TDLU epithelium (Vargo-Gogola & Rosen, 2007). It 

has also been hypothesized that micro-anatomical changes predating pre-cancerous 

changes reside in the same areas (Jonine D. Figueroa, 2012). In order to further 

examine the role of IR spectroscopy in identifying such changes within each layer of 

the TDLU, IR spectra taken from this location were reclassified into luminal and 

myoepithelial cell categories. These spectra were analysed using multivariate analysis 
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as before. When investigating inter-individual variations, the resultant 1-D scores 

plots revealed significant separation between the two layers in all age groups. Related 

loadings curves identified the responsible wavenumbers and their corresponding 

molecules are presented in Figure 6. These spectral variations may be associated with 

morphological differences that are specific to a particular cellular layer of the TDLU 

rather than the whole TDLU structure. They may be used to pinpoint the cells 

associated with the increase in breast cancer risk.  

The same two layers were examined for spectral variation between age groups. 

2-D scores plots identified some segregation between age groups for both cellular 

layers. Amide I featured as a major discriminatory molecule for both cell types as 

well as for the whole TDLU. Unsupervised exploratory PCA of the luminal and 

myoepithelial cells identified aberrant spectral signatures in both layers. These 

signatures may represent multi-potent or uni-potent stem cells responsive are either 

age related or hormone dependent alterations. Indeed, there is expanding evidence 

that FTIR is capable of identifying stem cells in several tissues including cornea, 

epidermis and intestine (Fogarty et al., 2013; Kelly et al., 2010; Patel et al., 2012; 

Walsh et al., 2008; Walsh et al., 2009). Similarly stem cells within the mammary 

gland may undergo continuous differentiation under hormonal or micro-

environmental influences and account on the diversity of breast tissue (Howlett & 

Bissell, 1993). They may also represent pluripotent progenitor cells whose abnormal 

differentiation under oxidative stress in adjacent stroma can lead to carcinogenesis 

(Howlett & Bissell, 1993; Hu & Polyak, 2008; Medema & Vermeulen, 2011; Vargo-

Gogola & Rosen, 2007). 

  



	 251	

Conclusion 

With this study we demonstrated that ST-FTIR micro-spectroscopy coupled with 

multivariate computational analysis might be to identify discriminating biomarkers 

for both inter-individual and temporal variation within breast tissue. We also 

demonstrated the histological locations where this variation potentially occurs. This is 

particularly important as it demonstrates the potential interplay between external 

environmental influences, endogenous hormonal control and micro-environmental 

communication with the epithelial cells of the TDLU similarly to other tissues (Cunha 

& Ricke, 2011; Hu & Polyak, 2008; Purandare et al., 2013; Ricke et al., 2012; 

Ronnov-Jessen et al., 1996). Although specific molecular changes associated with the 

vast variability encountered in the mammary gland remains elusive spectral imaging 

is able to identify classes of molecules that may be used in the search for biomarkers 

associated with the initiation of breast disease. In the future, FTIR spectroscopy may 

be able to track molecular changes within particular cell layers involved in disease to 

produce a database of related biomarkers (Trevisan et al., 2012). Moreover 

spectroscopy involves non-destructive procedures that do not produce oxidative 

radiation, as is the case with mammography (Yaffe & Mainprize, 2011). Therefore it 

can be used to obtain molecular profiles of cell populations in situ (Patel et al., 2012). 

Identification of such biomarkers may be followed by the application of bio-

spectroscopic techniques in clinical practice. Spectral alterations associated with 

increased risk of breast cancer in a healthy population, may be used as biomarkers in 

potential population-screening programs without the need to identify high-risk 

individuals for inclusion to such a program. Further research in the field is required to 

assess spectroscopic applications in the search for biomarkers for screening for breast 
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disease. Once specific biomarkers are established similar techniques may translate 

into clinical practice for the evaluation biomarkers within live breast tissue. 
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Tables 

Table 1. Spectra for each histological compartment for most patients were averaged 

by a factor of 2, 3 or 5 to aid visualisation in scores plots. 

Patient/Averaging								
factor	

TDLU	 Inter-LS	 Intra-LS	 Myo-
epithelial	

Luminal	

P1	 2	 1	 1	 2	 1	
P2	 3	 2	 2	 2	 1	
P3	 3	 2	 2	 2	 1	
P4	 5	 5	 5	 2	 1	
P5	 5	 5	 5	 2	 1	
P6	 5	 5	 5	 2	 2	
P7	 5	 5	 5	 2	 2	
P8	 1	 1	 1	 1	 1	
P9	 2	 1	 5	 1	 1	
P10	 5	 5	 5	 2	 1	
P11	 1	 2	 1	 1	 1	
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Table 2. Principal segregating wavenumbers between individuals of each age group 

for each histological compartment. All wavenumbers were tested for significance 

using the ANOVA test with P <0.0001	

	 20-29	 30-39	 40-49	

Wavenumber/	
Area	

TDLU	 Intra-
LS	

Inter-
LS	

TDLU	 Intra-
LS	

Inter-
LS	

TDLU	 Intra-
LS	

Inter-
LS	

1,780*	 	 	 	 	 	 X	 	 X	 	

1,709:	C=O	 	 	 	 	 X	 	 	 	 	

1,693:	Amisde	I	
(C=O)	

	 	 	 	 	 	 	 	 	

1,671	 Amide	 I	
(C=C)	

	 X	 	 	 	 	 X	 	 	

1,650:	Amide	I		

(C=O	 stretch	
and	 C-N	
stretch)	

	 	 	 	 	 	 X	 	 X	

1,630:	 RHS	
Amide	I	

(C=O	 stretch	
and	 C-N	
stretch)	

X	 	 	 X	 X	 	 X	 	 X	

1,550:	Amide	II	

(N-H	 bend	 and	
C-N	stretch)	

	 	 X	 X	 	 	 	 	 X	

1,470-1,473:	
(CH2	bend)	

X	 X	 	 X	 X	 	 	 	 	

1,451:	(CH3)	 X	 	 	 	 X	 	 	 	 X	

1,375:		

(C-N:	 cytocine,	

	 X	 	 	 	 X	 	 X	 	
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guanine)	

1,232:	(PO2)	 	 	 	 	 X	 	 	 	 X	

1,225:	DNA	

(O-P-O	
asymmetric	
stretch)	

X	 	 	 	 X	 	 	 	 X	

1,200-1,210:	
RNA	Ribose	

(C-O	
stretching)	

	 	 X	 	 	 	 X	 	 X	

1,140:	
Phosphate/	
oligoscharites	

	 	 X	 	 	 X	 	 X	 	

1,080:	
DNA/RNA	

(O-P-O	
stretching)	

	 X	 	 	 X	 X	 X	 X	 	

1,053-1,063:		

(C-O:	
carbohydrates)	

	 X	 	 	 	 	 X	 	 	

1,040:	
Glycogen	

(C-O-H	bond)	

	 X	 	 	 	 	 X	 	 	

1,018:	 (C-O,	 C-
C,	OCH)	

	 X	 X	 X	 	 	 	 	 	

922:	 (Left	
Handed	DNA)	

	 	 	 	 	 X	 	 X	 	
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Table 3. Principal segregating wavenumbers between age groups for each histological 
compartment. All wavenumbers were tested for significance using the Anova test 
with P <0.0001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

	  

Wavenumber	 TDLU	 Intra-LS	 Inter-LS	

1,680:	Amide	I	 	 	 X	

1,650:	Amide	I		(C=O	stretch	and	C-N	stretch)	 X	 X	 	

1,550:	Amide	II	(N-H	bend	and	C-N	stretch)	 	 X	 X	

1,495:	C=C	 	 	 X	

1,456-	1,460:	CH3	methyl	groups	 X	 X	 	

1,375:	C-N	cytosine	guanine	 	 X	 	

1,238-1,242:	v(PO2)	 X	 	 X	

1,225:	DNA	(O-P-O	asymmetric	stretch)	 X	 	 	

1,219:	(PO2)	 	 	 X	

1,200:	RNA	Ribose	(C-O	stretching)	 	 	 	

1,080:	DNA/RNA	(O-P-O	stretching)	 X	 	 	

1.061:	C-O	deoxyribose	 	 	 X	

1,040:	Glycogen	(C-O-H	bond)	 X	 X	 	
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Discussion: 

Overview: 

In recent years powerful instrumentation and analytic techniques have allowed the 

utilisation of biospectroscopic methods in cancer research. The associated techniques 

have been assessed for their potential in identifying cancer in tissues and bio-fluids. 

They have also been used to classify cancer subtypes and locate stem cells that may 

be associated with cancer initiation.  

This thesis investigates ATR-FTIR, synchrotron based FTIR and Raman spectroscopy 

for their potential in identifying differences within seemingly healthy populations. 

These novel methods may be able to extract biomarkers that may classify a section of 

a population that has a “high” risk of developing specific types of cancer. 

Biospectroscopy is shown to be a valid adjunct or even an alternative to well 

established techniques like histopathology and immunochemistry and has been used 

in vitro and in vivo (Buschman et al., 2000). It’s potential to be used in the clinical 

setting assisting in both diagnostics and therapeutics is slowly coming to light. Further 

research will inevitably improve the quality of related hardware and software and may 

provide a simple alternative to routine investigations and procedures being performed 

today. 

Carcinogenesis is a complex multifactorial process and no single research 

methodology is sufficient in identifying events that are associated with commitment 

to cancer development or progression. This thesis explores the role of 

biospectroscopy in carcinogenesis research. “Systems biology” is the combination of 

data from several high throughput technologies aiming to examine the functional 

progression to tumorigenesis, delving into genetics, epigenomics, transcriptomics, 
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proteomics, metabolomics, toponomics (Hood et al., 2004). Biospectroscopy may 

play a central role in systems biology as it can search for related chemical biomarkers 

independent on the functional compartment where they may reside.  

This thesis also investigates spectral similarities and differences that may exist within 

the functional histological areas of benign breast tissue. Women of similar age groups 

were examined for inter-individual spectral variations, as did women of differing age 

groups. Despite the vast variability between breast tissues of women of even similar 

ages, spectral biomarkers were identified that remain unchanged with advancing age 

but distinguish between women within the same age group. These biomarkers may 

potentially harbour alterations that may be utilised for research for the very early 

stages of commitment to cancer development. The same project attempted the 

localisation of stem cells from which carcinogenesis may generate within the TDLU. 

It is well documented that the risk of prostatic cancer varies significantly amongst 

men of different ethnicities and also depends on geographical position (Ferlay et al., 

2015). As with any hormone dependent cancers it is believed that the increased risk of 

prostatic cancer noticed in the Western hemisphere is associated with the adoption of 

a “Westernised lifestyle” (Leitzmann & Rohrmann, 2012). Within this thesis we set 

out to determine whether benign prostatic tissue has altered spectroscopically within 

the past 30 years. Prostatic tissue of similarly aged men was interrogated by ATR-

FTIR and Raman spectroscopy, which combined with chemometric analysis 

identified transgenerational alterations within this tissue. Areas associated with 

epigenetic variation which itself is dependent on environmental influences were most 

prominently related to these alterations. These findings were further validated by the 

use of immunohistochemical techniques that identified differences in the methylation 

status of prostate tissues harvested one generation apart. 
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The conventional approach to the diagnosis of ovarian cancer has inherent limitations 

due to the low sensitivity and specificity of non-invasive tests such as radiological and 

biochemical tests. Therefore histopathological diagnosis is usually required at the 

time of surgery to distinguish between benign, borderline and malignant ovarian 

tumours. The characterisation of these tumours is essential for planning the type of 

operation performed and adjuvant therapy. ATR-FTIR has the potential to be utilised 

within surgical theatres to either examine excised ovarian tumours in real time or even 

in vivo. This thesis describes a pilot study examining the value of ATR-FTIR in 

discriminating benign, borderline and malignant ovarian tissues and also 

differentiating between the different subtypes of ovarian carcinomas in vitro. The 

application of ATR-FTIR in conjunction with a classification machine was able to 

correctly classify the different ovarian tumours opening the road for more extensive 

research in fresh tissue or in vivo using handheld ATR devises.  

This thesis provides evidence that biospectroscopy has great potential to be used in 

research to identify biomarkers associated with early carcinogenesis. It has identified 

minute differences in benign mammary tissue that persist with age and where 

biomarkers associated with increase risk for future cancer may reside. It has also 

shown that benign prostatic tissue has undergone trans-generational alterations that 

may be influenced by lifestyle changes within the past thirty years. It was also able to 

prove that biospectroscopic techniques are able to classify ovarian tumours. 

Although the work done encourages the progression of the field of biospectroscopy it 

is not without limitations. For example, as a proof of principle, diagnostic segregation 

of ovarian cancer from control as well as separation of carcinoma subtypes by ATR-

FTIR is possible in laboratory-based experiments. However, its application in the 

clinical setting using fresh tissue or tissue in-vivo will require further research. Also, 
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while both ATR-FTIR and Raman techniques have successfully identified trans-

generational differences within prostatic tissue the results will need validation in 

larger and more diverse population groups. More-over this research has identified 

inter-individual and temporal variation within benign mammary tissue but has not 

directly associated this variation with an increased risk of breast cancer. The specific 

spectral regions contributing to the identified variability will need to be further 

examined comparing breast cancer with controls to pinpoint relevant biomarkers. 

Overall, this thesis addresses four general topics regarding biospectroscopic 

methodology. Firstly, it explores the role of biospectroscopy within a systems biology 

approach towards identification of carcinogenic events. Secondly, it investigates 

variability in benign breast tissue of similarly aged women and groups of women of 

different ages identifying specific spectral regions responsible for that variability. At 

the same time it suggests the specific location of stem cells within the TDLU. Thirdly 

this work investigates trans-generational differences within benign prostatic tissue 

suggesting epigenetic variability. Lastly it provides evidence that biospectorscopy can 

correctly classify ovarian tissue distinguishing between benign, borderline malignant 

and cancerous tumours. 

The next sections describe each of the studies carried out towards the completion of 

this thesis. They include a summary of the hypotheses, findings and conclusions and 

the rationale for inclusion in this work. Lastly a generalized conclusion discusses 

suggestions for future work that may explore further the translatory potential of 

biospectroscopy from a laboratory-based research tool to a technology that can be 

applied in clinical research and ultimately used in front-line medical practice. 
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Extracting biomarkers of commitment to cancer development:  potential role of 

vibrational spectroscopy in systems biology.  

 
Systems biology is a new approach to understanding physiological and 

pathophysiological processes (Kitano, 2002). Systems biology can bring together 

several high throughput methodologies for identifying elements of cellular function 

that may be associated with tumour formation. It has an important role to play in 

research concerning carcinogenesis due to the complexity and diversity of the 

mechanisms that govern initiation and progression to malignancy (Sarasin, 2003; 

Vineis et al., 2010). This approach collects data from the sciences of genomics, 

epigenomics, transcriptomics, proteomics, metabonomics and toponomics to answer 

questions about the pathways that may be followed by cells individually and as a 

group for the initiating steps for tumourigenesis to occur. New technologies have 

allowed rapid and precise mapping of cellular processes associated with 

tumourigenesis identifying several biomarkers on the way. The mechanisms 

governing alterations that lead to cancer are multifactorial and do not only involve 

genetics or epigenetics, for example. Therefore relying on a technology that is capable 

to only explore one of the functional elements of the cellular pathophysiology would 

always be incomplete. This can be explained by the needle in the haystack allegory, 

where each of the sciences mentioned above is looking for a needle in a different 

haystack in a field of haystacks. The place of biospectroscopy within such an allegory 

is that this technology has the potential to point towards the haystack or haystacks 

where the needle is probably located. Biospectroscopy methodology at this time is not 

accurate enough to identify specific biomarkers for carcinogenesis but can point 

towards particular cellular compartments where they may reside, for example within 
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the proteomic or metabolic make-up of the cells. This would allow more directed data 

analysis by other techniques for extracting such biomarkers. The datasets produced by 

biospectroscopic instrumentation can be made compatible with current online data-

stores and search machines that are used for systems biology type research. The 

resulting data combinations along with powerful analytic techniques that can explore 

the data and validate their results internally and externally have the potential to 

answer specific questions regarding the mechanisms behind malignant phenotypes 

and may find common pathways for the development of this group of diseases. 

 

Biospectroscopy for the diagnostic segregation of human ovarian tumours. 

Current methods for the diagnosis of ovarian cancer have significant limitations 

stemming from the heterogeneity of ovarian tumours and the inability to define 

accurately their malignant potential without surgical excision and histolpathological 

evaluation (Brun et al., 2000). Although biochemical tumour markers in combination 

with radiological investigations have met some success in identifying individuals 

whose ovarian tumours have an increased risk of being malignant, clinical intra-

operative judgement and histopathological diagnosis inform planning the radicality of 

surgery and subsequent chemotherapeutic management. Previous research suggested 

that ATR-FTIR on blood and serum, coupled with variable selection techniques has 

the ability to segregate ovarian cancer stages (Lima et al., 2015). We wanted to 

evaluate the same technique for its potential use on ovarian tissue rather than biofluids. 

Our aim was to explore the diagnostic potential of biospectroscopic methods on 

ovarian tissue and characterise specific molecular alterations associated with ovarian 

tumour types. We utilised several analytical methods including PCA-LDA, SPA-LDA, 
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GA-LDA, multivariate control charts, spectral ratios and classification machines to 

achieve segregation of these tumours with excellent results. 

Ovarian tissues were collected from a biobank with appropriate ethics approval and 

were de-waxed and dehydrated before ATR-FTIR spectral acquisition. The resulting 

spectral datasets were classified according to their histopathological diagnosis. 

Different chemometric techniques achieved relatively accurate classification of 

ovarian tumour types into benign, borderline malignant and carcinomas. Interestingly 

lipid to protein ratio, phosphate to carbohydrate ratio and RNA to DNA ratios 

segregated ovarian carcinomas from borderline and benign tumours. Multivariate 

control charts are routinely used in quality control but their successful application in 

the classification of ovarian tumours may signify their value in cancer research. 

An assortment of relevant variable selections techniques was combined to form a 

classification machine, which successfully categorised different ovarian carcinoma 

subtypes. This illustrated that for certain applications a combination of analytical 

methods is better than the utilisation of a single one and not exceedingly difficult to 

employ. 

This trial provided evidence for the potential that biospectroscopic methods possess in 

correctly classifying ovarian tumours. ATR-FTIR spectroscopy should now be 

applied on fresh tissue in real time (intra-operatively) and compared with concurrent 

histopathology for validation of the accuracy of this method. With time handheld 

ATR-FTIR instrumentation may be used to attempt classification of ovarian tumours 

in vivo. 
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Identification of trans-generational variation in human benign prostatic tissue 

by biospectroscopic techniques. 

Prostatic cancer incidence is consistently increasing with time (Parkin et al., 1999). 

This fact may be associated with environmental and lifestyle adaptations that have 

occurred over decades (Alberti, 2010). “Westernised lifestyle” which is associated 

with an increase in obesity, diabetes, metabolic syndrome and others may play a role 

in the increase in the incidence of hormone dependent cancers. We set out to identify 

the molecular markers of potential variation between benign prostatic tissues that 

were harvested from similarly aged men classified according to the year these tissues 

were harvested by TURP procedures.  

Paraffin embedded tissue blocks (n=156) were de-waxed, washed and processed by 

ATR-FTIR and Raman techniques. The resulting spectral datasets were distributed 

according to the year of collection and analyzed by PCA-LDA, SPA-LDA and GA-

LDA. ATR-FTIR was better than Raman at correctly classifying these tissues 

according to the year of collection, possibly due to the larger area sampled from each 

specimen owing to the size of the diamond in contact with each sample. There was 

distinct segregation between prostatic tissue harvested more than 30 years apart, but 

also a progressive movement from one class to the other when viewing the associated 

scores plots. The spectral regions that contributed to this classification included areas 

involved with epigenetic variation, namely methylation. Immunohistochemistry was 

therefore performed to evaluate methylation differences between tissues separated by 

one generation with positive results. 

This study points to environmental and lifestyle factors contributing to an increased 

incidence of prostatic cancer, albeit indirectly. Further research will be needed to 
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perform more specific epigenetic studies to identify specific genomic regions affected 

by these alterations. The population used for this study extended from 1984 to 2013. 

A population that extended several generations in the past would allow the 

identification of potential alterations that have occurred at times when lifestyle was 

more drastically different. 

 

Spatial and temporal age related spectral alterations in benign human breast 

tissue: visualizing pre-initiation events in disease free tissue. 

Breast tissue varies significantly amongst women according to age, ethnicity, parity, 

pregnancy, exogenous hormones, previous breast cancer, positive family history with 

or without BRCA mutations and menopausal status (Broeders & Verbeek, 1997; 

Yager & Davidson, 2006). This variability makes it extremely difficult to identify 

biomarkers that may be indicative of an increased risk of developing cancer in the 

future. Identifying spectral similarities and differences between benign breast tissues 

in target histological areas, where breast cancer is believed to arise may be central in 

identifying putative screening biomarkers for cancer. These areas involve the TDLU 

and the surrounding stroma as histologically these areas are implicated in ductal 

carcinoma in situ, which precedes overt carcinoma (Gudjonsson et al., 2005). 

Identifying the molecules that account for the vast variability of the TDLU and 

surrounding inter- and intra-lobular stroma, both between individuals and between 

groups of individuals of different ages could allow the identification of biomarkers 

that could be used in future screening for breast cancer. 

Paraffin embedded tissue blocks (n=11) were de-waxed and washed and processed 

using the synchrotron facilities at the Diamond Synchrotron (Oxford). Point spectra 
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were obtained that included the luminal, and myoepithelial layers of the TDLU and 

surrounding stroma. This allowed comparison between the sample population for the 

specific histological areas. It also allowed the exploration of these areas for the 

localization of putative stem cells. Abnormalities within these stem cells may contain 

the initiating steps towards breast carcinogenesis. 

The resulting spectral datasets were analyzed using PCA-LDA. The analyses 

identified differences but also similarities that existed between individuals of similar 

ages. Some of this spectral similarity was carried through all age groups and may 

represent a constant molecular structure. This constant may warrant more research 

comparing benign breast tissue with cancerous concentrating on these spectral areas. 

Any identified variability here may be associated with cancer development. Therefore 

FTIR spectroscopy may be able to track molecular changes within particular cell 

layers involved in carcinogenesis to produce a database of related biomarkers that can 

be used in healthy population screening (Trevisan et al., 2012). 
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Conclusions: 

Vibrational spectroscopy techniques for biological research have gained a lot of 

momentum in recent years. Their application has been assisted greatly by the creation 

of powerful chemometric analysis software. The fact that relatively simple processing 

techniques are required to examine both tissues and bio-fluids has allowed their use in 

laboratory-based research. Moreover spectroscopy involves non-destructive 

procedures and can be used on live subjects in some instances. 

Biospectroscopy is able to identify specific molecules by detecting the precise 

chemical bond structure within them. Therefore different proteins, carbohydrates, 

lipids and nucleic acids can be described depending on their individual “spectral 

finger-print”. The spectral properties of cellular components can thus be examined for 

putative biomarkers for disease. Identification of such biomarkers may be followed by 

the application of bio-spectroscopical techniques in clinical practice. 

The application of biospectroscopy in clinical practice is twofold; one function is to 

extract biomarkers associated with disease or increased risk of developing a disease. 

Another function is to classify populations according to their spectral differences. 

This allows classification of tissues and bio-fluids according to their histopathological 

and cytopathological phenotypes.  Therefore, this group of technologies has the 

potential to assist in the identification and classification of disease including cancer. 

This thesis has provided information on the value of biospectroscopy in cancer 

research. It has explored the use of associated techniques in the identification of 

cancer and the classification of cancer subtypes. It has also investigated the potential 

of biospectroscopy to extract biomarkers of variability in healthy individuals 

indirectly relating them to their risk for cancer development. 
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Spatial and temporal age related spectral alterations in benign human 
breast tissue: visualizing pre-initiation events in disease free tissue. 
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Abstract 
 
Epidemiological evidence suggests that cancer with a pathogenesis 

attributable to exogenous carcinogenic agents may appear decades after 

initial exposure.  

Hormone sensitive cancers including breast cancer implicate such 

environmental factors as lifestyle and diet for their aetiology. 

Breast tissue undergoes continuous molecular and histological changes from 

the time of thelarche to menopause and thereafter.  These alterations are both 

cyclical and longitudinal and depend on can be influenced by several 

environmental factors such as exposure to estrogen through pregnancy and 

breastfeeding, use of contraception and diet to name but a few. 

Available research of latent stages of breast carcinogenesis has been limited 

to the time when hyperplastic lesions are present. Investigations aiming to 

identify a biomarker of commitment to disease in normal breast tissue are 

hindered by the molecular and histological diversity of disease free breast 

tissue. 

Benign breast tissue from reduction mammoplasties provides an opportunity 

to study cellular biochemical differences between women of similar ages as 

well as differences appearing with advancing age. In this study, synchrotron 

radiation Fourier-transform infrared micro-spectroscopy (SR-FTIR) has been 
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used to examine the terminal ductal lobular epithelium (TDLU), intra- and 

inter- lobular epithelium aiming to identify spatial and temporal changes within 

these areas.  

Principal component analysis followed by linear discriminant analysis of the 

mid-infrared spectra obtained by these cellular areas revealed unambiguous 

inter-individual as well as age related differences in each histological 

compartment interrogated. 

Moreover, exploratory principal component analysis of luminal and myo-

epithelial cells within the TDLU indicated the presence of specific cells, which 

may potentially represent stem cells. 

Understanding of alterations within benign tissue may assist in the 

identification of a potential biomarker of commitment to disease within the 

latent pre-clinical stage of breast cancer. 
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Attenuated	 total	 reflection	 infrared	 spectroscopy	 coupled	 with	
multivariate	analysis	discriminates	subtypes	of	human	ovarian	cancer	

Georgios	 Theophilou,	 Alana	 Mitchell,	 Helen	 F	 Stringfellow,	 Pierre	 L	 Martin-
Hirsch	and	Francis	L	Martin	

Centre	for	Biophotonics,	LEC,	Lancaster	University,	Lancaster	LA1	4YQ	

	

Surgical	 management	 of	 ovarian	 tumours	 largely	 depends	 on	 their	 histo-
pathological	diagnosis.	Currently,	screening	for	ovarian	malignancy	with	tumour	
markers	in	conjunction	with	radiological	investigations	has	a	low	specificity	for	
discriminating	 benign	 from	 malignant	 tumours.	 Also,	 pre-operative	 biopsy	 of	
ovarian	 masses	 increases	 the	 risk	 of	 intra-peritoneal	 dissemination	 of	
malignancy.	 Intra-operative	 frozen	 section,	 although	 sufficiently	 accurate	 in	
differentiating	tumours	according	to	their	histological	type,	 increases	operation	
times.	 This	 results	 in	 increased	 surgery-related	 risks	 to	 the	 patient	 and	
additional	burden	to	resource	allocation.	

We	set	out	 to	determine	whether	attenuated	 total	 reflection	Fourier-transform	
infrared	 (ATR-FTIR)	 spectroscopy,	 combined	with	multivariate	 analysis	 can	be	
applied	 to	 discriminate	 between	 normal,	 borderline	 and	 malignant	 ovarian	
tumours	and	classify	ovarian	tumour	subtypes	according	to	the	unique	spectral	
signatures	of	their	molecular	composition.		

Formalin	 fixed,	 paraffin-embedded	 ovarian	 tissue	 blocks	 were	 de-waxed,	
mounted	on	Low-E	slides	and	desiccated	before	being	analysed	using	ATR-FTIR	
spectroscopy.	Multivariate	analysis	 in	the	form	of	principal	component	analysis	
(PCA),	 sequential	 progressive	 algorithm	 (SPA)	 and	 genetic	 algorithm	 (GA),	
followed	by	linear	discriminant	analysis	(LDA)	of	the	obtained	spectra	revealed	
clear	segregation	between	benign	versus	borderline	versus	malignant	tumours	as	
well	as	segregation	between	different	histological	tumour	subtypes,	when	these	
approaches	are	used	in	combination.	

ATR-FTIR	spectroscopy	coupled	with	chemometric	analysis	has	the	potential	to	
provide	a	novel	diagnostic	approach	in	the	accurate	intra-operative	diagnosis	of	
ovarian	tumours	assisting	surgical	decision	making	to	avoid	under-treatment	or	
over-treatment,	with	minimal	impact	to	the	patient.	
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Abstract 

Prostate cancer is the most commonly diagnosed male malignancy in the world; 
however, there is marked geographic variation in its incidence. This may be 
associated with adoption of a Westernised lifestyle. We set out to determine whether 
attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy or 
Raman spectroscopy combined with principal component analysis-linear discriminant 
analysis (PCA-LDA) or variable selection techniques employing genetic algorithm 
(GA) or successive projection algorithm (SPA) could be utilised to explore 
differences between prostate tissues obtained from differing years. In total, 156 
prostate tissue samples from transurethral resection of the prostate (TURP) 
procedures for benign prostatic hyperplasia (BPH) were collected from 1983 to 2013. 
These were distributed according to the year of collection to form seven categories: 
1983-1984 (n=20), 1988-1989 (n=25), 1993-1994 (n=21), 1998-1999 (n=21), 2003-
2004 (n=21), 2008-2009 (n=20) and 2012-2013 (n=21). Ten-µm-thick tissue sections 
were floated onto Low-E (IR-reflective) slides for ATR- FTIR or Raman 
spectroscopy. Resulting scores plots for PCA-LDA, SPA-LDA or GA-LDA from 
ATR-FTIR data revealed marked segregation between the seven categories. In fact, 
there was a chronological development of prostate tissue spectroscopic alterations 
with successive categories. This classification was less evident following Raman 
spectroscopy but here also, a significant separation between categories was identified. 
Moreover, examination of the two categories that are at least one generation (30 
years) apart indicated highly significant segregation, especially at spectral regions 
containing DNA and RNA bands (≈ 1,000-1,490 cm-1), involving nucleic acids, 
phosphate and deoxyribose modifications. This may point towards alterations that 
have occurred through chemical genotoxicity or through epigenetic modification of 
chromatin structure. Immunohistochemical studies for DNA methylation and hypo-
methylation supported the results obtained by vibrational spectroscopy. This study 
points to a trans-generational phenotypic change in human prostate as a function of 
spectral alterations. 
	


