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Abstract

Using density functional theory combined with a Green’s function scattering approach, we examine the thermoelectric properties of 
hetero-nanoribbons formed from alternating lengths of graphene and boron nitride.  In such structures, the boron nitride acts as a 
tunnel barrier, which weakly couples states in the graphene, to form mini-bands. In un-doped nanoribbons, the mini bands are 
symmetrically positioned relative to the Fermi energy and do not enhance thermoelectric performance significantly. In contrast, when 
the ribbons are doped by electron donating or electron accepting adsorbates, the thermopower S and electronic figure of merit are 
enhanced and either positive or negative thermopowers can be obtained. In the most favourable case, doping with the electron donor 
tetrathiafulvalene (TTF) increases the room-temperature thermopower to -284 μv/K and doping by the electron acceptor 
tetracyanoethylene (TCNE) increases S to 210 μv/K. After including both electron and phonon contributions to the thermal 
conductance, figures of merit ZT up to of order 0.9 are obtained. 

1. Introduction 
The ability to manage waste heat is a major 
challenge, which currently limits the performance of 
information technologies. To meet this challenge, 
there is a need to develop novel materials and device 
concepts, innovative device architectures, and smart 
integration schemes, coupled with new strategies for 
managing and scavenging on-chip waste heat. The 
development of new high-efficiency and low-cost 
thermoelectric materials and devices is a major target 
of current research. Thermoelectric materials, which 
allow highly-efficient heat-to-electrical-energy 
conversion from otherwise wasted low-level heat 
sources, would have enormous impact on global 
energy consumption. 

Nanoscale systems and especially nanoscale 
structures are very promising in this respect, due to 
the fact that transport takes place through discrete 
energy levels. The ability to measure thermopower in 
nanoscale junctions opens the way to developing 
fundamentally-new strategies for enhancing the 

conversion of heat into electric energy. The 
thermopower (or Seebeck coefficient) S of a material 
or nanoscale device is defined as S =-ΔV/ΔT, where 
ΔV is the voltage difference generated between the 
two ends of the junction when a temperature 
difference ΔT is established between them. In 
addition to the goal of maximising S, there is a 
world-wide race to develop materials with a high 
thermoelectric efficiency η. This is often expressed in 
terms of a dimensionless figure of merit1-3 ZT = 
(S2G/κ)T, where S is the Seebeck coefficient, G is the 
electrical conductance, T the temperature and κ the 
thermal conductance given by κ= κe + κp, where κe 
(κp) is the electronic (phononic) contribution to κ. In 
terms of ZT, the maximum efficiency of a 
thermoelectric generator is ηmax = ηc (α-1)/(α+1) 
where ηc is the Carnot efficiency and α = (ZT+1)1/2, 
whereas the efficiency at maximum power is ηp=ηCA 
(α2-1)/(α2+1), where ηCA is the Curzon-Ahlborn 
upper bound. In both cases, the efficiency is a 
maximum when ZT tends to infinity. 
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A key strategy for improving the 
thermoelectric properties of inorganic materials has 
been to take advantage of nanostructuring4-10, which 
leads to quantum confinement of electrons, 
suppression of parasitic phonons11, 12 and enhanced 
thermoelectric performance13, 14. For example, 
nanostructured materials such as PbSeTe/PbTe-based 
quantum dot superlattices with ZT of ca. 2 were 
realized over a decade ago5. However lack of further 
improvement since that time suggests that new 
strategies are needed. More importantly, none of the 
above materials use sustainable elements. The raw 
Bi2Te3 material is already globally limited (<300 ton 
yr-1) and long term resources of tellurium are close to 
exhaustion. Furthermore tellurium is toxic and 
energetically expensive to process. 

Recently the thermoelectric properties of 
graphene have been investigated for their potential to 
convert waste heat into electricity1-3, 15-21. The 
challenge of maximising ZT involves maximising the 
power factor S2GT and minimising the thermal 
conductance κ. The thermal conductance κ = κe + κp 
is the sum of the electronic (κe) and phononic (κp) 
thermal conductances. Since the task of minimising 
the latter involves phonon engineering, whereas 
enhancement of S2GT and minimisation of κe 
involves the tuning of electronic properties, these 
two tasks are often considered separately. 

As a first step one should identify materials in 
which the power factor and electronic figure of merit 
ZTe=S2GT/κe are maximized and as a second step, if these 
properties are favourable, develop strategies for 
minimizing κp. In what follows, we tackle the former 
challenge by developing new strategies for optimizing the 
thermoelectric performance of graphene-boron nitride 
nanoribbons. Intuitively our strategy can be understood 
by examining the transmission coefficient T(E) of 
electrons of energy E passing through a nanostructure 
from a hot to a cold reservoir. If the Fermi energy of the 
reservoirs is EF, then it is convenient to introduce the 
variable x = (E - EF). If the distribution of x is ρ(x), then 
the mean of x is <x> = ∫dx ρ(x)x and the variance is σ2= 
<x2> - <x>2  = ∫dx ρ(x)(x- <x>)2. In terms of these 
quantities, the Seedbeck coefficient (or thermopower) S 
is given by 

𝑆 =
1
𝑒𝑇

< 𝑥 > ,                                 (1) 

where T is the temperature and e is the electronic 
charge. Similarly the electronic contribution to the 
figure of merit ZTe is 
 

𝑍𝑇𝑒 =
< 𝑥 >2

𝜎2
.                              (2) 

(see below for a derivation of these equations.) 
Clearly 𝑍𝑇𝑒 = ∞, when 𝜎 = 0, which means that 
ρ(𝑥) should be proportional to a delta function10 of 
the form ρ(𝑥) = 𝐴δ(𝑥 − 𝑥0), in which case 𝑆 =
1
𝑒𝑇
𝐴𝑥0. This strategy is relevant for structures, whose 

electronic density of states contains narrow 
resonances, such as single-molecule electrical 
junctions22, 23. However in what follows, we shall 
find that BN-graphene nanoribbons do not exhibit 
narrow resonances and therefore an alternative 
strategy is needed. 
  
2. Thermoelectric properties of BN-graphene 
hetrostructures 
Graphene and boron nitride are attractive, because of 
their unique mechanical and electrical properties and 
their closely-matched lattice parameters24-26. To 
develop a strategy for optimizing their thermoelectric 
properties, we first relate ρ(x) to physical quantities 
by introducing the non-normalized probability 
distribution P(E) defined by 27, 28 
 

𝑃(𝐸) = −𝑇(𝐸)
𝜕𝑓(𝐸)
𝜕𝐸

  ,                            (3) 

where T(E) is the electron transmission coefficient 
and  f(E) is the Fermi distribution function. The 
moments of P(E) are 
 

𝐿𝑛 =   � 𝑑𝐸 𝑃(𝐸)(𝐸 − 𝐸𝐹)𝑛
∞

−∞
,                  (4) 

and the electrical conductance, G is given by the 
Landauer formula 
 

𝐺 =
2𝑒2

ℎ
𝐿0 ,                                  (5) 

where h is Planck’s constant. In terms of these 
moments, the thermopower is 𝑆 = 1

𝑒𝑇
𝐿1
𝐿0

, the electronic 

contribution to the thermal conductance is 
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    𝑘𝑒 = 2
ℎ
1
𝑇

(𝐿2 −
𝐿12

𝐿0
)   (6) 

and  

  𝑍𝑇𝑒 = �𝑆
2𝐺
𝑘𝑒
�𝑇 = �𝐿1

2

𝐿02
� /[𝐿2

𝐿0
− 𝐿12

𝐿02
].  (7) 

 
To derive equations (1) and (2), we define the 
normalised distribution22 ρ(x) by ρ(x)=P(x)/L0. In 
terms of the moments Ln, the mean and standard 
deviation of ρ(x) are given by < 𝑥 > = 𝐿1

𝐿0
,      𝜎2 =

 𝐿2
𝐿0
− 𝐿12

𝐿02
 . Substituting these into equations (6) and (7) 

yields equations (1) and (2) and furthermore, the 
electronic contribution to the thermal conductance 
(ke) becomes 
 

𝑘𝑒 =
2
ℎ

1
𝑇
𝐿0 𝜎2,                              (8) 

Clearly < 𝑥 > and 𝜎2 capture essential features 
regarding the shape of ρ(x) and P(x). These shape-
dependent parameters are independent of the 
normalisation constant 𝐿0 of P(x). Equations (1) and 
(2) reveal that S and 𝑍𝑇𝑒 depend only on these shape 
parameters and are independent of 𝐿0. Only the 
electrical and electronic thermal conductances 
depend on 𝐿0. This feature which can be traced to the 
fact that G and 𝑘𝑒 describe the magnitudes of 
currents and therefore depend on the magnitude of 
P(x), whereas S and 𝑍𝑇𝑒 involve only ratios. 

Since [−𝜕𝑓(𝐸)
𝜕𝐸

]  is an even function of x of 
width kBT,  our strategy will involve engineering BN-
graphene nanoribbons to create an asymmetry in 
T(E), located close EF. In what follows, we shall find 
that it is possible to create sharp steps in the electron 
transmission coefficient T(E) of BN-graphene 
nanoribbons and therefore to understand this 
strategy, it is of interest to examine the thermopower 
and ZTe of a system with a model transmission 
coefficient of the form: T(E) = A for E<E0 and 
T(E)=0 for E>E0, where A is an arbitrary constant 
defining the height of the step and E0 defines the 
position of the step21. In this case, since the only 
energy scale is kBT, where kB is Boltzmann’s constant 
and T is the temperature, it is convenient to introduce 
the dimensionless parameter y = (E - EF )/kBT, so the 
Fermi function takes the form f(E)=(exp y + 1)-1.   
 

In this case, equation (4) yields 
 

  𝐿𝑛 =   𝐴(𝑘𝐵𝑇)𝑛𝐼𝑛(𝑦0)   (9) 
 
where y0 = (E0 - EF )/kBT, 
 

  𝐼𝑛(𝑦0) = ∫ 𝑑𝑦 𝑃(𝑦)𝑦𝑛𝑦0
−∞    (10) 

 
and 𝑃(𝑦) = −𝑑𝑓/𝑑𝑦 = 𝑒𝑦/(𝑒𝑦 + 1)2. Clearly all 
moments depend only on the size of the step (ie the 
dimensionless parameter A) and the dimensionless 
parameter y0, which defines the location of the step 
relative to the Fermi energy of the electrodes, in units 
of kBT. In terms of 𝐼𝑛, < 𝑥 > = 𝑘𝐵𝑇

𝐼1
𝐼0

,      𝜎2 =

(𝑘𝐵𝑇)2[𝐼2
𝐼0
− 𝐼12

𝐼02
] . In terms of the dimensionless 

Fermi-function integrals 𝐼𝑛(𝑦0), the thermoelectric 
parameters become  
 

𝐺 = 2𝑒2

ℎ
𝐴𝐼0,                           (11) 

𝑆 = 𝑘𝐵
𝑒
𝐼1
𝐼0

,                              (12) 

 𝑘𝑒 = 2𝐴(𝑘𝐵)2𝑇
ℎ

(𝐼2 −
𝐼12

𝐼0
),                  (13) 

 𝑍𝑇𝑒 = �𝐼1
2

𝐼02
� / �𝐼2

𝐼0
− 𝐼12

𝐼02
�                    (14). 

 
These equations show that the natural unit of G is 
2𝑒2

ℎ
= 77µ𝑆, of S is 𝑘𝐵

𝑒
= 86 µ𝑉/𝐾  and of 𝑘𝑒 is 

2(𝑘𝐵)2𝑇
ℎ

= 173 𝑝𝑊/𝐾 at room temperature (ie 300K). 
Plots of the resulting thermoelectric parameters are 
shown in figure 1. Clearly G and 𝑘𝑒 are both 
proportional to step size A, whereas S and 𝑍𝑇𝑒 are 
independent of A.  
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Figure 1. Plots of thermoelectric properties of a system 
with a model step-like transmission coefficient21, versus 
the dimensionless parameter y0, which defines the location 
of the step. (a) electrical conductance, (b) electronic 
contribution to the thermal conductance ke, (c) Seebeck 
coefficient S, (d) electronic contribution to the figure of 
merit ZTe and (e) full figure of merit at (kp= 2 nW/K) as a 
function of the position of step function y0 and the 
amplitude of T(E). 
 
In what follows, we shall find that it is possible to 
create sharp steps in T(E) of BN-graphene 
nanoribbons, but these are not necessarily located in 
optimal positions relative to EF. Therefore to 
optimize S and ZTe we shall tune the asymmetry by 
doping. To avoid introducing unnecessary scattering, 
rather than introducing substituents, we shall 
consider doping the ribbons using adsorbates10 of the 
electron acceptor tetracyanoethylene (TCNE)29, 30 and 
the electron donor tetrathiafulvalene (TTF)30, 31. 

To benchmark our study, we first examined 
electron transport in the five zigzag ribbons shown in 
figure S8 of the SI, which are infinitely periodic in 
the longitudinal z direction and contain narrow 
transverse strips of BN, separated by strips of 
graphene of length l=1, 2, 3, 4 and 5 hexagons. The 
l=2 structure is shown in figure 2. 

We shall find that the T(E) of these structures 
is symmetric about EF, and therefore their 
thermopowers are low. To break this symmetry, we 
shall dope the materials using the organic molecules 
TCNE and TTF, to yield the structures shown in 
figure S9 and S10 of the SI, examples of which (for 
l=3) are shown in figures 3 and 4. In all cases, we use 
supercells containing five unit cells, to allow for 
incommensurabilities following relaxation. 
 

 
 
Figure 2: Shows the relaxed supercell of a l=1 
graphene/boron nitride hetero-ribbon, with 240 carbon, 
boron and nitrogen atoms. 

 
 
Figure 3.   Examples of a TCNE-doped structure. The 
figure shows the DFT calculated optimum geometry for 
the l=3 structure the adsorbed electron-acceptor TCNE.  
 

 
Figure 4.   Examples of a TTF-doped structure. The figure 
shows the DFT calculated optimum geometry for the l=3 
structure the adsorbed electron-donor TTTF. 
 
3. Computational Method 
To obtain the optimised geometry (and the associated 
mean-field Hamiltonian) of the above structures, we 
employed the SIESTA32 implementation of Density 
Functional Theory (DFT). The local density 
approximation (LDA) with norm-conserving 
pseudopotentials, double-zeta polarized (DZP) basis 
sets of pseudoatomic orbitals, a real-space grid 
defined with a plane-wave cut-off energy of 250 Ry, 
and the Ceperley-Alder exchange (CA) correlation 
functional with the atomic forces relaxed to 0.02 
eV/˚A have been used in this work. The underlying 
mean-field Hamiltonian obtained from SIESTA was 
combined with the GOLLUM33, implementation of 
the non-equilibrium Green’s function (NEGF) 
method to find the transmission coefficient T(E) for 
electrons with energy E passing from one electrode 
to another.  
 
4. Results and discussion 
Figure 5 shows the calculated band structures (right-
hand plots) and the number of open scattering 
channels (left-hand plots) of the five structures 
shown in figure S8. The latter are plotted as a 
function of electron energy E, relative to the DFT-
predicted value of the Fermi energy EF

DFT. To 
understand these trends, the BN should be considered 
as a tunnel barrier, which weakly couples states in 
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the graphene islands to form mini-bands. As the size 
of the graphene regions is increased, the spacing 
between the quantised states decreases and the 
number of mini-bands entering the BN energy gap 
increases. As shown by the left-hand plots of figure 
5, each mini-band contributes a scattering channel 
and since the transmission coefficient T(E) of such 
periodic structures is equal to the number of open 
channels at energy E, this leads to step-like features 
in T(E) at the mini-band energies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Band structures (right) and T(E) (left) for the 
structures of  figure 2. EF

DFT is the DFT-predicted value of 
the Fermi energy. 
 
Although these features are desirable, their symmetric 
location relative to the Fermi energy  means that they are 
unlikely to improve thermoelectric performance. 
Therefore it is of interest to examine how properties 
would change if the true Fermi energy (EF) were allowed 
to vary from the DFT-predicted value (EF

DFT). In practice 
the Fermi energy can be varied experimentally by 

electrostatically or electrochemically gating the wire or 
by doping. To this end, we now consider the effect of 
doping with TTF and TCNE and perform fully self-
consistent calculations which take into account changes 
in the total charge of the system. A first step in the 
calculations is to relax the structures in the presence of 
adsorbates, to yield structures such as those shown in 
figure 6. In each case after geometry relaxation, the 
binding energy and charge transferred from the two 
molecules were computed as shown in table 1. These 
calculations show that TCNE gains electrons from the 
surface of graphene-boron nitride, whereas the TTF 
donates electrons to the surface. 
 
Table 1: This shows DFT calculations of the charge 
transferred and binding energies between the surface of 
graphene-boron nitride and the two adsorbates TCNE and 
TTF. 

 
 
As an example, Figure 6 shows side views of the 
optimised structures of ribbon (a) after relaxation. Fig. 
5II and 5III show the optimized graphene-boron 
nitride structure when doped by TCNE and TTF. In 
these structures, TCNE π-stacks a distance 0.28 nm 
above the surface, while the TTF π-stacks at a distance 
0.3 nm. As an example, figure 6 shows the structure-e 
(I) without doping, (II) doped by electron acceptor-
TCNE, and (III) doped by electron donor-TTF.   
 

 
Figure 6: Side and top views of optimised structure-a 
(1BN-5G) for molecular complexs: (I) without doping, (II) 
doped by electron acceptor-TCNE, and (III) doped by 
electron donor-TTF.  
 
After obtaining all relaxed structures, the transmission 
coefficient T(E) (= number of open channels) was 
obtained from their mini-band structures and 
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thermoelectric coefficients calculated using equations (3) 
to (6). For structure (e) of figures S8-S10 of the SI, figure 
7 shows results for transmission function T(E) (a) without 
doping, (b) doped by the electron acceptor TCNE and (c) 
doped by the electron donor TTF, along with results for 
the thermopower S and the full figure of merit ZT. This 
demonstrates that a Fermi energy shift can be realised by 
introducing donor or acceptors onto the surface of the 
graphene-boron nitride.  

 

 
Figure 7: For the graphene-boron nitride structure (e) of figure 
S9, the black solid line in each panel shows DFT calculations 
of the transmission coefficient T(E) for electrons of energy E 
passing from one electrode to the other (a) without doping, (b) 
doped by TCNE and (c) doped by TTF. The magenta lines 
show the room temperature electrical conductance. (color 
online) Figures 7d, 7e and 7f show the room-temperature 
thermopower S, the figure of merit ZT, obtained by assuming a 
phonon thermal conductance of 2nW/K  34  and 0.2nW/K  35. 
Since the Fermi energy EF

DFT predicted by density functional 
theory is not necessarily accurate, Figs (d-f) show results for S 
and ZT obtained from equ. (4) using different values of EF. 

Figures 7 and 8 show corresponding results for the 
structures (c) and (a) of figure S8.  Figures 7a, 8a and 9a 
show that as the length of the graphene regions increases, 
an increasing number of mini-bands are formed from 
quantized levels within the graphene, leading to an 
increasing number of rectangular steps in T(E). However 

none of the un-doped structures possess sharp 
asymmetrically-located features in T(E). On the other 
hand, figures 7b, 8b and 9b (7c, 8c and 9c) show that the 
presence of TCNE (TTF) adsorbates creates a narrow 
feature placed asymmetrically near EF

DFT. This delta-
function-like feature10 is associated with the interaction 
between localized states on the analytes and extended 
states on the surface of graphene-boron nitride. The 
position of this feature depends on type of the adsorbate; 
in the presence of TCNE it is above EF

DFT, while in 
presence of TTF it is below EF

DFT. Figures 7b,c, 8b,c, and 
9b,c show that this asymmetry leads to a large increase in 
the  thermopower, upon doping.  
 

 

 
Figure 8: For the graphene-boron nitride structure (c) of figure 
S8, the black solid line in each panel shows DFT calculations 
of the transmission coefficient T(E) for electrons of energy E 
passing from one electrode to the other (a) without doping, (b) 
doped by TCNE and (c) doped by TTF. The dotted lines show 
the room temperature electrical conductance. (color online) 
Figures 8d, 8e and 8f show the room-temperature thermopower 
S, the figure of merit ZT, obtained by assuming a phonon 
thermal conductance of 2nW/K 34 and 0.2nW/K 35. Since the 
Fermi energy EF

DFT predicted by density functional theory is 
not necessarily accurate, Figs (d-f) show results for S and ZT 
obtained from equ. (4) using different values of EF. 
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To obtain an estimate of the figure of merit ZT, we need 
an estimate of the phonon contribution kp to the thermal 
conductance in addition to the electronic contribution ke 
given by equation (7) and presented in the SI. Thermal 
conductance can be reduced by both surface roughness 
and boundary scattering and by nanostructuring ribbons. 

Such phonon engineering can take place remotely, 
in the current –carrying regions which feed electrons into 
the above heterostructures. Therefore to estimate kp for the 
structure of figure 4, we note that a perfect zigzag boron 
nitride is predicted to have a thermal conductance of 
2nW/K34. On the other hand, mixed graphene nanoribbons 
of this width may have a room temperature thermal 
conductance as low as 0.2 nW/K35. As shown in figures 
7,8 and 9, after doping with TCNE and TTF the latter 
leads to a full ZT as high as 0.9 at room temeperature, 
whereas the former leads to values of order  0.1. 

 

 

 
Figure 9: For the graphene-boron nitride structure (a) of 
figures 2-4, the black solid line in each panel shows DFT 
calculations of the transmission coefficient T(EF) for electrons 
of energy EF passing from one electrode to the other (a) 
without doping, (b) doped by TCNE and (c) doped by TTF. 
The dotted lines show the room temperature electrical 
conductance. (color online) Figures 9d, 9e and 8f show the 
room-temperature thermopower S, the figure of merit ZT, 

obtained by assuming a phonon thermal conductance of 2nW/K 

34 and 0.2nW/K 35.  

5. Conclusion  
We have presented a study of the thermoelectric 
properties of graphene-boron nitride hetero-structures 
with various widths of graphene and a fixed width of 
boron nitride. Our aim was to engineer step-like features 
in the transmission coefficient T(E) located 
asymmetrically relative to the Fermi energy EF. Although 
such features arise in the undoped case, they are located 
symmetrically relative to EF and do not enhance 
thermoelectric performance. To induce an asymmetry, we 
investigated the effect of doping with TCNE and TTF 
adsorbates. Since TCNE is an electron acceptor, the 
Fermi energy upon doping must lie between the valence 
band of the ribbon and the TCNE LUMO. This Fermi-
level shift leads to a marked enhancement of both the 
thermopower and electronic figure of merit. Similarly, 
since TTF is a donor, the Fermi energy must lie between 
the conductance band of the ribbon and the TTF HOMO.  

The precise value of ZT will depend on the phonon 
thermal conductance of our finite-width wires. Although 
calculation of phonon transport is beyond the scope of 
this paper, we can obtain an estimate from recent 
literature values. For a perfect boron nitride nanowire of 
the same width34, the room temperature thermal 
conductance takes a value of 2nWK-1, whereas for a 
structured graphene nanowire wire35, the room 
temperature thermal conductance is as low as 0.2 nW K-1. 
The latter is lower than that of a straight graphene wire, 
due to boundary scattering and similarly we expect the 
thermal conductance of graphene-boron nitride hetero-
structures to be lower than 2nWK-1 due to interface 
scattering. The presence of dopants will introduce 
additional phonon scattering and tend to further reduce 
the thermal conductance. Taking a phonon thermal 
conductance of 0.2 nW K-1 leads to a ZT as high as 
ZT=0.9. Depending on the choice of adsorbate, find that 
the thermopower could be either positive or negative. 
When combined with the high value of ZT, this 
demonstrates that graphene-boron nitride hetero-
structures are promising and versatile materials for 
thermoelectric applications at the nanoscale. 

Finally we note that our analysis is based on the 
Landauer formula, which is valid for ballistic, quasi-
ballistic and disordered structures and for any value of 
the elastic mean free path. The only restriction is that 
electron transport is elastic. Ie the dimensions of the 
scattering region should be smaller than the inelastic 
mean free path. In practice, the inelastic mean free path 
may be set by the surrounding environment and the 
temperature, as well as the scattering region of interest. 
The validity of the Landauer formula was demonstrated 
in the early 1980’s in the context of electron transport 
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through quantum point contacts, which are ballistic 
region of finite width connected to much wider electrical 
contacts. For such structures, the transmission coefficient 
is equal to the number of open scattering channels and 
the conductance at low temperatures is an integer 
multiple of the conductance quantum. Atomic wires 
formed from periodic chains of atoms and clean carbon 
nanotubes exhibit similar behaviour. The structures we 
consider are also periodic nanowires and are therefore in 
the absence of inelastic scattering, the conductance is 
equal to the number of open channels.  The inelastic 
scattering length is not known theoretically and 
ultimately should be determined by experiment. It is 
known that for related nanowires, the inelastic scattering 
length at room temperature exceeds 3nm36, 37 and 
therefore this may set the maximum wire width for the 
strict applicability of the Landauer formula. 
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