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Abstract. Let G be a finite group such that SL(n, q) ⊆ G ⊆ GL(n, q) and Z be a
central subgroup of G. In this paper we determine the group T (G/Z) consisting of
the equivalence classes of endotrivial k(G/Z)-modules where k is an algebraically
closed field of characteristic p such that p does not divide q. The results in this
paper complete the classification of endotrivial modules for all finite groups of
(untwisted) Lie Type A, initiated earlier by the authors.

1. Introduction

Let G be a finite group and k be a field of characteristic p > 0. The group
of endotrivial kG-modules was first introduced for p-groups by Dade [18, 19] nearly
forty years ago. He showed that the endotrivial modules for a Sylow p-subgroup S of
G are the building blocks of the endo-permutation kS-modules which are the sources
of the irreducible kG-modules when the group G is p-nilpotent. For any finite group
G, tensoring with an endotrival kG-module induces a self-equivalence on the stable
category of kG-modules modulo projectives. Thus the group of endotrivial modules
is an important part of the Picard group of self-equivalences of the stable category,
namely, the self-equivalences of Morita type. In addition, the endotrivial modules
are the modules whose deformation rings are universal and not just versal (see [6]).

The endotrivial modules for an abelian p-group were classified by Dade and a
complete classification of endotrivial modules over any p-group was completed sev-
eral years later by the first author and Thévenaz [14, 15, 7] building on the work of
Alperin [2] and others. Since then there has been an effort to compute the group
T (G) of endotrivial modules for almost simple and quasi-simple groups G. The
proofs of [12] suggest that this might be an important step in the computation of
T (G) for an arbitrary finite group G. The group T (G) has been determined for
finite groups of Lie type in the defining characteristic in [9], and for symmetric and
alternating groups in [10, 8]. Other results can be found in [12, 22, 24, 25].

Every one of the papers in this project has produced important advances for
computing and determining endotrivial modules. This paper continues that devel-
opment, presenting a significant improvement of a method introduced in [11]. The
method was inspired by the development by Balmer [5] of “weakH-homomorphisms”
which describe the kernel of the restriction map T (G) → T (H) when H is a sub-
group of G that contains a Sylow p-subgroup of G. The new technique with some
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variations allows the computations of the group of endotrivial modules for all finite
groups of (untwisted) Lie type A in nondefining characteristic. In all but a few
examples of small Lie rank and small characteristic we show that the torsion part
of T (G) equals the isomorphism classes of one-dimensional modules. There are a
couple of instances in this paper when it is necessary to call upon a somewhat more
sophisticated variation of the method developed in [16].

The goal of this paper is to describe T (G) for all finite groups of Lie type A in
nondefining characteristic, completing the work started in [11]. The general result
is the following. The structure of the groups of endotrivial modules for cases not
covered by this theorem are treated in later sections.

Theorem 1.1. Let k be an algebraically closed field of prime characteristic p and
q a prime power with p not dividing q, and let e be the least positive integer such
that p divides qe − 1. Let G be a finite group of order divisible by p such that
SL(n, q) ⊆ G ⊆ GL(n, q), and let Z be a central subgroup of G. Assume that the
following conditions hold.

(a) In all cases, n ≥ 2e.
(b) If e = 1, n = 2 and p ≥ 3, then Z does not contain a Sylow p-subgroup of

Z(G).
(c) If e = 1 and n = p = 3, then Z does not contain a Sylow 3-subgroup of Z(G)

(which happens if and only if and only if 3 divides |G/(Z · SL(3, q))|).
(d) If p = 2, then n > 3.

Then

T (G/Z) ∼= Z⊕X(G/Z),

where X(G/Z) is the group under tensor product of k(G/Z)-modules of dimension
one and the torsion free part of T (G/Z) is generated by the class of Ω(k).

Theorem 1.1 is established in Sections 5 and 6. This follows some preliminaries
on endotrivial modules in Section 2, a description of the main method that we use
in most proofs in Section 3, and preliminaries on groups of Lie type A in Section 4.
The proof of the main theorem stated above is accomplished in two major steps. In
Section 5, we treat the case that G = SL(n, q) and Z = {1}. In Section 6, the result
is extended to any G and Z subject to the assumptions of Theorem 1.1.

Sections 7 through 11 deal with the cases that are excluded by the hypotheses of
Theorem 1.1. In the nontrivial cases excluded by condition (a), namely, e ≤ n < 2e,
the Sylow p-subgroup of G is cyclic and the structure of T (G) was provided in [11,
Theorem 1.2]. For the sake of completeness, the theorem is stated in an appendix
(cf. Theorem 11.1). The one additional case in which the Sylow p-subgroup of G/Z
is cyclic is the case excluded by hypothesis (b) of Theorem 1.1. This case is dealt
with in Theorem 7.1.

The case excluded from Theorem 1.1 by condition (c), is treated in Section 8. In
Sections 9 and 10 we compute of the groups of endotrivial modules when p = 2 and
n = 2 or 3, excluded from Theorem 1.1 by condition (d). These sections use results
of [16], that show the existence of trivial source endotrivial modules of dimension
greater than one. Table 1 summarizes the cases when such modules occur. The
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notation is that of Theorem 1.1 with pt the highest power of p dividing qe − 1. For
conciseness, we have omitted from the first row the details of the conditions for a
Sylow p-subgroup S of G/Z to be cyclic (and nontrivial).

n Z S condition(s) TT (G/Z)
n Z Cpt X(NG/Z(S))

3 |Z|3 = |Z(G)|3 C3 × C3
q≡4,7 (mod 9)
q−1

|Det(G)|≡0 (mod 3)
Z/2Z⊕ Z/2Z⊕X(G/Z)

2 |Z| ≡ 2 (mod 4) C2 × C2
q≡3 (mod 8)

|G:SL(2,q)|6≡0 (mod 2)
Z/3Z⊕X(G/Z)

2 |Z|2 = 2|G : SL(2, q)|2 C2 × C2 q ≡ 5 (mod 8) Z/3Z⊕X(G/Z)

Table 1. Trivial source endotrivial modules for finite groups of Lie
type A in nondefining characteristic.

Our results for the nondefining characteristic, taken together with the results in
[9] (for the defining characteristic), provide a complete description of the group of
endotrivial modules for finite groups of (untwisted) Lie type A over algebraically
closed fields of arbitrary characteristic.

2. Endotrivial Modules

Throughout the paper, let k be an algebraically closed field of prime character-
istic p and G be a finite group with p dividing the order of G. All kG-modules
in this paper are assumed to be finitely generated. For kG-modules M and N , let
M∗ = Homk(M,k) denote the k-dual of M and write M ⊗ N = M ⊗k N . The
modules M∗ and M ⊗ N become kG-modules under the the usual Hopf algebra
structure on kG.

A kG-module M is endotrivial provided its endomorphism algebra Endk(M) splits
as the direct sum of k and a projective kG-module. That is, since Homk(M,N) ∼=
M∗ ⊗N , as kG-modules, M is endotrivial if and only if

Endk(M) ∼= M∗ ⊗M ∼= k ⊕ P

for some projective kG-module P .
Any endotrivial kG-module M has a unique indecomposable nonprojective en-

dotrivial direct summand M0 ([9]). This allows us to define an equivalence relation
on the class of endotrivial kG-modules; namely, two endotrivial kG-modules are
equivalent if they have isomorphic indecomposable nonprojective summands. That
is, two endotrivial kG-modules are equivalent if they are isomorphic in the stable
category. The set of equivalence classes of endotrivial kG-modules is an abelian
group with the operation induced by the tensor of product over k,

[M ] + [N ] = [M ⊗N ].

The identity element of T (G) is [k], and the inverse of [M ] is [M∗]. The group T (G)
is called the group of endotrivial kG-modules.
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It is well-known that the group of endotrivial modules is a finitely generated
abelian group. Therefore,

T (G) ∼= TF (G) ⊕ TT (G)

where TT (G) is the torsion subgroup of T (G) and TF (G) is a torsion free com-
plement. The rank of TF (G) depends only on the p-local structure of T (G), as
described in the next theorem. Recall that the p-rank of a group is the maximum of
the ranks of elementary abelian p-subgroups of G, and a maximal elementary abelian
p-subgroup is an elementary abelian p-subgroup which is not properly contained in
any other elementary abelian p-subgroup. Let nG be the number of conjugacy classes
of maximal elementary abelian p-subgroups of G of order p2.

Theorem 2.1. [9, Theorem 3.1] Let G be a finite group. The rank of TF (G) is
equal to the number nG defined above if G has p-rank at most 2, and is equal to
nG + 1 if G has rank at least 3.

We say that a kG-module has trivial Sylow restriction if its restriction to a Sylow
p-subgroup S of G is isomorphic to the direct sum of k with some projective mod-
ule. Equivalently, a kG-module with trivial Sylow restriction is the direct sum of
a trivial source endotrivial kG-module and some projective module. In particular,
its equivalence class is in the kernel of the restriction map T (G)→ T (S). The next
result was proved in [9, Proposition 2.6 (d)] and is very important to our develop-
ment. Its proof is based on the fact that an indecomposable module with trivial
Sylow restriction is a direct summand of k↑GS where S is a Sylow p-subgroup of G.

Proposition 2.2. If G has a nontrivial normal p-subgroup, then every indecompos-
able kG-module with trivial Sylow restriction has dimension one.

Another easy result that we find useful is the following.

Proposition 2.3. Suppose that a Sylow p-subgroup S of G is self-normalizing (i.e.
NG(S) = S). Then the only indecomposable kG-module with trivial Sylow restriction
is the trivial module.

Proof. The Green correspondent of any indecomposable kG-module M with trivial
Sylow restriction must have dimension one by the above proposition. Hence the
Green correspondent is the trivial module and M ∼= k. �

The following theorem has several applications to finite groups of Lie type. Note
that the first condition in the statement is equivalent to saying that G contains the
derived subgroup [H,H]× [J, J ] of H × J .

Theorem 2.4. Suppose that H and J are finite groups and that G is a normal
subgroup of the direct product H × J such that the orders of both G ∩H and G ∩ J
are divisible by p (here we are identifying H with H × {1} and J with {1} × J
in H × J). Then any indecomposable kG-module with trivial Sylow restriction has
dimension one.

Proof. Let Ĥ = H ∩ G and Ĵ = J ∩ G. Let Q and T denote Sylow p-subgroups of

Ĥ and Ĵ , respectively, and let S be a Sylow p-subgroup of G that contains Q× T .
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Note that T,Q E S. Let W = (Ĥ× Ĵ)S. By hypothesis G is normal in H×J . This

implies that H and J centralize G/(Ĥ× Ĵ). Therefore, this quotient is abelian, and
W is normal in G.

Suppose that M is an indecomposable kW -module with trivial Sylow restriction.

Then M↓ĤS
∼= χ⊕ (proj) for some indecomposable k(ĤS)-module χ. We know that

χ has dimension one because ĤS has a nontrivial normal p-subgroup, namely T .

Moreover, T is centralized by every element of Ĥ.
It follows that M is a direct summand of χ↑W ∼= kW ⊗k(ĤS) χ. Observe that

all of the left coset representatives of ĤS in W can be taken to be elements of Ĵ .
Because these elements centralize Q and because the p-group Q acts trivially on a
one-dimensional module, it must be that Q acts trivially on χ↑W and hence also on
M . Therefore, the restriction of M to S can have no nonzero projective summands
and M must have dimension one.

Suppose that N is a kG-module with trivial Sylow restriction. Then N↓W ∼=
Θ⊕ (proj), where Θ has dimension one. This means that N is a direct summand of
Θ↑G and because W is normal in G, (Θ↑G)↓W is a direct sum of conjugates of Θ. It
follows that N must have dimension one. �

3. The Main Method

In this section we introduce conditions that imply the triviality of any indecom-
posable kG-module with trivial Sylow restriction. The method was suggested by
the work of Balmer [5], though none of the results of [5] are directly required in
this paper. It is worth pointing out that the method works for perfect groups (i.e.,
[G,G] = G), and, with some effort, it can be adapted to other cases to prove that
indecomposable kG-modules with trivial Sylow restriction have dimension one. The
statement proved in Theorem 3.1 below is sufficient for this paper. A somewhat
different version of the method is contained in the paper [16].

For each nontrivial p-subgroup Q of a given Sylow p-subgroup S of G, we construct
a chain of subgroups:

ρ1(Q) ⊆ ρ2(Q) ⊆ . . . .

These were written ρi−1(Q) in [11] where they were first introduced. The subgroups
are defined inductively by the following rule:

ρ1(Q) = [NG(Q), NG(Q)] and

ρi(Q) = 〈NG(Q) ∩ ρi−1(R) |{1} 6= R ⊆ S〉 for i > 1.

In [16], it is shown that if ρi(S) = NG(S) for some i (or more generally if ρi(Q) =
NG(Q) for some nontrivial subgroup Q ⊆ S with NG(S) ⊆ NG(Q)), then the trivial
kG-module is the only indecomposable module with trivial Sylow restriction. The
following theorem (Theorem 3.1) is the simplified version of that result needed for
most of this paper.

Theorem 3.1. Let S be a Sylow p-subgroup of G, and let H be a subgroup of G
such that NG(S) ≤ H. Suppose that the following conditions hold.
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(A) Every indecomposable kH-module with trivial Sylow restriction has dimen-
sion one.

(B) H = 〈g1, . . . , gm〉 such that for each i, either
(1) gi ∈ [H,H]S, or
(2) there exists a subgroup Hi of G such that

(a) every indecomposable kHi-module with trivial Sylow restriction
has dimension one,

(b) p divides the order of Hi ∩H, and
(c) gi ∈ [Hi, Hi].

Then the trivial module k is the only indecomposable kG-module with trivial Sylow
restriction.

Proof. Suppose that M is a kG-module with trivial Sylow restriction. Then M↓H ∼=
χ⊕ (proj) for some kH-module χ having dimension one. So [H,H] and S are in the
kernel of χ and any generator gi of H that satisfies condition (1) must act trivially
on χ. Our next objective is to prove that the same holds for any generator gi of H
satisfying condition (2).

Suppose that gi satisfies condition (2) for some subgroup Hi of G. By (2)(b),
we can pick a nontrivial p-subgroup Qi ⊆ Hi ∩ H for each i. By condition (2)(a),
M↓Hi

∼= µ ⊕ (proj) for some one-dimensional kHi-module µ. Since gi is in [Hi, Hi]
by (2)(c), gi acts trivially on µ. As p divides the order of Hi ∩ H by (2)(b), any
projective k(Hi∩H)-module has dimension divisible by p. So consider the restriction

M↓(Hi∩H)
∼= χ↓(Hi∩H) ⊕ (proj) ∼= µ↓(Hi∩H) ⊕ (proj) .

By the Krull-Schmidt Theorem µ↓(Hi∩H)
∼= χ↓(Hi∩H), and hence gi acts trivially on

χ.
Since every generator of H acts trivially on χ, it follows that χ ∼= kH , the trivial

kH-module. Now, M is indecomposable and H contains the normalizer of S. So M
must be the Green correspondent of kH . That is, M ∼= k, as asserted. �

Remark 3.2. In most of the applications of Theorem 3.1 in this paper, the group
G is a special linear group and the subgroup H is a parabolic or Levi subgroup that
contains the normalizer of a Sylow p-subgroup of G. For such subgroups, condition
(A) in the hypothesis of the theorem is established using an argument similar to
that of Theorem 2.4.

In the case that H = NG(Q) where Q is a nontrivial characteristic subgroup of the
Sylow p-subgroup S of G, the hypotheses of Theorem 3.1 basically say that ρ2(Q) =
NG(Q), which guarantees that the trivial kG-module is the only indecomposable
kG-module with trivial Sylow restriction. In all but one of the proofs of Sections 5
and 6, this information is sufficient to obtain the asserted result. There is a unique
case for which we need to compute ρ3(Q), relying on information gathered in [11].

Remark 3.3. It should be pointed out that conditions (B)(1) and (2) on the gen-
erators of H in the hypothesis of the theorem are not inherited by subgroups. That
is, if J is subgroup of H also containing the normalizer of a Sylow p-subgroup of
G, and H satisfies condition (B)(1) or (2), then we cannot conclude that J satisfies
condition (B)(1) or (2) respectively.
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4. Groups of Lie Type A

In this section we recall some known facts on the structure of the Sylow p-
subgroups and their normalizers for finite groups of Lie type A in nondefining char-
acteristic. More information can be found in [1, 4, 21, 26].

For convenience we set some notation that is used throughout the rest of paper.

Notation 4.1. Let k be a field of prime characteristic p and q a prime power such
that gcd(p, q) = 1. Let e denote the least integer such that p divides qe− 1 and write
qe − 1 = ptd, where gcd(p, d) = 1 and t ≥ 1. Given a positive integer n, let r, f be
integers such that n = re+ f and 0 ≤ f < e.

Thus, e is the multiplicative order of q modulo p, and pt is the highest power of p
dividing qe− 1. In particular, e is the smallest integer such that p divides the order
of GL(e, q).

We start with the following useful elementary observations.

Proposition 4.2. Suppose that G is a group such that SL(n, q) ⊆ G ⊆ GL(n, q) and
let S be a Sylow p-subgroup of G. Let Det(G) ⊆ F×q be the image of the determinant
map.

(a) G is the subgroup of GL(n, q) consisting of all invertible matrices whose de-
terminants are in Det(G).

(b) S is abelian if and only if and only if n < pe.
(c) The p-rank of G is r except in the case that p divides both n and q − 1. In

that case, the p-rank is either r or r − 1, depending on whether the order of
Det(G) is divisible by p.

Proof. (a) is immediate. For (b) and (c), see [21] or [26]. �

In general, a Sylow p-subgroup S of G is a subgroup of a direct product of iterated
wreath products. For G = GL(n, q), a Sylow p-subgroup S of G is the Sylow
p-subgroup of a semi-direct product (Cpt o Ce)

r o Sr, where Sr is the symmetric
group on r-letters ([1, Theorem VII.4.1]). For any SL(n, q) ⊆ G ⊆ GL(n, q), a Sylow
p-subgroup of G is the intersection of G with a Sylow p-subgroup of GL(n, q). Recall
that a Sylow p-subgroup R of Sr is a direct product of iterated wreath products as
follows. Write r =

∑
0≤i≤M aip

i with 0 ≤ ai < p for each i. Then

R ∼=
∏

0≤i≤M

(
Cp o Cp o · · · o Cp︸ ︷︷ ︸

i terms

)ai =
∏

0≤i≤M

(
C oip
)ai

where C oip is a Sylow p-subgroup of Spi .

Theorem 4.3. Suppose that p > 2. With the above notation, the following hold.

(a) S ∼=
∏

0≤i≤M
(
Cpt o (C oip )

)ai
(b) Each of the r factors Cpt of S can be embedded as Sylow p-subgroup of a

diagonal block GL(e, q) of GL(n, q), and the other generators of S can be
embedded as permutation matrices of these blocks according to the p-adic ex-
pansion of r. In other words, S can be chosen in a Levi subgroup of GL(n, q)
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with diagonal blocks of size

(e, . . . , e︸ ︷︷ ︸
a0 terms

, ep, . . . , ep︸ ︷︷ ︸
a1 terms

, . . . , epM , . . . , epM︸ ︷︷ ︸
aM terms

, 1, . . . , 1︸ ︷︷ ︸
f terms

)

(c) The normalizer NGL(n,q)(S) of S is contained in the normalizer of the Levi
subgroup containing S above.

(d) S contains a unique elementary abelian subgroup E of rank r, hence char-
acteristic in S, and each elementary abelian subgroup of S is conjugate to a
subgroup of E.

Proof. See [4, Section 4], [1, Section VII], [21, Theorem 4.10.2 and Remark 4.10.4]
and [26, Section 2]. �

The case p = 2 is handled separately, as the 2-local structure of GL(n, q) and
subgroups is very different from the case p > 2.

The lemma below is well-known. We sketch a proof of the lemma because it is
used several times.

Lemma 4.4. Suppose that n = rs for positive integers r and s, with r > 1. In

Ĝ = GL(n, q) let L̂ ∼= GL(s, q)r be the Levi subgroup of all elements that can be

written as block diagonal s × s matrices. Let L = L̂ ∩ G where G = SL(n, q), and
let N = NG(L).

(a) If q is odd and r = 2, then the quotient N/[N,N ] is a Klein four group.
(b) If q is odd and r > 2, or if q is even, then the commutator subgroup of N

has index 2 in N .

Proof. The subgroup N is an extension

1 // L // N // Sr
// 1

where the symmetric group Sr acts on L by permuting the diagonal blocks. We
know that [L,L] ∼= SL(s, q)r and can identify L/[L,L] with the subgroup of (F×q )r

given as L/[L,L] ∼= {(a1, . . . , ar) ∈ (F×q )r | a1 · · · ar = 1}. Thus, N/[L,L] is an
extension

1 // L/[L,L] // N/[L,L] // Sr
// 1,

where the symmetric group acts by permuting the places.
If r = 2, then N/[L,L] is a dihedral group of order 2(q − 1) whose commutator

subgroup is cyclic of index 4 if q is odd, and of index 2 if q is even. Therefore, the
quotient group N/[N,N ] is a Klein four group if q is odd, respectively cyclic of order
2 if q is even.

Now assume that r > 2. It is easy to see that L/[L,L] is generated by the element
α = (a, a−1, 1, . . . , 1) and its conjugates under the action of the symmetric group,
where a is a generator for F×q . One of these conjugates is β = (1, a, a−1, 1, . . . , 1).

For σ = (1, 2) ∈ Sr we calculate [αβ, σ] = αβσ(αβ)−1σ−1 = α. Hence, α and all
of its conjugates under the action of the symmetric group are in the commutator
subgroup of N/[L,L] and hence L ⊆ [N,N ]. On the other hand, the quotient group
N/L is isomorphic to Sr and as N/[N,N ] is the largest abelian quotient of N/L,
and N/[N,N ] must have order 2. �
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In the specific context of the section, Theorem 2.4 leads to the following observa-
tion.

Proposition 4.5. Assume that Notation 4.1 holds. Let n = n1 + n2 + · · · + nm,
where n1, . . . , nm are positive integers and let

L̂ =
m∏
i=1

GL(ni, q) ⊆ GL(n, q)

be the Levi subgroup of diagonal blocks of sizes n1, . . . , nm. Let L = SL(n, q) ∩ L̂.
Assume further that

(a) if p divides q − 1 then at least two of n1, . . . , nm are greater than one,
(b) if e is the smallest positive integer such that p divides qe− 1 and e > 1, then

at least two of n1, . . . , nm are greater than or equal to e.

Then any indecomposable kL-module with trivial Sylow restriction has dimension
one.

Proof. Express {1, . . . ,m} = A ∪ B as a union of disjoint subsets such that in case
(a) each of A and B contains some index i such that ni > 1, or in case (b), each
of A and B contains an index i such that ni ≥ e. Then let H =

∏
i∈A GL(ni, q),

J =
∏

i∈B GL(ni, q). Then L̂ ∼= H × J , and Theorem 2.4 proves the assertion for

L = SL(n, q)∩ L̂. Indeed, L̂/L is abelian and the conditions (a) and (b) ensure that
the orders of H ∩ L and J ∩ L are both divisible by p. �

We end the section by recalling the following result (cf. [11, Theorem 3.4]).

Theorem 4.6. Let G be a group such that SL(n, q) ⊆ G ⊆ GL(n, q). Suppose that
a Sylow p-subgroup of G has p-rank at least 2. Then TF (G) ∼= Z.

Note that the theorem excludes the groups SL(2, q) for p = 2, in which case a
Sylow 2-subgroup is generalized quaternion.

Corollary 4.7. Let G be a group such that SL(n, q) ⊆ G ⊆ GL(n, q). Suppose that
Z ⊆ Z(G) and that G, Z satisfy the conditions of Theorem 1.1. Then TF (G/Z) ∼=
Z.

Proof. Let T be the subgroup of all elements of order p in the torus of diagonal e×e
block matrices in GL(n, q). The point of the proof of Theorem 4.6 is that every
elementary abelian p-subgroup of G is conjugate to a subgroup of G∩ T . From this
it follows that if G has maximal elementary abelian subgroups of rank 2, then they
are all conjugate to a subgroup of G ∩ T and the conclusion follows from Theorem
2.1. This is also true for G/Z if T ∩ Z is trivial.

Consequently, the only remaining cases occur when T ∩ Z is not trivial. This
requires that p divide q− 1 or equivalently that e = 1. Now T ∩Z is a cyclic central
subgroup of G, so that it is still the case that every elementary abelian p-subgroup
is conjugate to one generated by elements that are the classes modulo Z of diagonal
matrices. If n ≥ 4 then every maximal elementary abelian p-subgroup has rank at
least 3 and again we are done. The same happens if n = 3 and either p > 3 or if
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n = p = 3 and Z does not contain the Sylow p-subgroup of Z(G). This proves the
corollary. �

5. Endotrivial Modules for SL(n, q)

The aim of this section is to prove Theorem 1.1 in the case that G = SL(n, q) and
that Z is trivial. Throughout this section we assume Notation 4.1. Thus, qe−1 = ptd
where d, e and t are positive integers such that p does not divide d, and e is the
multiplicative order of q in the base field Fp ⊆ k. The assumption that the Sylow
p-subgroup of G is not cyclic is equivalent to the condition that n ≥ 2e.

The proof is split into several cases. The first case is when e divides n but the
quotient n/e is not a power of p.

Proposition 5.1. Suppose that G = SL(re, q) for r ≥ 2 not a power of p. Assume
also that if p = 2, then r ≥ 4. Then the trivial module k is the only indecomposable
kG-module with trivial Sylow restriction. In particular, TT (G) = {0}.
Proof. First notice that if r < p, then a Sylow p-subgroup is abelian and the propo-
sition is proved in [11]. Hence, we may assume further that n = re > pe.

The proof is divided into three cases:

(i) r = 2ps for some s ≥ 1 and p > 2,
(ii) r = aps for 2 < a < p, and
(iii) r = aps + b for 1 ≤ a < p and 1 ≤ b < ps.

Note that in cases (i) and (ii) we may assume that e > 1 and that p > 2, as
otherwise, p divides both n and q− 1. In that case, SL(n, q) is a perfect group with
a nontrivial normal p-subgroup, and the proposition is a consequence of Proposi-
tion 2.2.

In the first two cases, let m = pse, so that n = am. Let

L̂ = L̂(m, . . . ,m) ∼= GL(m, q)a ⊆ GL(n, q)

be the Levi subgroup consisting of a diagonal m ×m blocks. Let L = L̂ ∩ G and
N = NG(L). The group N is an extension (perhaps not split) of the form

0 // L // N // Sa
// 0,

where Sa is the symmetric group on a letters. In addition, N contains the normalizer
of a Sylow p-subgroup of G (cf. Theorem 4.3).

Case (i). Suppose that a = 2, and n = am = 2pse. The commutator subgroup
[N,N ] must contain the perfect group SL(m, q) × SL(m, q). By Lemma 4.4, if q is
odd, then the quotient group N/[N,N ] is a Klein four group, and we see that we
can choose generators represented by the elements

σ =

[
Im

−Im

]
and τ =


c
Im−1

c−1

Im−1


where c is a generator for the Sylow 2-subgroup of F×q . If q is even, then N/[N,N ]
has order 2 and is generated by σ (remembering that −1 = 1). To invoke Theorem
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3.1 it is enough to show that σ and τ , are in the commutator subgroup of the
normalizer of some nontrivial p-subgroup of N .

There is an embedding ϕ : Fqe → Mate(Fq) where Mate(Fq) is the algebra of e× e
matrices over Fq. This is given as the action of the algebra Fqe on itself, but regarded
as a vector space over Fq. From this we get a homomorphism ϕ̂ : GL(2ps, qe) →
GL(2pse, q). That is, the map ϕ̂ replaces an element given by a matrix (ai,j) by the
block matrix (ϕ(ai,j)). Again, ϕ̂ can be obtained by taking the natural module for
GL(2ps, qe) and writing it as a module over Fq of dimension 2pse.

The group SL(2ps, qe) has a central element Y of order p since s > 0. Observe that
ϕ̂(Y ) is also in N . Let H1 = CG(ϕ̂(Y )), which contains the image ϕ̂(SL(2ps, qe)).
In particular, we have that ϕ(−1) = −Ie, and so for

X =

[
Ips

−Ips

]
then ϕ̂(X) =

[
Im

−Im

]
= σ.

Note that X is in SL(2ps, qe), and hence σ is in the commutator subgroup of H1.
Moreover, because H1 has a central element of order p, any indecomposable kH1-
module with trivial Sylow restriction has dimension one. Thus H1 and g1 = σ
satisfy condition (B)(2) of Theorem 3.1 with H = N . Clearly, any element of
[N,N ], satisfies condition (B)(1) of Theorem 3.1, which implies that the proposition
holds in case (i) if q is even, because N = 〈[N,N ], g1〉.

To finish the proof for q odd, we prove the similar result for τ . Let Ĥ2 = L̂(2m−
e, e) ⊆ GL(n, q) be the Levi subgroup consisting of diagonal block matrices of sizes

2m − e and e, and let H2 = Ĥ2 ∩ G. By Proposition 4.5, any indecomposable
kH2-module with trivial Sylow restriction has dimension one. Clearly, H2 ∩ N has
order divisible by p. The commutator subgroup [H2, H2] ∼= SL(2m− e, q)× SL(e, q)
contains the element τ . So condition (B)(2) of Theorem 3.1 is satisfied for g2 = τ
and H2, and the proposition holds in case (i).

Case (ii). Now suppose that 2 < a < p. In this case, the quotient group N/[N,N ]
has order 2 and a generator is represented by the element

σ =

 Im
−Im

I(a−2)m


Again, it is enough to show that σ, is in the commutator subgroup of an appropriate

subgroup of G to invoke Theorem 3.1. Let L̂ = L̂(2m, (a − 2)m) ∼= GL(2m, q) ×
GL((a − 2)m, q) be the Levi subgroup of diagonal block matrices of size 2m and

(a − 2)m, for m = pse. Let H1 = L̂ ∩ G. Every indecomposable kH1-module with
trivial Sylow restriction has dimension one, by Proposition 4.5. Clearly, H1 ∩N has
order divisible by p, and σ, is in [H1, H1] ∼= SL(2m, q) × SL((a − 2)m, q). Again
Condition (B)(2) of Theorem 3.1 holds for σ, and H1. So the proposition is proved
also in case (ii).
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Case (iii). Let L̂ = L̂(apse, be) ∼= GL(apse, q) × GL(be, q) be the Levi subgroup of

blocks of size apse and be, and put N = L̂ ∩ G. Observe that, N contains the nor-
malizer of a Sylow p-subgroup of G. Thus by Proposition 4.5, any indecomposable
kN -module with trivial Sylow restriction has dimension one.

The commutator subgroup of N is the direct product SL(apse, q) × SL(be, q),
implying that N/[N,N ] ∼= F×q . Hence, N is generated by [N,N ] and a diagonal

matrix σ with diagonal entries 1, 1, . . . , 1, w, w−1, 1, . . . , 1 where w is a generator of
F×q and the nonidentity entries occur in rows apse and apse+ 1.

Now let Ĥ1 = L̂(apse−1, be+1) ∼= GL(apse−1, q)×GL(be+1, q), the Levi subgroup

of blocks of size apse− 1 and be+ 1. Let H1 = Ĥ1∩G. It is straightforward to show
that condition (B)(2) of Theorem 3.1 is satisfied for g1 = σ, H1 and H = N , and
the proposition holds in case (iii). This completes the proof. �

The next step is the following.

Proposition 5.2. Suppose that G = SL(pse, q) and s ≥ 1. Then any indecomposable
kG-module with trivial Sylow restriction has dimension one. Thus, if pse > 2, then
TT (G) = {0}.

Proof. First we should notice that if e = 1, that is, if p divides q − 1, then G has
a central subgroup of order p, and we are done by Proposition 2.2. So assume that
e > 1. This assumption requires that p > 2.

Let θ : GL(e, q)p
s → GL(eps, q) be the injective group homomorphism given by

letting θ(A1, . . . , Aps) be the block diagonal matrix of e× e blocks A1, . . . , Aps :

θ(A1, . . . , Aps) =


A1

A2

. . .
Aps


Choose an element u ∈ SL(e, q) of order p. For i = 1, . . . , ps, let xi = θ(A1, . . . , Aps)
where Ai = u and Aj = Ie, the e×e identity matrix, for j 6= i. Let Q = 〈x1, . . . , xps〉.

Since p is odd, Q is the unique elementary abelian subgroup of rank ps in some
given Sylow p-subgroup S of G and each elementary abelian subgroup of S is con-
jugate to a subgroup of Q, by Theorem 4.3. Thus Q is characteristic in S, which
implies that NG(S) ⊆ NG(Q). Hence, we may apply Theorem 3.1 to H = NG(Q).

Write S = C oR where u ∈ C and C ∼= Cpt is a Sylow p-subgroup of GL(e, q), and
where R ∼= (Cp)

os is a Sylow p-subgroup of Sps . Note that 〈u〉 ⊆ C with equality if
and only if t = 1.

From [11, Section 6], we have NGL(e,q)(〈u〉) = NGL(e,q)(C) = 〈w, g〉 ∼= Cqe−1 o Ce

where gw = wq. Hence, H = NG(Q) is an extension

1 // J // H // Sps
// 1

where

J = NGL(e,q)(C)p
s ∩G = {θ(A1, . . . , Aps) | Ai ∈ NGL(e,q)(C) ,

∏
1≤i≤ps

Det(Ai) = 1}
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Thus J is generated by conjugates under Sps of elements of the form

a = θ(A1, A2, Ie, . . . , Ie) where

A1, A2 ∈ NGL(e,q)(C) and Det(A1) Det(A2) = 1. So H is generated by J and elements
of the form

Xi =

Ie(i−1) τ
Ie(ps−i−1)

 with τ =

[
Ie

−Ie

]
for 1 ≤ i ≤ ps − 1. Note that all Xi are conjugate.

For i = 1, . . . , ps − 1, let Ri = 〈xi, xi+1〉 ⊂ S. Then NG(Ri) is an extension

1 // (NGL(e,q)(C) oS2) ∩G // NG(Ri) // SL(e(ps − 2), q) // 1

If ps > 3, then the elements a and X1 lie in the commutator subgroup of NG(R3).
A similar condition holds for any conjugates of a and X1 under the action of Sps .
By applying Theorem 3.1 to H = NG(Q) and the generators given above, we are
done.

We are left with the case ps = 3 and e = 2. A computer calculation shows that for
G = SL(6, 2) with p = 3, we have ρ2(Q) 6= NG(Q). Hence, the method of Theorem
3.1 fails. One the other hand, [11, Proposition 7.9] shows that a,X1 ∈ ρ2(R1) and
therefore all their conjugates are in ρ3(Q). Thus NG(Q) = ρ3(Q), and Corollary 4.6
of [16] asserts that TT (G) = {0} in this case. �

We are now ready for the proof of the main theorem of the section.

Theorem 5.3. Assume Notation 4.1. Let G = SL(n, q) with n ≥ 2e if p is odd, or
n ≥ 3 if p = 2. Then the trivial kG-module is the unique indecomposable kG-module
with trivial Sylow restriction.

Proof. Let n = re + f with r ≥ 2 and 0 ≤ f < e. By Propositions 5.1 and 5.2,
the theorem is true if f = 0. Hence, we assume that f > 0 and thus also e > 1.
There is a natural embedding of SL(n − 1, q) ↪→ SL(n, q). It is an easy exercise to
show that the index of SL(n−1, q) in SL(n, q) is prime to p and, hence, SL(n−1, q)
contains a Sylow p-subgroup of SL(n, q). By [11, Theorem 9.6], the restriction map
T (SL(n, q))→ T (SL(n− 1, q)) is injective since e > f ≥ 1. Therefore, by induction
on f , the proof of the theorem is complete. �

6. Proof of Theorem 1.1

The proof of Theorem 1.1 is a consequence of Theorem 5.3 and a case by case
inspection depending on the p-part of the central subgroup Z of G in Theorem 1.1.
The next proposition is an essential step in the general proof.

Proposition 6.1. Let G = SL(n, q) where n = rp ≥ 3 for some r ≥ 1 and assume
that p divides q − 1. If n = p = 3, assume further that 9 divides q − 1. Let Z be
a nontrivial central subgroup of G. Then the trivial k(G/Z)-module is the unique
indecomposable k(G/Z)-module with trivial Sylow restriction.
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Proof. Recall that, in general, if A,B,C are groups such that C ⊆ B ⊆ A and
C is normal in A, then NA/C(B/C) = NA(B)/C. This fact is used to identify
normalizers.

First, we consider the case that Z is a nontrivial p-group. Let T be the torus
of diagonal matrices in G, and let Q be a Sylow p-subgroup of T . We choose S
to be a Sylow p-subgroup of G that contains Q. We note that Q is characteristic
in S, it being the unique abelian subgroup isomorphic to (Cpt)

n−1, where t is the
highest power of p that divides q− 1. Therefore, NG(S) ⊆ NG(Q) and we have an
extension

1 // T // NG(Q) // Sn
// 1.

There is an inclusion

NG/Z(S/Z) = NG(S)/Z ⊆ NG(Q)/Z = NG/Z(Q/Z)

where NG/Z(Q/Z) is an extension

1 // T/Z // NG/Z(Q/Z) // Sn
// 1.

Let N = NG(Q). Then [N,N ] has index 2 in N , and so (N/Z)/[N/Z,N/Z] has
order two and is generated by the class of the element

X =

[
U

In−2

]
, where U =

[
1

−1

]
.

By Theorem 3.1, the proof of the theorem is complete in this case if we show that
the class of X is in the commutator subgroup of some nontrivial p-subgroup R/Z of
Q/Z. For this let R be the subgroup generated by

Y =

[
V

In−3

]
, where V =

ζ ζ
ζ−2

 ,
where ζ is a generator for the Sylow p-subgroup of F×q . Note that the matrix V is
not a scalar matrix. Then the normalizer of R contains the Levi subgroup

L = (GL(2, q)×GL(1, q)×GL(n− 3, q)) ∩G.

It follows that the class of X in G/Z is in [L/Z,L/Z] which is contained in the com-
mutator subgroup [NG/Z(R/Z), NG/Z(R/Z)]. By Theorem 3.1, the trivial k(G/Z)-
module is the unique indecomposable module with trivial Sylow restriction.

Next assume that Z is an arbitrary nontrivial central subgroup of G. Let Ẑ denote
the Sylow p-subgroup of Z. If M is an indecomposable k(G/Z)-module with trivial
Sylow restriction, then M inflates to an indecomposable trivial Sylow restriction

k(G/Ẑ)-module Inf
G/Ẑ
G/Z M on which Z/Ẑ acts trivially. But we have just shown that

Inf
G/Ẑ
G/Z M must have dimension one. Thus M is trivial. �

The following is also required.
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Proposition 6.2. Suppose that n ≥ 2, p divides q − 1, and if p = n = 3 assume
that 9 divides q − 1. Let S be a Sylow p-subgroup of G = SL(n, q) that contains the
torus T of diagonal matrices of order p. Then NG(T ) is generated by a collection
of elements, each of which is in the commutator subgroup of the normalizer of a
subgroup of T that is not central in G.

Proof. There is no loss of generality in assuming that S contains the Sylow p-
subgroup of the torus of diagonal matrices of determinant one, and so contains
T . Let Y ∈ S be as in the proof of Proposition 6.1. Then the commutator subgroup
of the normalizer NG(〈Y 〉) of the subgroup generated by Y contains any element of
the form

X =

[
U

In−2

]
, for U ∈ SL(2, q).

Any conjugate of X, under a permutation matrix P , is contained in the commutator
subgroup of the normalizer of PY P−1 ∈ S. It is not difficult to show that NG(T ) is
generated by elements of this form. �

We can now prove the main theorem.

Proof of Theorem 1.1. Assume the notation of Theorem 1.1. Note that if e = 1,
n = 2, p > 2, and Z does not contain a Sylow p-subgroup of Z(G), then a Sylow
p-subgroup of G is abelian of p-rank 2, and G/Z has a nontrivial normal p-subgroup.
Thus Theorem 1.1 holds by Corollary 4.7 and Proposition 2.2. Likewise when n =
p = 3 divides q − 1 and Z does not contain a Sylow 3-subgroup of Z(G), then G/Z
has a nontrivial normal 3-subgroup and the conclusion of the theorem follows. If 3
does not divide q − 1, then n < 2e and the theorem does not apply. In the rest of
the proof, we assume that n ≥ 3 and that if n = 3 then p > 3.

Let Ĝ = Z · SL(n, q) and Ẑ = Z ∩ SL(n, q). Then Ĝ/Z ∼= SL(n, q)/Ẑ. We first

prove the theorem for G = Ĝ. There are two cases to consider.

Assume first that p does not divide the order of Ẑ. Then any indecomposable

k(Ĝ/Z)-module with trivial Sylow restriction inflates to a k SL(n, q)-module with
trivial Sylow restriction. By Theorem 5.3, this must be the trivial module.

Suppose that p divides the order of Ẑ. Because any element of Ẑ is a scalar
matrix, p must divide q − 1 and n. By hypothesis, if p = 2, then n > 3; while if
p = 3, then n > 3. In all cases n ≥ p. Hence, by Proposition 6.1, the trivial module

is the unique indecomposable Ĝ/Z-module with trivial Sylow restriction.

Next suppose that the index of Ĝ in G is a power of p, so that (G/Z)/(Ĝ/Z) is a

p-group. In this case, p divides q − 1. For convenience, let K = G/Z and J = Ĝ/Z
so that K/J is a p-group. Let S be a Sylow p-subgroup of K and S ′ = J ∩ S,

a Sylow p-subgroup of J . Recall that J ∼= SL(n, q)/Ẑ. We may assume that S ′

contains the image T (modulo Z) of the torus of diagonal matrices of order p in
SL(n, q), and that T is normal in S and S ′. Thus, Proposition 6.2 says that NJ(T )
is generated by a collection of elements, each of which is in the commutator subgroup
of the normalizer of some nontrivial subgroup of T , which is not central in G, and
therefore cannot be contained in Z. By Theorem 3.1, with H = NK(T ) = SNJ(T ),
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we conclude that the trivial module is the unique indecomposable kK-module with
trivial Sylow restriction.

Finally, suppose that there is a subgroup H such that Ĝ ⊆ H ⊆ G, and such

that H/Ĝ is a Sylow p-subgroup of G/Ĝ. Note that by hypothesis, H/Ĝ is non-
trivial. Theorem 5.3 and Proposition 6.1 show that the trivial module is the unique
indecomposable k(H/Z)-module with trivial Sylow restriction. Note that the index
of H in G is prime to p. Suppose that M is an k(G/Z)-module with trivial Sylow
restriction. Then

M↓H/Z
∼= k ⊕ (proj),

implying that M is a direct summand of (kH/Z)↑G/Z . However, the restriction of

(kH/Z)↑G/Z to H/Z is a direct sum of copies of k, since H/Z is normal in G/Z and
has index coprime to p. Both conditions can only occur if M has dimension one.

We have shown that if S is a Sylow p-subgroup of G/Z, then the kernel of the
restriction map T (G/Z)→ T (S) is X(G/Z) the group of one-dimensional k(G/Z)-
modules. The proof of Theorem 1.1 is completed using Corollary 4.7. �

7. Type A1 in characteristic p ≥ 3

In the case that n = 2 and p is odd, the Sylow p-subgroup of a subquotient of
GL(2, q) can be cyclic, and so the structure of (G/Z) changes accordingly. In this
section, we briefly discuss some cases that were not included in the results of [11]
and are also excluded from Theorem 1.1 by condition (b) of the hypothesis. The
techniques are well known, so only a sketch of the proof is given. As before, write
Det(H) for the image under the determinant map of a subgroup H of G .

Theorem 7.1. Assume that p > 2 and that p divides q − 1. Suppose that G is a
group such that SL(2, q) ⊆ G ⊆ GL(2, q). Let Z ⊆ Z(G) be a central subgroup of G.
Then |Z| divides 2 · |Det(G)|.

(a) If p divides |Z(G) : Z|, that is, if Z does not contain the Sylow p-subgroup
of Z(G), then T (G/Z) = X(G/Z)⊕ Z.

(b) Otherwise, T (G) is an extension

0 // X(NG/Z(S)) // T (G) // Z/2Z // 0

where S is a Sylow p-subgroup of G/Z and the right-hand map in the sequence is
the restriction onto T (S) ∼= Z/2Z.

Proof. The subgroup Z consists of scalar matrices. Let I2 denote the identity matrix
in G. If aI2 ∈ Z, then a2 ∈ Det(G). It follows that |Z| divides 2|Det(G)| as asserted.

A Sylow p-subgroup S of G/Z is cyclic if and only if Z contains the Sylow p-
subgroup of Z(G). In this case S is isomorphic to a Sylow p-subgroup of SL(2, q)
and S is a TI subgroup of G/Z, implying that the stable categories of G/Z and
NG/Z(S) are equivalent. Part (b) of the theorem follows from [23, Theorems 3.2
and 3.6].

Otherwise, i.e. if Z does not contains the Sylow p-subgroup of Z(G), then S is
not cyclic and Theorem 1.1 applies, proving part (a) of the theorem. �
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8. Type A2 in Characteristic 3

In this section we consider the endotrivial modules for the groups excluded by
condition (c) of the hypothesis of Theorem 1.1. Throughout the section we assume
the following. Let n = p = 3, and let q be a prime power such that 3 divides q − 1
(i.e., e = 1). Let SL(3, q) ⊆ G ⊆ GL(3, q) and Z a central subgroup of G containing
the Sylow 3-subgroup of the center Z(G) of G.

Note that if n = p = 3 does not divide q−1 and Z contains the Sylow 3-subgroup
of the center Z(G) of G, then a Sylow 3-subgroup of G/Z is cyclic and therefore
T (G/Z) is known by Theorem 11.1. (A similar situation occurs in type A1, with
n = 2 < 3 = p.)

Lemma 8.1. The group G/Z decomposes as a direct product G/Z ∼= H × V where
Z · SL(3, q)/Z ⊂ H has index a power of 3 in H and 3 does not divide the order of
V . In particular, T (G/Z) ∼= T (H)⊕X(G/Z), where X(G/Z) ∼= X(V ) is the group
of one-dimensional kV -modules.

Proof. Since Det(G) ⊆ F×q is an abelian group, we can write Det(G) = U ′ × V ′

and Det(Z) = U ′′ × V ′′ where U ′, U ′′ are 3-groups and V ′ and V ′′ are 3′-groups.
Let V = V ′/V ′′. Since U ′′ ⊆ U ′, we have V ∼= Det(G)/(U ′ · Det(Z)). Consider
the group homomorphism ψ : V → G/Z defined by ψ(a) = aI3Z ∈ G/Z for each
class a ∈ V ⊆ F×q /U ′Det(G). Consider also the homomorphism ϑ : G/Z → V ,
given as the composition of the induced determinant map on the quotient group,
i.e., Det(xZ) = Det(x) Det(Z) ∈ Det(G)/Det(Z) for all x ∈ G, with the quotient
onto Det(G)/U ′Det(Z) ∼= V . We have ϑψ(a) = a3, which is an automorphism of V
because V is a 3′-group. Since ψ(V ) is in the center of G/Z, we conclude that V is
a direct factor of G/Z. So the first part of the claim holds with H the kernel of ϑ.

For the last part of the statement, we observe that the kernel of the restriction
map T (G/Z) → T (H) is generated by the isomorphism classes of indecomposable

modules in the induction k
↑G/Z
H of the trivial kH-module to G/Z. Since the index

|G/Z : H| = |V | is not divisible by 3 and the factor group V is abelian, the induced

module k
↑G/Z
H is a direct sum of one-dimensional modules on which H acts trivially.

Therefore, the kernel of the restriction map T (G/Z) → T (H) is isomorphic to
X(V ) ∼= X(G/H) as required. �

The next result provides a description of H and V under our assumptions.

Proposition 8.2. For G and Z as above, one of the two situations occurs.

(a) If 3 does not divide (q−1)/|Det(G)|, i.e., if Z contains the Sylow 3-subgroup
of Z(GL(3, q)), then G/Z ∼= PGL(3, q)× V where V ∼= Det(G)/Det(Z).

(b) Otherwise, G/Z ∼= PSL(3, q)×V where V is the 3-complement in Det(G)/Det(Z).

In both cases, T (G/Z) ∼= T (H) ⊕ X(G/Z), where X(G/Z) ∼= X(V ), the group of
one-dimensional kV -modules and H is either PGL(3, q) or PSL(3, q) as appropriate.

Proof. Suppose that 3 does not divide (q − 1)/|Det(G)|. By Lemma 8.1 and its
proof, we may assume that Det(G) = G/ SL(3, q) is a 3-group. In the case that
Det(G) is a Sylow 3-subgroup of F×q , we must have G/Z ∼= PGL(3, q), which proves
(a).
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Otherwise, Det(G) is not a Sylow 3-subgroup of F×q , and so there exists an element

γ ∈ F×q , γ 6∈ Det(G) such that γ3 is in Det(G). Then the scalar matrix X = γI3
is an element of G with the property that Det(X) generates Det(G), because F×q is
a cyclic group. Since Z contains the Sylow 3-subgroup of Det(G), it follows that
X ∈ Z, and Z · SL(3, q) = G. Hence,

G/Z ∼= Z · SL(3, q)/Z ∼= SL(3, q)/(Z ∩ SL(3, q)) ∼= PSL(3, q),

which proves (b).
The last statement, about the group of endotrivial modules, follows because a

complete set of nonisomorphic simple kV -modules all have dimension one and define
different blocks of k(G/Z). Thus, any indecomposable endotrivial k(G/Z)-module is
the (outer) tensor product of a one-dimensional kV -module and an indecomposable
endotrivial kH-module. Finally it should be noted that H has a nontrivial normal
3-subgroup, since, by construction, H is an extension of Z ·SL(3, q)/Z by a nontrivial
3-group. Thus, X(H) is trivial. �

By Theorem 2.1, the torsion free rank of T (G) is related to the number of con-
jugacy classes of maximal elementary abelian 3-subgroups of rank 2. The following
calculation is important to determine TF (G).

Proposition 8.3. Let G and Z be as above. The group G/Z has 3-rank 2. In
addition,

(a) The group PGL(3, q) has three conjugacy classes of maximal elementary
abelian 3-subgroups.

(b) If q ≡ 1 (mod 9) then PSL(3, q) has four conjugacy classes of maximal ele-
mentary abelian 3-subgroups.

(c) If q ≡ 4, 7 (mod 9) then a Sylow 3-subgroup of PSL(3, q) is elementary
abelian of order 9.

Proof. Write q − 1 = 3td where 3 does not divide d, and suppose that |Z| ≥ 3. A
Sylow 3-subgroup S of G = GL(3, q) is generated by elements

X1 =

ζ 1
1

 , X2 =

1
ζ

1

 , X3 =

1
1

ζ

 , Y =

 1
1

1

 ,
where ζ is a primitive 3t root of unity in Fq. Let x1, x2, x3 and y denote the images
of X1, X2, X3 and Y (respectively) in G = PGL(3, q). Note that S ∩ Z(GL(3, q)) =
Z(S) = 〈X1X2X3〉.

Thus a Sylow 3-subgroup of G has a presentation

S/Z(S) = 〈x1, x2, y | x3
t

i = y3 = 1 , yx1 = x−11 x−12 , yx2 = x1〉 ∼= (C3t × C3t) o C3

The only central subgroup of order 3 in S/Z(S) is generated by the element xr1x
−r
2

for r = 3t−1.
The 3-group S/Z(S) has rank 2 and each noncyclic elementary abelian subgroup

has the form 〈z, x〉 for some noncentral element x ∈ S/Z(S) of order 3. Note that
(xjiy)3 = 1 for i = 1, 2 and any 0 ≤ j < 3t. Moreover the unique subgroup C3 × C3

in the normal subgroup C3t × C3t of S generated by x1 and x2 is characteristic
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in S. The other maximal elementary abelian subgroups have the form 〈z, x〉 with
x 6∈ 〈x1, x2〉. All such elements x have order 3. A routine calculation shows that
there are three S-conjugacy classes of these, namely

〈z, y〉, 〈z, x1y〉 and 〈z, x1y2〉
This is determined, for example, by looking at the monomial matrices obtained
by conjugating X1Y , and it gives us a total of four S/Z(S)-conjugacy classes of
elementary abelian subgroups of S/Z(S) of order 9.

In GL(3, q), with the above elements X1, X2, X3, Y we get that

X1Y =

 ζ
1

1

 = T(X1Y
2) where T =

1
1

1

 .
Thus 〈Z,X1Y 〉 is G-conjugate to 〈Z,X1Y

2〉. The same holds in G = PGL(3, q),
that is, there are exactly three G-conjugacy classes of C3 × C3. This finishes the
proof of (a)

For (b), we refer the reader to the results in [20], where S is a 3-group studied
by N. Blackburn and denoted B(3, 2t; 0, 0, 0). Then the 3-fusion system defined by
PSL(3, q) on S stabilizes the three conjugacy classes of 3-centric radical elementary
abelian subgroups of order 9 of S, and there is a single conjugacy class of elementary
abelian subgroups of order 9 that are not 3-centric radical in S. As a consequence,
no two of the four conjugacy classes of elementary abelian subgroups of S of order
9 fuse in G/Z (cf. [20, Theorem 5.10 and Tables 2 and 4]).

Finally, (c) is immediate from the observations that 9 is the highest power of 3
which divides |PSL(3, q)| for q − 1 ≡ 3 (mod 9) and that PSL(3, q) has no element
of order 9. �

The following is the main result of the section.

Theorem 8.4. Suppose that n = p = 3, and that q a prime power such that 3
divides q − 1 (i.e., e = 1). Let SL(3, q) ⊆ G ⊆ GL(3, q) and Z a central subgroup
of G containing the Sylow 3-subgroup of the center Z(G) of G. Then the following
hold.

(a) If 3 does not divide (q − 1)/|Det(G)| then T (G/Z) ∼= Z3 ⊕X(G/Z).
(b) If q ≡ 1 (mod 9) and if 3 divides (q − 1)/|Det(G)| then T (G/Z) ∼= Z4 ⊕

X(G/Z).
(c) If q ≡ 4, 7 (mod 9) and if 3 divides (q − 1)/|Det(G)| then T (G/Z) ∼= Z ⊕

Z/2Z⊕ Z/2Z⊕X(G/Z).

In every case, X(G/Z) ∼= X(V ) is the character group of V , the normal 3-complement
in the cyclic group Det(G)/Det(Z).

Proof. The factors X(G/Z) are determined in Proposition 8.2. The ranks of the
torsion free parts of T (G/Z) are established in Proposition 8.3. The only question is
the kernel K(G/Z) of the restriction T (G/Z)→ T (S) where S is a Sylow 3-subgroup
ofG/Z, which is isomorphic to either PGL(3, q) or PSL(3, q). In cases (a) and (b), we
compute K(G/Z) using Theorem 3.1 with H being the normalizer of the image of the
torus in GL(3, q) or SL(3, q) respectively. Note here that the normalizer of the image
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of the torus is equal to the image of the normalizer of the torus. The calculation
is very similar to that in the proofs of Propositions 5.1 and 5.2, and we leave it to
the reader to fill in the details. The result is that K(G/Z) = TT (G/Z) = {0} for
G/Z = PGL(3, q) in case (a) and for G/Z = PSL(3, q) in case (b).

The only thing left is the calculation of K(G/Z) = TT (G/Z) in case (c), where
G/Z = PSL(3, q) and q ≡ 4, 7 (mod 9). In this situation, a Sylow 3-subgroup S of
G/Z is elementary abelian of order 9 and the methods of [16] apply. More precisely,
[16, Theorem 8.4] shows that K(G/Z) ∼= Z/2Z⊕ Z/2Z. �

9. Type A2 in Characteristic 2

Throughout this section let p = 2 and G be a group such that SL(3, q) ⊆ G ⊆
GL(3, q). Let Z be a central subgroup of G. Our objective is to determine T (G/Z)
under these assumptions, namely addressing the first part of the cases of Theorem
1.1 excluded by condition (d) of the hypothesis.

We begin with a decomposition of G/Z (similar to that for p = 3 and Lemma 8.1).

Lemma 9.1. Let G and Z be as given above. Then G/Z ∼= H/Z3 ×W2 ×W where

(a) W is the direct product of the Sylow `-subgroups of Det(G)/Det(Z) for ` not
equal to 2 or 3,

(b) W2 is the Sylow 2-subgroup of Det(G)/Det(Z),
(c) Z3 is the Sylow 3-subgroup of Z, and
(d) H is an extension

1 // SL(3, q) // H // V3 // 1

where V3 is the Sylow 3-subgroup of Det(G)/Det(Z).

Moreover, T (G/Z) ∼= T (H/Z3 ×W2)⊕X(W ).

Proof. The proof follows the same line of reasoning as in Lemma 8.1. That is, the
composition

Z(G)→ G→ Det(G)

induces an isomorphism from the Sylow `-subgroup of Z(G) to the Sylow `-subgroup
of Det(G) for all primes ` 6= 3. The same holds for the induced composition

Z(G)/Z → G/Z → Det(G)/Det(Z).

One can finish the proof by letting H be the inverse image of the Sylow 3-subgroup
of Det(G)/Det(Z) under the map induced by the determinant. �

Now we can state the main theorem of the section.

Theorem 9.2. Let G be a group such that SL(3, q) ⊆ G ⊆ GL(3, q) and let Z ⊆
Z(G). Assume that the field k has characteristic 2.

(a) Suppose that 2 divides the order of Det(G)/Det(Z). Then T (G/Z) ∼= Z ⊕
X(G/Z).

(b) Suppose that 2 does not divide the order of Det(G)/Det(Z). Then
(i) if 4 divides q − 1, then T (G/Z) ∼= Z⊕X(G/Z),

(ii) if 4 divides q + 1, then T (G/Z) ∼= Z⊕ Z/2Z⊕X(G/Z).
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Proof. Let H, Z3, W2 and W be as in Lemma 9.1. Suppose that 2 divides the
order of Det(G)/Det(Z). Observe that G/Z has 2-rank 3, since H has 2-rank 2
(an easy fact that is apparent later in this proof). Moreover, the center of a Sylow
2-subgroup of G has 2-rank 2. So every maximal elementary abelian subgroup has
2-rank 3. This means that T (G/Z) has torsion-free rank one. In addition, G/Z has
a nontrivial normal 2-subgroup, and hence every indecomposable k(G/Z)-module
with trivial Sylow restriction has dimension one. This proves (a).

For the rest of the proof assume that 2 does not divide the order of Det(G)/Det(Z).
That is, the group W2 of Lemma 9.1 is trivial. Then, a Sylow 2-subgroup of
G/Z is the image of a Sylow 2-subgroup of SL(3, q) under the map SL(3, q) →
(Z · SL(3, q))/Z ↪→ G/Z. Thus, G/Z has 2-rank two and any two maximal elemen-
tary abelian 2-subgroups are conjugate in SL(2, q) and also in G/Z. It follows that
TF (G/Z) ∼= Z and generated by the class of Ω(k).

Let S denote the Sylow 2-subgroup of G/Z. We distinguish two cases. First,
suppose that q ≡ 1 (mod 4). Then q − 1 = 2td where d is odd and |S| = 22t+1. We
can assume that S is generated by the classes (modulo Z) of the elements

X1 =

ζ ζ−1

1

 , X2 =

1
ζ

ζ−1

 , and Y =

 1
−1

1


where ζ ∈ Fq is a root of unity of order 2t. The group S is a wreath product and has
a unique G/Z-conjugacy class of Klein four subgroups. Therefore TF (G/Z) ∼= Z.

For the other case, we suppose that q ≡ 3 (mod 4) and that q + 1 = 2td where d
is odd and |S| = 2t+2. We can choose the Sylow 2-subgroup S of G/Z that is the
collection of classes (modulo Z) of all block matrices of the formX

r


where r = Det(X)−1 and where X runs through the elements of some fixed Sylow 2-
subgroup of GL(2, q). Thus, S is isomorphic to a Sylow 2-subgroup of GL(2, q), since
the two groups have the same order. It is well known that S is semi-dihedral (see
also [3, 17]). Hence, T (S) ∼= Z⊕Z/2Z. By [13], the restriction map T (G/Z)→ T (S)
is a split surjection.

The only issue left to prove is that every indecomposable k(G/Z)-module with
trivial Sylow restriction has dimension one. Observe by Lemma 9.1, we may assume
that G = H is an extension of SL(3, q) by a cyclic group whose order is a power of
3. With this assumption G/Z = H/Z3. The asserted result is obtained in two steps.

Let J = (Z3 ·SL(3, q))/Z3
∼= SL(3, q)/(Z3∩SL(3, q)). The first step is to show that

T (J) = T (S), or equivalently, that every indecomposable endotrivial kJ-module
with trivial Sylow restriction has dimension one.

Notice that Z3 ∩ SL(3, q) is in the center of SL(3, q) and has order either 1 or 3.
The normalizer of the Sylow 2-subgroup S of J has the form NJ(S) = S × Z(J)
with Z(J) of order 1 or 3. Suppose that |Z(J)| = 1, that is, either Z3 6= {1} or 3
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does not divide q − 1. Then T (J) = T (S) by Proposition 2.3 and the first step is
complete in this case.

Now assume that Z(J) has order 3. Then 3 divides q − 1, Z3 = {1} and J =
SL(3, q). Let u be a primitive cube root of one. We fix the following elements of J

X =

u u2

1

 , Y =

1
u2

u

 , A =

−1
−1

1

 , B =

1
−1

−1

 .
Note that XY generates the Sylow 3-subgroup of Z(J). Moreover, X is in the
commutator subgroup (which is isomorphic to SL(2, q)) of NJ(〈A〉) and, similarly,
Y is in the commutator subgroup of NJ(〈B〉). Furthermore, S ⊆ ρ2(〈A〉) by an
argument similar to the one used in the proof of Proposition 6.1. So in the notation
of Section 3, X ∈ ρ1(〈A〉) and Y ∈ ρ1(〈B〉). It follows that Y ∈ ρ2(〈A〉) and XY ∈
ρ3(S). Thus, ρ3(S) = NJ(S), and from [16] we have that the only indecomposable
endotrivial kJ-module with trivial Sylow restriction is the trivial module. This
completes the first step.

For the second step and to finish the proof of the theorem, suppose that M is a
k(G/Z)-module with trivial Sylow restriction. Then M↓J ∼= k⊕ (proj). This implies
that M is a direct summand of (kJ)↑G/Z which is a direct sum of one-dimensional
modules, since J is a normal subgroup of G/Z of odd index. Therefore, M has
dimension one. �

10. Type A1 in Characteristic 2

Throughout this section let p = 2 and let G be a group such that SL(2, q) ⊆
G ⊆ GL(2, q). Let Z be a central subgroup of G. Our objective is to determine
T (G/Z) under these assumptions, namely addressing the second part of the cases
of Theorem 1.1 excluded by condition (d) of the hypothesis.

This case is more tedious than the previous one because the group G/Z can have
dihedral (including Klein four), semi-dihedral or generalized quaternion Sylow 2-
subgroups. The differences in the 2-local structure of G/Z lead to as many distinct
outcomes for the structure of T (G/Z), which we now detail.

As in the previous two sections, we start with a useful decomposition of G/Z.
The proof of the lemma below is similar to that of Lemma 9.1 and therefore left to
the reader.

Lemma 10.1. For G and Z as above, G/Z ∼= H/Z2 ×W where

(a) W is the odd part of Det(G)/Det(Z),
(b) Z2 is the Sylow 2-subgroup of Z, and
(c) H is an extension

1 // SL(2, q) // H // V2 // 1

where V2 is the Sylow 2-subgroup of Det(G)/Det(Z).

In addition T (G/Z) ∼= T (H/Z2) ⊕ X(W ), with X(H/Z2) = {1} and X(G/Z) ∼=
X(W ).

We can now state and prove the main theorem of this section.
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Theorem 10.2. Let G be a group such that SL(2, q) ⊆ G ⊆ GL(2, q) and Z ⊆ Z(G).
Assume that the field k has characteristic 2. Write |G : SL(2, q)| = 2sm1 and
|Z| = 2rm2 where m1 and m2 are odd integers. The group of endotrivial modules
T (G/Z) is described as follows.

(A) Suppose that q ≡ 3 (mod 4). Write q + 1 = 2td where d is odd. Note that
r, s ∈ {0, 1}.
(1) Assume that s = 0.

(a) If r = 0, then T (G/Z) ∼= Z/4Z⊕ Z/2Z⊕X(G/Z).
(b) If r = 1, then

(i) if q ≡ 3 (mod 8), then T (G/Z) ∼= Z⊕ Z/3Z⊕X(G/Z),
(ii) if q ≡ 7 (mod 8), then T (G/Z) ∼= Z2 ⊕X(G/Z).

(2) Assume that s = 1.
(a) If r = 0 then T (G/Z) ∼= Z⊕ Z/2Z⊕X(G/Z).
(b) If r = 1 then T (G/Z) ∼= Z2 ⊕X(G/Z).

(B) Suppose that q ≡ 1 (mod 4). Write q − 1 = 2td where d is odd. Note that
0 ≤ r ≤ s+ 1, r ≤ t and s ≤ t.
(1) Assume that r = 0.

(a) If s = 0, then T (G/Z) ∼= Z/4Z⊕ Z/2Z⊕X(G/Z).
(b) If s > 0, then T (G/Z) ∼= Z⊕X(G/Z).

(2) Assume that r > 0.
(a) If 0 < r < s+ 1 ≤ t, then T (G/Z) ∼= Z⊕X(G/Z).
(b) If r = s+ 1 ≤ t, then

(i) if q ≡ 1 (mod 8), then T (G/Z) ∼= Z2 ⊕X(G/Z),
(ii) if q ≡ 5 (mod 8), then T (G/Z) ∼= Z⊕ Z/3Z⊕X(G/Z).

(c) If r = s = t, then T (G/Z) ∼= Z2 ⊕X(G/Z).

Proof. For the purposes of the proof let H and Z2 be as in Lemma 10.1. Hence, it
suffices to find T (H/Z2) in each of the above cases.

Let K denote the kernel of the restriction map T (H/Z2) → T (S), where S is a
Sylow 2-subgroup of H/Z2. We should first note that if r = 0 or if r < s+1 ≤ t or if
r < s = t, then K = {1}, and the restriction map is injective. The reason is that in
each of these cases H/Z2 has a nontrivial central 2-subgroup and X(H/Z2) = {1},
since SL(2, q) is a perfect group. Thus K = {1} by Proposition 2.2 and Lemma
10.1. It follows that the only cases in which K might not be trivial are (A)(1)(b),
(B)(1)(b), and (B)(2)(c).

Suppose first that q+1 = 2td for t > 1 and d odd. A Sylow 2-subgroup of GL(2, q)
is a semi-dihedral group of order 2t+2 and it is self-normalizing, by [3, 17]. This is the
Sylow 2-subgroup in the case (A)(2)(a). So the restriction map T (H/Z2)→ T (S) ∼=
Z⊕Z/2Z is an isomorphism by [13]. In case (A)(1)(a), a Sylow 2-subgroup of H/Z2

is generalized quaternion, as for SL(2, q), and so the restriction map T (H/Z2) →
T (S) ∼= Z/4Z⊕ Z/2Z is an isomorphism by [13].

If r = 1, the group Z2 is the center of the Sylow 2-subgroup of H. Thus, the
Sylow 2-subgroup S of H/Z2 is a dihedral group, possibly a Klein four group. In
cases (A)(1)(b)(ii), and (A)(2)(b), S is dihedral of order at least 8. In these cases the
group H/Z2 has two conjugacy classes of (maximal) elementary abelian 2-subgroups.
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Hence, the torsion-free rank of T (H/Z2) is two, by Theorem 2.1. Note also that S
is self-normalizing. Thus by Proposition 2.3, T (H/Z2) ∼= Z×2 as asserted.

In the case (A)(1)(b)(i), H/Z2
∼= PSL(2, q), and S is a Klein four group with

normalizer NH2/Z(S) ∼= S o C3 of order 12. The Green correspondents of the non-
trivial kNH/Z2(S)-modules of dimension one are k(H/Z2)-modules with trivial Sylow
restriction of dimension greater than one. The detailed computation of T (H/Z2) is
carried out in [16].

Suppose now that q−1 = 2td for t > 1 and d odd. A Sylow 2-subgroup of GL(2, q)
is a wreath product, which we can choose to be generated by

[
0 1
1 0

]
,

[
ζ 0
0 1

]
and

[
1 0
0 ζ

]

where ζ is a 2t-root of unity in F×q . A Sylow 2-subgroup of SL(2, q) is a generalized
quaternion group [3]. Hence, if r = s = 0, then we have the same situation as in
case (A)(1)(a). If r = 0 < s, then the subgroup consisting of diagonal matrices with
entries 1 and −1, has rank 2 and every involution is H/Z2-conjugate to an element
of this subgroup. Consequently, H/Z2 has a unique conjugacy class of maximal
elementary abelian 2-subgroups, all of which have order 4. Hence, the torsion-free
rank of T (G) is one and the proof of (B)(1) is complete.

If 0 < r < s + 1 ≤ t, then the group S has an elementary abelian subgroup of
rank 3, generated by the classes (modulo Z2) of the elements

[
0 1
1 0

]
,

[
1 0
0 −1

]
and

[
ζ 0
0 ζ

]

where ζ is a 2s+1-root of 1 in F×q . In addition, the last two elements above are
central in S and hence S has no maximal elementary abelian subgroups of rank 2.
Because H/Z2 has a nontrivial normal 2-subgroup, any indecomposable k(H/Z2)-
module with trivial Sylow restriction has dimension 1 and the claim holds in case
(B)(2)(a).

If r = s+ 1 ≤ t then the composition

SL(2, q)→ (Z2 · SL(2, q))/Z2 ↪→ H/Z2

is surjective and has kernel Z(SL(2, q)). Thus H/Z2
∼= PSL(2, q). Its Sylow 2-

subgroup is a dihedral group or, in the case that q ≡ 5 (mod 8), a Klein four
group. Hence, we have the same situation as in (A)(1)(b) with the same result. In
particular, the results of [16] apply in case (B)(2)(b)(ii).

Finally, in case (B)(2)(c), a Sylow 2-subgroup S of H/Z2 is isomorphic to the
quotient of a Sylow 2-subgroup of GL(2, q) by its center. So S is a dihedral group of
order at least 8 (cf. [17]). Hence, the conclusion is the same as in case (A)(1)(b)(ii).

�
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11. Appendix: Classification of Endotrivial Modules in the Cyclic
Sylow Subgroup Setting

The following result summarizes one of the main results of [11] and provides a
classification of the group of endotrivial modules for finite groups of Lie type A in
the case when a Sylow p-subgroup of G is cyclic.

Theorem 11.1. Suppose that SL(n, q) ⊆ G ⊆ GL(n, q) and that Z ⊆ Z(G).
Assume that the Sylow p-subgroup S of G is cyclic and let N = NG(S). Then

T (G/Z) ∼= T (N̂) where N̂ = NG/Z(Ŝ) and Ŝ is a Sylow p-subgroup of G/Z. More-

over, T (N̂) is the middle term of a not necessarily split extension

1 // X(N̂) // T (N̂) // T (Ŝ) // 0 (1)

where X(N̂) ∼= N/(Z[N,N ]) is the group of isomorphism classes of kN̂-modules of
dimension one. Let D = Det(G) ∼= G/ SL(n, q) and let d = |D|. In the case that
Z = {1} we have the following.

(a) If p = 2 then n = 1, and T (G) ∼= D/Det(S).
(b) Suppose that p > 2 divides q − 1. If p divides d, then n = 1 and T (G) ∼=

Z/aZ⊕ Z/2Z, where d = apt for a relatively prime to p.
(c) If p > 2 divides q−1 and p does not divide d, then there are two possibilities:

(i) assuming that 2 does not divide (q − 1)/d, then T (G) ∼= Z/dZ⊕ Z/4Z.
(ii) assuming that 2 divides (q − 1)/d, then T (G) ∼= Z/dZ⊕ Z/4Z⊕ Z/2Z.

(d) Suppose that p does not divide q − 1. Let e be the least integer such that p
divides qe−1. Then n = e+f for some f with 0 ≤ f < e. Let m = (q−1)/d
and ` = gcd

(
m(q − 1), qe − 1

)
/m. Then we have two possibilities:

(i) if f = 0 then T (G) ∼= Z/`Z⊕ Z/2eZ,
(ii) while if f > 0, then T (G) ∼= Z/2eZ ⊕ Z/(q − 1)Z ⊕ Z/dZ (except that

T (G) ∼= Z/2eZ⊕ Z/2Z if both f = 2 and q = 2).
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