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Abstract

We propose a new method, based on machine learning techniques, for the analysis of a combination of continuous data
from dataloggers and a sampling of contemporaneous behaviour observations. This data combination provides an
opportunity for biologists to study behaviour at a previously unknown level of detail and accuracy; however, continuously
recorded data are of little use unless the resulting large volumes of raw data can be reliably translated into actual behaviour.
We address this problem by applying a Support Vector Machine and a Hidden-Markov Model that allows us to classify an
animal’s behaviour using a small set of field observations to calibrate continuously recorded activity data. Such classified
data can be applied quantitatively to the behaviour of animals over extended periods and at times during which
observation is difficult or impossible. We demonstrate the usefulness of the method by applying it to data from six cheetah
(Acinonyx jubatus) in the Okavango Delta, Botswana. Cumulative activity data scores were recorded every five minutes by
accelerometers embedded in GPS radio-collars for around one year on average. Direct behaviour sampling of each of the six
cheetah were collected in the field for comparatively short periods. Using this approach we are able to classify each five
minute activity score into a set of three key behaviour (feeding, mobile and stationary), creating a continuous behavioural
sequence for the entire period for which the collars were deployed. Evaluation of our classifier with cross-validation shows
the accuracy to be 83%{94%, but that the accuracy for individual classes is reduced with decreasing sample size of direct
observations. We demonstrate how these processed data can be used to study behaviour identifying seasonal and gender
differences in daily activity and feeding times. Results given here are unlike any that could be obtained using traditional
approaches in both accuracy and detail.
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Introduction

Advances in technology are allowing biologists to collect large

amounts of high resolution data without the need to be physically

present. This has the potential to give researchers a unique insight

into aspects of animal behaviour and ecology that have, in the

past, been more restricted due to environmental conditions and

animal behaviour. Despite the easy availability of this technology,

the uses of these data are still limited. For example, accelerom-

eters, quantifying animal movement, allow us to investigate

behavioural patterns and states through changes in activity.

However, to date, most studies have used simple data-oriented

methods of analysis: for example, threshold-based detection of

active/inactive states [1] or classification into slightly richer

behavioural states [2–4]. These techniques have often been used

in marine systems where the animals in question are near to

impossible to follow and observe [4–6]. Despite the fact that these

techniques have given a valuable insight into behaviours such as

underwater foraging in free-living penguins [7] and swimming and

diving in marine mammals and birds [4,5], it is hard to draw

robust conclusions about actual/true behaviour from such

analysis.

By combining the data from the dataloggers with behavioural

observations from the field we have a powerful tool with which to

investigate animal behaviour that is based on actual behaviour

rather than purely on activity values and arbitrary thresholds. In a

way, this would be difficult to achieve for most marine animals,

but it is cetrainly feasible in terrestrial systems where animals are

easier to observe. There has been an attempt to do this on

domesticated and captive animals [8,9] but, to date, this has never

been done on wild animals. Generally, collecting large amounts of

behavioural data on wild animals is extremely time consuming. By
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combining technology with field observations, large amounts of

behavioural data can be collected in a relatively short space of

time. With these data we can start to address more detailed

behavioural questions, which is extremely valuable especially for

elusive, far-ranging species that cannot be monitored continuously

and do not occur in high densities.

The main difficulty that needs to be overcome with this

approach is the processing of the data. The amount of data is

typically far too large to be processed by hand; moreover, it is a

priori unclear that recorded activity measurements are sufficient to

predict actual animal behaviour. In this paper, we study this

question on animals that are equipped with tracking collars. These

collars typically comprise a VHF (very high frequency) beacon

and/or a GPS (global positioning system) unit to provide locations

of an animal in its environment. Furthermore, collars are often

equipped with an accelerometer that senses acceleration on one or

more axes. In the medical world, for example, accelerometers are

used to sense movement and estimate energy expenditure and

create simple activity diaries [10]. The processing of such signals

can range from simple estimates of peak value or magnitude over

time or average value which provides information about

orientation. Here, we examine data from a commercial Vectronics

collar, which combines two-dimensional accelerometer data over a

five minute period to form a value between 0 and 255; little

additional information is available about the nature of the

algorithm used for data reduction. We are interested in

establishing whether such a simple signal can be used to

differentiate between different behaviours.

We address this challenge with machine learning techniques.

Our method is based on a Support Vector Machine (SVM, [11])

which is a popular and powerful method for classification. As the

SVM does not consider temporal information, we post-processed

the SVM results with a Hidden Markov Model (HMM) to

introduce dependencies over time. This method maps the

recorded activity into a sequence of behaviours that can be post-

processed to address scientific questions on animal behaviour. We

also illustrate the fact that only a relatively small number of

behavioural observations are required for a robust analysis, ideal

for animals that are difficult to follow.

To validate the approach, and to show its potential, we applied

the method to an activity dataset from six free-ranging cheetah

(Acinonyx jubatus). With fewer than 10,000 individuals left in the

wild, cheetah are rare. The fact that they are fairly elusive

carnivores, have large home-ranges and are often solitary makes

them difficult to locate and, therefore, makes it impossible to

obtain large amounts of behavioural data in a short period of time.

Our technique allows us to extrapolate behavioural data for

several individuals simultaneously and then thoroughly to inves-

tigate the different behavioural states. We demonstrate the

usefulness by addressing questions like: how often do cheetah

feed? For how long do they feed? How regularly do they feed?

When, during the day, are they active? How do certain variables

like season affect feeding or activity?

Materials and Methods

Ethics Statement
In compliance with Botswana law, all immobilisation and

deployment of radio-collars were carried out by a Botswana-

registered veterinarian. Cheetahs were immobilised according to

protocol by [12], and sedation time was kept to a minimum,

usually no longer than 1 hour. All animal handling protocols

conformed to the standards of the American Society of Mammal-

ogists [13] and were approved by both the Zoology Ethical Review

Committee, a subsidiary of Oxford Universities Animal Care and

Ethical Review (ACER) Committee (License CER-FB2008) and

by the Botswana Department of Wildlife and National Parks

(permit EWT 8/36/4). All cheetahs recovered following immobi-

lisation and showed no signs of distress. On completion of the

study, all collars were removed.

The Classifier
We use a Support Vector Machine (SVM) in combination with

a hidden Markov approach for the classification of the data. We

train the SVM to predict three different classes: stationary, mobile

and feeding. We apply the SVM independently to each five

minute activity value. Applying the classifier to the full activity

sequence gives us a sequence of predicted behaviour. The

classifier, however, does not take temporal information into

account. This sometimes leads to ‘‘obvious’’ misclassifications like:

we observe a long sequence of stationary behaviour (e.g. sleeping)

surrounding a single feeding data point. Such misclassifications

can be eliminated by incorporating an understanding of the likely

temporal behaviour of the animals. We included temporal

information by ‘‘smoothing’’ the behaviour sequence with the

help of a hidden Markov approach. In the following, we give some

background on the SVM and the hidden Markov approach, and

we discuss the extent to which we can validate the predicted

behaviour sequence.

Support Vector Machine. The SVM is a popular method

for learning classifiers as it is robust and fast [11]. In the following,

we explain the central concept of the SVM to illustrate the

operation of the method. In general, a classification problem

consists of a set of input vectors x1, . . . ,xn and a set of

corresponding labels y1, . . . ,yn. In the easiest case, there are two

classes and the labels are binary f{1,z1g. For simplicity, assume

that our inputs are 2-dimensional and that we can separate the two

classes in the input space with the help of lines (i.e. there exists a

line such that all the positive examples are on one side and all the

negative examples on the other). Usually, many different lines are

able to separate the two classes. So the question is which of these

lines make good choices. The SVM is a so-called large margin

method as it finds the specific line that maximizes the margin from

the line to the two classes. That is, it maximally separates the two

classes. Intuitively this is a good choice as the classifier is robust

against new data points that lie slightly outside of the observed

class boundaries. Beside this intuition there are formal guarantees

for the performance of an SVM [11] and the SVM has been

shown to be very robust in various applications.

In most cases, lines are insufficient to separate classes. SVMs

rely on the so-called kernel-trick to increase the separation between

classes. The kernel-trick makes use of a kernel k(x,y) that

measures similarities between elements x,y and needs to fulfill

certain properties to be applicable (it must be positive semi-

definite). A frequently used kernel is the Gaussian kernel:

k(x,y)~ exp {sDDx{yDD2
� �

,

where s is a hyper-parameter and DD:DD the Euclidean norm. Using

the Gaussian kernel implies that the data is embedded in an

infinite dimensional space and all operations are applied in this

space.

In our application, the input elements were 2 dimensional

vectors representing aggregated 2D accelerometer readings (see

the Data Collection section on p. 6 for details), and we had three

classes of behaviour: stationary, mobile and feeding. We trained

three classifiers, one for each class: the positive examples were the

Activity Based Classification of Animal Behaviour
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elements xi with the correct behaviour and negative examples

were the elements with one of the remaining two behaviours. We

used the SVM package from [14] for our experiments and we used

the Gaussian kernel. We used all available labeled data for one

cheetah for training and applied it to the whole set of activity

measurements of that cheetah (the number of training data points

and the total data size is shown in Table 1).

Hidden Markov approach. We smoothed the classification

sequence with the help of a hidden Markov approach. This

requires that the SVM output includes a probability value for how

certain the predicted class is. A standard approach for obtaining

this is to apply the logistic function to the distance from the

hyperplane [15]. The logistic function is.

f (x)~
1

1z exp ({x)
:

The value of f is between 0 and 1 and can thus be interpreted as

a probability. We applied the logistic function to the three trained

classifiers which resulted in three sequences p̂pf (t), p̂pm(t) and p̂ps(t).

From these, we generated probabilities that the behaviour is

feeding at time t (pf (t)), mobile (pm(t)) or stationary (ps(t)) given

the observation o(t) in the following way:

1. The animal can only show one behaviour at time t and hence

two of the behaviours should not be present. This leads us to use:

~ppf (t) : ~p̂pf (t)(1{p̂pm(t))(1{p̂ps(t)),

~ppm(t) : ~p̂pm(t)(1{p̂pf (t))(1{p̂ps(t)),

~pps(t) : ~p̂ps(t)(1{p̂pf (t))(1{p̂pm(t)):

2. We normalised the values from the first step such that they

sum to unity for each time step t, i.e.

pf (t) : ~
~ppf (t)

N (t)
, pm(t) : ~

~ppm(t)

N (t)
, ps(t) : ~

~pps(t)

N (t)
,

where N (t) : ~~ppf (t)z~ppm(t)z~pps(t):

ð1Þ

We constructed a hidden Markov model (HMM, [16]) with

three states (sf , sm and ss) that encode the three behaviour classes.

We interpreted the three sequences pf , pm and ps as the

conditional probabilities p(sf (t)Do(t)), p(sm(t)Do(t)) and

p(ss(t)Do(t)) that the behaviour is feeding, mobile or stationary at

time t given the observation o(t). For our algorithm we need to

calculate the likelihoods p(o(t)Dsf (t)), p(o(t)Dsm(t)) and p(o(t)Dss(t)).

These can be computed with the help of Bayes rule:

p(o(t)Dsf (t))~
p(sf (t)D(o(t))p(o(t))

p(sf (t))
etc. If prior knowledge about the

the probabilities for certain observations or the probabilities for

certain states is known then it can be exploited here. In our

experiments, we had no prior knowledge and we used uniform

distributions for both o(t) and sf (t) etc.

In addition to determining these likelihoods it is necessary to

define a transition model for the states. For this, we used.

P : ~

pff (1{pff )=2 (1{pff )=2

(1{pmm)=2 pmm (1{pmm)=2

(1{pss)=2 (1{pss)=2 pss

0
B@

1
CA,

where Pij is the probability of transitioning from state i to state j

with state 1 being feeding, state 2 mobile and state 3 stationary.

Our motivation for this form is that we expect the current

behaviour to continue with high probability (e.g. sleeping) and

expect the behaviour to change with a lower probability. We used

the same probabilities to switch to either of the two alternative

behaviours (e.g. from stationary to mobile or feeding) to keep the

number of parameters small. Our main interest in using this

smoothing is to rule out single events like feeding in longer

sequences of stationary behaviour. We expected that the

smoothing should be relatively robust to the particular choice of

values pff , pmm and pss, so long as they were sufficiently high. We

used values of pff ~0:8 and pmm, pss~0:9 as feeding is likely to be

shorter than stationary or mobile behaviour. We analyzed the

effect of changing pff (robustness results can be found in the next

section). Note that the choice of this value implies an expected

length of time each state is maintained before a transition is made

to a new state. The value of 0.8 corresponds to one hour twenty

minutes, a value that agrees in magnitude with our observations of

feeding. The value 0.9 corresponds to seven and a half hours and

is at the upper end of what we would expect for stationary or

mobile behaviour - refining the parameter up to the second

decimal digit might lead to slight improvements, but we decided,

in this case, that parameter tuning to this extent was a second

order improvement.

Table 1. Classification performance.

Nr. Individual M1 M2 F1 F2 F3 F4

1 Percent correct
(overall)

94.03% 91.54% 90.87% 94.24% 83.75% 90.16%

2 Percent correct
(feeding)

93.00% 52.17% 94.83% 100% 22.58% 65.96%

3 Percent correct
(mobile)

96.97% 86.84% 73.77% 90.72% 75.31% 68.67%

4 Percent correct
(stationary)

92.81% 99.63% 97.54% 94.96% 98.83% 99.37%

5 False positives
(feeding)

2.00% 2.17% 5.17% 0% 6.45% 0%

6 False positives
(mobile)

9.09% 23.68% 0% 7.22% 20.99% 2.41%

7 False positives
(stationary)

6.54% 5.22% 15.57% 6.47% 15.79% 13.25%

8 Labeled data points 352 390 241 278 283 447

9 Feeding data points 100 46 58 42 31 47

10 Mobile data points 99 76 61 97 81 83

11 Stationary data
points

153 268 122 139 171 317

12 Total data points 114302 94928 100233 78434 79865 106013

The table shows the cross-validation performance of our method on the labeled
data points. The method is used to classify all data points. Row number 1 shows
the overall accuracy. Rows 2–4 show the individual accuracy of detecting the
three different classes correctly. Rows 5–7 show the false positive rates, that is
the probability that a data point is labeled to belong to class X while it is
actually not class X. The number of labeled data points are shown in row 8–11
and line 12 shows the number of data points that we classified with the trained
method.
doi:10.1371/journal.pone.0049120.t001
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We also need to specify initial probabilities for the three states.

We used pf (0)~pm(0)~ps(0)~1=3.

Given P and the likelihoods p(sf (t)Do(t)),
p(sm(t)Do(t)), p(ss(t)Do(t)) we wish to calculate the most probable

state sequence. This sequence can be calculated sequentially with

the Viterbi algorithm [16]: Let.

dt(i)~ max
s(1),...,s(t{1)

P(s(1), . . . , s(t)~i, o(1), . . . , o(t))

be the highest joint probability for any sequence of states

s(1), . . . , s(t{1) and (fixed) observations that visits state i at time

t.

The sequence can be calculated recursively as.

dtz1(j)~ max
i

dt(i)PijP(o(tz1)Ds(tz1)~j):

The initial value for the sequence of d’s is.

d1(i)~pi(0)P(o(1)Ds(1)~i)

and the probabilities P(o(t)Ds(t)~j) are the values from the SVM

(eq. 1, p. 4).

Once we compute dN (i) for N the final point of the sequence

and i~1,2,3, we select the final state as iN~argmaxifdN(i)g. We

now can identify the most probable sequence of states working

from this last state backwards, with the state it at time t given by.

it~arg max
i

dt(i)Piitz1
P(o(tz1)Ds(tz1)~itz1):

The state sequence output by the algorithm is (i1, . . . ,iN ).
Test-set performance and parameter robustness. We

evaluated the performance of the method based on the recorded

data and in terms of robustness of the parameters of the Markov

chain. The performance of the method was assessed with the help

of cross-validation: our training data consists of multiple time-

delimited segments of observations of the cheetah, e.g. the cheetah

was observed on Monday from 13:00 to 15:00 then again on

Friday from 10:00 to 11:00 etc. We used each of these segments as

a validation set and the remainder of the data as training data for

the method. We then evaluated the performance on this validation

set and we averaged the performance over all possible training-

validation set combinations. The resulting percentage of correct

classification is shown in Table 1.

Beside the performance we evaluated the sensitivity of the

results to parameter changes in the Markov chain. For this we

measured the log evidence over the same segments that we used

for the cross validation. The evidence can be calculated by

summing the likelihoods of all possible paths in the HMM. Like

the likelihood, the evidence can be calculated efficiently through

recursion:

Figure 1. The figure shows how robust our method is to changes in the parameter pff . On the x-axis the parameter pff is varied and on the
y-axis the corresponding evidence is plotted. The red(vertical) line marks the parameter that we used for the experiments in the rest of the paper.
doi:10.1371/journal.pone.0049120.g001
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etz1(j)~
X
iƒ3

et(i)PijP(o(tz1)Ds(tz1)~j):

The initial value for the sequence of e s is.

e1(i)~pi(0)P(o(1)Ds(1)~i)

and the probabilities P(o(t)Ds(t)~j) are again the values from the

SVM (eq. 1, p. 4). Fig. 1 shows the results on our data.

Data Set and Data Collection
Study area. The data for this study were collected in the

Okavango Delta ecosystem, a permanent inland delta situated in

Northern Botswana, Africa. The core study site (19u319S, 23u379E;

elevation ca. 950m) encompasses an area of approximately 1 320

km2, which includes the Southern part of the Moremi Game

Reserve and the adjacent Wildlife Management Areas [17,18].

The climate is characterised by two distinct seasons: the wet and

the dry season. The wet season runs from the beginning of

November to the end of March and the dry season runs from the

beginning of April to the end of October.

Data collection. During the period from 2008 to 2011, six

cheetah (four females and two males) were fitted with GPS (Global

Positioning System) radio collars (Vectronics Aerospace GmbH,

Germany). As required by law, a Botswana registered veterinarian

was responsible for the immobilization procedures needed to fit

the GPS radio collars. The cheetah were typically immobilised

using a combination of Zoletil and Medetomidine [19].

The GPS radio-collars were embedded with bi-axial acceler-

ometers that recorded both the forward-backwards movement and

sideways movement every five minutes for the entire time that the

collars were deployed. The collars were deployed for an average of

332 days (min: 276; max: 373) In addition to the activity

measurements that were recorded by the collars, behavioural

observations were collected in the field for each of the six cheetah

independently. Behavioural observations were obtained by having

each collared individual continuously followed by a researcher in

vehicle for a minimum of one hour on any given day. During the

periods of observation, three behavioural states were recorded:

stationary, mobile and feeding. Each time the focal animal

changed its behavioural state, the exact time was recorded using a

handheld GPS device (Garmin eTrex HC; Garmin, Olathe,

Kansas, USA). An average of 31 hours + 8 hours (mean + SEM;

min: 21hr 59min; max: 40hr 49min) of observations were recorded

during the study period. These behavioural observations were then

synchronised with the activity data from the collars to give the

labeled dataset. This resulted in an average of 332+78 labeled

data points per individual (mean+SEM; min: 241 data points;

max: 447 data points). Of this labeled dataset, we only used

labeled data points that were dominated by one discrete behaviour

during the 5 minute interval, i.e. we excluded, for example, data

points for which, in the 5 minutes, an animal was both feeding and

mobile. The resulting number of labeled data points is shown in

Table 1.

Results

We developed a SVM-based classifier that allows us to classify

behaviour of animals over a long period of time based on activity

Figure 2. The figure shows, in the top row, all data points for M1 and F3 together with the class which has the highest probability
based on the SVM. The bottom row shows all data points for the same individuals with the difference that the class is now assigned by the post-
processed SVM classifier (SVM+HMM). The colour codes the class: green is stationary, dark blue is mobile and red is feeding.
doi:10.1371/journal.pone.0049120.g002
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measurements and a small set of labeled data. We applied the

method to data from six cheetah. The method uses two types of

data 1) the activity data from the data loggers deployed on each

individual cheetah and 2) behavioural observations of cheetah in

the field. These data were synchronised to produce a labeled data

set. The labeled data were then used to train a SVM classifier.

Fig. 2 shows trained classifiers for cheetah M1 and F3 in the top

row.

The SVM output was smoothed with the help of a HMM over

the complete set of activity measurements giving a detailed, 5

minute resolution, account of cheetah behaviour for the entire

period for which the data loggers were deployed. The HMM has

three hidden states, which encode feeding, mobile and stationary

behaviour, and we interpreted the SVM output as the likelihood of

the hidden states given an observation. Beside that, we used a

transition matrix for the HMM states that has three parameters:

pff , pmm and pss the probability of staying in the feeding, mobile or

stationary state respectively. The resulting smoothed classifier for

M1 and F3 is shown in the bottom row of Fig. 2. The technical

details of the classifier, the collars and the data can be found in the

methods section. In the next section we evaluate the performance

of the method. Following that, we demonstrate the capabilities of

the approach by applying the method to the cheetah data. We

analyse gender differences for daily behaviour, feeding and inter-

feeding times; we then analyze the effect of the seasons (dry and

wet season). These preliminary analyses are presented to illustrate

the capabilities of our method and the sort of questions that can be

addressed.

Evaluation
We evaluated our method in two different ways: 1) we estimated

the classification performance with a leave-one-out cross valida-

tion; 2) we tested the dependency of the HMM performance on a

critical parameter.

The cross validation results are shown in Table 1. The top row

lists the performance over all three behaviour classes. The

performance is a solid 83%{94% accuracy for classifying single

data points correctly. The three rows below list class individual

accuracy. Here, the performance is dependent on the number of

observations we have for the different classes. In particular, one

can observe that the feeding accuracy can be low if we have too

few feeding observations (,50).

The three rows below report the false positive numbers. Here,

one can observe that the classes with few observations have low

rates, e.g. when the classifier predicts feeding then there is a

94%z probability that the data point is really feeding.

The bottom line of the cross validation performance evaluation

is that our method might miss single feeding or mobile data points

for some of the individuals, but it will hardly ever miss whole

sequences of behaviour that consist of multiple sequential data

points. The probability for missing a whole sequence is pn, where p
is the probability of an error and n the length of the event. For

example, F3 has the worst feeding performance, which results in

an error rate of around 78% per data point. If feeding takes one

hour then we have 12 data points and the chance of missing it is

0:7812~0:05 if we assume the observations are independent. In

this worst case we have 5% possibility of missing an average length

feeding event completely.

Beside the cross-validation we tested the sensitivity of the

classifier to the HMM parameter pff . pff is the most interesting

parameter of the three HMM parameters as we have few feeding

observations for some individuals and because feeding times are in

a range that could potentially be covered by a large portion of the

parameter space. In detail, one expects feeding to lie in the range

from 2–3 data points (that is 10–15 minutes; e.g. a small kill) up to

24–36 data points (2–3 hours; e.g. a big kill). This corresponds

roughly to parameters pff ~0:5 and pff ~0:85. In contrast, for

mobile and stationary we would expect parameters in the range of

0:8{0:9.

We measured the sensitivity with the help of the Bayesian

evidence for our model, that is the probability under our model

that we observe certain observations. As in the cross-validation

here we also used a leave-one-out approach: we trained the SVM

on all but one set of data points, determined the evidence on the

omitted set, and repeated that for each set. Fig. 1 shows the results.

The higher the value is in the plot, the higher the evidence and the

better the prediction performance is. The plots show two things: 1)

for the three cheetah for which we have the lowest feeding

prediction accuracy as a result of too few feeding observations

(M2,F3,F4) we have evidence plots that peak at 0. So, the overall

performance is maximised by ignoring feeding altogether; 2) for

M1 and F2 we have optima between 0:8 and 0:9 while F1 does not

peak in the range we tried. In experiments, we used a single

parameter pff with a value of 0:8 (the red lines) for all 6 cheetah to

keep the number of parameters in the model small. Increasing pff

to a value slightly higher than 0:8 might improve the performance

for M1,F2,F1 but will decrease the performance for the other

three.

The conclusion of the experiment is that the evidence indicates

whether there are too few observations or, in the case in which we

have enough observations, it shows us which average feeding

length is best for explaining the data and how sensitive the results

are to this parameter.

Application
Gender differences. We have data from two male and four

female cheetah. We analysed the effect of gender on the daily

behaviour, the feeding length and the time between feeding events.

Fig. 3 shows the daily behaviour for the six cheetah. The

behaviour is split into three categories: feeding, mobile and

stationary. Feeding is shown at the bottom, mobile in the middle

and stationary at the top. The top left plots show the results for the

males and the other four the results for the females.

All six cheetah have activity peaks at time of day around 6:00 -

7:00 and 17:00 - 18:00. The activity peaks for males are much

higher than those for females. Similarly, the night activity for the

males is considerably higher than the night activity of the four

females. In general, the six cheetah are active for about 20% or

less of the time.

Feeding occurs for all six cheetah mainly between 6:00 and

19:00 with some feeding events during the night. For both male

and female cheetah there are slight peaks in feeding in the

morning and evening. Male and female cheetah seem to have

about the same number of night feeding events, even though males

are far more active at night.

Fig. 4 shows the distribution over length of feeding and Fig. 5

shows the time between feeding events for the six individuals. The

setup of the plots is the same as in Fig. 3: the results for the two

males are shown in top left and the results for the four females are

shown in the other plots.

The feeding length plots are similar for all six cheetah. On the

left of each plot, short feeding events of around 20 minutes are

shown. The rate for these events is relatively low. The highest rate

of feeding events is around 20–40 minutes for all six cheetah. The

rate for feeding events drops exponentially to the right of the peak

and reaches zero between 3–4 hours.

The inter-feeding plots are similar. The x-axis encodes days

rather than hours. The highest peak is reached at the leftmost
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interval for all six cheetah. To the right of the peak, one seems

again to have an exponential drop for all six cheetah (the scales

vary for the six cheetah depending on the height of the peak on

the left). In contrast to the feeding length plots there are ‘‘dips’’

in all six inter-feeding plots where the rate is considerably lower.

The longest inter-feeding times are around 8 days for all six

cheetah.

Table 2 summarises the rate of feeding. We calculated this rate

by measuring the number of days that passed between feeding

events. Based on this analysis, all six cheetah feed on average every

second day.

Seasonal differences. In the second set of experiments, we

studied effects of season on daily behaviour, feeding length and

time between feedings. We show plots for three individuals. We

selected the individuals for which we had the best feeding and

mobile accuracy, that is M1, F1 and F2.

Fig. 6 shows the difference in daily behaviour between wet and

dry season for these three cheetah. The behaviour of M2 was very

similar to M1. The plots shown for the two females are also similar

to the omitted two.

One can observe that there is no obvious difference in the

behaviour of the male cheetah between the wet and dry season.

Compared to that, there are multiple obvious changes for the

female cheetah: first, night activity decreases considerably during

the wet season. The activity during the night in the dry season is

considerable and is around half as high as the activity from M1.

Also, there seems to be substantial amounts of feeding, especially

for F1. The feeding rate of F1 during the night is, at its peak,

nearly as high as that during the day. Second, during mid-day, the

activity slightly increases and the feeding rate goes up.

We omitted a seasonal plot for the feeding length as there seems

to be little difference between the dry and wet seasons. Fig. 7

shows the inter-feeding times for the three individuals. The

seasonal differences are also not significant: for M1 the curve

following the first peak is more smooth in the dry season, while in

the wet season one has smaller peaks. For F1 there seems to be a

slight increase of inter-feeding times to between 1–3 days. Finally,

the F2 plots seem to be more or less equivalent for the wet and dry

season.

Furthermore, Table 2 suggests that, for male cheetah, the

feeding rate stays either constant with season or drops slightly in

the wet season. In contrast, the feeding rate increases for 3 out of 4

female cheetah in the wet season.

Discussion

Owing to recent advances in various technologies applied to the

study of animal behaviour, biologists can now record high

resolution behavioural data over extended periods. However, data

from long, otherwise unobserved, periods are often insufficient to

draw biologically relevant conclusions because meaningful infor-

mation can be obscured within the vast quantities of accumulated

dimensionless data. As a consequence, there is a temptation to

make use of ad hoc analytical methods. We demonstrated in this

work that generally applicable machine learning methods can be

used to process and present such accumulations of data to identify

specific behaviours. In particular, we applied a SVM together with

Figure 3. The classification of the daily activity of the six individuals is shown in the figure. The activity is colour coded with feeding
being at the bottom, mobile in the middle and stationary at the top. The activity is classified based on the hour of the day (local time) and normalized
to one. Sunrise during wet season is between 5:19 and 6:25 and during the dry season between 5:30 and 7:01. Sunset during the wet season is
between 18:16 and 19:11 and during the dry season between 17:35 and 18:31.
doi:10.1371/journal.pone.0049120.g003
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Figure 4. The figure shows histograms of the length of feeding events for the six individuals. On the x-axis the length is plotted and on
the y-axis the number of events in the data with the respective length.
doi:10.1371/journal.pone.0049120.g004

Figure 5. The figure shows histograms of the length between successive feeding events. On the x-axis the length is plotted and on the y-
axis the number of events in the data with the respective length.
doi:10.1371/journal.pone.0049120.g005
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a Hidden-Markov Model to classify activity reliably into three

categories: stationary, mobile and feeding. Based on this classifi-

cation sequence, we derive diagrams that can provide insights into

cumulative behaviour deriving from continuous recording over

periods that would be impossible by direct observation.

We evaluated our approach with the help of a cross-validation

and evidence analysis. The accuracy obtained from these rely on

the assumption that the data we used for training is representative

of the data from the whole year. This will most likely be the case

for large parts of the data as long as there is neither an injury nor

damage to the collar. If there is sporadic behaviour that we do not

record during the behavioural observations in the field then it it

possible to get systematic misclassifications. For example, all four

collared females had cubs and were lairing during part of the data

collection. As we had no field observations of the nurturing

behaviour of these cheetah, it is possible that some of this

behaviour caused misclassification of other behavioural states.

This effect is very typical for experimental studies as it is nearly

always the case that we cannot observe animals in all situations.

Fig. 2 demonstrates that for our method it is crucial to have

enough characteristic data for the different classes of behaviour.

The left side shows the performance of the SVM classifier and the

combined SVM+HMM classifier for M1. For M1 the classifier

achieved high performance and one can observe that the HMM

does not change the classifier region fundamentally but labels

Table 2. Feeding rate per day.

Individual M1 M2 F1 F2 F3 F4

Feeding rate
(overall)

0.5 0.43 0.46 0.58 0.43 0.45

Feeding rate
(dry)

0.53 0.43 0.43 0.6 0.39 0.38

Feeding rate
(wet)

0.46 0.43 0.49 0.58 0.46 0.54

The table shows how often each individual feeds on average per day.
doi:10.1371/journal.pone.0049120.t002

Figure 6. The figure shows effects of the season (dry/wet) on the daily activity of three individuals. The figure is similar to figure 3 with
the main difference that the data is split into dry and wet season. The top row shows the activity of three individuals in the dry season and the
bottom row the activity of these three individuals in the wet season.
doi:10.1371/journal.pone.0049120.g006
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single data points differently compared to the pure SVM classifier.

The right side shows the classifiers for F3 where the classifier

achieved weaker performance. The feeding region based on the

SVM classifier looks significantly different from the M1 plot. It can

be expected that this is due to a lack of feeding observations.

Finally, the HMM changes the shape of the feeding region

significantly and makes it more similar to the M1 plot. However, it

cannot fully account for the initial shortcomings of the SVM

classifier.

An alternative to our approach of applying a HMM together

with a SVM would be to use only a HMM by defining a suitable

observation model and learning the HMM transition model with

the help of the Baum-Welch algorithm [16]. A disadvantage of this

approach is that it is not straightforward to make use of the labeled

data, i.e. the behavioural observations. Furthermore, as our

evidence analysis shows, the Baum-Welch algorithm would, most

likely, suppress the feeding state altogether for three of the six

cheetah and thus result in a model that could not be used to study

feeding behaviour.

A further alternative would be to focus on the SVM side and

drop the generative model approach that we pursue. This could be

done with the help of structured output learning like in [20].

Given the recent development and advancement of technology

one can expect that the amount of recorded data will continue to

grow as hardware becomes cheaper and recording frequencies

increase due to better batteries and less energy-consuming sensor

devices. Furthermore, with new technology it might be possible

that, in the near future, behavioural observations will be made

remotely through recording devices like cameras.

Field studies are important either to verify and/or to raise new

hypotheses about animal behaviour. It is important that the data

and the data processing method allows to study or formulate

hypotheses by providing insight into animal behaviour. We

demonstrate this capability by raising a number of questions and

hypotheses concerning the animal behaviour that merit further

exploration.

The first question concerns the activity per day plot (fig. 3). The

males show a high activity at night in contrast to the females

(around twice the activity of females during the dry season). One

possible reason for this is that male cheetah hunt at night. Cheetah

hunts are very short and we cannot retrieve them from our 5

minute average and, hence, we cannot directly verify hunting

behaviour. However, as the feeding rate is low at night, one can

assume that only a small part of the activity is due to hunting. A

likely alternative hypothesis is that since male cheetah are

territorial, they patrol their territory at night whilst females are

not territorial and therefore do not need to patrol [21,22].

Another question concerns the ‘‘dips’’ in the histograms in

Fig. 5. A likely explanation is here that the dips reflect pairs of day

times that have a high chance of feeding with day times that have a

low chance of feeding, e.g. feeding in the early evening with a

feeding pause of 28 hours corresponds to the middle of the night,

at which point feeding is highly unlikely.

An interesting question is why the activity at night and mid-day

changes for female cheetah between the seasons (fig. 6). One

hypothesis here is that female cheetah hunt at night if the

environment allows it. During the wet season, cloud cover might

reduce visibility at night and lead to a reduction in hunting

behaviour. The increase of hunting during the middle of the day

Figure 7. The figure shows effects of the season (dry/wet) on the length between feeding events of three individuals. The figure is
similar to figure 5 with the main difference that the data is split into dry and wet season. The top row shows the length between feeding events of
three individuals in the dry season and the bottom row the length between feeding events of these three individuals in the wet season.
doi:10.1371/journal.pone.0049120.g007
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might then be a way to compensate for the reduction in night

hunting. A point against the hypothesis is that male cheetah seem

unaffected. But this might be due to gender differences, e.g. male

cheetah might be more risk taking. Males are slightly larger than

females and, in this specific case, M1 was in a coalition with

another male so therefore not as vulnerable [22].

As a final word, we want to emphasize that, while in this paper

we applied our method to data from cheetah, the approach is

neither restricted to cheetah nor to feeding behaviour. In principle,

any animal and any behaviour can be studied with the method as

long as both observations and sensor measurements are available.
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