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Abstract We consider an uncertain traveling salesman problem, where dis-
tances between nodes are not known exactly, but may stem from an uncer-
tainty set of possible scenarios. This uncertainty set is given as intervals with
an additional bound on the number of distances that may deviate from their
expected, nominal values.

A recoverable robust model is proposed, that allows a tour to change a
bounded number of edges once a scenario becomes known. As the model con-
tains an exponential number of constraints and variables, an iterative algo-
rithm is proposed, in which tours and scenarios are computed alternately.

While this approach is able to find a provably optimal solution to the robust
model, it also needs to solve increasingly complex subproblems. Therefore,
we also consider heuristic solution procedures based on local search moves
using a heuristic estimate of the actual objective function. In computational
experiments, these approaches are compared.

1 Introduction

The traveling salesman problem (TSP) is one of the most researched NP-
complete optimization problems in the operations research community (see,
e.g., [LLKS85]). Given a (directed, complete) graph with arc lengths, the prob-
lem is to determine the shortest circuit visiting all vertices exactly once.
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Depending on the application at hand it may happen that the input data
(i.e., the arc lengths) are affected by uncertainty and are not known in ad-
vance. As an example, when traveling through a road network, there may be
congestion on arcs leading to unplanned, increased travel times.

Robust optimization is an approach to handle such uncertain optimization
problems. For an overview on the topic, we refer to the textbooks [BTGN09,
KY97] and the surveys [ABV09,BBC11,GS15].

In [MBMG07], a robust TSP model is considered, based on the so-called
regret or min-max-min approach (see [KY97,ABV09]). For every edge there
is an interval given that describes the possible values of lengths this edge
may have (the scenario). The regret approach asks for a tour that minimizes
the worst-case objective over all possible scenarios, where the objective is
determined as the difference between the length of the tour, and the best
possible tour length in this scenario.

While the regret approach is a highly interesting method to handle un-
certain optimization problems, it does not capture the possibility to modify
a solution on-the-fly, when the scenario becomes known. In the example of a
road network, a tour driver might decide to use a different route when radio
traffic service informs him of congested sections. Such an approach amounts
to a two-stage problem formulation, and – with slight differences between the
concepts – is known as adjustable robustness (see [BTGGN03]), or recoverable
robustness (see [LLMS09]). Other examples where the concept of recoverable
robustness was applied include, e.g., the shortest path problem [Büs12], and
the timetable information problem [GHMH+13].

In this work we consider a recoverable robust TSP with exponentially many
scenarios, where the decision maker is allowed to change a bounded number
of arcs, once the scenario becomes known. To solve this model, we follow
a decomposition approach. Similar approaches have also been considered in
[ZZ13,FM12,BAvdH11,Mon06].

The remainder of this paper is structured as follows. In Section 2, we
develop a recoverable robust model formulation for the TSP, and consider a
solution approach based on iterative scenario generation in Section 3. As the
resulting subproblems may still be computationally hard to solve, we introduce
heuristic solution methods in Section 4. These solution methods are compared
in an experimental study in Section 5. We consider problem extensions and
conclude the paper in Section 6.

2 Problem Formulation

2.1 Nominal Problem

We begin with a repetition of the basic TSP. Let a complete graph of n vertices
V and (possibly asymmetric) distances dij for all i, j ∈ V be given. The
TSP consists of finding a directed cycle containing all n vertices with minimal
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length. A well-known formulation is the following:

min
∑
i∈V

∑
j∈V

dijxij (1)

s.t.
∑
j∈V
j 6=i

xij = 1 ∀i ∈ V (2)

∑
j∈V
j 6=i

xji = 1 ∀i ∈ V (3)

∑
i,j∈S

xij ≤ |S| − 1 ∀∅ ( S ( V (4)

xij ∈ {0, 1} ∀i, j ∈ V (5)

where xij is a binary variable that indicates if edge (i, j) is used in the tour
or not. Constraints (4) ensure that there are no subtours. As there are ex-
ponentially many such constraints, one typically generates them during the
solution procedure, using a separation algorithm. In the following, we denote
by T the set of all feasible traveling salesman tours, i.e., all vectors x fulfilling
Constraints (2–5).

2.2 Recoverable Robust Problem

We now introduce a recoverable robust problem variant. Let a TSP instance
be given. Additionally, let U be an uncertainty set of distance matrices, also
referred to as scenarios. Each scenario denotes one possible realization that
we consider, but it is not known in advance which of these scenarios will
actually occur. Since we consider a robust approach, we need to find a tour
that performs well under all of these scenarios; and, applying a recoverable
robust approach, we are allowed to modify our solution in each scenario. In this
setting we allow that the modified solution differs from the original solution
by at most L edges, i.e. the size of the set of edges that are part of exactly
one of the two solutions has to be bounded by L. We denote this problem as
TSP(U). The problem is formally stated as

min
x∈T

max
d∈U

min
x′∈T (x)

dTx′, (6)

where T (x) = {x′ ∈ T | ∆(x′, x) ≤ L} is the set of all tours that can be
generated from x by applying the recovery action, and ∆(x, x′) = |{(i, j) ∈
V × V : xij 6= x′ij}|.

Using such a restriction on the recovery action, we take the practical con-
sideration into account that solutions cannot be changed arbitrarily in many
applications, and that solution modifications may result in undesired costs.
As examples, we mention the delivery of rail cargo wagons (where additional
shunting operations should be avoided), the programming of drilling robots
(when reprogramming operations are expensive), or the planning of circular
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bus lines (which should not change too much if construction sites make routes
impracticable). In these applications, the number of changes within the tour
should be small. The number of these changes is counted, using the distance
measure ∆(x, x′).

In the following, we specify uncertainty sets U for the recoverable robust
TSP.

2.3 Discrete Scenario Sets

We assume in this section that the uncertainty set U = {d1, . . . , dN} is given
by a finite number of scenarios. Let N = {1, . . . , N}. Using a set of variables
xk for every scenario k ∈ N , we can simplify the min−max−min structure of
TSP(U) to a min−max problem. The resulting mixed-integer linear program
(once the maximum in the objective is reformulated as a constraint) is the
following:

min max
k∈N

∑
i∈V

∑
j∈V

dkijx
k
ij (7)

s.t. − ykij ≤ xij − xkij ≤ ykij ∀i, j ∈ V, k ∈ N (8)∑
i∈V

∑
j∈V

ykij ≤ L ∀k ∈ N (9)

x ∈ T (10)

xk ∈ T ∀k ∈ N (11)

ykij ≥ 0 ∀i, j ∈ V, k ∈ N (12)

We use variables x to denote the nominal tour (i.e., the first-stage solution)
and xk to denote a recovery tour for each scenario k. Then, the Objective (7)
denotes the worst-case performance over all scenarios, under the additional
constraints that solutions may not differ too much. To this end, we use vari-
ables ykij to denote if xij and xkij differ in Constraint (8), and bound the num-
ber of such differences for every scenario in Constraint (9). Note that L ≥ 6
is necessary to perform any recovery action at all.

Problem TSP(U) contains N + 1 TSP problems that need to be solved
simultaneously, and which are connected by the distance constraints. While,
e.g., generated cuts can be used for all variables x and xk, an increasing num-
ber of scenarios still results in a highly increased computational complexity.
Containing the classic TSP, the recoverable robust TSP is also NP-hard, even
for a fixed number of scenarios.

2.4 Γ -Scenario Sets

We now consider the recoverable robust TSP with Γ -scenario sets, which were
first introduced by Bertsimas and Sim in [BS04]. Specifically, they assume an
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interval [dij , dij ] is given that describes the possible outcomes for each distance.
As such an uncertainty set also contains unrealistically bad scenarios (e.g., all
distances have simultaneously their worst-case length d), and thus a robust
solution would be too conservative, they restrict the number of edges which do
not have their best-case length dij to be less than or equal to some parameter
Γ ∈ N. This gives the following uncertainty set:

U(Γ ) :=

d ∈ R|V |×|V | | dij = dij + (dij − dij)wij ,
∑
i,j∈V

wij ≤ Γ,wij ∈ {0, 1}


We will sometimes identify a scenario d ∈ U(Γ ) with its defining boolean
matrix w ∈ {0, 1}n×n. Hence, the recoverable robust TSP with Γ -scenario
sets can also be considered as a recoverable robust TSP with exponentially
many scenarios.

3 Exact Solution Method

To solve the recoverable robust TSP with respect to some uncertainty set U
exactly, we decompose it into subproblems which need to be solved iteratively
(see, e.g., [ZZ13]). The first idea is to restrict the uncertainty set U to some
smaller finite subset U ′ ( U , to avoid the exponential size of U . This problem
is denoted as TSP(U ′):

min
x∈T

max
d∈U ′

min
x′∈T (x)

dTx′

Note that TSP(U ′) can be solved exactly by solving the mixed-integer pro-
gramming formulation given by (7)− (12). The second problem is the problem
to evaluate a given solution x. This problem can be written as

EVAL(x) = max
d∈U

min
x′∈T (x)

dTx′.

We write P ∗ to denote the optimal value of some problem P . Assume that
there exists a tour x∗ ∈ T such that EVAL(x∗) = TSP(U ′)∗. As TSP(U ′)
is a relaxation of TSP(U), we can then conclude that x∗ is also optimal for
TSP(U).

Denote by d̂(x) ∈ U a worst-case scenario that can happen for solution x,
i.e., a maximizer of EVAL(x). We use the iterative procedure that is described
in Algorithm 1 to solve TSP(U). The algorithm adds one additional scenario
to the uncertainty set U ′ in every step. This approach can even be used for
continuous uncertainty sets U , if they can be represented as the convex hull
of a finite set P (i.e., if U is a polytope). It is easy to see that all worst-
case scenarios are contained in P. Hence, the algorithm must terminate after
finitely many steps, if it computes in every iteration a scenario from P.
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Algorithm 1 (Exact Algorithm to solve TSP(U))

Require: An instance of TSP(U).
1: Set U ′ := {d}
2: Solve TSP(U ′). Denote by x̄ the obtained solution.

3: Compute EVAL(x̄). Denote by d̂(x̄) the worst-case scenario for solution x̄.
4: if TSP(U ′)∗ = EVAL(x̄) then
5: return Optimal solution x̄ with objective value EVAL(x̄).
6: else
7: Set U ′ := U ′ ∪ {d̂(x̄)}
8: Goto 2.
9: end if

It remains to discuss how to compute EVAL(x̄) and how to find d̂(x̄) for a
given x̄. We solve these problems again by an iterative procedure. We decom-
pose the problems in two subproblems WC(T ′) and REC(d′), where the first
finds the worst-case scenario for a given set T ′ ⊂ T (x̄):

max
d∈U

min
x′∈T ′

dTx′, (WC(T ′))

and the second computes the best recovery option for tour x̄ if scenario d′ is
realized:

min
x′∈T (x̄)

d′Tx′ (REC(d′))

The algorithmic approach is similar to the first one, and summarized as Al-
gorithm 2. As T (x̄) is finite the algorithm terminates after a finite number of
iterations.

Algorithm 2 (Algorithm to compute EVAL(x̄) and d̂(x̄))

Require: An instance of TSP(U) and a solution x̄.
1: Set T ′ := {x̄}.
2: Solve WC(T ′). Denote by d′ the obtained solution.
3: Compute REC(d′). Denote by x′′ the obtained solution.
4: if WC(T ′)∗ = REC(d′)∗ then
5: return The value of REC(d′)∗ and the scenario d′.
6: else
7: Set T ′ := T ′ ∪ {x′′}
8: Goto 2.
9: end if

REC(d′) can be solved as an integer program using formulation (7)− (12)
with only one scenario and fixing all xij variables. For uncertainty sets of the
form U(Γ ), problem WC(T ′) can be described by the following formulation,
which is straightforward to convert to an integer linear programming problem
(as the set T ′ is given at each iteration of Algorithm 2).

max min
x′∈T ′

∑
i∈V

∑
j∈V

(
dij +

(
dij − dij

)
wij

)
x′ij (13)
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s.t.
∑
i∈V

∑
j∈V

wij ≤ Γ (14)

wij ∈ {0, 1} ∀i, j ∈ V (15)

4 Heuristic Solution Methods

As the evaluation of a solution is in itself already NP-hard, we consider several
heuristic algorithms with non-polynomial runtime. While we cannot avoid NP-
hardness, the computationally more demanding steps in the exact algorithm is
the computation of TSP(U ′) with increasingly large discrete sets U ′. Therefore,
the number of solution evaluations a heuristic performs will have a large impact
on the computation time.

4.1 Starting Solutions

We first consider several ways to construct feasible heuristic solutions. The
easiest ways to do so are to solve the nominal problem (i.e., the TSP with
respect to lengths d), or the worst-case problem (i.e., the TSP with respect to
lengths d). We consider two more elaborate alternatives.

Γ -scenarios without recovery. We consider the strict robust solution with re-
spect to the Γ -scenario set U (i.e., a solution in the spirit of [BS04]). The
corresponding optimization problem is given as

min

 max
S⊆V×V
|S|≤Γ

 ∑
(i,j)∈S

dijxij +
∑

(i,j)∈(V×V )\S

dijxij

 : x ∈ T


As shown in [BS04], one can relax the inner maximization problem and dualize
it to get the following mixed integer programming formulation:

min Γα+
∑
i∈V

∑
j∈V

βij +
∑
i∈V

∑
j∈V

dijxij

s.t. x ∈ T
α+ βij ≥

(
dij − dij

)
xij ∀i, j ∈ V

α ≥ 0

βij ≥ 0 ∀i, j ∈ V

A solution of the above problem can be interpreted as an optimal solution to
the recoverable robust TSP with respect to any Γ and to L = 0, and may thus
perform well as a heuristic for small L > 0.
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Recovery to optimality. For the second heuristic, we also take the recovery
action into account. We follow the idea of RecOpt [GS14] and interpret the
computation of a robust solution as a location problem in the solution space.
Taking a discrete uncertainty set, we compute an optimal TSP solution for
each scenario. Then, a robust solution is a tour that minimizes the distance
(given as recovery costs) to these solutions.

This means, we first sample randomly a discrete set of scenarios U ′ ⊆ U .
Let U ′ = {d1, . . . , dN

′}. Then, we solve the corresponding TSP for each such
scenario. Let xk, k ∈ N ′ = {1, . . . , N ′}, be the solution computed this way.
We solve

min
∑
k∈N ′

∑
i∈V

∑
j∈V

ykij

s.t. x ∈ T
− ykij ≤ xij − xkij ≤ ykij ∀k ∈ N ′, i, j ∈ V
ykij ≥ 0 ∀k ∈ N ′, i, j ∈ V

which is equivalent to min{
∑

i∈V
∑

j∈V
(∑

k∈N ′ χ
k
ij

)
xij : x ∈ T }, where χk

ij =

−1, if xkij = 1, and χk
ij = 1 otherwise.

4.2 Local Search

Given a feasible starting tour, we now consider methods to improve their
objective value. We may reuse well-known neighborhoods from the literature
(such as k-opt, see, e.g., [Hel00]), while search guiding mechanisms based on
the original TSP objective function are not directly applicable.

As computing the robust objective function EVAL(x) is considerably more
time consuming than the computation of the classic TSP objective function,
we are limited in the size of search space we evaluate.

Therefore, we consider a heuristic evaluation procedure to speed-up the
local search and to make a larger search space possible. To this end, we relax
the computation of REC(d) by considering continuous decision variables, and
ignoring subtour elimination constraints. Dualizing this problem and inserting
it into the computation of EVAL(x) yields

max
∑
i∈V

λi +
∑
j∈V

µj + (n− L)π (16)

s.t. λi + µj + νij − χijπ ≤ dij + (dij − dij)wij ∀i, j ∈ V (17)∑
i∈V

∑
j∈V

wij ≤ Γ (18)

wij ∈ {0, 1} ∀i, j ∈ V (19)

λi, µj ≷ 0 ∀i, j ∈ V (20)

π ≥ 0 ∀i, j ∈ V (21)
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which we denote as EVAL′(x). Here, w is the matrix that describes scenario
d and χij = −1, if xij = 1, and 1 otherwise. We can use EVAL′(x) as an
estimate on the quality of a solution. Its accuracy is considered as part of the
following experimental study.

5 Computational Experiments

We describe the setup and results of three experiments. In the first one, we
use small instances that can be solved (almost) to optimality, and compare the
results to the heuristic solutions from Section 4.1. In the second experiment,
we compare the estimated objective function EVAL′(x) from Section 4.2 with
the exact objective EVAL(x). The third experiment concerns larger instances,
where we compare the best solutions found by the local search algorithm and
the iterative algorithm.

Environment and Instances. All experiments were conducted on a computer
with a 16-core Intel Xeon E5-2670 processor, running at 2.60 GHz with 20MB
cache, and Ubuntu 12.04. Processes were pinned to one core. Mixed-integer
programs were solved with CPLEX v. 12.6 using C++ programs compiled
with gcc v. 4.5.4. and flag -O3. Subtour elimination constraints were included
using lazy constraint callbacks.

To create an instance of size n, we generated two n × n matrices d and d
with dij ∈ [0, 100] and dij ∈ [0, 100]+100 uniformly at random. Note that such
uncorrelated uncertain instances are usually harder to solve than correlated
ones for robust optimization problems (see, e.g. [Goe14]).

Experiment 1: Starting Solutions. We first compare the quality of the “one-
shot” solutions from Section 4.1. To this end, we consider 10 instances of each
size n = 5, . . . , 12. Furthermore, we use four sets of parameters for (Γ,L):
(1, 6), (1, 10), (3, 6), and (3, 10). The sample size to compute solutions of type
RecOpt is 10 scenarios.

The results are summarized in Table 1. The columns “NOM” refer to the
nominal solution, “WC” to the worst-case solution, “BS” to the Γ -scenario
sets without recovery solution, and “RCO” to the RecOpt solution. Values are
in percent, averaged over 10 instances per instance size n, and normalized with
respect to the optimal objective value (e.g., the value 11.77 in the first column
and row means that on average, the nominal solution has a robust objective
value which is 11.77% larger than the optimal robust objective value). The
last column “It” shows the average number of iterations for the exact solution
algorithm, i.e., the number of generated worst-case scenarios.

We find that the worst-case solution shows considerably worse performance
than all other approaches. This is because the danger of an edge obtaining a
higher distance as in the nominal case is much overrated, as both the number
of worst-case scenarios Γ and the recovery action L are ignored. Accordingly,
solutions of type BS perform better, as they include the parameter Γ . Nominal
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n Γ L NOM WC BS RCO It
5

1 6

11.77 20.35 13.59 11.77 2.9
6 6.30 31.88 6.94 6.30 3.1
7 7.71 62.22 9.64 7.71 3.2
8 4.10 83.92 6.29 4.10 3.7
9 9.54 83.96 10.86 9.54 3.8

10 4.69 125.73 3.95 4.69 4.2
11 6.33 129.67 6.13 6.33 5.2
12 7.18 164.38 9.50 7.18 5.1
5

1 10

0.00 0.00 0.00 0.00 2.0
6 0.00 3.89 1.89 0.00 2.0
7 2.05 23.05 2.20 2.05 2.4
8 0.12 41.28 1.54 0.12 2.3
9 3.63 48.62 4.82 3.63 2.5

10 4.12 80.72 2.99 4.12 2.6
11 3.51 89.53 4.78 3.51 3.4
12 4.49 120.07 6.84 4.49 3.4
5

3 6

8.47 6.47 7.04 10.94 14.2
6 5.05 11.80 7.54 5.92 28.2
7 (3.22) (28.55) (5.54) (3.11) (40.8)
8 (3.36) (38.71) (6.17) (3.07) (34.0)
9 (2.47) (41.35) (9.33) (2.47) (25.1)

10 (1.79) (61.50) (4.60) (1.79) (20.7)
11 (0.68) (68.17) (9.14) (0.68) (17.9)
12 (0.28) (78.69) (5.69) (0.08) (15.4)
5

3 10

0.00 0.00 0.00 0.00 2.0
6 0.69 3.25 1.51 0.69 3.7
7 4.61 15.43 7.00 4.61 11.3
8 4.42 32.10 7.61 4.42 15.1
9 (6.45) (40.44) (11.90) (6.45) (25.0)

10 (3.41) (63.07) (6.97) (3.41) (23.6)
11 (2.32) (71.86) (12.87) (2.32) (18.9)
12 (2.42) (91.92) (5.86) (2.54) (16.0)

Table 1 Average objective values of 10 instances for experiment 1. Brackets (·) indicate
that on some instances, the exact algorithm was stopped after 2h of computation time.

and RecOpt solutions are identical for most instances, and perform best for the
considered parameter sets. Due to the recovery action, ignoring the possible
worst-case of an edge is not expensive. In general, higher values for L improve
the quality of the heuristic solutions (as more first-stage decisions can be
changed in the second stage).

Comparing the parameter sets for Γ and L, we find an interesting behav-
ior: While the relative objective value of algorithms NOM, BS and RCO stay
in roughly the same order of magnitude for different values of n, they are es-
pecially large for n = 5 and Γ = 1, L = 10, but especially small for n = 6 and
Γ = 3 (for n = 5 and L = 10, all solutions are optimal). The relative objective
value of algorithm WC increases in both cases. Generally, the decreasing qual-
ity of a heuristic one-shot solution can be expected for an increasing instance
size; in this case, the uncertainty was small enough that one single edge on
the worst-case becomes decreasingly important when the instance size grows.
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The computational problem complexity is mirrored in the number of iter-
ations necessary to find an optimal solution, see the last column (decreasing
numbers of iterations with increasing n are due to the timelimit of two hours).
In particular, we find that increasing L tends to decrease the number of iter-
ations, while an increased Γ results in more iterations.

Experiment 2: Objective Estimation. We now consider the usage of the esti-
mated objective function EVAL′(x) as described in Section 4.2 in more detail.
To this end, we sampled 300 random tours for instances of size n = 12, and
evaluated both the exact and the estimated objective function. The results are
visualized in Figures 1(a) and 1(b), respectively, where we also show the linear
regression of the data.
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Fig. 1 Exact objective values against estimated objective values.

We find both values highly correlated for both parameter sets, with an
observed correlation of 0.98 for Γ = 1 and L = 6, and 0.94 for Γ = 3 and
L = 10. Furthermore, estimated objective values tend to be too optimistic, as
they relax the subproblem of finding a recovery tour. The high correlation is
an indicator that a local search that uses the heuristic evaluation EVAL’(x)
instead of the exact evaluation EVAL(x) may find better results, as EVAL’(x)
is faster to solve, and a close estimator of EVAL(x).

Experiment 3: Local Search. In this experiment we evaluate the quality of the
exact algorithm when being used as a heuristic with a timelimit for larger
instances. We used 20 minutes of maximum computation time for instances of
size n = 10, . . . , 18, with 10 instances of each size. As a comparison, we use the
local search from Section 4.2 with the nominal solution as starting solution. To
overcome local optima, we used a tabu search implementation, where objective
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values are slightly randomly perturbed to avoid early cycling1. Four variants of
this tabu search are used: We either use a 2-opt or a 3-opt neighborhood, and
we either use the exact objective values EVAL(x) or the estimated objective
values EVAL′(x). In the latter case, the estimated values are computed to
assess the neighborhood, but the actual objective value is calculated after
each performed move to determine if a new current best solution has been
found.

The average objective values are presented in Table 2, where we normalized
with respect to the best solution found over all five solution approaches. Col-
umn “EX” shows the objective value for the exact algorithm, columns T(X)F
the tabu search using the (full) computation EVAL(x), columns T(X)A the
tabu search using the (approximated) computation EVAL′(x), and the number
in the middle stands for the 2-opt or 3-opt neighborhood, respectively.

The results show that while the exact algorithm performs best for instances
with Γ = 1 (as can be expected from experiment 1), the increased problem
complexity for Γ = 3 makes the tabu search the better choice in most cases.
Furthermore, algorithms which use the exact objective value are outperformed
by those using the estimated objective value, resulting in algorithm T3A to
be the best choice for the more difficult instances.

Regarding the numbers of iterations in Table 2, the improved performance
is explained by the considerably larger number of iterations that are possible
within the 20 minutes time limit. Even from n = 12 on, not all neighbors from
the 3-opt neighborhood can be evaluated within the time limit for Γ = 3,
L = 10.

6 Extensions and Conclusion

We introduced a new variant of the traveling salesman problem, in which
edge lengths are uncertain and a bounded number of them may become larger
than in the nominal case, but we are allowed to use a recovery action once
a scenario is realized, which allows to swap a bounded number of edges with
alternatives. We developed an iterative algorithm to find an optimal solution
to this problem.

As even the computation of the robust objective value is NP-hard, this is
also done using a decomposition based on problem relaxations of increasing
size. Several heuristic solution procedures are investigated. Due to the complex
objective evaluation, we formulated a compact mixed-integer program to esti-
mate the actual objective, which can be used within a local search algorithm.

Using experimental data, the high correlation between estimated and ex-
act objective value can be confirmed, and the resulting heuristic algorithm
seems to find solutions with better objective value than the iterative solution
approach within the same time for the more complex instances.

1 Naturally, many other meta-heuristic approaches are possible here. A simulated anneal-
ing algorithm has also been tested; however, results are not discussed, as tabu search showed
a better performance.
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EX T2F T3F T2A T3A
n Γ L Obj It Obj It Obj It Obj It Obj It

10

1 6

0.27 4.2 1.74 152.1 0.55 34.3 0.38 877.5 0.00 191.9
11 0.00 5.2 2.34 91.1 0.77 16.9 0.09 517.6 0.00 94.3
12 0.00 5.1 4.34 55.2 2.01 9.1 0.80 301.3 0.00 46.4
13 0.00 4.9 3.15 38.4 1.35 5.9 2.01 223.3 0.00 30.0
14 0.25 5.7 2.39 26.9 2.53 4.0 2.94 188.7 2.33 22.5
15 0.00 6.2 4.02 21.2 3.18 2.9 3.12 143.8 0.65 15.2
16 0.00 6.9 4.27 15.6 2.33 2.0 3.46 109.7 2.64 10.7
17 0.00 5.8 2.69 11.4 1.90 1.7 2.11 89.4 1.24 8.0
18 0.00 5.9 2.53 8.9 2.14 1.0 2.36 73.8 1.36 6.2
10

1 10

0.00 2.6 0.00 103.3 0.00 24.2 0.00 762.8 0.00 170.0
11 0.20 3.4 0.69 60.2 0.00 12.1 0.00 490.3 0.22 90.8
12 0.64 3.4 2.65 38.1 0.59 6.7 1.04 277.7 0.78 44.3
13 0.29 3.2 2.00 25.3 1.82 4.1 0.73 197.5 0.65 26.5
14 0.30 3.4 0.00 18.3 0.30 2.7 0.00 166.0 0.75 19.8
15 0.00 4.5 3.38 13.3 2.00 2.0 2.39 124.7 1.81 13.2
16 0.00 4.3 3.00 9.5 1.96 1.0 3.00 97.2 1.72 9.4
17 0.07 4.4 2.12 7.2 1.18 1.0 2.12 79.5 1.65 6.9
18 0.00 3.6 2.42 5.8 1.88 1.0 1.98 64.2 2.16 5.5
10

3 6

1.66 13.1 1.27 41.9 0.63 8.1 0.00 584.4 0.00 153.2
11 1.28 11.9 1.50 22.4 0.73 3.5 0.29 364.5 0.20 81.8
12 2.36 10.3 2.55 12.4 2.14 1.8 0.95 219.0 0.00 43.5
13 1.52 9.2 1.34 9.0 1.28 1.3 0.74 127.8 0.28 19.9
14 0.93 8.4 1.44 4.9 1.89 1.0 0.70 94.0 0.62 13.0
15 0.21 7.9 1.10 3.6 1.10 1.0 0.90 72.9 1.00 8.5
16 1.48 7.3 1.75 2.7 1.62 1.0 1.59 50.8 0.46 5.6
17 0.00 7.3 0.36 1.8 0.36 1.0 0.36 40.5 0.28 4.3
18 0.09 6.9 0.09 1.5 0.09 1.0 0.09 34.3 0.00 3.4
10

3 10

1.20 15.9 1.62 20.0 1.18 4.0 0.48 390.8 0.48 113.0
11 2.01 12.5 1.59 10.6 1.98 1.9 0.14 251.8 0.07 63.5
12 1.73 10.9 2.34 5.1 3.42 1.0 0.48 148.6 0.04 32.6
13 0.98 9.1 2.43 3.7 1.17 1.0 1.12 94.7 0.07 17.9
14 0.67 8.1 1.10 2.1 0.96 1.0 0.88 56.6 0.35 8.4
15 0.07 7.8 1.24 1.4 1.24 1.0 1.10 39.2 0.68 5.4
16 0.04 7.0 1.50 1.0 1.50 1.0 1.50 26.7 1.08 3.6
17 0.00 6.4 0.39 1.0 0.39 1.0 0.39 19.7 0.39 2.8
18 0.39 6.1 0.77 1.0 0.77 1.0 0.71 14.8 0.04 2.0

Table 2 Avarage objective values of 10 instances (normalized w.r.t. the best solution found)
and the average numbers of iterations for experiment 3.

The recovery model described in Section 2 includes the possibility to change
the current tour once a scenario becomes known, but under the condition that
the recovery action results in a new traveling salesman tour. One can also con-
sider the case that it is allowed to skip a node along a tour instead, i.e., when
the scenario becomes known, we are allowed to modify our tour by leaving
out up to L cities. Then, the optimal recovery action can be found in poly-
nomial time by solving a shortest path problem. The evaluation problem can
be solved in polyonomial time by using strong duality on the inner shortest
path problem for polyhedral uncertainty sets; however, for U(Γ ), the evalua-
tion is not solvable in polynomial time, as can be seen by a reduction from the
max-scenario-problem in [Büs09].
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