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Abstract 

 

In this work several novel Scanning Probe Microscopy (SPM) methods 

have been applied to the study of the amyloid peptide implicated in the 

pathogenesis of Alzheimer’s disease (AD). Amyloid-β (Aβ) undergoes a 

hierarchy of aggregation following a structural transition making it an 

ideal subject of studying with SPM. 

The application of SPM based techniques to biological samples has 

become increasingly common place. However, these techniques are not 

always immediately suitable for imaging delicate samples of proteins and 

adaptions must be made before imaging can be considered successful. 

AD is the most common form of dementia worldwide, and a growing 

concern for health authorities. As a result it has attracted the attention 

of a wide range of disciplines. There has been much work conducted 

which combines the main pathogenic peptide, Aβ , with Atomic Force 

Microscopy (AFM) in order to elucidate more about its aggregation 

behaviour, however these techniques offer little more than structural 

comments, with only the most advanced forms of cryo-Electron 

Microscopy (EM) providing more details on the nanoscale. Presented 

here is a method for reliably and robustly producing samples of Aβ by 

capturing them at various stages of aggregation, as well as the results of 

subsequent imaging by various methods of AFM.  Each of the AFM 

techniques studied provides additional “added value” to the data which 

can typically be collected by AFM; either nanomechanical, elastic, 

thermal or spectroscopical.   
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By imaging samples of Aβ with Ultrasonic Force Microscopy, a detailed 

substructure to the morphology could be seen, which correlates well 

with the most advanced cryo-EM work. In addition this technique was 

ideal for detecting the most toxic from of Aβ, early aggregates, in a 

sensitive and non-destructive fashion robustly differentiating them from 

the underlying layer of another peptide (poly-L-Lysine) that was designed 

to reliably capture the Aβ aggregates.  Early work investigating the 

potential for combining an established method of thermal AFM with a 

mid-IR laser system also shows promise for detecting the response of the 

protein.  

It was also the focus of this work to study the aggregation of Aβ using 

Dynamic Light Scattering (DLS), in order to confirm whether the 

technique could identify differences between populations throughout 

the aggregation process. This was applied in conjunction with potential 

therapeutics which target the early aggregates to prevent their 

accumulation, as well as block formation of fibrils. 

Ultimately this work aims to shows with care to the initial protocols 

used, physical techniques such as AFM and DLS can be added to the 

existing methods of monitoring aggregation. Synergistic use of these 

techniques can generate a clearer overall picture of the effect of metal 

ions/developing therapeutics on Aβ aggregation and provide more detail 

than classical biological techniques alone.  
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Summary of contents 

Introduction 

A brief introduction to the work in this thesis, including the rationale behind the 

work and the challenges faced. The reasoning behind the focus on Alzheimer’s 

disease and the application of SPM and other physical techniques to this disease are 

given, in addition to an overview of these techniques.  

 

Chapter One: Literature review and theoretical concepts 

This first chapter is separated into two distinct parts. Part A details the physical 

theoretical concepts and relevant background knowledge for the SPM techniques, 

alongside others such as DLS. Current understanding of the nanostructure of the 

amyloid peptide which has been the focus of this work, Aβ, is also detailed, gathering 

together information from a variety of experimental techniques. The second half of 

the literature specifically focuses on Alzheimer’s disease, which is caused by the 

accumulation and aggregation of Aβ. The neuropathology and biochemical processes 

behind the disease are discussed along with therapeutic strategies. It is the aim of 

this chapter as a whole to provide a solid understanding of the work conducted 

within this thesis, and its relevance to Alzheimer’s disease and the aggregation of Aβ. 

 

Chapter Two: Experimental Methodology 

Within this chapter are detailed descriptions of all techniques used during the work 

in this thesis are described. The chapter begins by discussing the SPM techniques 

used in this chapter as multiple modes have been used. Care is given to describe and 

highlight the differences in data collection from these different systems. Details of 

the sample preparation and any biological experimental design are noted in the 

latter part of the chapter. Where work was conducted by another researcher, or a 

contribution has been made in some manner, it is also noted here. 
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Chapter Three: Substrate development of the imaging of amyloid 

proteins with SPM methods 

It was essential to the work in this thesis to design a stable and reliable method of 

generating samples of Aβ for imaging with SPM techniques. This first body of work 

details this development. The approach taken was either to modify the substrate or 

the buffer system used to incubate the peptide for aggregation. The outcomes of 

these experiments are discussed, along with the final methodology for substrate 

attachment. A detailed analysis of the effect and interaction of this substrate and Aβ 

is also discussed. This chapter laid the foundation for subsequent work with SPM, 

and adaption of this system to other techniques.  

 

Chapter Four: Scanning Probe Microscopy methods of imaging Amyloid 

Peptides during the aggregation process 

Following on from the initial work to design a reliable substrate work was conducted 

comparing the traditional mode of SPM used for imaging biological samples, TM, 

with an adaption of Contact mode (CM) known as UFM. This technique allows for 

frictionless work, which is ideal of biological samples, while allowing details of the 

samples nanomechanical structure to be mapped. A comparison between UFM and a 

similar method of detecting nanomechanical data via AFM (HFM) is also made. 

 

Chapter Five: Spectroscopy and Thermal SPM Methods of studying 

Aβ1:42 

Advancing on the SPM techniques studied in the previous chapter, here work is 

focused on the application of thermal AFM techniques, and later, the development 

of new spectroscopical techniques. The use of mid-IR to detect structural features of 

the sample under investigation, by using its photothermal excitement is a new 
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promising field. However it is currently limited by resolution (~100 nm) and 

complications with sample behaviour. It was the goal of this work to begin the 

development of a technique to study biological molecules in a mid-IR setting with the 

resolution typically seen with an AFM.  

 

Chapter Six: The application of biophysical techniques to the study of 

the inhibition of aggregation of Aβ using PINPs liposomes 

Over the last 5 years the RI-OR2-TAT inhibitor has been developed to prevent the 

aggregation of Aβ via the accumulation of early toxic aggregates. More recently it has 

been attached by “click chemistry” to a liposome, which acts a carrier to enhance the 

peptide inhibitors potency. DLS has been used in numerous studies to track the 

aggregation and involvement of new liposome based inhibitors, and the work in this 

chapter seeks to combine DLS, SPM and classical aggregation monitoring methods to 

shed light on the action and effect of the Peptide-Inhibitor NanoParticles (PINPs). 

 

Chapter Seven: Conclusion and Future Perspectives 

This chapter summarises the key conclusions from each chapter of results, while also 

positioning these in the context of future work to be conducted.  
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Introduction 

 

The most common techniques used to elucidate structural or morphological details 

of samples on the nanoscale are SPM or electron microscopy (EM) based methods. 

Both offer significant advantages and disadvantages over one another. While the 

most advanced EM systems can provide visualisation up to the atomic level, the 

necessary sample preparation is complicated, time-consuming and often destructive. 

Typically it requires heavy metal staining or coating of the sample surface with a 

conductive layer, such as carbon. However when this is applied to biological samples 

it can have disastrous consequences; cross-linking of aldehyde groups, disruption of 

molecular bonds, and obscuring fine nanoscale features. EM also has one key 

disadvantage for biological samples; it fails to provide any details beyond that of the 

sample structure. In contrast, while AFM based methods can offer topographical 

details via the standard feedback mechanisms they employ during scanning, most 

also offer varying levels of additional qualitative, (and in some cases), quantitative, 

analysis of the samples material properties. TM  AFM is the most common technique 

for imaging biological samples, as it provides the least friction and most gentle 

scanning conditions for samples which are often delicate and easily destroyed or 

disrupted. In addition to topographical detail, information about the samples 

“phase” response can also be collected, thus offering an indication of variations in 

the samples elasticity, adhesion or hardness.  

Before any scanning probe imaging could take place, it was essential to create a 

substrate which biological samples could attach to that was anatomically flat, robust 

and lacking in background contrast, either topographical or nanomechanical. It was 

essential to create a simple, cheap and reliable protocol which could be used to 

capture moieties of all sizes and charges. Significant developments of the standard 

AFM substrate, muscovite mica, were needed before a protocol could be used 

repeatedly. However this process presented an opportunity to understand the 

factors needed when selecting a protocol and mica was not suitable for all the work 

conducted within this thesis. 
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Recent developments in the field of AFM have led to the creation of exciting new 

modes of operation, many of which utilise CM to detect more advanced details of 

the samples properties. The work reported in this thesis seeks to apply some of these 

new techniques; either from commercial or in-house systems to biological samples 

and offer conclusions about their suitability for this purpose. One such technique is 

Ultrasonic Force Microscopy (UFM), an already established technique for studying 

the elastic and contact stiffness properties of samples with nanoscale resolution. 

UFM offers a distinct advantage for a contact based AFM technique as it is uniquely 

frictionless. By oscillating the sample above the cantilevers resonance frequency (or 

the probe in waveguide-UFM) the cantilever can be seen to be infinitely rigid, and its 

indentation into the sample surface is brief. Using a force jump curve to study the 

interaction of the tip and sample surface shows that the elastic properties and 

stiffness affect the response of the cantilever during this indentation. It was one aim 

of the work reported here to transfer this technique to a variety of biological 

samples, and determine whether it posed an advantage over the standard Tapping 

Mode imaging and whether any additional nanomechnical data could be gathered. 

In addition to the application of UFM to new samples there is increased interest in 

the area of SPM to combine techniques such as Raman spectroscopy and Fourier 

transform infrared spectroscopy (FTIR) with AFM to provide nanoscale resolution. 

Surface enhanced Raman  spectroscopy already offers the possibility to gather 

spectra detailing samples chemical properties but on the non-local level i.e. it is not 

linked to simultaneous morphological mapping. Recently this has been shown to be 

possible; Scanning Near-field Optical Microscopy and AFM have been combined with 

Raman spectroscopy or a mid-IR laser source to offer a resolution ~100 nm and local 

mapping of a sample chemical properties across a relevant vibrational spectra.  Each 

of these systems shows promise at the potential for mapping chemical changes 

alongside structural ones as samples such as cancer cells at different stages of 

disease progression undergo changes. These techniques also offer exciting 

possibilities for samples on an even smaller scale. Proteins frequently require a scale 

of investigation <100 nm, and it was the aim of work here to elucidate whether it 

was possible to combine and adapt and existing AFM technique with a mid-IR laser 
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source to detect differences in chemical composition across a sample. Two 

approaches were taken, one involving preliminary work using an established 

commercial system, the Nano-IR (Anasys Instruments, USA), and the other combining 

thermal AFM with the mid-IR laser from the ALICE accelerator – similar to the Photo-

Thermal Micro Spectroscopy (PTMS). Both techniques showed promising results and 

have laid an extensive foundation for future work. 

All forms of AFM being investigated in this work were applied to samples of peptide 

considered to be the main pathogenic factor in AD. A growing worldwide concern, 

this disorder is one of many amyloidoses disorders. This particular disorder is defined 

by the extracellular deposits of an amyloid protein, Amyloid-β (Aβ), known as 

amyloid plaques. In conjunction with intracellular deposits of phosphorylated tau, 

this peptide is thought to cause increased inflammation via numerous oxidative 

stress responses, (among other theories), leading to gradual and ultimately extensive 

neuronal death in the cerebral cortex and hippocampus. From a clinical perspective 

AD results in a loss of cognitive function, with dramatic effects on memory, object 

recognition and speech. The main protein of interest in this work, Aβ, like all amyloid 

proteins, undergoes a distinct hierarchy of aggregation. This begins when the 

monomeric form is released from a cleavage pathway and undergoes a 

conformational change to become predominantly β-sheeted. This conformation 

triggers the aggregation of the monomer through a variety of species levels until it 

becomes a mature fibre (MF), which is then deposited into the amyloid plaques 

detected at post-mortem. While the initial focus on disease prevention lay around 

the clearance of this amyloid plaque burden from the brain it is now becoming clear 

that the early aggregates are more toxic in nature. Therapeutics targeting Aβ 

therefore increasingly target this aggregation stage.  

Over several years Prof. Allsop’s team (Lancaster University, UK) have been working 

to develop an Aβ inhibitor which targets the early aggregates. Initially this took the 

form of a small peptide, which was then retro-inverted to prevent its degradation 

within the body. Further modifications have been made to increase its stability, 

potency and allow it to cross the blood-brain-barrier (BBB). The most current form of 

this inhibitor is attached by click-chemistry to a liposome to further enhance these 
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features (RI-OR2-TAT-PINPs). In addition to studying the general aggregation stages 

of Aβ using multiple AFM techniques, it was also necessary to test an additional 

physical method of studying the aggregation process. Dynamic Light Scattering (DLS) 

is becoming increasingly common as a method of analysing pharmaceuticals, and 

was applied here in conjunction with AFM to study the effects of RI-OR2-TAT-PINPs 

on Aβ aggregation. 

While combining the fields of Physics and Biology, and the techniques typically found 

in each, it was essential to set aims for the work reported in this thesis. These are 

summarised below: 

• Develop a reliable, robust and reproducible method of depositing and 

attaching Aβ onto a substrate for subsequent nanoscale resolution imaging. 

• Beginning with TM AFM, to image the aggregation stages of Aβ by taking time 

points during incubation. Following confirmation that this was possible the 

nanomechanical properties of Aβ could then be studied using UFM. 

• Apply a variety of SPM based spectroscopical, nanomechanical and thermal 

techniques to samples of Aβ, with substrate and sample preparation 

development as necessary. 

• Attempt to develop the application of underliquid-AFM. 

• Study the interactions of additional features on Aβ aggregation, including 

developing therapeutics and effects of metal ions. 

• Develop the concept of AFM-IR, a combination of thermal AFM and a mid-IR 

laser applicable to Aβ studies to detect changes in the chemical properties of 

a sample. 

• Apply DLS to the aggregation process, and its prevention. 

• To develop the concept that physical techniques such as AFM and DLS are 

highly applicable for studying biological samples on the nanoscale, and offer a 

complimentary set of experiments alongside the traditional methods used in 

biology, (ThT assay, immunoassays).  

This thesis initially discusses the theoretical concepts which surround the 

methodology of physics techniques used in this work, followed by a discussion of AD 
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and the peptide Aβ. Following this the results of substrate development 

experiments, AFM data collected using a variety of techniques, and experiments 

conducted using peptide inhibitors are discussed. Finally, conclusions are drawn from 

this body of work, and future developments and experiments are proposed. 
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Chapter One: Theoretical concepts and Literature review  

Part A: Theoretical concepts of Scanning Probe Microscopy 

and Dynamic Light Scattering and their relation to the study of 

peptide nanostructures 

 

  Introduction 1.1

In order to study any biological material on the nanoscale one requires the correct 

tool to do so. There are several methods which can allow the study of protein 

morphology at this level but perhaps the most common and versatile is Scanning 

Probe Microscopy (SPM). Originally developed in 1982 as Scanning Tunnelling 

Microscopy (STM) the technique quickly evolved into the type of SPM focused on in 

this work, Atomic Force Microscopy13-15. The use of AFM for the high resolution 

imaging of materials surfaces has become increasingly common place in a wide range 

of subject areas, including biosciences and engineering16. Recent technological 

advancements make it possible to learn more about a sample than just its 

topography, and properties such as chemical composition, nanomechanics, thermal 

conductivity, elasticity and the Young’s Modulus can all be determined1, 2, 17-23. The 

aim of this PhD has been to apply more well known, and also bespoke, AFM methods 

to the peptide Amyloid beta 1:42 (Aβ1:42), the main pathogenic component of 

Alzheimer’s disease (AD), with the hope of elucidating more about its nanostructure, 

assembly, dynamics  and interaction with potential pharmaceuticals.  

This first chapter focuses on the theoretical concepts and current literature relevant 

to the work in this thesis. The first section is devoted to the theoretical concepts 

which govern AFM, and the other techniques used in this work. The latter section is a 

review of the Aβ1:42 and its role in AD, and the biological process in which amyloid 

peptides gain their toxicity.  
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  Scanning probe microscopy 1.2

Some SPM techniques, including AFM, are capable of examining the surface 

properties of a sample ultimately with atomic resolution, but typically of a few 

nanometers (nm), whilst generating 3D images of the sample in questions. In general 

a probe, with a tip radius of approximately 5-10 nm, is scanned across the sample 

surface in a raster pattern. The interaction between the tip and the sample is used to 

generate the 3D image map, and allow determination of topological, 

nanomechanical or spectroscopical data. The tip-surface interactions are an essential 

component of AFM, and will first be discussed in detail below. 

 

1.2.1 Tip-surface Interactions 

The tip-surface interaction can have a strong effect on cantilever deflection, as AFM 

gathers information on the sample by sensing the force interactions between the tip 

and the surface. Close to the surface of the sample, Coulomb electron repulsions and 

van der Waals (VDW) forces dominate, while forces such as electrostatic and 

magnetic are more dominate at longer distances exceeding 1-10 nm (Fig 1.1).  

When the tip is far away (a few nm) from the sample surface the dominant force is 

attractive due to the VDW forces, and does not deflect.  As the cantilever approaches 

this attractive VDW force increases in strength until the atoms are close enough for 

their electrons to interact and repel one another. As the attractive force increases, so 

does the total attractive force on the cantilever until dF/dz exceeds the spring 

constant of the cantilever and the tip snaps into contact with the sample surface. 

Once in contact the tip-surface interaction is governed by the repulsive regime due 

to Coulomb forces. Coulomb forces arise because of the electrostatic repulsion 

between the electron clouds of tip and sample. This repulsion becomes stronger the 

closer the tip is to the sample surface. 

In addition to these attractive and repulsive forces, ambient AFM imaging must also 

contend with the thin layer of water which will cover the sample surface forming the 
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meniscus. The meniscus gives rise to capillary forces between the sample and the tip, 

which is in most cases an adhesive force24, 25. 

Imaging in liquid presents a different challenge, as capillary forces are absent and 

VDW forces being significantly reduced26. Instead the tip-surface interaction is 

dominated by electrostatic forces. The charge of the sample being imaged is masked 

by that of the buffer solution being used for imaging due to the interactions between 

the co- and counter-ions it contains.  This screening charge is known as the electric 

double layer and determines the resolution which can be achieved when imaging 

under-liquid as it determines the tip-sample distance26. The buffer must be finely 

tuned to minimise these electrostatic interactions by negating charged interactions. 

On retraction the cantilever follows the same path as approach, but in reverse. 

Overcoming the meniscus attraction generates a notable negative deflection of the 

Figure 1.1. (A) Showing the tip-surface interaction between a cantilever probe and 

sample. The force response curve is the response of the probe to the forces acting 

upon it and is shown in red © DoITPoMS, University of Cambridge8 and (B) the 

approach-retract curve showing the path of the cantilever when governed by 

repulsive and attractive forces. The approach (red) and retract (green) are both 

shown. 
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cantilever, which must be larger than the snap-in due to the initial approach, until 

the cantilever can overcome the attractive force and jump-off the sample surface.  

Over the larger distances, longer range forces come into play to govern the 

interaction between the sample and the tip, and can be exploited by the use of 

conducting or magnetic cantilevers. A simplified equation can be used to explain the 

interactions between 𝐹𝐹𝐸𝐸, the electrostatic force, and 𝐹𝐹𝑀𝑀, the magnetic force: 

𝐹𝐹𝐸𝐸 = −
1
2

(∆𝑉𝑉)2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

𝐹𝐹𝑀𝑀 =  ∇(𝑚𝑚 ∙ 𝐵𝐵) , 

where C is the tip-surface capacitances, s the separation between tip and surface,  

∆𝑉𝑉 the potential difference between sample and tip, m the tip’s magnetic dipole and 

B the magnetic field from the sample27. These simplified equations give a feel for 

how tip surface interactions can be used to detect sample properties, but do not take 

into consideration the geometry, electrical, magnetic or structural properties of 

either the tip or the sample. 

  

1.2.2 AFM Detection modes 

The SPM techniques covered here are all designed around the same system, in which 

samples are scanned in a raster pattern beneath a stationary probe with deflection 

of the force sensitive cantilever being continuously monitored. The sample 

movements are controlled by the scanner, upon which it is attached (by means of a 

magnetic “puck”) operating in the raster way along x-y axis. An alternative to this 

sample scanning method of AFM is probe scanning, where the sample is fixed and 

the probe is moved across the sample surface using a piezo to drive the movements 

as before. In sample scanning mode the mass of the sample itself must be included in 

the feedback loop and limiting the dimensions of the sample which can be imaged28. 

Probe scanning AFM’s do not have this limitation, and are often simpler for work 

which needs to be conducted under-liquid as it is easier to add the necessary 

accessories28. The construction of a probe scanning AFM is considerably more 
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complex than a sample scanning one, and is also more susceptible to the 

introduction of vibrations during use, while sample scanning systems are simple and 

less susceptible to interference while scanning28. The scanner itself can come with a 

range of capabilities linked to scan size and lateral resolution. Typically work here 

used a large scale scanner as biological materials were not being studied on the 

atomic level.  The specific AFM type used here, a Multi-Mode (Bruker, USA), is 

capable of numerous different detection systems. Those used in this work are detail 

more below. 

Contact mode (CM) The topography is measured by moving the probe to scan the 

sample surface, and generating a feedback loop using the cantilevers deflection, 

which then allows details of the samples topography to be generated as a 3D image 

map. Onto the reverse of the cantilever a laser beam is focused, which is reflected 

onto a 4 quadrant photo-diode. Any vertical or horizontal change in behaviour of the 

Figure 1.2. A laser is focused onto the reverse of the cantilever, and deflected onto a four-

quadrant photodiode. Any changes in topography as the cantilever scans in the x-y direction lead 

to the movement of the sample in the z direction. This change is reflected in a change in the 

deflection of the laser on the photodiode. This change in laser position is fed back into the 

computer to generate the feedback loop which maintains a constant tip-surface distance and 

forms the 3D topographical maps produced. 



   
 

11 
 

cantilever alters the position of the laser on the photo-diode, (Fig. 1.2 and 1.3 A). 

Upper and lower quadrants record changes in vertical height, generated by the 

topology of the sample directly, while lateral quadrants reflect friction or torsion 

based events on the cantilevers position. In CM the cantilever must be kept within 

the repulsive Coulomb force dominated regime until after the initial snap-in to the 

sample surface. The feedback loop is used to maintain a tightly controlled position, 

or set point deflection, for the cantilever during scanning, using the addition of a z-

axis piezo to adjust the height of the sample relative to the tip. By maintaining a 

constant deflection the force between the tip and the sample remains constant. 

Hooke’s law is used to calculate the force, F: 

𝐹𝐹 =  −𝑘𝑘𝑘𝑘, 

where k is the spring constant of the cantilever and x is the cantilever deflection. CM 

is ideal for imaging any stable or hard samples that are not affected by interactions 

with the tip.  

Samples must be firmly attached to not be susceptible to the friction and torsional 

forces placed upon them by the cantilever tip during scanning. The force applied is 

usually on the order of few tens of nN but varies with spring constants, and soft, 

biological samples are often not compatible with this imaging mode16. CM does 

present some advantages in that it can be readily modified to gain nanomechanical 

information or used with chemically modified cantilevers to provide chemical 

contrast on the sample16. In addition CM is the highest resolution form of AFM as it 

maintains contact with the sample surface throughout scanning. 

Tapping Mode (TM) 

This AFM mode is also known as “dynamic” or “intermittent contact” mode to reflect 

the movement of the cantilever during TM. In all these modes the cantilever is 

vibrated, and the amplitude, frequency or phase of this vibration is monitored. TM-

AFM preformed in ambient conditions involves using an oscillating cantilever near its 

resonance frequency, usually in order of 100-300 kHz, at an amplitude of 20-100 nm 

by means of the piezo built into the cantilever holder driving the oscillation (Fig 1.3 



   
 

12 
 

B), while work in a liquid environment typically requires a much softer cantilever, 

with a resonant frequency of approximately 30 kHz. With the advancement of 

underliquid imaging specialised cantilevers are now available which are ultra-short, 

and have resonant frequencies closer to that of traditional TM cantilevers26. The 

resonance frequency of the cantilever will depend on its dimensions and material 

properties, and is easily determined by sweeping through a range of frequencies to 

detect the response peak. A cantilever will usually have multiple resonance 

frequencies, but the strongest lowest natural frequency response is typically used for 

scanning. During the cantilevers oscillation it will “tap” into the sample surface, and 

this contact creates a change in the resonance frequency and the amplitude of the 

cantilever. As the cantilever is being maintained at a constant set-point amplitude by 

the feedback loop (the same principle as during CM) the tip-surface distance is 

maintained. Any shifts in the amplitude are detected and corrected by the feedback 

loop producing 3D image maps of the topographical features of the sample.  

Phase TM imaging makes use of the specifics of tip-surface interactions which are not 

just topography dependent, but depend on characteristics such as elasticity, 

adhesion or hardness. Variations in these properties lead to a phase lag between the 

cantilevers oscillation and the signal being sent to the piezo driving the oscillation. 

The phase lag is recorded producing a 3D image map providing a qualitative map of 

the adhesion, and elastic moduli of the sample. Additionally, features such as sharp 

edges, which cannot be easily identified in the topography channel, can often be 

seen in phase, providing there is a difference between hardness and elasticity.  

Non-contact modes like TM are particularly attractive for the imaging of biological 

samples due to the reduced friction placed on the sample. Data gathered in this 

manner will be discussed later (Chapter 4.2). TM AFM uses the cantilever in the 

border between attractive and repulsive regime, making use of VDWs forces, 

consequently a lower force (<1 pN) needs to be applied to maintain the regime.  

Ultrasonic Force Microscopy (UFM)  

UFM29 was originally developed to overcome the limitations of the measuring the 

maximum measurable contact stiffness, which is usually determined by the 
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cantilever’s spring constant1, 2, 17, 30. Although an approximately spring constant is 

provided by the cantilevers manufacturer, should quantitative work been 

undertaken it is possible to accurately calculate a cantilevers spring constant using 

the Sader method. This method utilises the cantilever’s resonant frequency and 

quality (Q) factor, (a measure of the dampening a resonator has), to determine the 

spring constant31. This variation of contact AFM allows qualitative32, 33 and 

quantitative34, 35 measurements of the elastic behaviour of a sample by oscillating the 

sample at frequencies 𝑓𝑓 well above the cantilever resonant frequency 𝑓𝑓0 (typically at 

𝑓𝑓 =2-10 MHz compared to 𝑓𝑓0 = 10 − 300 kHz). This out-of-plane vibration of the 

sample increases the effective cantilever’s spring constant due to inertia29. In the 

context of UFM it is assume the cantilever does not vibrate at ultrasonic frequencies, 

and thus becomes “dynamically frozen” as the ultrasonic vibration of the sample is 

sufficiently high to prevent the cantilever responding to the sample surface motion. 

The cantilever’s behaviour at this point makes it almost perfectly rigid due to this 

inertia, and allows the cantilever to indent briefly into the sample surface and pull 

away, thus probing the elastic properties of the sample surface (Fig. 1.3, C29).The 

elastic indentation of the tip-sample can also be further modified by modulating the 

amplitude of the sample oscillation.  

A vital component of UFM is the use of a piezo-transducer beneath the sample, 

which converts electrical energy into mechanical energy. By applying and electrical 

field to the piezo-ceramic disk attached to the metal stub AFM samples are held in 

place with an ultrasonic vibration can be applied directly to the sample in the z axis. 

The exposure of the ceramic to an AC field will cause it to cycle between expanding 

and contracting, at the cycling frequency of the field.  By vibrating the piezo-ceramic 

between 2-4 MHz (close to its fundamental longitudinal frequency) its spatial 

movement can be controlled. The frequency of the vibration applied is controlled 

tightly by the thickness of the piezo-ceramic used, as thinner disks respond to higher 

frequencies, and shape and composition can also influence the behaviour of piezo-
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Figure 1.3. This illustration shows the main AFM modes used in this work. (A) Contact mode AFM 

involves holding the cantilever in the repulsive regime at a set constant height above the sample 

while recording data on the topology and friction, using a feedback loop. (B) Tapping mode AFM 

oscillates the cantilever to reduce friction and the force applied to the sample. Phase data can also be 

collected to show a map of changes in the samples elasticity, (C) Ultrasonic Force Microscopy and (D) 

SThM; the cantilever is used as a heat sensor, with heat being applied using an AC current. Heat 

dissipation into the sample can be measured via the cantilever tip. (E) IR-AFM; a pulsed, tunable laser 

is focused onto the sample, and the IR-absorption of the sample leads to photothermal expansion. 

This expansion “kicks” the cantilever, leading to deflection and a measureable response.  
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ceramics. 

The tip-surface interaction can be described using the force-vs-indentation curve 

(Fig. 1.4). As previously mentioned, when the cantilever tip is in close proximity to 

the sample surface, it experiences an attractive force followed by a repulsive one. As 

the tip retracts, it remains adhered to the sample surface until the pull-off distance is 

reached. In UFM an ultrasonic vibration (a) is applied to the sample. If this amplitude, 

𝑎𝑎0, is small, the tip remains in contact with the sample surface for the full oscillation 

cycle, and the displacement of the sample is smaller than the initial indentation, so 

the average force, F, does not change (green line). When amplitude is increased to 𝑎𝑎1 

tip/sample contact is broken for part of the cycle, which creates additional force due 

to the nonlinearity of the force-vs-distance curve and hence the change in the 

average 𝐹𝐹0 (grey line), which is otherwise known as the “force jump”1, 2. This is the 

threshold amplitude for the UFM, and the point at which the probe breaks free 

creates the “force jump” in the normal cantilever deflection.  

 The new force Fm can be calculated from the interaction force between sample and 

tip as follows: 

𝐹𝐹𝑚𝑚 (ℎ1 ,𝛼𝛼) = 1
2𝜋𝜋 ∫ 𝐹𝐹(ℎ1 −  𝛼𝛼 cos𝑓𝑓𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇𝑢𝑢𝑙𝑙

, 

where F (h) is the force dependence on the indentation depth without an out-of-

plane ultrasonic vibration; fult is the ultrasonic frequency; the integral is taken over a 

period . 𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢 = 1/𝑓𝑓𝑢𝑢𝑢𝑢𝑢𝑢. When Fm increases due to the non-linearity, the cantilever 

deflection increases as well until a new equilibrium position is reached. This new 

stationary normal deflection is given by:  

𝐹𝐹𝑚𝑚�ℎ𝑒𝑒𝑒𝑒 ,𝑎𝑎� = 𝑘𝑘𝑐𝑐 𝑧𝑧𝑒𝑒𝑒𝑒 , 

 

where zeq and heq are the new cantilever deflection and sample indentation depth, 

respectively and kc
 is the cantilever stiffness constant. 

This pull-off amplitude becomes the threshold amplitude for the system in use, and 

variations in it allow materials of different elastic properties to be contrasted as it is 



   
 

16 
 

dependent on both elastic constant and adhesion hysteresis17. Adhesion hysteresis is 

defined as the difference between the work needed to break two surfaces apart 

compared to the work needed to bring them together36, 37. The elastic constant 

referred to here is the Young’s modulus, and describes the tensile elasticity of an 

object, or its ability to deform along and axis when opposing force is applied. Further 

increases in the averaged force, 𝐹𝐹𝑢𝑢, leads to an increase of the average cantilever 

deflection 𝑧𝑧0 by 𝑧𝑧𝑎𝑎, ultrasonic force deflection. As average deflection increases, it can 

be assumed that the equilibrium modulated indentation (ℎ0 + 𝑎𝑎 cos 2𝜋𝜋𝑓𝑓𝑡𝑡 ) would 

decrease by the same amount of 𝑧𝑧0.  

Variations in the threshold amplitude and force jump depend on the different elastic 

properties of the sample being scanned, and lead to variation in the ultrasonic 

deflection. In order to detect the deflection of the cantilever as a response of the 

sample the amplitude modulation frequency must be carefully chosen. It must be 

Figure 1.4. (A) typical force-vs-indentation curve. Tip –surface indentation is 

modulated using ultrasonic vibration at a set amplitude (a). A large enough 

amplitude (a1) causes a force jump, seen in panel (B) as the tip leaves the sample 

surface. This force jump is detected as the deflection of the cantilever1-3 
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above the SPM cut-off frequency but below that of the cantilevers resonance and is 

usually between 0.5-3 kHz. In the case of this system the cut-off frequency was 2.3 

kHz. If a value above is used, the cantilevers delay becomes comparable with the 

modulation period of the amplitude altering the UFM response. Below this 

frequency, the AFM feedback circuit modifies the ultrasonic deflection17. The 

deflection signal is fed into a lock-in using the modulation frequency signal as a 

reference, while the output from this lock-in amplifier becomes the UFM image. 

Another factor for consideration is the profile of the amplitude modulation used. A 

ramped (symmetrical saw toothed) profile was used throughout the work here but 

others have been tested. Incorrect selection can result in ambiguity in sample 

contrast and therefore material stiffness1, 2 

The role of elasticity and adhesion in UFM 

The force it takes to move one atom away from another, or to displace, is connected 

to the chemical bonds between atoms which determine the equilibrium position of 

one atom to another. This equilibrium position can be represented as directly 

proportional to the distance, F = kx, where F is the applied force, x is the 

deformation, and k the spring constant of the material in questions. This is otherwise 

known as Hooke’s law and allows a deduction of the attractive and repulsive forces 

that govern atoms in an interatomic bond, and provides information about the force 

needed to break this bond. Hooke’s law only describes a linear elastic deformation 

between bonds however, and caution should be taken when working with materials 

which have a non-linear relationship such as Silicon Carbide. 

 The behaviour of such force is linearly elastic and is usually the case for small 

displacements in most solid materials. However this is a simplified case and in reality 

the equilibrium position is effected by the forces imposed by neighbouring atoms 

and the characteristics of the sample11. 

If one atom is pulled away from another Hooke’s law provides the maximum value of 

force required to do so. This breaking of the chemical bond is known as the cohesive 

strength. After the bond is broken less and less force needs to be applied to keep the 

atoms separate. The bonds strength is equal to the max cohesive force (Fig. 1.5).  
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A force displacement curve can be approximated by a portion of a sine function11 

and the region between the equilibrium position and the max force is of most 

interest. Here  

𝐹𝐹 = 𝐹𝐹𝑚𝑚𝑎𝑎𝑚𝑚 sin 𝜋𝜋𝑚𝑚
2𝐿𝐿

, 

where L is the distance from the equilibrium position at 𝐹𝐹𝑚𝑚𝑎𝑎𝑚𝑚. 

For small 𝜃𝜃 values sin 𝜃𝜃  ≈ 𝜃𝜃, the force required for small displacements x is 

 

𝐹𝐹 = 𝐹𝐹𝑚𝑚𝑎𝑎𝑚𝑚 sin
𝜋𝜋𝑘𝑘
2𝐿𝐿

 

 

𝐹𝐹 = �
𝐹𝐹𝑚𝑚𝑎𝑎𝑚𝑚 𝜋𝜋

2𝐿𝐿
� 𝑘𝑘 

Values L and 𝐹𝐹𝑚𝑚𝑎𝑎𝑚𝑚  can be considered constant for any one particular material, 

therefore it becomes 𝐹𝐹 = 𝑘𝑘𝑘𝑘 (Hooke’s law). This can be extended to a force 

distributed over a unit area so that 

Figure 1.5. The forces between an atom as part of a solid as it is pulled away from its 

equilibrium position. The short range interactions are governed by repulsive forces, 

while attractive forces act over a larger distance. Fmax refers to the strength of the bond 

and the force necessary to break it. L is the distance from equilibrium position.11  
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𝜎𝜎 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝜋𝜋
2𝐿𝐿

𝑘𝑘, 

where 𝜎𝜎𝑚𝑚𝑎𝑎𝑚𝑚 is the tensile strength of the material and the units of pressure.  

If L0 is the equilibrium distance then the strain ε for a given displacement x is defined 

as 

𝜀𝜀 =
𝑘𝑘
𝐿𝐿0

 

Thus  𝜎𝜎
𝜀𝜀

= �𝐿𝐿𝑜𝑜𝜋𝜋𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
2𝐿𝐿

� = 𝐸𝐸 

The terms in the square brackets are considered constant for any one particular 

material, and represent a single material property, E, the elastic modulus or Young’s 

modulus of a material. This is another form of Hooke’s law where stress is considered 

proportional to strain. 

UFM can be used to discriminate between the elastic properties of materials by using 

this Young’s modulus2. The Johnson-Kendal-Roberts38 (JKR model) can be used to 

model the tip-surface interaction and adhesion hysteresis seen in UFM. In this model 

the contact area 𝑟𝑟𝑐𝑐 between 2 spheres is given by 

𝑟𝑟𝑐𝑐3 = 3𝑅𝑅
4𝐸𝐸𝑟𝑟

�𝐹𝐹 + 3∆𝛾𝛾𝜋𝜋𝛾𝛾 + (6∆𝛾𝛾𝜋𝜋𝛾𝛾𝐹𝐹 + (3∆𝛾𝛾𝜋𝜋𝛾𝛾)2)
1
2�, 

 

where ∆𝛾𝛾 is the Dupré work of adhesions, R is the tip radius on a perfectly flat 

surface, 𝐸𝐸𝑟𝑟 is the reduced Young’s modulus and F is the normal force being applied in 

the system.  

Indentation depth ℎ of the cantilever in a system is then calculated using: 

ℎ = 𝑟𝑟2

𝑅𝑅∗
�1 − 2

3
�𝑟𝑟0
𝑟𝑟𝑐𝑐
��

3
2 is normalised to 

ℎ0 = �
∆𝛾𝛾2𝜋𝜋2𝛾𝛾
𝐸𝐸𝑟𝑟2

�

1
3
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Where the contact radius at zero normal force is 𝑟𝑟0 and is equal to: 

𝑟𝑟03 = 6∆𝛾𝛾
𝜋𝜋2

𝛾𝛾∗
𝐸𝐸𝑟𝑟 

Which is normalised to 𝐹𝐹0 = ∆𝛾𝛾𝜋𝜋𝛾𝛾. 

Materials that are more compliant have higher threshold amplitudes and adhesion 

hysteresis. This in turn will lead to an increased discontinuity at the pull-off point and 

subsequently the force jump of ultrasonic deflection. A more adhesive material will 

also have the same consequence. Simulations of the contact mechanics of UFM have 

shown that the threshold amplitude increases with increasing force, and also by 

reducing Young’s modulus or increasing adhesions, and that the latter two factors 

will lead to an increase in the force jump detected by the system1, 2. It can therefore 

be difficult to distinguish between higher adhesion or increased compliance of a 

material, without additional information, such as friction behaviour. Topographical 

artefacts can also interfere with the adhesion properties or a material.  

Caution should be taken with the above model of UFM as it can be considered over 

simplified. UFM as a technique is not without limitations; it does not take into 

consideration phase information and is therefore unsuitable for characterising 

materials with high viscoelastic properties (where indentation is time dependent)1, 

surface topography and adhesion can affect quantitative analysis when preformed 

(only the elastic properties of the sample and tip-sample interactions are considered 

by this model)39, and thirdly adhesion forces are assumed to be uniform across the 

sample surface and contrast comes only from the change in the samples elastic 

properties, which can prove challenging for thin films or polymeric structures1, 2, 17. In 

addition any sharp changes in topography can affect the threshold amplitude and 

subsequent image contrast making the interpretation of the surface mechanical 

properties more challenging.  

 

 

 



   
 

21 
 

Scanning Thermal Microscopy  

Scanning Thermal Microscopy (SThM) was originally developed in 1986 by combining 

STM with a thermal field to control the tip-sample height while probing the samples 

thermal properties40, 41. Several advances have occurred since the techniques initial 

development, reviewed extensively by Majumdar42, 43. The adaption of CM AFM used 

in this work allows the mapping of the local thermal properties of a sample by 

scanning the sample surface with a specially adapted cantilever which acts as a 

thermal sensor (Fig. 1.3, D). As with all AFM techniques information is gained on 

nanometre scale resolution. Joule heating is used to heat the tip while in contact 

with the sample. Heat diffuses from tip to sample due to the temperature difference 

between them, and is proportional to the thermal conductivity of the sample and the 

tip. This subsequently changes the sensor temperature which is recorded as a change 

in the sensors electrical resistance, measured as the current flowing into the 

electrical bridge. This current change is ultimately used to produce the thermal 

image.  

The stationary diffusive heat transport equation is used to describe the heat transfer 

process in SThM,  

( )P
TC k T Q
t

ρ ∂
−∇ ∇ =

∂
, 

Where p is the density of the material, 𝐶𝐶𝑝𝑝 is the heat capacity, 𝑘𝑘 is the thermal 

conductivity and 𝑄𝑄 is the heat source. In some samples there can be deviations from 

the diffusive heat transport model, such as at the end of the tip or in highly thermally 

conductive samples. In these samples the ballistic heat transport is significant and 

should be considered. 

Heat flow into the sample is governed by the thermal resistance of the tip-sample 

contact, and is connected to the samples thermal conductivity,𝑘𝑘. If the samples 

thermal conductivity is less than that of the probe then the measurements are 

dominated by the thermal conductivity of the sample44. Thermal conductivity is 

determined by the free path of phonons in the material, 𝑙𝑙, where 
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𝑘𝑘 = 𝐶𝐶𝐶𝐶𝑙𝑙 

and 𝐶𝐶 is the specific heat and 𝐶𝐶 the speed of sound in the sample. To calculate the 

temperature difference between the probe and sample ∆𝑇𝑇 and the heat flow (per 

unit time) ∆𝑄𝑄. Ultimately 

∆𝑄𝑄
∆𝑇𝑇

= 𝑘𝑘𝑠𝑠𝑎𝑎𝑚𝑚𝑝𝑝𝑢𝑢𝑒𝑒𝜋𝜋𝛾𝛾, 

where 𝛾𝛾 is the contact radius, which is pressure dependent. 

The cantilever operation in SThM depends to a degree on the application it is being 

used for; thermomechanical data writing has very different needs to the nanoscale 

deposition of materials45. The application of SThM for the study of amyloid fibres is 

particularly useful and several studies have looked at the thermal properties of 

amyloid proteins during aggregation. Amyloid proteins by nature are display a high 

level of thermal stability, due to the thermodynamically favourable state of the 

aggregated form46.  Dandurand47 and colleagues (2014) recently showed the 

aggregation of a synthetic peptide, S4, could replicate that of amyloid fibres when 

under the correct conditions. Aggregation leads to an increase in thermal stability 

linked to the typical conformational change to a cross-β structure. Thermodynamic 

stability has also been linked to the folding and unfolding in Light Chain 

Amyloidosis48. Amyloid proteins have also been shown to undergo thermally induced 

melting, and unfold to their native conformations, a change which was not linked to 

their morphoplogy49. 

Nanoscale Infrared Spectroscopy as an extension of Contact Mode AFM 

A new extension of CM AFM involves combining IR spectroscopy techniques with an 

AFM cantilever as the nanoscale detector of the IR light absorption. This allows the 

optical diffraction limit of 10-30 µm to be overcome and provide spatial resolution on 

the order of 10-100 nm, and also overcoming a limit of AFM: the provision of 

chemical characterisation of a sample. This spatial resolution is improved upon 

compared to typical FTIR imaging, which is limited by the fundamental limit of twice 

the wavelength (10-30 µm) and also Attenuated Total Reflectance (ATR) which is 

limited by λ/2 (3-10 µm). In comparison Scanning Near-field IR Microscopy (SNIM) is 
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also able to produce a resolution of 10-30 nm. IR-microspectroscopy allows the 

mapping of samples to produce a spatially resolved map of their chemical content. 

AFM-IR was one of several techniques that resulted from the development of a 

tuneable Free Electron Laser (FEL) at CLIO (Centre Laser Infrarouge d'Orsay, Paris)50 

and showed the most promise for development. After consideration was given to the 

theoretical principles behind AFM-IR51, the first experiments were conducted using 

the tuneable FEL teamed with an AFM to map the local transient deformations 

induced by IR light at sample specific wavelengths19, 52, 53.  

The principle of AFM-IR (Fig. 1.6) is simple, instead of a traditional laser light being 

shone onto the cantilever for detection of movement/mechanical responses of the 

sample, a pulsed, tuneable IR laser is used to illuminate the sample which is sat upon 

a ZnSe prism. This IR radiation will locally heat the sample via vibrational excitation of 

the sample molecules, which leads to rapid photothermal expansion of the sample. 

This local expansion is the result of the absorption of the IR radiation by the sample 

and it’s transmission through the sample by phonons within the sample lattice as a 

thermal wave. This occurs in a short pulse of expansion detected by the cantilever 

tip, (see Fig. 1.3, E. for an overview of the cantilever detection). This pulse “kicks” the 

cantilever, and the ringdown of this kick can be measured, making it possible to 

extrapolate the amplitudes and oscillations of the ringdown for further analysis. In 

the case of the Nano-IR system developed by Anasys Instruments (Santa Barbara, 

USA) the IR absorption spectra which are obtained from the sample by measuring 

the photothermal expansion as a function of the wavelength of incident laser light. 

By tuning the laser to a specific absorption band the sample is then mapped for its 

photothermal response at that wavelength, but on the resolution level of the 

cantilever tip, not the optical diffraction limit. The sample stiffness can also be 

determined by studying the oscillation frequency of the cantilever ringdown. A 

thorough discussion of the details of the AFM-IR technique have been set out 

recently by Dazzi18.  This technique is reliant on exciting molecules via local heat 

absorption, and the propagation of the thermal waves this induces sample thickness 

is vital. The Nano-IR2 system can image samples approximately 20 nm thick but is 

optimal for samples 100-1000 nm thick, while thicker samples can be imaged with 
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the original Nano-IR system.. Detection of the IR induced thermal expansion is more 

challenging in samples whose thickness is on the order of microns. 

The field of microspectroscopy is highly applicable to the study of biological samples, 

and the Nano-IR has proved to very popular in this respect. Selected areas of 

application are not limited to, but include, plants cells54, lipids within the human 

cornea and hair55, 56, pharmaceuticals57, bone and other mineralised samples58-60, 

cells61 and also for detection of cancer biomarkers in a variety of cancers62-65. The  

most relevant application of AFM-IR to the work shown in this thesis is that 

conducted by Mὔller and colleagues66.  A microstamp was used to deposit droplets of 

monomeric and aggregated lysozyme onto a ZnSe prism, and were able to 

differentiate between random coiled and β-sheets, which is a typical structural 

transition for amyloid proteins.  

 

Figure 1.6. The principle of Nano-IR. A pulsed and tuneable IR source is directed 

though a ZneSe prism, (from underneath), and onto the sample. The photothermal 

expansion of the sample “kicks” the cantilever, the movement of which is detected 

by a standard CM setup of a laser focused onto the cantilever and its deflection 

monitored.  The ringdown of the cantilever produces the deflection, while its 

amplitude and absorption as a function of the wavelength can also be extracted.  
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  Dynamic Light Scattering (DLS) 1.3

Also sometimes referred to as Quasi-Elastic Light Scattering, DLS is an ideal technique 

for characterising particles in suspension in the sub-micron range. A highly sensitive 

technique it can readily be used to detect macromolecules such as proteins in 

solution.  

In order to determine the size of a particle the Brownian motion of the particle can 

be measured. Particles such as proteins within a suspension are subject to random 

motion caused by interactions with the solvent molecules within the suspension. 

Brownian motion is linked to the size of the particle as larger particles are influenced 

less by the solutes within the suspension, and move slower than smaller particles 

which are moved more rapidly. Two other important factors in accurately measuring 

the Brownian motion of a particle and thus determining its size are the temperature 

of the solution, and its viscosity. A stable temperature during measurement is 

essential to prevent random movements of the particles within the suspension. The 

speed at which a particle moves at is known as the translational diffusion coefficient 

(D). 

Using D the hydrodynamic radius of a particle can be calculated via the Stokes-

Einstein equation; 

 

Where d(H) the hydrodynamic diameter, k the Boltzmann's constant, T the absolute 

temperature and η the viscosity. The Stokes-Einstein equation assumes that the 

particle being measured is spherical, so caution must be used when measuring 

larger, fibril like particles whose dimensions are not spherical. Determining the 

hydrodynamic radius of a particle is also influenced by any surface structures on the 

particle, such as charged residues, which may affect its diffusion speed.  

In order to collect data on the particles size as a function of its translational diffusion,  

DLS, as its name suggests, involves collecting information on the scattering of light by 
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the particles in a solution. Typically a HeNe laser is used to create this scattering by 

illuminating the sample. Depending on the scattering angle data is either collected 

using forward or back scattering light. Back-scatter has significant advantages over 

forward scattering, as the light does not have to completely penetrate the sample, 

removing any conflicting scattered light from neighboring particles. Time dependent 

fluctuations in the scattered light  are measured using a fast photon counter67 In 

addition, large contaminants like dust particles typically scatter light forwards and 

are therefore not likely to be detected. Larger particles will scatter light further and 

with greater intensity than smaller ones, and also obscure any nearby smaller 

particles scattered light, leading to a misrepresentation of the sample contents. 

Larger particles move much slower than smaller ones, due to the greater effects of 

Brownian motion upon them, and also scatter light further due their increased size 

(the scattering of light is proportional to the sixth power of its diameter from 

Rayleigh’s approximation). Smaller particles conversely will scatter light with faster 

intensity fluctuations, as this is connected to the speed of the particles in motion. 

Factors such as sample concentration can also affect the signal detected using DLS, 

as more concentrated samples will behave in a manner similar to large particles, in 

that they will scatter more light and swamp the signal of neighboring particles.  

DLS has been used to great success to study the aggregation of Aβ1:42, both alone 

and with potential pharmaceutical interactions68-71. One study has shown that 

Aβ1:40 samples can initially be detected at ~7 nm in size and monodispersed, 

indicating a uniform population structure. As aggregation persisted this population 

became more polydispersed as aggregates ranging from 10-52 nm in size were 

detected. Larger aggregates at later time points, more akin to fibrils were not 

detected by DLS, but detectable by Multi-angle Light Scattering72-74.  In contrast the 

monomeric form of Aβ1:42 is 1-2 nm in diameter75, 76. Cizas et al (2010) noted that 

Aβ1:42 monomer size is particularly sensitive to different preparations, or deseeding 

techniques. Pretreatment of Aβ1:42 with HFIP produced monomers ~2 nm in size, 

while agitation of this sample produced monomers of 8 nm in size. This technique 

has also been used to monitor the effect of metal ions, and their chelators, on 

Aβ1:42 aggregation and for complex studies of aggregation kinetics77.  It is therefore 
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possible to use DLS to monitor the temporal change in aggregate sizes of Aβ1:40/2. A 

disadvantage of DLS is that no details of the population sizes i.e. 

monomer/dimer/trimer can be determined. It is for this reason DLS is best used in 

conjunction with other techniques, such as AFM75, 76 or ThT77.  

 

  Direct imaging via AFM and Electron Microscopy  studies of Aβ1:42 1.4

and their findings 

The pathology of AD and aggregation process of the main pathogenic component of 

the disease, Aβ, will be discussed in more detail in Part B of this literature review. 

Here we will focus purely on the information about Aβ which has been gained from 

the application of physical techniques, most notably cryo-EM, STM and AFM.  

It has been over a decade since Aβ was first imaged using AFM; in 1999 Blackley78 

and colleagues successfully imaged Aβ1:40 and followed the aggregation of the 

peptide using TM AFM. Immediately after wetting the peptide was visible as small 

spherical aggregates, before fibrillisation commenced. Fibrillisation took the form of 

the spherical aggregates interacting to become short fibrillary structures which later 

elongated, occasionally becoming branched structures. The detection of a period 

twist of approximately 25 nm on some mature Aβ fibres was also an important 

discovery. In addition the transient nation of oligomeric units of Aβ was noted. 

The first time point noted using an AFM, and most crucial for studies of 

pharmaceutical and neurotoxic behaviours, are the early aggregates. Several studies 

have confirmed the monomer has an spherical appearance and is approximately 2 

nm in size75, 76, 78, 79, which correlates well with DLS and other techniques. Dimers of 

Aβ are typically around 4 nm in size and maintain an elliptical state79.  

Morphological differences between the two main isoforms of Aβ can be detected at 

later stages of aggregation; Aβ1:40 protofibrils are smaller than Aβ1:42, (3.1 ±0.31 

nm compared to 4.2±0.58 nm), however both forms of protofibrils were typically 50-

200 nm long and curved in appearence80, 81. The difference in widths of the two 

protofibrillar isoforms can be attributed to the additionally amino acid residues in 
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Aβ1:4280. Later aggregates have been classified further with the aid of AFM to be 

either type I (~5nm high, 600 nm long80-83) or type II structures. Type II fibres are 

longer, (>1 µm), between 6-13 nm wide, and often have a branched or junctional 

morphology80, 84, 85. Type II fibrils are the mature fibres produced after  several 

protofibrils have elongated, interacted and twisted together84.  

Aβ fibres are highly polymorphic in nature due to the stacking nature of the β-sheets, 

and their morphology can be surface dependent. Aβ1:42 deposited onto Highly 

Ordered Pyrolytic Graphene (HOPG) forms ribbon like protofibrils as opposed to 

cylindrical ones on mica86 while positively and negatively charges surfaces have 

Figure 1.7 The structure of Aβ fibres. (A) EM imaging of Aβ1:40 fibres reveals a two protofilament structure 

periodicity, with the twist indicated by the yellow line10. (B) Solid State NMR data suggests Aβ1:42 has a triple 

β sheet motif with hairpin turns surrounding a central core3. (C & D) advanced cryo-EM work suggests reveals 

the structure of the protofilaments within a fibre: Aβ1:42 is made of of two peripheral regions surrounding a 

central core, which itself has a region of lower density and two higher density packed cores10, 12. 
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different effects on aggregation.  Adjusting the surface of the substrate to become 

more hydrophobic by CH3 modification leads to the formation of spherical and 

amorphous aggregates which cluster together in a dense surface covering, and while 

surfaces modified with COOH  or NH2 also showed an initial covering of spherical 

aggregates ~2nm high, these elongated rapidly into mature fibres87. It was proposed 

that the hydrophobic surface promoted the formation of alpha helix dominated 

aggregates, while charged surfaces will interact with the charged regions within Aβ 

leading to the promotion of β-sheets, and therefore fibre formation87. The 

periodicity of the twist often seen on amyloid fibres can also be affected by the 

surface the protein is deposited onto, or aggregated on. A right handed helical 

periodicity has been noted for deposition on HOPG88 while hydrophilic surfaces lead 

to a left handed helix forming80, 82. 

One of the most significant features of amyloid fibres for which evidence is hard to 

gather is that of the substructure. It is well established that mature amyloid fibres 

are made of multiple protofibrils, or elongated protofilaments, twisted together, but 

debate still exists about the exact number which occur in Aβ1:40/2 and the 

substructure that their interaction creates. Imaging of MF by TEM has shown that Aβ 

fibres have a polarity or directionality to their structure89.  It has been suggested 

from STM images of MF of Aβ1:42 that these fibres are made of 1 or 2 intertwining 

protofilaments12, 82, 90, 91, each of which is made of two protofibrils with its own has a 

cross-β structure92, 93. A hollow core within the MF was been detected by EM in 

198690 and numerous times with STM, but not AFM88, 94, 95 (Fig. 1.7). Recently it has 

been proposed that the internal structure of Aβ1:42 is composed of two peripheral 

regions surrounding a central core, which itself has a region of lower density and two 

higher density packed cores12, 89, 91. Cryo-EM techniques have so far proven to show 

the most detailed information about Aβ internal structure and morphology, and the 

higher density regions have been linked directly to the hairpin turn produced by the 

β-sheets91. More importantly differences between the morphology of Aβ1:40 and 

1:42 have been noted using cryo-EM and STM. The central hollow core seen in 

Aβ1:42 is lacking in Aβ1:40, with the higher density region extending the whole cross 

section of the fibre91. This increased width for Aβ1:40 MF indicates that the high 
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density regions are composed of more β-hairpins than the longer isoform, potentially 

indicating that Aβ1:40 is made of 2 intertwining protofilaments, each made of 2 

protofibrils89, 91 (Fig.1.7). However multiple reconstructions of the Aβ1:40 MF 

indicate different structures suggesting that incubation conditions, sample 

preparation, substrate deposition and numerous other factors could all affect the 

structure ultimately formed. Models have proposed anything from 2-3 

protofilaments interact together to produce the MF12, 96, 97, with multiple 

morphologies within the same sample possible due to differences in inter- and intra-

residue interactions97. 

 

  Conclusion 1.5

Here we have discussed the key physical techniques employed in this thesis to study 

Aβ1:42 during its aggregation. Multiple modes of SPM have been employed. While 

TM is the most commonly used AFM mode for imaging biological samples it fails to 

offer any insights into chemical, thermal or nanomechanical properties. These 

insights can be gained by employing adaptions of CM AFM to produce techniques 

such as UFM, SThM and AFM-IR (commercially available as the Nano-IR system). The 

differences between the data which can be gathered by these techniques has been 

discussed above. In addition mention is given to DLS, which can offer detailed 

analysis of particle sizes and population dynamics over the aggregation timecourse.  

In order to understand more about the morphological behaviour and structural 

details of biological materials it is necessary to move beyond modelling their 

structures based on computational techniques, and study their aggregation in reality. 

Techniques such as EM, STM and AFM allow one to see a snapshot of the 

aggregation state of peptides like Aβ1:42, and make connections with the theoretical 

models. AFM and cryo-EM have provided a detailed image of what the MF of Aβ 

looks like, and how it forms. When used in conjunction with techniques such as FTIR 

(or other spectroscopy methods) or DLS applications commonly applied elsewhere 

can provide a powerful arsenal for the study of amyloid peptide aggregation. 
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Chapter One: Theoretical concepts and Literature review 

Part B: Alzheimer’s disease and the Aggregation of Amyloidβ 

 

  Introduction 1.6

The amyloidoses are a group of diseases which are characterised by the pathogenic 

feature accumulation of an amyloid protein6, 98, 99. Amyloid proteins form 

extracellular, fibrillar deposits which accumulate over time, and in the case of brain 

amyloid disorders, lead to the progressive death of neurons in different parts of the 

Central Nervous System (CNS), and presentation of degenerate neurological 

features100. In addition to AD Parkinson’s disease, motor neuron disease, 

Huntington’s disease and prion diseases are all categorised as amyloid disorders. All 

amyloid proteins share several characteristics; they undergo a hierarchy of 

aggregation into highly β-sheeted, insoluble fibres which can be detected by binding 

to dyes such as Congo red or Thioflavin T (ThT)98, 99. The mature amyloid fibres are 

typically 7-10 nm wide and made of subunits composed of a particular amyloidogenic 

protein or peptide.  

It has been over 100 years since the first description of a patient with AD; in 1907 

Alois Alzheimer published details of a 51 year old female with severe memory 

problems, disorientation, aggressive behaviour and hallucinations. Following her 

death histological examination of her cortical grey matter showed the presence of 

focal lesions between nerve cells and dense, fibrillar bundles within nerve cells 

themselves. It was this combination of senile plaques, neurofibrillary tangles and 

presenile dementia (i.e. with an onset of <65 years), which has become the disease 

Alzheimer lent his name to. More commonly AD now also includes those with 

plaques and tangles but also a more common senile form of dementia (>65 years 

onset).4, 101 

Research in more recent years has come to universally determine that the main 

pathogenic factor behind the development of AD is the accumulation of the peptide 



   
 

32 
 

Amyloid-beta (Aβ), which exists within the brain in numerous isoforms. The 

accumulation of this peptide via its aggregation process is the initial and central step 

of disease pathogenesis102. Evidence for this comes from numerous sources, not 

least the fact that transgenic Mice which overexpress the precursor peptide for Aβ 

have a similar spatial and temporal pattern of amyloid plaques to human AD 

patients103. 

 

In this section of the literature the general pathology of AD will be discussed, along 

with details of the possible toxic mechanisms behind this disease. The biological 

processes which lead to some of the morphological features detected in the previous 

section of literature, by techniques such as AFM and DLS will also be discussed. Lastly 

possible treatments for AD are focused on, in line with later work carried out as part 

of this thesis. 

 

  Symptoms and Diagnosis 1.7

In AD it is thought that neurodegeneration begins 20-30 years before presentation of 

clinical symptoms101. Typically AD is a progressive disorder, and clinical symptoms 

include a loss of speech and/or word recognition, loss of voluntary movements and 

poor object recognition. Cognitive decline gradually occurs, which slowly advances to 

severe memory loss and increased behavioural problems, including confusion and 

aggression99. Ultimately this decline in cognitive function leads to dependence on 

nursing care, and death, typically 8 years from diagnosis99.  Diagnosis usually involves 

clinical observations and cognitive assessments, however post mortem diagnosis is 

still the definitive method for confirming diagnosis104. Brain atrophy can also be 

measured using structural MRI scans, and it is also possible evaluate a patients 

bloodflow and metabolic processes to aid diagnosis104. The most promising line of 

enquiry to improve diagnosis is the move to develop a biomarker test to quickly 

diagnose or monitor potential cases. In the USA a panel of 8 biomarkers is used in 

conjunction to aid diagnosis, and includes measuring CSF levels of Aβ (1:40/42), tau, 

specific plasma phospholipids and phosphatides104.  
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One clinical method of determining whether an individual has AD is to evaluate their 

cognitive abilities. Mild Cognitive Impairment (MCI) is where memory impairment is 

poorer than expected, but not severe enough to be defined as dementia. It has been 

shown that around 12% of patients with MCI will convert to AD each year, and that 

the development of MCI in these patients separates them as a subpopulation with 

preclinical AD105, 106.  Clinical diagnosis alone is not infallible, with the “gold standard” 

AD cognitive function test now being thought to give numerous cases of false 

positives in those with borderline MCI104. 

The protocol for the most promising method of diagnosing AD is currently under 

development and involves the use of biomarkers in conjunction with brain imaging, 

well before MCI and other cognitive features can be noted105. There is some 

indication that this technique can lead to the correct diagnosis of patient’s pre-MCI, 

making them the ideal targets for early acting AD pharmaceuticals. However more 

research is needed to determine whether biomarkers and imaging can successfully 

identify all pre-AD patients, and if so, how they will be implemented as an early 

detection system105. 

Numerous risk factors have been identified, and include but are not limited to; age, 

brain injury, vascular disease and low brain reserve capacity99. Although the vast 

majority of cases of AD are sporadic and have no known cause, a small minority 

(~5%) are inherited in an autosomally dominant fashion. Familial AD (fAD) is a more 

severe disease, with rapid and aggressive onset and progression of presenile 

dementia. 

 

  Pathology and physiology 1.8

At a tissue level there are three main components to the pathology of AD,   

extracellular senile plaques, intracellular neurofibrillary tangles and cerebrovascular 

amyloid deposits, mainly found in the hippocampus and fronto-temporal cortex107, 

(Fig.1.7).  Within the core of these senile plaques are deposits of amyloid fibres, 

which accumulate in the form of radiating fibres99, 108. The principle component of 
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these amyloid deposits is Aβ1:39-42 108  with a strong link between isoform length 

and pathogenisis.  

Knauer and colleagues (1992) were among the first to note that Aβ accumulates 

within cells in a stable manner, and that isoforms <39 residues in length failed to 

accumulate, whereas the 42 residue isoform showed the highest propensity 

foraccumulation109. Only peptides 42 residues and longer are insoluble, and 

depending on the pH, peptide concentration and incubation time/media this 

insolubility and aggregation tendency can be moderated110.  Overall it is Aβ1:42 

which is the most pathogenic of all commonly found isoforms, with the most rapid 

aggregation process, capability of seeding the aggregation of monomeric samples of 

Aβ, thus stimulating their conversion to insoluble fibrils and its dominant presence 

within senile plaques (Fig.1.7, A)107, 109, 110.  

The other components of AD are the neurofibrillary tangles which are found inside 

nerve cells, occupying most of the cytoplasm and disrupting cell processes (Fig.1.8, 

B). They are composed of a microtubule associated protein called tau, and in AD a 

phosphorylated form of tau aggregates into paired helical filaments. These filaments 

Figure 1.8. (A) Histology sample from an AD patient. Senile plaques composed of Aβ are 

indicated by the arrow while the arrowhead indicates a neurofibrillary tangle. This image was 

taken by silver staining a sample of brain cortex and provided courtesy of Prof. D.M.A Mann, 

University of Manchester (UK). Panel (B) shows AFM of recombinant Aβ fibres, aggregates for 

72 h. It is this peptide which forms the core of the senile plaques seen in AD patients. 
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are composed of two individual 10 nm tau filaments wound together to create a 

double helix101, 111. 

The combination of amyloid deposits and neurofibrillary tangles leads to extensive 

neuronal and synaptic degradation, early oxidative damage, an inflammatory 

response from activated neighbouring glial cells and ultimately loss of function of the 

cholinergic neurotransmitter system4. Over time there is also a substantial loss of 

brain weight4. Cerebrovascular deposits of Aβ1:42 are also common, as the peptide 

also accumulates in cerebral blood vessels, sometimes leading to brain 

haemorrhage4, 101. 

 

  Epidemiology of AD 1.9

Currently AD represents the leading cause of dementia in the elderly, with 11% of 

those >65 being affected, and 32% of those >85 years112. Overall the incidence of 

dementia doubles ever 5 years after the age of 65, and the >90 population is the 

fastest growing age group in the US alone113. As humans begin to live longer diseases 

of aging, such as AD, are set to become an increasing problem. The prevalence of AD 

is set to increase rapidly, from 36 million cases worldwide in 2010, and to double 

approximately every two decades. In the UK alone there are predicted to be 850, 000 

cases in 2015114. By 2030 there are predicted to be 66 million cases worldwide and 

115 million by 2050, suggesting that 1 in every 85 individuals would have AD by this 

date115. Equally concerning is the burden that this places on healthcare systems, as 

current treatments are ineffective at halting the progression of AD for long, and no 

cure or ability to reverse the disease has so far been found. It is estimated that 43% 

of current cases need high level care (nursing home), and only a modest 

improvement in therapeutics or delaying of disease onset could dramatically reduce 

the burden for future generations115. The total cost of dementia in the UK is 

estimated to be £26.3 billion, when healthcare, social care and research funding is 

taken into consideration, with a cost of £4.3 billion directly incurred by the NHS114. 
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  Genetic risk factors associated with AD 1.10

As already stated, only a small minority of cases of AD are familial (fAD), and these 

have been studied in detail to try and determine the causative process behind 

sporadic cases. Autosomally dominant fAD gene mutations are located in genes 

controlling the production or aggregation of Aβ, and include the gene encoding 

Amyloid Precursor Protein (APP), or the genes responsible for Presenilin I, and to a 

lesser extent Presenilin II116. So far 25 mutations of the APP gene have been 

identified, and are responsible for about 1% of all fAD cases117 (Fig. 1.9).  Mutations 

which affect the processing of APP can also be found in one of the enzymes (namely 

γ-secretase) responsible for the generation of the peptide. There are three clusters 

of mutations due to amino acid substitutions within the APP gene which have been 

identified, each located close to one of the secretase cleavage sites. These mutations 

have the effect of either increasing the production of Aβ1:42 over shorter isoforms 

(γ-secretase cleavage site mutations) or increasing the overall production of the full 

length Aβ peptide (α- and β-secretase cleavage site mutations)101, 116, 118 . A fourth 

cluster of mutations, just downstream from the α-secretase cleavage site  at residues 

21-23 gives rise to the A21G (Flemish), E22Q (Dutch), E22G (Arctic), E22K (Italian), 

and D23N (Iowa) mutations116. The latter mutations all affect the aggregation of Aβ. 

For example, the Flemish mutation increases the amount of Aβ1:42 being produced 

by increasing β-secretase cleavage activity, while the others all increase the rate of 

fibril formation by enhancing production of the more amyloidogenic Aβ1:42. 

 

Mutations in the Presenilin genes are responsible for the majority of fAD cases. 

Presenilin I and II are located on chromosome 14 and 1 respectively, and mutations 

in these genes also lead to increased Aβ1:42 production and alterations in the 

processing of APP116. The two Presenilin genes, PSEN1 and 2, code for the presenilin 

component of the catalytic complex within γ-secretase which is essential for the 

successful cleavage of APP116.  The first case of AD in 1907 is most likely to have been 

the result of a mutation in the Presenilin 1 gene119.  
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Genetic studies have also provided evidence for the confirmation that Aβ is the 

pathogenic factor behind AD. Individuals with Down’s syndrome will frequently 

develop a condition similar to fAD, in that their cognitive function declines due to an 

increased accumulation of senile plaques and neurofibrillary tangles within their 

hippocampus and other regions of the brain. Trisomy 21 results in 3 copies of the 

APP gene, and therefore overproduction of Aβ, accelerated deposition and formation 

of plaques and tangles.116 Some cases of fAD have also been caused by APP gene 

duplication, although very rare, while in contrast one mutation in APP (A673T) is 

protective from AD, by inhibiting the β-secretase cleavage and therefore Aβ 

production116, 120. 

 

Another common risk factor for consideration in pre-senile AD is the number of 

apolipoprotein (Apo) E4 (ε4) alleles an individual possess. ApoE is a major 

apolipoprotein expressed in the brain, and is a vital lipid and cholesterol transporter 

with a role in neuronal repair121. The ε4 variant is less efficient at recycling lipid 

membranes and facilitating neuronal repair, indicating a link between vascular 

disease, dietary fat intake and AD development, and possession of the allele lowers 

the age of AD onset by approximately 10 years121. Heterozygote individuals are 3 

times more likely to develop AD, while homozygotes are 8 times more likely to 

develop AD, than individuals with no ε4 alleles. Apoε4 has also been shown to 

promote the aggregation of Aβ and its deposition while conversely the ε2 variant has 

been shown to be protective122, 123. This particular isoform is also less resistant to 

Figure 1.9.  Mutations of APP are typically located close to the cleavage sites for the three secretases 

responsible for releasing Aβ into the cell. These mutations either increase release of Aβ by downregulated 

the α-secretase pathway, or increase β- and γ-secretase cleavage. Mutations also exist which increase the 

amount of APP which is produced and consequently the amount of peptide released from the 
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oxidative damage and stress, thought to be key components of the neuronal damage 

seen in AD patients124. There are also established links between ε4 and other 

neurodegenerative diseases, suggesting that its effect on the development of AD is 

both dependent and independent of its interaction with Aβ. 

 

 

 The Amyloid Precursor Protein 1.11

Isoforms of Aβ are released from a precursor protein during a series of regulated 

cleavage steps involving multiple enzymes. The Amyloid Precursor Protein (APP) is a 

cell surface protein with a large NH2 extracellular sequence, a single transmembrane 

region and a short COOH cytoplasmic tail5, (Fig.1.9). The precursor protein is 695-770 

amino acids long, with Aβ  located 99 residues from the cytoplasmic tail6. Its 

physiological role remains uncertain but several potential roles have been suggested, 

including intracellular calcium regulation125, metal ion homeostasis126 and regulation 

of cell growth127.  The large extracellular domain of APP contains a metal binding 

domain, which has a strong affinity for copper126. Disruption of the APP gene 

produces a “fail to thrive” phenotype in mice128, while evidence for a role in metal 

ion homeostasis is suggested by APP knockout mice having elevated copper levels 

within the brain and other organs129.  

 

APP has a short half-life and is metabolised rapidly128 down one of two pathways: the 

amyloidogenic or non-amyloidogenic pathway. APP is cleaved in a process known as 

Regulated Intramembrane Proteolysis (RIP), which involves two consecutive 

Figure 1.10.  APP structure. The domains found in APP are shown above; GFD = Growth Factor 

Domain, CBD = Copper Binding Domain, an acidic residue rich region, E2 = glycosylated domain, TM 

= transmembrane domain and CP =cytoplasmic tail. The Aβ peptide is cleaved from APP via the 

Amyloidogenic or non-amyloidogenic cleavage pathway and spans the transmembrane (12-14 

residues) and plasma membrane (28 residues) domains4-6.  



   
 

39 
 

cleavages of the precursor protein130. The first releases or “sheds” the ectodomain 

while a second cleavage in the transmembrane domain of APP leads to the secretion 

of the peptide and an intracellular domain into the cytosol130.  Increasing this  

cleavage process leads to increased levels of Aβ within the brain. The majority of all 

Aβ released through this RIP is Aβ1:40, while about 10% is the more pathogenic 

Aβ1:42130.  

 

Cleavage involves the actions of three enzymes, α-, β- and γ-secretase. In the 

amyloidogenic pathway it is the actions of β- and γ-secretases which release Aβ, 

while α- and γ-secretase cleave APP in the non-amyloidogenic pathway. After 

decades of research these secretases have finally been revealed. The α-secretase 

cleavage is performed by a family of sheddases called ADAMs (A Disintegrin And 

Metalloproteinase) and initially ADAM 10, 17 and 9 were all candidates for α-

secretase. These are type I transmembrane protease between 750-900 residues long, 

and all have the same key features of a N-terminal signal peptide, a prodomain 

(which must be removed by furin-cleavage to activate the protease), a zinc binding 

metalloprotease domain, a cysteine rich domain, and for ADAM 9 and 17, an EGF 

domain130. All ADAMs have broad substrate specificity, and in the case of Aβ ADAM 

10 is responsible for the constitutive cleavage of Aβ, while ADAM 9/17 preform 

regulated cleavage131.  Cleavage favours the α-helical conformation of APP130 and 

occurs in lipid raft regions of the cell membrane, and prevents the release of the full 

length, pathogenic Aβ132. The β-secretase cleavage of Aβ is carried out by a 

sheddase, called BACE1 (beta-site amyloid precursor protein cleaving enzyme 1). This 

mediates ectodomain shedding with more substrate specificity that the ADAMs 

proteases133. They are glycosylated type I membrane proteins approximately 500 

amino acids long with an N-terminal signal peptide region, followed by a prodomain, 

a transmembrane domain and cytoplasmic region. The catalytic activity of BACE 

relies on 2 aspartly residues102, 130. The activity of BACE1 is confined to cholesterol 

rich lipid-rafts, and depletion of cholesterol has been shown to not only reduce the 

activity of BACE1 but redirect Aβ cleavage to the non-amyloidogenic pathway132. 

Both ADAM and BACE cleavage lead to the shedding of the APP ectodomain for the 

subsequent cleavage by the third enzyme involved in APP processing, γ-secretase. 
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This final secretase is a complex of proteins; Presenilin, Nicastrin, Aph-1 and Pen-2134, 

with the catalytic core being within the Presenilin dimer135. The complex is 

assembled in sequential steps; Nicastrin and Aph1 form an initial complex, with 

Presenilin joining next (in its precursor form), before Pen2 binds131. Presenilin is 

synthesised as a precursor and once inserted into the γ-secretase complex Pen2 

binds, stabilisation and maturation via cleavage of its prodomain occurrs131, 134.  APP 

is cleaved by the active site which is composed of an aspartly triad which forms at 

the interface between the Presenilin dimer135. 

 

The non-amyloidogenic pathway involves cleavage between residues 687-688 of APP 

and then cleavage at residue 712, within the Aβ sequence128 (Fig. 1.10).  The initial 

ADAMs cleavage releases the neuroprotective sAPP-α ectodomain and the C-

terminal C83, which remains membrane associated. C83 is then further cleaved by γ-

Figure 1.11. the amyloidogenic pathway involves cleavage of APP first to release the additional 

extracellular portion via β-secretase activity and then C99 is cleavage by γ-secretase within the 

transmembrane region to release Aβ and the ACID. In the non-amyloidogenic pathway α-secretase 

cleavage occurs in the middle of the Aβ peptide, disrupting it to release p3. The following γ-secretase 

cleavage again releases an ACID which is rapidly degraded.  
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secretase to form P3 and ACID, which are rapidly degraded131. The ACID is rapidly 

degraded rapidly and is not transcriptionally active while P3 has been suggested to 

be similar to a truncated form of Aβ in some studies, depositing in some AD and 

Down’s Syndrome patients132, 136.  

 

The Amyloidogenic pathway (Fig.1.11) involves similar cleavage steps: BACE1 cleaves 

APP within its first 11 residues between 671-672 to release sAPP-β ectodomain and 

C99131. C99 is further cleaved by γ-secretase to release Aβ and ACID131, 137.  APP is 

cleaved in multiple steps by γ-secretase, beginning close to the cytoplasmic 

membrane and occurring approximately every 3 amino acid steps along the C-

terminus of APP until Aβ is released138, 139.  The ACID has been shown to have some 

role in gene expression but is not strongly transcriptionally active when it results 

from ADAMs mediated cleavage5. 

  

The cleaved form of Aβ is between 39-43 residues long (Fig.1.12), with Aβ1:40 being 

the dominant species in normal conditions, while Aβ1:42 is a minor species outside 

of senile plaques, where it is found in to be highly concentrated107, 108. Its monomeric 

form is approximately 4.5 kDa in size108 with little being known about its structure 

beyond the fact that it is random coiled/α-helix83 due to the rapid aggregation of the 

peptide. More structural details of the Aβ fibres found deposited into senile plaques 

have already been discussed in Chapter one, (Part A. 1.4). 

 

 

 The amyloid cascade hypothesis 1.12

The leading theory into the development of AD is that Aβ1:42 plays an early and 

critical role in AD pathogenesis, with over production directly triggering the  

Figure 1.12. The sequence of Aβ as released from APP cleavage. Important residues are indicated; blue = 

the Asp and His residues key for Cu(II) binding, purple = key oxygen donating Ty residue, red= key 

areggation sequence for Aβ which forms the β-sheets during aggregation and green = the Met residue 

which has metal reducing abilities.  
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pathogenic cascade. The deposition of Aβ1:42 into plaques is central to disease 

development, and that Aβ itself is neurotoxic140, 141.  In addition to overproduction, 

there is evidence for reduced Aβ1:42  clearance and contact with factors which may 

stimulate its aggregation142.  The cleaved form of Aβ must be generated and 

deposited and itself have demonstrable abilities to cause neuronal death or 

neurofibrillary tangle formation140. The aggregation of Aβ is dependent on the 

concentration of monomers being above a critical concentration, which differs 

depending on which isoform is under investigation74.  Above the critical 

concentration aggregation is independent of concentration, possibly due to the 

presence of more rapid formation of Aβ “seeds”, while below this level aggregation is 

proportional to the concentration of peptide74.   

 

The aggregation of Aβ involves nucleation dependent oligomeristation, once the 

peptide concentration is above the critical level a lag phase occurs, in which peptide 

nuclei form, which trigger the rapid elongation of Aβ fibres74, 107. The production of 

these nuclei is the rate limiting step in aggregation107. In addition to the formation, or 

pre-existence of Aβ “seeds” within a sample, micelles may occur and represent 

localised areas of increased Aβ monomer concentration, in a rapid equilibrium with 

the free monomeric population or spontaneously forming into nuclei74.  Fibril growth 

occurs by the binding of monomers to their ends, (Fig.1.13).  

 

In addition to Aβ concentration being above a critical level in order to form nuclei to 

further seed aggregation, a structural transition must be undergone. The native 

structure of soluble Aβ is that of a random coil83, 100 however a gradual conversion 

from α-helix to a β-sheet rich structure leads to the aggregation into an insoluble 

form of Aβ83. This transition is especially favoured by environments which promote H 

bonding and exposure of hydrophobic patches, necessary to stabilise the β-sheet 

structure formed143. The conformational change involves residues 18-23 and 28-33 

forming antiparallel β-sheets, with the residues between them making the 

connecting turn stabilised by hydrophobic bonds between residues144, 145. The β-

sheet-turn- β-sheet monomers aggregate together to form protofibrils by elongating 

into 2 neighbouring strands packed face to face to make a double layered β-sheet, 
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with the β-sheet axis perpendicular to that of the overall fibril146-149. This structure is 

then stabilised by hydrophobic interactions, cross linking and salt bridges between 

critical residues146, 150 to create a  structure which has been likened to a venetian 

blind being pulled closed149, 151. This stability is the result of Columbic interactions 

between residues Lys28 and Glu22/Asp28, β-turn sequences and the hydrophobic 

side chains on Val24 and Lys28152. Once the β-turn between residues 24-28 has been 

formed the monomer folds into its pathogenic conformation to create the nucleus 

which seeds aggregation. Monomers bind together by hydrophobic interactions 

between side chains, stabilising using the aforementioned bonding and a partial 

unfolding to reveal Val24, which is key to the binding152. Resistance to degradation is 

provided by residues 7-11 and 21-30152. Monomers bind together and rapidly 

elongate into protofibrils. As previously described in this work, depending on the Aβ 

isoform, a minimum of 2 protofibrils will combine to generate a mature fibril with a 

central hollow core12, 80, 90, 91. The next section will discuss the alterations to this 

hypothesis and how the early aggregates, namely oligomers, are the toxic moiety of 

Aβ1:42153 and the implication of this for AD. 

 

 

 

 

 

 

 
Figure 1.13. The Amyloid Cascade hypothesis. Once released from APP Aβ monomers undergo a 

structural transition and gain increased β-sheet content. This allows them go aggregate together into 

dimers/trimers then small oligomers, which act as the “seeds” for a rapid elongation phase of 

protofibrils growth. The final phase is the formation of mature fibres from these protofibrils. Off 

pathway aggregates, which may or may not, be sequestered into fibrils have also been noted to exist. 

Neuronal damage is thought to occur through increased ROS production during dimer/oligomer 

formation, while the mature fibres are still redox active and can reduce hydrogen peroxide, (possible 

toxic aggregates indicated in red). 
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 Oligomers of Aβ are likely to be the cause of AD pathology  1.13

Aβ peptides are toxic to cells, mediating cell death via the necrotic not apoptotic 

pathway154. Initially it was thought that the mature fibres of Aβ were the toxic 

moieties, however much attention has been given to the earlier aggregates. Several 

early aggregates have been implicated in Aβ induced toxicity, namely protofibrils, 

annular protofibrils, soluble oligomers, globular structures and Aβ-derived diffusible 

ligands (ADDLs)155.        



Soluble oligomers of Aβ have been found to impair cognitive function in rodents by 

inhibition of long term potentiation in the hippocampus, create alterations of the 

morphology, and decrease the number of dendritic spines and create a general 

neuroplastic imbalance 156-164. The neuroplastic imbalance is typically reversible, and 

occurs before neuronal death160, 161, 165. Numerous studies have shown that 

molecular weight species akin to dimers, trimers and slightly larger oligomers can 

lead to this neurotoxic behaviour, but not monomers, or later aggregates156-158, 162, 

164.  

 

Oligomers of Aβ solubilised from cerebral plaques from subjects with AD were 

potent in their inhibition of long term potentiation, and in addition enhanced long 

term depression of rodent hippocampal neurons157. Moieties akin to dimers were the 

most potent, with the strongest effects on the learned behaviour of rodents, while 

no effect of insoluble material extracted from plaques was noted. It was proposed 

after this study that plaques represent a sink of neurotoxic dimers/oligomeric 

aggregates which can be released over time157. Similarly when water soluble AD 

brain extracts were injected into rats the structural plasticity essential for 

behavioural consolidation was compromised, indicating that oligomers of Aβ act on 

processes early in the long-term memory pathway164. Work has suggested that the 

toxicity of dimers results from their ability to aggregate further, and to continue to 

form low-n-oligomers with their own toxicity while themselves persisting over 

time163. 
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In addition to dimers, trimers have been implicated in the progressive loss of 

hippocampal neurons in rodents, with a marked effect on dendritic spine and 

synapse function after exposure to picomolar levels158.  

 

Small soluble aggregates of Aβ termed ADDLs have been shown to accumulate in the 

brain and CSF of AD patients, acting as gain-of-function ligands to interfere with 

synaptic plasticity. ADDLs show specificity for binding to neurons, and with continual 

exposure dendritic spine morphology becomes akin to some deafferentation/prion 

disorders. Synaptic deterioration in this can be rescued by the use of the ADDL 

targeting treatment Namenda161. Injection of Aβ specific monoclonal antibodies 

following injection with Aβ oligomers can prevent the otherwise seen inhibition in 

long-term potentiation, and active immunisation against Aβ oligomers showed 

potential at reversing the damage previously caused162. 

There is increasing evidence that the possible mode of Aβ neurotoxicity could be the 

result of oxidative stress, an imbalance between Reactive Oxygen Species (ROS) 

production and the mechanisms which usually defend against this pathway. These 

species can include but are not limited to superoxide, hydrogen peroxide and 

hydroxyl radicals.  In addition it is well documented that  AD patients commonly have 

increased levels of redox-active transition metal ions, and the results of increased 

ROS can be detected (lipid peroxidation, DNA and protein oxidation)155. 

 

Aβ can generate hydrogen peroxide by interactions with redox active Cu(II) and 

Fe(III) using molecular oxygen. This hydrogen peroxide has then been shown to 

convert to the more aggressive hydroxyl radical via Fenton’s chemistry. In order to 

detect this ROS production incubated peptides must be combined with Fe(II) and the 

resulting radicals must be trapped for detection. To detect the rapidly formed ROS a 

spin-trap method has frequently been employed. This involves using a DMPO (5,5-

dimethyl-1-pyrrolineN-oxide) to react with the hydroxyl radical produce and create a 

DMPO-OH adduct, which has a unique spectrum when examined by Electron Spin 

Resonance (ESR) spectroscopy. This technique has confirmed that Aβ is capable of 

generating hydroxyl radicals in a metal dependent manner, but most significantly for 
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the toxicity of Aβ, this generation is not continuous throughout the aggregation 

processes166. The generation of hydrogen peroxide is confined to a short burst in the 

initial stages of aggregation, with MF being unable to generate any ROS directly166. It 

is important to note however that MF and later aggregates are still able to reduce 

hydrogen peroxide if it is present in the environment (i.e. produced by the 

aggregation of earlier aggregates)167. The fact that MF remain redox active in their 

abilities to produce hydroxyl radicals implies that plaques are not necessarily the 

inert tombstones they are frequently assumed to be, and can cause long term 

inflammation and damage once formed167. 

 

Crucial to this ROS generation is the ability of Aβ peptides to bind redox active 

metals. Oligomeric complexes have been shown to bind Cu2+ and subsequently 

generate hydrogen peroxide, an activity which can be inhibited by anti-Aβ antibodies 

or metal chelators 168. By using a spin trapping technique Aβ peptides can increase 

the level of Cu mediated hydroxyl radical formation four-fold169 and a other 

neurodegenerative peptides have been shown to produce hydroxyl radicals via the 

same method166, 170. 

The binding of metal ions to Aβ is pH dependent and appears to involve N-terminal 

Asp and three His residues in co-ordination, and with a level of protonation of the His 

residues during the binding171. The key isoforms of Aβ (1:40/1:42) and truncated 

proteins with no N-terminal deletions all show Cu binding abilities, while 

scrambled/reversed peptides do not169.    

Oxidative damage could precede Aβ deposition, and may even precipitate the event, 

which may explain the differences between clinical AD symptoms and Aβ plaque 

load155.  

 

 Counter arguments of the Amyloid Cascade Hypothesis 1.14

One central flaw in the cascade hypothesis is the poor correlation between AD 

symptoms and amyloid deposition. It is well noted that Aβ deposition occurs in 

patients who fail to develop AD, while a proportion of AD patients fail to develop the 

amyloid deposits and other brain pathologies associated with the disorder172. 
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However patients who are amyloid positive, regardless of whether they have normal 

cognitive function or suffer from mild impairment, will experience a greater and 

more rapid cognitive decline than individuals who are negative for amyloid173, 174. In 

fact evidence exists that suggests a variety of cognitive decline pathways can occur, 

with individuals displaying “amyloid-first” or “neurodegeneration-first” biomarker 

pathways173. Clarity to what is meant by the clincopathological term “Alzheimer’s 

disease” as opposed to the neuropathological alterations is needed174. The 

neuropathology of AD can only truly be observed during an autopsy, and can occur 

regardless of behavioural and clinical changes/diagnosis174. The relationship between 

pathology and clinical symptoms appears to be complex. 

 

Extracellular deposits of Aβ induce neuroinflammation, which in turn leads to 

neuronal death within the affected brain regions, and may or may not trigger tau 

deposition175. McGeer and colleagues (2013) argue that toxicity in vivo of Aβ1:42 is 

within the micromolar range, yet levels in the brain are in the picomolar. They 

suggest that Aβ1:42 deposition stimulates an inflammatory response, and increased 

activation of microglial cells, which lead to neuronal damage and death175. 

 

The adaptive response hypothesis suggests that given the often inaccurate 

correlation between Aβ deposits and AD pathology it cannot be the deposition of Aβ 

which is the central causative factor behind the disease pathology172. Instead an 

argument is placed for oxidative stress or metabolic dysregulation in combination 

with inflammation causing an adaptive response of neurons, which either adapt to 

the increased “stressed” environment, or leads to the development of AD172. 

 

Formation of Aβ deposits has been proposed to be a response to brain injury, with 

Aβ being among several acute-phase proteins seen within amyloid plaques, and 

experimental lesions in rat brains lead to elevated APP synthesis and tau tangle 

formation154. Indeed, formation of neurofibrillary tangles by tau is often correlated 

with, but not isolated to deposition with Aβ154. 
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Overall modifications to the amyloid cascade hypothesis suggests that the 

accumulation of Aβ deposits is, at least in the case of sporadic patients, the result of 

an age related decline in the loss of cellular protection systems. This leads to the 

accumulation and deposition of Aβ, with secondary effects on tau deposition and 

inflammation154 

 

 Therapeutic design for the treatment of AD 1.15

Current strategies for the treatment of AD focus on relieving the symptoms of the 

disorder, but the focus is now shifting to trying to tackle the early damage caused 

before clinical decline is seen.  Current treatments are limited to acetylcholinesterase 

inhibitors (donepezil, rivastigmine and galantamine) and a NMDA receptor 

antagonists memantine, and only relieve the symptoms temporarily176. Current drug 

development strategies focus on modulating the activity of one of the secretases 

involved in cleaving APP, immunotherapy, anti-inflammatory therapy and inhibiting 

Aβ aggregation175, 176.  

 

Targeting the secretases which release Aβ from APP is not without challenges. BACE1 

has aparticularly broad substrate specificity, meaning limiting any inhibition 

specifically to its action on Aβ would be challenging. Targeting this secretase is 

attractive as BACE1 KO mice fail to produce any Aβ, however given the fact that the 

physiological function of Aβ is still unknown, its complete blocking could be 

foolhardy. Similarly, γ-secretase represents an unlikely target due to its complex sub-

unit structure, and involvement in the vital Notch signalling pathway. 

 

Immunisation, either directly or passively, against Aβ, initially showed promise in 

rodent models, by reversing and preventing plaque formation. However in human 

trials the pro-inflammatory side effects were considered too adverse, with death, 

stroke and encephalitis175, 176. Given it is possible that senile plaques of Aβ can act as 

“sinks” for more toxic, early stage aggregates, care should be taken with any 

approach which releases them into the brain via the breakdown of existing plaques. 
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In addition the analysis of the trials 80 patients, including those who had died, 

showed no sign of reduction or reversal in disease progression175. 

 

Numerous methods also target neuronal systems within the brain. As well as 

cholinergic neurons, glutamatergic neurons also decline in function in AD patients. 

These neurons regulate synaptic plasticity, with a strong role in learning and 

memory176. Improving function and preventing loss of these neurons is also crucial. 

Similarly GABAergic targeting drugs are shown to have a cognitive enhancing effect. 

One possible mode of action is the stimulatory  effect on α-secretase that some 

GABA modulators have, offering a potential longer term neuroprotective benefit176.  

 

Anti-inflammatory treatments have also been used, after it was noted that some 

NSAIDs treatments for rheumatoid arthritis had a neuroprotective effect. This effect 

is limited to certain NSAIDs, as some COX-2 inhibitors actual increased the risk of 

causing AD substanitially175. Long term doses of ibuprofen have also shown potential 

rescuing effects in rodent models, with the ability to decrease Aβ deposits and 

improve behaviour175. 

 

Other strategies have included modulating serotonin and histamine levels with mixed 

success at pre-clinical trials. Targeting strategies at the Aβ aggregation itself are also 

under consideration. Despite being largely insoluble once deposited into plaques, 

some proteases are capable of degrading them, and are found to have reduced 

activity in AD patients. While several protease inhibitors are currently on the market 

for other uses, and could be redirected, there are concerns over their 

controlled/targeted use specifically for the removal of Aβ plaques. Preventing 

aggregation, or removing the early aggregates before damage can occur is also one 

line of enquiry, as monocolonal antibodies targeting the monomeric form of Aβ have 

been shown to reduce the cognitive decline in patients if provided early enough177. 

The use of liposomes to attract oligomers, capture and retain them, thus allowing 

easy facilitation of their removal by existing clearance methods is now under focus68, 

70, 71, 178. The liposomes can be readily modified to enhance their ability to attract Aβ 
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and increase its passage across the blood brain barrier70 making them an attractive 

prospect for further development. 

 

 Amyloidosis as the causative factor in a wide range of diseases 1.16

AD, prion disorders, type II diabetes, Huntington’s and Parkinson’s disease are all 

examples of amyloidosis disorders. Amyloidosis is the collective term for diseases 

caused by amyloid proteins; the miss-folded form of otherwise harmless proteins, 

and can be systemic or localised. In addition secondary amyloidosis occur, typically as 

a result of chronic inflammatory conditions such as rheumatoid arthritis179.  There 

are approximately 30 different peptides which have been noted to form amyloids, 

and vary from those which are disease significant (such as Alzheimer’s disease, 

Parkinson’s) to those which aggregation only occurs through laboratory based 

manipulation180, 181.  One such peptide is glucagon, which forms amyloid fibres at 

specific pH (2), peptide or ionic concentration and is readily available for the study of 

aggregation. Once aggregated this peptide is highly stable, to the point where it is 

the focus of some nanotechnology application, due to its high level of tensile 

strength182. Morphologically the fibres of glucagon are similar to that of amylin, α-

synuclein, Aβ and other amyloid forming peptides, being 4-7 nm in height and having 

distinct Type I and Type II fibre populations which has been noted for Aβ181.  

All amyloid peptides form amyloid deposits in a similar manner, typically beginning 

with a conformational switch from an α-helix/random coiled structure to that which 

is predominantly β-sheeted. This miss-folded peptides aggregated together to form 

the fibres discussed previously, which are between 7-10 nm in height, and made up 

protofilaments intertwined together and stabilised by hydrogen bonds and 

hydrophobic interactions183. While AD is the most common amyloid disorder others 

are being defined. In 2012 Alkaptonuria was determined to be a secondary 

amyloidosis disorder. This condition results from a lack of homogentisic oxidase 

activity, leading to the accumulation of homogentisic acid in melanin associated 

deposits179. More recent research has shown that two serum amyloid proteins Serum 

Amyloid A and P are also present at elevated levels in the amyloid deposits found in 
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Alkaptonuria and analysis of deposits by EM reveals amyloid fibres present within 

them184. 

Amylin is one of several disease causing amyloid peptides. Secreted alongside insulin 

by the islets of Langerhans in the pancreas, its miss-folded form is found in deposits 

in type II diabetes. In vitro this peptide forms amyloid fibrils, and has been shown to 

be toxic to pancreatic cells185. Studying this peptide has provided evidence that 

amyloid fibres grow longitudinally, and elongate once the initial protofibrils have 

bound together185. 

Amyloid proteins were also found to be the main causative factor behind Creutzfeldt-

Jakob’s disease and kuru, in which increasing cerebral deposition of the amyloid 

peptide leads to a dramatic reduction in grey matter and overall functionality186. The 

peptide responsible, the prion protein, shows a powerful ability to convert the 

normal cellular form, PrPC into the abnormal PrPSC, becoming insoluble and protease 

resistant186. 

There is an extensive list of amyloidosis, which at their core share a similar 

pathology: a miss-folded β-sheeted peptide accumulates and can, in some cases, 

seed further aggregation and deposition. While the peptides themselves share 

similar features due to the common β-sheet structure, the pathology of the disease is 

determined by the location of deposition, and the tissues affected. Given some 

amyloid proteins are more challenging to work with in vitro it is only by studying a 

range of them that insights into the pathology of amyloidosis are possible. AD, prion 

disorders, type II diabetes, Huntington’s  

 

 Conclusions 1.17

AD is defined by the accumulation and aggregation of the peptide Aβ, leading to a 

gradual decline in cognitive function which ultimately dramatically reduces quality of 

life and shortens life expectancy. The leading cause of dementia worldwide, it is now 

a desperate race to develop suitable pharmaceuticals to combat it. Like all amyloid 

disorders Aβ aggregates into highly β-sheeted, insoluble fibres to create local lesions 
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or plaques. As more is understood about Aβ and its aggregation process it is which 

can, among other causes, produce toxic hydroxyl radicals during their aggregation 

with each other. These hydroxyl radicals lead to increased oxidative stress and an 

inflammatory response in the short term, but eventually reduce the number of active 

neurons within the hippocampus and cerebral cortex. This process begins decades 

before the clinical symptoms manifest, and slowing or eliminating this process is now 

the focus of pharmaceutical development. 

 

By providing an overview of AD as a disease, along with the pathology and biology 

underlying this chapter has aimed to provide an understanding as to why new 

techniques (or the reapplication of existing ones), are needed to shed light on the 

disease process and aid the development of new pharmaceuticals. The methodology 

behind the techniques used in this thesis will now be discussed in detail, followed by 

a presentation of the results of this thesis. 
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Chapter Two: Experimental Methodology 

 

2.1 Introduction 

During this research samples of Amyloid peptide, namely Aβ1:40 and 1:42, have 

been prepared at Lancaster University in the Faculty of Health and Medicine 

laboratories, and studied using SPM and DLS techniques in the Physics department. 

Where samples have been provided by other researchers this has been indicated. 

This chapter will aim to detail the experimental methodology used during this 

research, both from a biological aspect of this project and a physics aspect. Alongside 

comparative methods of SPM for measuring the nanomechanical and spectroscopical 

properties of samples, classical biological techniques for studying Aβ1:42 are 

discussed, such as the Thioflavin T, immunoassays and DLS . Substrate design is a key 

component of SPM work and it was necessary as part of this project to develop a 

reliable, robust surface, clear of topographical and Nanomechanical defects, which 

could be utilized during this work. Details of the process undergone to develop this 

are also presented below.  

 

2.2 Materials and general reagents  

Recombinant human Aβ1:42 and Aβ1:40 were from rPeptide (Ultra-pure, HFIP, A-

1163-2, >97% purity), (Georgia, USA). Both peptides were pretreated with HFIP 

during production. Aβ1:42 treated with TFA, HCL and NaOH salt were also tried when 

working underliquid.  HiLyte™Fluor 647 Aβ40 was from Anaspec, (Eurogentec, 

Belgium). Amylin was from American Peptide Company, (California, USA). 

AFM cantilevers were Tap-300-G for TM-AFM and Contact for CM-AFM from Windsor 

Scientific, (Berkshire, UK), unless otherwise stated.  

Colloidal gold particles for DLS standards were from Anachem (Bedfordhsire, UK) 



   
 

54 
 

Cuvettes used in DLS measurements were low-volume quartz cuvettes (ZEN2112) 

and micro cuvettes (ZEN0040) for protein and liposome measurements respectively, 

(Malvern, Malvern, UK). Deionized water (dH2O) was used to make up all buffers. 

Unless otherwise stated all other regents were from Sigma Aldrich, (Dorset, UK). 

All liquid samples were disposed of via immersion in 1:10 Tri Gene (MediMark, UK) 

overnight before autoclaving. Mica was reused by baking for 1 h at 60 °C before 

recleaving to produce a smooth surface.  

 

2.3. Nanomechanical methods of SPM  

At its simplest level SPM typically involves scanning the sample surface with a probe, 

and detecting the interaction of the tip with the sample surface. At the nanoscale 

this interaction is subject to the effect of short range forces such as van der Waals, or 

longer range ones such as electrostatic forces. Each of these nanomechanical 

responses causes deflection of the laser which is being reflected off the back of the 

cantilever onto a photodetector. This signal is then converted into an image map. 

Details of the experimental setup used for UFM and HFM are detailed below. 

 

2.3.1 Nanomechanical mapping of peptides and proteins via Scanning 

Probe Microscopy  

Throughout this research all SPM work was carried out on a MultiMode AFM (MM-

AFM), fitted to a NanoScope IIIa controller unit, (Bruker, USA). The probe is held in a 

stationary position and the sample beneath is moved using a piezo-actuator scanner 

tube. Substrates are attached to metal disks using salol (phenyl salicylate), and held 

upon the top of the scanner magnetically (Fig. 2.1. MultiMode AFM7). 
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Various scanner tubes can be used with MM-AFM’s, which determine the maximum 

scan sizes which can be taken and the amount of positioning noise seen within scans. 

A vertical “J” scanner was used for the research conducted in this thesis, with a 

lateral scan range of 125 x 125 μm, and a vertical range of 5 μm. Movement of the 

scanner tube is controlled by applying voltage to conductive areas, thus moving the 

scanner along X, Y and Z axis.  

Upon the MM-AFM scanner sits the microscope head, attached by spring clips, and 

within this the holder for the cantilever which is clamped into place, (Fig. 2.2). The 

path of the 670 nm laser through the AFM head is shown in orange. The laser is 

guided onto the cantilever using a fixed and an adjustable tilting mirror before being  

 

Figure 2.1. MultiMode-AFM7. The physical setup of the MM-AFM used in this 

research is shown above, with key features indicated. Scanner used during this 

research was the vertical J scanner, (not shown). 
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reflected onto the 4 quadrant photodiode array. Laser positioning within this head is 

controlled by screws, along with an additional set of screws which adjust the 

cantilevers position with respect to the sample. 

All MM-AFM’s used during this work were routinely calibrated by following the 

manufacturers guidelines7 using a Veeco (now Bruker, USA) Metrology Group NGR-

11100 3D reference made of Pt coated Si. This reference consists of a 200 nm grid 

with a 5µm pitch. Orthogonality was checked and linearity in fast and slow scan 

settings adjusted until the AFM was calibrated to within 2% of the reference sample 

along all axis (x-y-z). 

Software of the control of the MM-AFM is done via a computer using Bruker, 

(formerly Digital Instruments/Veeco), NanoScope v.4.43r8 software, which allows 

real time capturing of data and simultaneous off-line image manipulation. Scan 

parameters (size, rate and resolution), are set in the real time mode, along with 

selection of the data which is to be collected from the available channels, 

(topography, friction, deflection UFM etc.). The channels available are determined to 

a degree by which operating profile is selected within the software. For example for  

Figure 2.2. MM-AFM head with major components highlighted; 1) laser, 2) mirror, 3) 

cantilever, 4) tilting mirror for laser adjustment and 5) photodetector. 
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UFM data to be collected the MM-AFM must be running in the “Contact” profile. 

Data was collected and saved by selecting the “capture” option within the 

NanoScope software, before being processed off-line using the programs indicated 

later in this chapter, and examples of the data collected can be seen in Fig. 2.3. When 

collecting samples for AFM analysis samples were taken at each time point and 

imaged in triplicate (i.e. 3 samples were collected and imaged in 3 separate  

Figure 2.3. The types of AFM data gathered from during this thesis. (A) Topography is the most 

basic and readily available information that can be gathered on a sample, and was collected at 

all times. (B) TM phase, a measure of sample adhesion, is collected in Tapping Mode AFM, and 

is unique to TM. (C) and (D) show data which must be collected in Contact Mode AFM; Friction 

(C) allows the user to see the torsion and sheer forces being applied to a sample, and is 

particularly useful to monitor when looking at biological samples. (D) shows the UFM data 

which can be collected, with darker areas suggesting areas which are less rigid and more 

compliant than lighter areas. 
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locations) to be sure the samples represented the overall sample. 

 

Tapping mode. Tapping mode AFM (TM) is frequently employed to overcome issues 

with sample friction and adhesion can cause, and is particularly applicable to the 

imaging of biological samples. Consequently this dynamic AFM mode has been 

employed routinely throughout this thesis. The theoretical concepts of AFM have 

already been discussed in Chapter 1.A, so will not be discussed in detail here. Data 

was collected in TM for topography and phase channels. Cantilevers used had 

resonant frequencies of approximately 300 kHz ±100 kHz, and force constants of 20-

75 Nm-1, and have an approximate tip radius of 10 nm. Unless otherwise stated, all 

scans were conducted with the tip vs sample speed between 0.5-1.5 μm/s.  

 

Contact mode. The widely used mode of AFM, contact mode (CM) forms the basis of 

the subsequent techniques discussed below. During CM the tip is kept in direct 

contact with the sample, and so, if the applied force is not monitored carefully, 

friction and torsion can damage the sample. Where direct contact to the sample was 

necessary to gather data, the force was kept to a minimum of 5-10 nN. 

Contact tips had resonant frequency of 13 ±kHz, with force constants between 0.007-

0.4 Nm-1, with a tip radius of approximately 10 nm. Scan speeds were as previously 

mentioned.  

 

Ultrasonic Force Microscopy (UFM) and waveguide-UFM (w-UFM). UFM operates in 

contact mode and therefore requires the use of contact mode cantilevers, but uses a 

dedicated piezotransducer stage to vibrate the sample at higher frequency but with 

small amplitude. A typical UFM setup is shown in Fig.2.4. UFM samples are attached 

to a disk piezotransducer stage (PI piezoceramics, Germany) using salol and driven 

using an external AC source, (LXI Keithley, UK) at frequencies higher than that of the 

cantilever’s resonant frequency, typically 2-4 MHz amplitude modulated at low 

frequency (1-5 kHz). The cantilever at this frequency is effectively rigid and will 

indent briefly into the sample surface before pulling away. The non-linearity between 

the tip-surface interaction provides detection of the HF sample vibration with 

resulting readily detectable response at AM frequency that can be used to produce 
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an image that is a measure of sample stiffness. Darker areas are softer and more 

compliant compared to lighter areas which are stiffer, as a brighter area refers to a 

higher lock-in amplifier (LIA) output as a response to a lower threshold amplitude. It 

is also possible with UFM to detect stiffness changes ~5 nm below the samples 

surface187. Adhesion and tip-surface interactions can also be modelled using the 

Young’s modulus as previously discussed in Chapter 1.A 1.1.2. 

 

The piezotransducer was driven using either a Hewlett Packard 33120A waveform 

generator or the aforementioned external AC source (Keighley, UK), while the 

amplitude was modulated at 2.3 kHz and detected using a LIA amplifier (SR830 DSP, 

Figure 2.4. (A) Schematic and signal flow diagram of a typical UFM setup. Where w-UFM was 

employed the AC source is used to apply the ultrasonic vibration to the cantilever within the MM-

AFM head instead of the piezo-transducer, (dashed lines). (B) Illustration of the amplitude 

modulation symmetrical envelope and UFM deflection signal monitored during UFM scanning. The 

drive amplitude (the force at which the cantilever was driven) was typically 0.2V for UFM 

experiments. 
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Stanford Research Systems). This LIA allows for the detection of the deflection of the 

cantilever which results from the non-linearity of the tip-sample interaction (the 

UFM signal). By connecting the LIA output to the auxiliary input of the Nanoscope IIIa 

controller the resulting UFM output is recorded as an image scan. The use of an 

oscilloscope to monitor and visualize the UFM signal allows for tuning up, calibration 

and modification of it as necessary. 

For waveguide UFM (w-UFM) experiments and identical setup was used, however 

the ultrasonic vibration was applied directly to the cantilever itself rather than 

beneath the sample. It was not necessary to use a piezo-transducer stage here, 

however all samples were compared directly so remained on UFM stages regardless 

of the mode of operation. 

 

HFM Heterodyne Force Microscopy allows for probing of local changes in the 

viscoelastic response of samples. In a similar manner to UFM, the HFM set up of the 

MM-AFM requires the application of an ultrasonic vibration, however in contrast to 

UFM, this vibration is applied to a transducer at the cantilever base on the MM-AFM 

head (Function Generator #1, Fig.2.4) and also from a transducer on the sample, 

Figure 2.5. Schematic of the HFM setup. 
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(Function Generator #2, Fig.2.5). These two function generators are excited 

simultaneously and synchronously mixed to create a reference signal for the lock in. 

Adjacent frequencies are used, both around 4.5 MHz, with the sample piezo being 

excited at a frequency few kHz below or above that of the cantilever to allow for the 

detection of the response. The non-linear deflection of the cantilever or the samples 

phase response is then monitored and plotted accordingly as the HFM response. 

 

2.4 Spectroscopic methods of SPM 

In addition to the AFM methods for looking at the topography and nanomechanical 

properties of a biological sample, spectroscopical AFM techniques were also 

developed. These techniques are based upon the Scanning Thermal MM-AFM (SThM) 

system previously reported188 with the view to using a tunable infrared laser to 

detect the change in a samples thermal response at specific wavelengths.  

 

SThM experimental set up. For SThM work resistive SThM  cantilevers (Kelvin 

Nanotechnology, Glasgow, UK) , were attached to a half-moon SPM probe holders 

(Anasys Instruments, Santa Barbara, USA), (Fig. 2.6), and calibrated between 25-80 ºC 

on an Echo Therm IC20 Peltier plate with variable temperature control (Torrey Pines 

Scientific, Carlsbad, USA). This initial step allowed calculations of the probes 

resistance as a function of its temperature. Following this the self-heating of the 

probe as a function of the power applied to it was measured by applying a varying 

voltage and combined with the previous results. A more detailed analysis of the 

probes operations has been provided by Dobson et. al. (2007)189.  The relationship 

for calibration with silicon nitride tips is a quadratic and was performed by Dr. Peter 

Tovee, (Department of Physics, Lancaster University, UK). 

The SThM system used here is as previously reported23, 188, (Fig.2.7 (A) and (B)). 

Briefly for SThM measurements an AC signal of 91 kHz was applied, with a higher DC 

offset self-heating the probe as part of a balanced Maxwell bridge. This bridge was 

balanced in the absence of the AFM 630 nm laser, using the variable resistor and 

variable capacitors. Probe excitation was provided using a precision function 

generator, (3390, Keithley Instruments, Berkshire, UK). The output from this bridge is 
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recorded using a LIA. A band-pass filter (Stanford research systems inc, model SR650) 

was added just before the LIA  with high pass and low pass filters at 99 kHz and 81 

kHz, respectively, to reduce noise. 

 

Following engagement of the tip the laser alignment frequently needs realigning as 

the application of the AC frequency to the tip causes some bending of the cantilever. 

This realignment was done by setting a setpoint value of -10V to remove the 

cantilever from direct sample contact, realigning before reducing the setpoint to 0.2-

0.5V as per standard contact mode scanning corresponding to 10-25 nN force.  

In SThM, on contact with the sample surface, the tip is cooled as heat flows into the 

sample, which changes the resistance of the tip. By combining AC-DC excitation 

across the Maxwell Bridge Joule heat can be generated by applying a well-defined 

power, measuring the resistance from the tip and creating a thermal image which 

shows the local thermal resistance of the sample. Darker areas in SThM image then 

correspond to increased sample thermal conductivity, and brighter areas to 

decreased thermal conductivity, (Fig.1. 7. (C) and (D)). 

Thermal conductance (k1) can be calculated using the following equation; 

𝑄𝑄 = 𝑘𝑘1
(𝑇𝑇2 − 𝑇𝑇1)∫𝐴𝐴

𝑑𝑑
 

Where Q is the heat source, T1 and T2 are the temperatures of the materials, and d is 

the dimension of the tip. 

 

Figure 2.6. (A) A typical MM-AFM cantilever holder and (B) SThM cantilever holder. SThM 

cantilevers were attached to half-moon probe holders and fitted into a custom built SThM probe 

holder from Anasys Instruments. 
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Silicon as an ideal background for SThM studies. In addition to the substrates 

previously used, SThM studies required a background with a stronger thermal 

contrast. As a result single crystal silicon was tested. A 100 nm wafer (Testbourne, 

Basingstoke, UK) was cleaved into small 10x10 mm pieces, cleaned with Isopropanol 

alcohol (IPA) and dH2O before being stored in a desiccator. This latter step was 

necessary for all samples on Si substrates as degradation of the sample due to the 

water layer occurred more rapidly. Sample deposition itself was as previously 

described.  

 

 97.17 mV

 0.00 mV

800nm

 37.34 nm

 0.00 nm

800nm

 97 mV 37 nm C D 

 
Figure 2.7. Schematic diagrams of the SThM system used in this thesis, showing (A) Maxwell 

bridge employed to apply the AC current to the tip, and (B) whole SThM system used, including 

the Maxwell bridge.  Panels (C) and (D) show the topography and SThM contrast map from a 

typical scan of Aβ1:42 fibres.  
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Sample preparation for SThM-IR. Given the changes in Aβ structure during 

aggregation, (namely from disordered/α-helix to β-sheets), it was deemed necessary 

to find a method of isolating the fibrils, which are predominantly β-sheeted, from 

any smaller aggregates which are potentially representative of a α-helical structure. 

This would produce a simple, well defined sample to experiment upon. Given 

extensive work that has shown that the monomers/oligomers are difficult to 

separate by centrifugation, and work by our group that has already shown the 

isolation of fibrils using this technique is possible, the use of an airfuge was  

 

Figure 2.8. (A) Experimental operating parameters of ALICE and (B) Diagram of the ALICE 

accelerating hall. The FEL is accelerated round the beamline ring and steered onto the laser table in 

the diagnostics room where SThM-IR work was conducted. 
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appropriate167. Samples of 144 h aggregated Aβ1:42/40 peptide were spun in an 

airfuge (Beckman Coulter, (UK) High Wycombe, UK) for 1 h at 125,000 x g. The 

supernatant was pipetted off and tested using ThT to ensure no fibrils remained in 

suspension. The pellets were re-suspended in 100 µl dH2O before being deposited 

onto the substrate and air dried. No subsequent washing was deemed necessary; 

however this protocol did produce a highly concentrated sample of fibrils, of which 

some further dilution as necessary. Where this has occurred the dilutions were done 

in dH2O. Where work was intended to be carried out using the SThM-IR system 

samples were deposited onto 2 mm thick CaF2 disks, which were IR transparent 

(Crystran Ltd, Poole, UK). 

 

SThM-IR experimental set up. Work for SThM-IR was conducted using the FEL at 

ALICE energy recovery linear accelerator, (Daresbury Science Park, UK) in a manner 

analogous to that reported by Smith and collegues190. For SNOM work, however the 

FEL was guided into the SThM set up described above and by tuning the wavelength 

of the FEL a thermal response was possible from the sample where the sample 

contained particular structures. 

 

A more detailed description of the ALICE setup can be found in Thompson et al. 

(2012)191 and details of some important running values are listed in Fig. 2.8 (A). ALICE 

delivers ~60 pC electron bunches at 16.25 MHz, with long pulse trains of ~100 µs at 

10 Hz using a superconducting accelerator. These pulses of IR light create an 

oscillating FEL which can be tuned in the mid-IR by changing the length of the 

undulator gap. Presently ALICE operates between 5.8-9 µm, however some loss of 

power is seen at either extremity of this range. IR radiation travels under vacuum 

through a beamline to the SThM-IR set up and an Acton SP2500 spectrometer (for 

diagnostic purposes). A full outline of ALICE can be seen in Fig. 2.8 (B). 

In order to align the FEL pulse onto the cantilever a HeNe laser following the same 

path is employed. The presence of the FEL on the cantilever was detected by an 

increase in signal on the oscilloscope. 

The adapted SThM-IR setup is shown in Fig. 9. A boxcar is used to take each FEL pulse 

and fix the background signal at that pulse level until the next pulse is initiated, 
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(represented as I0), as the power levels between pulses can vary. The FEL pulse is 

brought in through the beamline and into the boxcar, and also to the oscilloscope, 

(to determine the laser alignment and presence of the FEL).  The FEL signal is 

converted into wavenumbers (µm) for the image processing. The thermal conductive 

response of the sample as a result of the heating using the FEL pulse is recorded via 

LIA output. 

Two approaches for data collection were tried with this setup. The first involved 

taking image maps at fixed wavelengths, which was considered successful but did not 

indicate whether the wavenumber selected was the most ideal for the sample. A 

second approach was to sweep the range of potential ALICE wavenumbers, between 

5.8-9 µm at 100 nm gaps, in order to identify any potential responses of the samples. 

This approach proved problematic as power levels between each increment varied 

greatly, affecting the signal and therefore the thermal response.  This was 

particularly notable at the extremities of the spectrum and was therefore not 

continued as it was deemed too unstable to produce reliable data. 

Figure 2.9. Schematic of the SThM-IR setup, incorporating the FEL from ALICE as the heat 

source for the cantilever. 
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Nano-IR (Anasys Instruments, Santa Barbara, USA). Samples of Aβ1:42 prepared as 

described for AFM-IR work above were deposited onto CaF2 disks and gold coated Si 

substrates. Imaging was kindly performed by Kevin Kjoller using the Nano-IR2 

system. Samples were imaged at fixed wavelengths and data primarily gathered at 

1650 cm-1 (Amide I), with some additional data gathered at amyloid specific 

wavelengths. Image maps correspond to the photothermal expansion of the sample 

at set wavelengths while IR absorption spectra are obtained from the sample by 

measuring the photothermal expansion as a function of the wavelength of incident 

laser light. 

 

2.5 SPM image processing and tip convolution  

Windows Scanning x Microscopy WSxM192 was used to view, manipulate and analyse 

the majority of images away from the MM-SPM system. Images were also viewed 

and analysed using Bruker NanoScope v6.14r1, Gwyddion and NanoScope Analysis 

1.40.  

As AFM topography can be affected by the convolution caused by the tip non-finite 

dimensions during scanning, which is more notable when imaging small, soft 

samples. An estimation of the real size of the structure if treated as 

spherical/cylindrical can be made using the following equation: 

𝐷𝐷 = 2 ��𝛾𝛾2 + 𝑑𝑑2/4� − 𝛾𝛾 

Where D is the real diameter of the object, R is the tip radius and d is the diameter 

measured at half the molecules height.193 

 

2.6 Identification of Amyloidβ by classical biomedical techniques 

2.6.1. Aggregation conditions of Amyloid peptides 

The conditions for the aggregation of amyloid peptides are unique and specific to 

each particular peptide, each requiring different experimental conditions in order to 

produce reliable results. Before use Aβ must also been deseeded, a chemical process 
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designed to remove any larger aggregates found in the initial vial of peptide. In the 

case of Aβ1:42 particularly, these seeds can trigger a rapid aggregation process, 

rather than a more controlled study desired, resulting in an inaccurate determination 

of aggregation state, or effect of inhibitors upon the peptide.  

 

Deseeding of Aβ1:40 and 1:42 The peptide was deseeded using a protocol adapted 

from personal communication with Manzoni and colleagues194.  Aβ1:42 was first split 

from 1 mg vials of initial peptide sample to 0.5 mg aliquots using 0.01% NH4OH pH 

10.6, with peptide being brought into solution by vortexing and 4 x 30 secs 

sonication. The 0.5 mg vials were then dried by centrifugation under a vacuum. 

Following this each 0.5 mg aliquot was dissolved in trifluoroacetic acid (TFA) 

containing 4.5% thioanisol at 1 mg/ml, sonicated and vortex as before, and dried 

gently under a nitrogen stream. Finally the deseeded protein was then treated again 

at 1 mg/ml with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and briefly vortexed and 

sonicated as before. This peptide was then split into working aliquots and dried by 

centrifugation under a vacuum, to give a final protein mass of 22.5 µg per sample. All 

working aliquots of peptide were stored at -20ºC until future use. 

For testing the potential of underliquid AFM work Aβ1:42 was purchased from 

rPeptide, (Georgia, USA), with 4 pretreatments. These peptides underwent no 

further exposure to strong solvents except being split into working aliquots with 

0.01% NH4OH pH 10.6. 

Aβ1:40 required significantly less deseeding than Aβ1:40, due to the less frequent 

presence of pre-existing seeds within the peptide sample. Instead the peptide was 

split directly into working aliquots using 0.01% NH4OH pH 10.6. Once wetted the 

peptide was vortexed and sonicated as before to solubilize it before splitting and 

storing. HiLyte™Fluor 647 Aβ40 was treated as unlabelled Aβ1:40, with working 

aliquots being stored with minimal light exposure. Amylin samples were also treated 

in this manner. 
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Amyloidβ aggregation conditions. All Aβ peptides were aggregated in 10 mM 

Phosphate buffer (PB), unless otherwise stated.  Stored samples were brought into 

solution by wetting, vortexting and sonicating 4 x 30 secs as before. 

As part of the development of an artefact free protocol for AFM imaging, Aβ1:42 was 

incubated in a number of volatile buffers namely Trimethylammonium acetate and 

bicarbonate buffers and Trimethylammonium formate solution, (pH6-8.5). 

Aggregation in these buffers was again performed using a 10 mM solution. 

For samples including metal ions, Copper (II) (Cu(II)) solution was made up to the 

appropriate concentration in 10 mM PB, before being added to the peptide sample. 

Samples were incubated at 50 μM peptide for 144h, at ratios of 0:1, 1:4 and 1:1 

Cu(II):Aβ. 

  

2.6.2. Monitoring of aggregation state using Thioflavin T assay  

A 1 mM Thioflavin T (ThT) stock was made using dH2O. At all points solutions 

containing ThT were kept wrapped in foil to prevent exposure to light. A second 

buffer of 100 mM glycine, with 2.5 MNa OH added to pH 8.5 was prepared. Glycine-

NaOH buffer was then used to produce a 15 μM ThT in 50 mM glycine-NaOH working 

solution, which was stored at 4ºC, in the dark, for 1 week. 

The ThT solution was allowed to reach room temperature before use and first used 

to prime the Synergy 2 multilabel plate reader (Biotek) reader before reading 

samples. 

For the assay, 10 μl samples were taken in triplicate were taken at the desired time 

points throughout the experiment period and added to the wells of a black 96 well 

microtitre plate. The samples were then injected with 50 μl 15 μM ThT in 50mM 

glycine-NaOH buffer, pH 8.5, mixed and read 10 times over 2 mins at Ex λ=450nm 

and Em λ=482nm195.  Average fluorescence was calculated over the course of the 2 

mins together with standards deviations and plotted as relative fluorescence units 

(RFU), and example data is presented in Fig. 2.10. For experiments conducted with 

liposomes ThT data is presented as a percentage of aggregation, with the control 

peptide being taken as 100% aggregation.  
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2.7. Dynamic Light Scattering 

All Dynamic Light Scattering data was collected on a Zetasizer Nano system from 

Malvern (Malvern, UK). For work with Aβ1:40/42 all measurements were carried out 

using the low volume quartz cuvette (ZEN2112) with a 12 μl sample volume, and for 

all other work  disposable micro cuvettes (ZEN0040) of 40 μl sample volume or glass 

cuvettes (PCS8501) of 1 ml volume were used. All measurements were taken at 25˚C 

unless otherwise stated. All cuvettes used are shown in Fig.2.11 (A-C). 

Following use low volume quartz cuvettes were cleaned for reuse in the following 

manner. Cuvettes were sonicated for 1 h in 1:10 MicroSol3+ (Anachem, 

Bedfordshire, UK), rinsed x 10 in dH2O, and left overnight on 69% dilute nitric acid. 

Following the overnight incubation cuvettes were rinsed in dH2O as before, and 

allowed to dry upside down before reuse.  
Data presented is an average of at least 3 separate system runs, each containing ~30 

individual measurements, and taken from at least 3 experimental repeats. The 

hydrodynamic radius (H) of each particle was calculated from the translational 

diffusion coefficient by using the Stokes-Einstein equation; 

𝑑𝑑(𝐻𝐻) =
𝑘𝑘𝑇𝑇

3𝜋𝜋𝜋𝜋𝐷𝐷
 

Figure 2.10. Example ThT data for Aβ1:42. Due to the rapid aggregation of this isoform the lag phase 

seen with Aβ1:40 is absent from this graph. Instead growth into fibrils, (represented by the increased 

ThT fluorescence read), is rapid and exponential for the first 24-48 h before plateauing at 72 h. The 

data presented here is an average of multiple experiments, each with data taken in triplicate.  
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Where D is the translational diffusion coefficient, k the Boltzmann’s constant, T the 

temperature and η the sample viscosity. 

 

2.7.1. Calibration of DLS system using Gold nanoparticles 

Zetasizer Nano data were calibrated and tested using gold nanoparticles of 

predetermined sizes. For these experiments particles of 2, 10, 20 and 100 nm were 

used, and diluted 1:50 (2 nm) and 1:10 (10, 20 and 100 nm) in dH2O, (Fig. 2.11 (D)). 

Particles of a wide range in sizes can be detected, with 2 – 100 nm readily detected 

by the system, however smaller particles require significantly more dilution in order 

to be detected without interference from light being scattered by neighbouring 

particles.  

 

2.7.2. Experimental setup for temperature dependent measurements 

of LCST compounds 

2D micelle compounds provided by Prof. Martin Bryce, Durham University, (Durham, 

UK) and were diluted 1:5 in dH2O before measuring across a defined temperature 

range at 5˚C temperature steps, with further measurements taken at 1˚C steps 

around the predicted LCST point.  
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2.7.3. Characterization of Peptide Inhibitor NanoParticle liposomes 

using DLS 

Before studies with peptide were conducted Peptide Inhibitor NanoParticle’s PINPs 

liposomes, supplied by Maria Gregori, (University of Milano-Bicocca, Italy), were 

characterized by DLS, both here and at University of Milano-Bicocca. Liposomes 

Figure 2.11. Showing (A-C) the differences between cuvettes used in this 

experiment;  (A) 1 ml high temperature resistant glass cuvette (PCS8501), (B) low 

volume disposable cuvette (ZEN0040) and (C) low volume quartz cuvette 

(ZEN2112).  (D) shows the experimental data gathered when gold standards were 

analysed using DLS. 
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were measured for stability at 37˚C for one week, and were also measured by 

dilution in 10 mM PB. 

 

2.7.4. Detection of Aβ1:40 and 1:42 using DLS 

Samples of Aβ1:40/42 were initially collected without diluting the peptide sample. 

However it became clear that due to the nature of DLS larger aggregates, or “seeds” 

which may remain in the sample even after deseeding, may interfere with the 

detection of the monomer/small oligomers, which have a predicted hydrodynamic 

radius of ~1-2 nm75, 76. A dilution series was performed using the 40 μl cuvettes, by 

diluting the sample in 10 mM PB until the monomeric population could be seen, 

demonstrated as a peak around 1 nm. In order to visualise this population all 

samples were diluted 1:30 10mM PB and measured in the 12 μl cuvette. 

 

2.8 Substrate modification for the attachment of Amyloid proteins 

Deposition onto mica. Initial tests of deposition of Aβ was performed by diluting 

samples of peptide 1:10 in dH2O and depositing 2 μl directly onto the surface of 

freshly cleaved mica. Samples were then allowed to air dry before being imaged with 

and without subsequent washing with x2 200 μl dH2O. This initial dilution and 

deposition remained standard for all substrates unless otherwise stated. 

 

Use of divalent ions. Freshly cleaved mica was incubated for 30 minutes in 150 µM 

CaCl, room temperature with constant agitation and subsequently washed vigorously 

to remove excess CaCl before drying. Peptide samples were deposited as described 

above before being imaged. 

 

Poly Prep slides. These slides were standard glass microscope slides coated with 

HMW Poly-L-Lysine solution (~150 kDa) and traditionally used for cell studies. Slides 

were cleaved into small ca. 1 x 1 cm pieces, before the diluted protein sample was 

placed on.  
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PLL-mica. Poly-L-Lysine (PLL) coated mica was prepared by incubating freshly cleaved 

mica with 0.01% 70-300 kDa MW Poly-L-Lysine solution, diluted 1:10 in dH2O for 

5 min before baking for 1 h at 60˚C. 

 

2.8.1 Confirmation of Aβ attachment to the substrate. 

Immunogold ELISA. Samples of peptide were prepared on PLL-mica and placed in 12-

well microtitre plates, (Fig.2.12 (A), and first blocked with PBS plus 0.05% Tween-20 

(PBST), for 15 mins. Samples were then coated with 6E10, (Fig.2.12 (B), diluted 

1:1000 in 10 mM PBS, pH 7.4, for 1 h at 25ºC. The plates were incubated for 1 h at 

37ºC and then washed with PBST. For the secondary antibody a 1:1000 dilution of 

the 6 nm gold nanoparticle tagged IgG, (Fig. 2.12(C), Aurion, Netherlands) was then 

added to each well, left for 1 h at 25ºC, and the plates were washed with PBS, and 

Figure 2.12.  Immunogold staining of Aβ1:42 peptide was conducted in a clear bottomed 12 well 

plate. (A) Samples of peptide were examined at different time points. (B) After the sample had 

dried none specific binding was blocked with PBST and then coated with the 6E10 primary 

antibody. (C) after being blocked and washed the samples were then treated with a Goat-anti-

Mouse secondary antibody with a 6 nm Au conjugate. 
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further washed with dH2O.  Samples were imaged once dry as using TM AFM. 

 

Confocal microscopy with HiLyte™Fluor 647 Aβ40. HiLyte™Fluor 647 Aβ40 was 

aggregated for 144h at 25 μM in 10 mM PB, before being deposited onto PLL-mica as 

previously described. These samples, along with blank PLL-mica were imaged with a 

Zeiss LSM 510 Meta laser scanning confocal using a 633 HeNe laser at 3 mW (Zeiss 

UK, Cambridge, UK). 

 

2.9 Conclusion  

This chapter has reviewed the experimental techniques used throughout this 

research, covering the preparation of samples and substrates to their analysis with 

SPM techniques and DLS. Details of each of the different SPM methods have been 

given with regards to their setups, particularly where differences beyond the MM-

AFM profile necessary to run them are found.  

 

While commonly used to characterize the size of particles and study population 

dynamics it is not apparent whether DLS is a sensitive enough technique to detect 

the early aggregates of Aβ and their changing populations. The technique was tested 

against samples which are of more standard size and predicted behaviours as well as 

more unpredictable, polydispersed samples such as Aβ timepoints.  

 

While SPM has already shed light on numerous morphological details of Aβ 

aggregates any information from this family of techniques into the nanomechanical, 

thermal, or chemical properties of the peptide are lacking. The techniques detailed 

here all offer additional information, should it be found they are compatible with 

imaging biological samples. Once a substrate system has been designed and tested 

using TM AFM it can be expanded upon to techniques which can better probe Aβ 

structure and chemical properties.  
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The chapter which follows details the results of the processes unnecessary to design 

a substrate system which was considered suitable for deposition of Aβ, and its 

subsequent imaging by TM AFM. Care is taken to produce a reliable, robust surface 

which was artefact free and also did not interfere with the aggregation process of 

Aβ.  
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Chapter Three: Substrate development of the imaging of 

amyloid proteins with SPM methods 

 

3.1 Introduction 

Following on from the previous chapter which detailed the experimental techniques 

used in this thesis this chapter will focus on the work which was undertaken to 

overcome the first barrier to successful AFM imaging, substrate design and the 

attachment of samples to it. In order to effectively use the nano-characterisation 

methods described previously it was necessary to test a variety of substrates and test 

their suitability, along with modifications of those substrates.  

Presented in this chapter is the development of a reliable artefact free substrate in 

PLL-mica, and its suitability for the imaging of amyloid proteins, namely Aβ1:42. Care 

was taken when modifying the substrate that increased attachment by the peptide 

did not come at a cost of altering the native structure or substructure of Aβ1:42. 

Once a reliable substrate had been selected it was analysed for any nanomechanical 

properties or surface roughness that would obscure smaller aggregates. The 

attachment of Aβ1:42 was confirmed using both an adapted immunogold ELISA and 

confocal microscopy utilising a fluorescently tagged form of Aβ1:40. 

 

3.2 Muscovite mica as a standard SPM substrate 

In addition to careful sample preparation it is essential for any SPM work that the 

substrate used is compatible with the work being undertaken. In the case of AFM 

work, all modes of microscopy require the substrate to be flat on the nanoscale, with 

minimal nanomechanical background contrast. Muscovite mica is frequently 

employed in AFM imaging as a substrate because in addition to producing layers 

which are atomically flat to a few angstroms, it is cheap, readily modified in a variety 

of ways and can be cleaved to open pristine uncontaminated surface.  
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Throughout this study Aβ1:42 aggregation was monitored using the ThT assay167, 195 

with the example of ThT in Chapter 2, (Fig. 2.10) showing that the peptide follows a 

reliable pathway of aggregation, including a brief lag phase and rapid aggregation 

before plateauing out.  The kinetics of Aβ aggregation have already been discussed in 

the literature review chapter and will not be discussed further here beyond noting  

Figure 3.1. (A-D) showing TM AFM of 72 h aggregated Aβ1:42 deposited onto freshly cleaved mica.  While 

some fibres can be seen the presence of salt clearly disrupts imaging and leads to damage to the cantilever 

tip. Panels A and B show the sample after it has been dried and washed gently with x 2 200 ul dH20, while C 

and D show the result of imaging without any additional washing of the sample. Solid arrows indicate MF of 

Aβ1:42. 



   
 

79 
 

that the peptide used in this study behaves as predicted and in a reproducible 

manner. Aβ1:42 was incubated, and deposited onto freshly cleaved mica, (Fig. 3.1), 

and although other groups have had success with this strategy196 it was not deemed 

to be particularly successful in the case of this work due to rather week attachment 

of the fibres. While Fig. 3.1, (B) and (C) shows the presence of fibres (solid arrows) 

after gentle washing, both on the topography and deflection panels, they are sparse 

in number, and a great deal of time must be spent to locate them. Given that the 

aggregation pathway of Aβ contains numerous stages, one can assume that fibres 

are not the only aggregate that can be seen by AFM86, 98. Work has already shown 

that batch-to-batch variation, and indeed differences between suppliers can make 

this initially straightforward strategy more challenging197. The attachment and 

adherence of a sample to a surface depends on numerous factors, one of which is 

the relative charges of the two components. However, due to the similar isoelectric 

points of mica and Aβ1:42 with both being negatively charged at neutral pH198, 199, 

the attachment of this peptide to mica is likely to be problematic. Due to the kinetics 

of Aβ1:42 aggregation it is not possible to merely adjust the pH in which incubation 

occurs, and below pH4 the α-helix is the dominant structural component while β-

sheets are favored between pH 4 to 7 145, 200-202.  

A secondary problem is the presence of salt within the buffer solution, which is 

Figure 3.2. Incubation of Aβ1:42 in volatile buffers. Sample was monitored at the above 

timepoints using a ThT assay. Data is representative of least n=3 experiments.  
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necessary for biologically relevant aggregation of Aβ1:4275, 82, 86. In all panels of 

Fig.3.1 phosphate crystals can be clearly seen, which result from drying of the 

sample. Indeed if the sample is not washed, (Fig. 3.1 (D) and (E)), smaller aggregates 

are present but imaging is greatly interfered with by salt residue. These crystals not 

only obscure fibers but also lead to increased wear and tear on the delicate 

cantilever, destroying the tip and increasing the chances of tip-induced artefacts 

alongside buffer induced ones.  

 

3.3 Incubation of Aβ1:42 in volatile buffers 

Although it was unlikely to be successful Aβ1:42 was aggregated in three volatile 

buffers, in addition to the 10 mM PB usually used for aggregation. Volatile solutions 

readily evaporate without additional assistance (i.e. N2 stream) and theoretically 

should leave behind no residue which would create artefacts or interact with the 

AFM cantilever in a detrimental way during scanning. Thriethylammonium acetate or 

bicarbonate buffers (TA/B) and Triethylammonium formate (TF) solution, all at 10 

mM, were trialled for buffer media. As can be seen in Fig.3.2 when ThT data is 

compared both TA and TF buffers showed potential as useful aggregation buffer, TB 

did not. The most likely reason for this is the pH of the three buffers, TA and TF are 

pH6-7, and therefore within the small window at which aggregation occurs in the 

most controlled manner145, 200, 202, while TB which has a pH of 8.5 is too alkali a buffer 

for aggregation to occur within. High pH solutions have been shown to be 

unfavourable for aggregation by creating a kink in the peptide and thus disrupting its 

secondary strutcure202, and indeed high pH solutions are used to prevent aggregation 

during deseeding and splitting of the peptide into working aliquots.  Although TA and 

TF buffers showed promise with initial ThT tests, deposition and imaging on mica was 

no more successful compared to standard buffers. Given the differences between 

TA/TF and a physiologically relevant system it was decided to modify the substrate 

rather than the aggregation conditions.  
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3.4 Chemical modification of the mica substrate 

It was decided at that a more reliable substrate was needed and the process of 

surface modification began. Protein absorption is mediated by several forces; 

hydrophobic, van der Waals and the electrostatic double layer. Water, when 

deposited onto mica, causes the dissociation of K+ ions from hydroxyl groups within 

the mica, thus generating a negatively charged surface which equally negatively 

charge molecules are repelled from199, 203.  Simple surface modification of mica for 

attachment of different substrates is a common process; DNA attachment has been 

modified using glutaraldehyde, or other salinizing agents like 

aminoproplytriethoxysilane (APTES)204, and divalent ions have been employed by 

several groups to increase attachment205, 206. 

 

3.4.1 Incubation of cleaved mica with divalent ions 

The repulsive force present between Aβ1:42 and the cleaved mica surface can be 

altered by incubation of the mica with divalent ions. Divalent cations such as Ni2+ or 

Ca2+ have been shown to increase the attachment of extracellular matrix proteins 

and DNA203, 205, 206 and it therefore seemed possible to apply this process to our 

experiments. Sherratt and colleagues206 looked at the absorption of microfibrils to 

 

Figure 3.3. Freshly cleaved mica was incubated with 150 µM Ca2+ and protein was deposited as 

normal. Despite subsequent washing an increased number of salt crystals (indicated by arrows) 

remained on the mica surface and no improvement of protein attachment was seen.  
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mica across a physiologically relevant concentration range of 31-1000µM of Ca2+ 

ions, a biologically significant cation. Maximal absorption was seen 125-250 µM.  

Based on this study, freshly cleaved mica was incubated with 150 µM Ca2+ for 30 

mins, washed with dH2O before drying with a nitrogen stream. AFM imaging was 

then conducted, on substrates with and without peptide, (Fig. 3.3). Unfortunately no 

greater protein attachment was seen compared to bare mica, while an increase in 

the number of salt crystal artefacts were noted. Concern that divalent ion 

modification of the substrate may alter the morphology of the deposited fibres was 

also noted, as Ca2+ can disrupt the morphology of Type VI collagen during 

deposition206. 
 

3.4.2 Poly prep slides 

Another method of altering the surface charge of an AFM substrate is to use Poly-L-

Lysine to create a more hydrophobic charge across the surface.  Two approaches 

were tried, using “Poly-Prep” glass slides, and also developing in-house protocol of 

coating mica with diluted PLL solution. 

Poly-prep slides were purchased from Sigma-Aldrich, and immediately showed that 

by altering the surface to increase its hydrophobicity more effective protein 

attachment could be achieved. Fibres of Aβ1:42 remained attached to the slides even 

after gentle washing, (Fig.3.4 (C) and (D)). However these samples are coated with a 

layer of Poly-L-Lysine strong enough to maintain cell attachment, and on 

examination were found to be far from atomically flat. Topography of 1.6 nm ±0.9 

nm was noted across the slide, (Fig. 3.4 (A) and (B)). The monomer of Aβ1:42 has 

been noted to be 1-2 nm 75, 76, 87, 207 and therefore had an uneven background 

topography which could not be discerned from small Aβ aggregates. 
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3.4.3 PLL-mica 

Another approach to using PLL for substrate modification is coating mica with a 

dilute solution, and has been shown to be very successful with a variety of biological 

samples.196, 206, 208-210. Caution is advised when using PLL, as the conformation of the 

peptide is pH dependent: at a neutral pH the lysine side chain residues have a high 

net charge and the molecule has a random coil conformation. Above pH 10.6 PLL has 

an α-helix conformation due to a reduction of the charges due to being above the 

lysine side chain pKa211, 212. This α-helix structure can be converted to a β-sheet by 

heating PLL in a highly alkali buffer and cooling it212. These β-sheeted structures are 

capable of aggregating into chains and forming large aggregates however this does 

Figure 3.4. Poly Prep slides as an AFM substrate. The surface roughness of the slides was found 

to be 1.6 ±0.9 nm (Panels A and B), and while attachment of Aβ1:42 was possible, even after 

washing, it was impossible to discern smaller aggregates from background topography.  
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not occur at a basic/acidic pH211. All experimental conditions used when working 

with PLL were at a neutral pH, and therefore this conformational shift was not found 

to be problematic.  

When scanned with both CM and TM AFM the surface was found to be clean, and 

flat to the nanoscale roughness. After coating with PLL the surface roughness of the 

mica was approximately 4.5 ±1.5 Å, (Fig. 3.5 (A) and (B)). When this PLL-mica surface 

was exposed to 10 mM PB it was not found to retain salt crystals in great numbers 

after drying and washing, (Fig. 3.5 (C)), while fibres and other aggregates attached in 

large numbers without the need for arduous scanning providing one looked with the 

area deposition had occurred (Fig. 3.5 (D)). 

 

The PLL layer was investigated further, to test it for thickness and nanomechanical 

background contrast, (Fig. 3.5 (E) and (F)). High force stiffness cantilevers (k = 3 Nm-1, 

CSC11/Cr-AU, MikroMasch, Bulgaria, Europe) were used at elevated force of 100 nN 

to scratch the surface of PLL in contact mode AFM with no ultrasound over the 

500x500 nm2 square area, in order to determine the thickness of the PLL layer. 

Measurements indicated that the PLL layer was typically 0.36 ± 0.1 nm thick.  When 

UFM was employed no nanomechanical contrast was seen, indicating the substrate 

made ideal conditions for studying biological materials. 

 

3.5 Confirmation that PLL does not interfere with fibre morphology  

Although PLL is frequently used to modify substrates for attachment of peptides, Aβ 

is a particularly sensitive protein, and some substrate modifications can affect the 

structure of the sample being deposited. Sherrat and colleagues206 noted a negative 

correlation between fibrillin microfibril height and Ca2+ concentration. Between 1000 

– 31 µM Ca2+ the microfibril height decreased from 90 to 17 nm, although no other 

structural features (such as periodicity) were affected. One report of PLL affecting Aβ 

fibre formation was found213 and a brief investigation was carried out. Nguygen et al. 

briefly incubated Aβ1:40 with PLL solution at a concentration of 12.5 mg/ml, and 

found that this lead to instant disaggregation of 5 day old fibrillar aggregates. Once 

diluted the mica in our experiments was coated with a 0.01 mg/ml solution, and then  
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Figure 3.5. PLL coated mica as an AFM substrate. Panels A and B show the smooth, almost atomically flat 

surface of mica coated with a dilute PLL solution. C and D show the effect of deposition of 10 mM PB and 

72 h aggregated Aβ1:42 followed by gentle washing (remaining buffer indicated by arrow). E and F show 

the calculation of the approximate thickness of the PLL coating. Thickness was calculated by measuring 

multiple line scans across the scratched area to calculate a thickness of approximately 0.7 ±1 nm. 
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baked dry, which would presumably render any mode of action void due to the 

denaturation of the poly-L-Lysine. Our protocol does not involve combining Aβ and 

PLL in solution, at any stage of aggregation. Although this concentration is >100-fold 

lower than that used by Nguyen and colleagues, we endeavoured to ensure it did not 

interfere with aggregation when deposition occurred.  

 

Comparative ThT analysis of samples incubated over 72h and exposed to PLL-mica 

was performed, with readings being taken before and after exposure (Fig.3.6). 

Although a small decrease in fluorescence is detected following a 30 min incubation 

period, this is not a statistically significant difference and could be accounted for by 

attachment of protein to the PLL-mica surface. No dramatic alteration in fibre 

structure was seen to be detected by the ThT or by AFM. Samples of Aβ1:42 were 

deposited onto freshly cleaved mica and PLL-mica and compared for differences in 

height and width, and no gross morphological differences were found.  The details of 

fibre sizes will be discussed further in Chapter 5. Time of exposure was chosen as this 

is the approximate time a sample taken at a much smaller volume for AFM analysis 

would have taken to become dry for imaging. Nguyen et al. saw a complete 

dissolution of β-sheeted aggregates, and if this were found at a concentration of 0.01 

mg/ml in our system one could expect a dramatic shift in the level of ThT 

Figure 3.6. Exposure of Aβ to PLL-mica does not disrupt fibre morphology during attachment. 

ThT is presented as a percentage of aggregation and is a triplicate or three independent 

experiments 
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fluorescence detected.  

 

3.6 Confirmation of attachment of Aβ1:42 to PLL coated mica. 

 

Immunogold staining. In order to ensure that the protein attached to the PLL-mica is 

indeed Aβ1-42 immunogold staining of the sample was carried out. By adapting a 

sandwich ELISA containing AuIgG antibodies detection of small and large aggregates 

of Aβ is possible. Fig. 3.7 (A) shows PLL mica which has not been exposed to protein 

but has been treated with the full ELISA protocol, and is therefore a representative 

control. Panel (B) shows the sample before staining, and (C) confirms the attachment 

as fibres and oligomers well decorated with Au particles. An appearance of a coating 

Figure 3.7. The standard 6E10 ELISA protocol was adapted to use 6 nm tagged AU antibodies to 

detect Aβ aggregates bound to the PLL-mica surface. TM AFM topography for (A) PLL-mica 

incubated as a control, (B) Aβ1:42 before staining and (C) after staining. Panel (D) shows the 

increase in height following incubation with the 6E10 primary and AuIgG; control (blue), before 

staining (red) and after staining (green). Data presented is from a single line scan, but is 

representative of multiple line scans. 
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across the sample would suggest the presence of many small aggregates of Aβ. This 

is indicated by the increased width observed between fibres and aggregates in panels 

(B) and (C). An increase in height is also noted in the roughness profiles in panel (D), 

showing control (blue), before staining (red) and after staining (green). 

 

Confocal microscopy. In addition to the use of the AuIgG to detect Aβ aggregates 

attached to the PLL-mica surface a fluorescently tagged form of Aβ1:40 was used. 

HiLyte™Fluor 647 Aβ40 was aggregated at 25 µM as normal before being deposited 

onto PLL-mica, (with and without subsequent washing). Part of the characteristics of 

this peptide is that upon wetting with buffer the peptide solution is blue in colour 

(compared the transparent for all other peptides used in this study). This meant 

aggregation could not be monitored using ThT or any other measure of fluorescence 

as normal, (Fig.3.8 (A)), however no problems with aggregation were noted when 

examining the peptide with AFM, (Fig.3.8 (D) and (E)).  

Initially, excitation and emission were checked using a Tecan Infinite Pro 200 plate 

reader, and found to be within suppliers predictions of 649 and 674 nm respectively 

(Switzerland, Europe). 

 

To confirm that the aggregates seen with AFM on PLL-mica substrate were peptide 

confocal microscopy was used to check attachment. When a washed PLL-mica 

substrate was examined at 674 nm wavelength no background contrast was seen, 

(Fig.3.8 (B)), while large amounts of peptide “clouds” were visible on a PLL-mica 

substrate deposited with peptide, (Fig.8. (C)). Given the lack of background 

fluorescence seen for PLL-mica alone one can attribute the fluorescence on Fig.8. (C) 

solely to that of the HiLyte™Fluor 647 Aβ40. Unsurprisingly untagged Aβ did not 

show any fluorescence.  

From these results, combined with the immunogold assay, it is possible to determine 

that aggregates of Aβ would successfully attach to PLL coated mica. 
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Figure 3.8. HiLyte™Fluor 647 Aβ40 was incubated for 144 h before depositing on PLL-mica. 

Incubation was monitored with ThT (Panel A) but due to the colour of the peptide it was not possible 

to monitor aggregation. Confocal microscopy was used to determine whether peptide had remained 

attached. Panel B shows washed PLL-mica while C shows HiLyte™Fluor 647 Aβ40 deposited onto the 

PLL-mica substrate and washed. UFM was used to confirm that fibres had indeed formed and that 

aggregation occurred as expected, showing (A) topography and (B) UFM. 
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3.7 Conclusion 

This chapter has examined the process by which an anatomically flat, robust 

substrate for the AFM imaging of Aβ peptides was generated. The challenges of 

designing a substrate to which the peptide would attach, while providing no 

background contrast, either topographical or nanomechanical, have been overcome 

in the use of PLL coated mica, making it a preferential substrate for future imaging. 

Furthermore, this substrate has been shown to have no detrimental effects on 

aggregation or alter the type of aggregates seen. Attachment of the peptide has 

been verified using an immunogold ELISA and fluorescent labelling in addition to 

visual confirmation using the AFM. Looking forward this substrate will be used to 

study aggregates of Aβ using a variety of AFM techniques, where it is applicable as a 

substrate and no other requirements need to be met, (for example, IR transparency).  

For substrates with other requirements alternatives will be investigated, such as Si or 

Au coated substrates. Evaporated gold coated substrates have been used to great 

success for the development of an atomically flat imaging substrate for other β-

sheeted molecules such as Titin214. More recently ultra-stable Au substrates for cryo-

EM have been developed which is able to resist deformation provides a high 

resolution substrate215. Ultimately although PLL-mica is an idea substrate care must 

be given to other imaging factors.  

In the next chapter the substrate designed here, PLL-mica, will be used extensively to 

allow for the nanomechanical imaging of Aβ1:42 in order to determine more about 

its nanostructure in addition to testing the compatibility of UFM as a imaging mode 

for biological samples. UFM itself will also be compared with other AFM modes 

which characterise the elastic and stiffness properties of the sample being imaged. 
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Chapter Four:  Scanning Probe Microscopy methods of 

imaging Amyloid Peptides during the aggregation process 

 

4.1 Introduction 

Following on from the development of a robust, anatomically flat substrate lacking in 

nanomechanical contrast, samples of Aβ1:42 were incubated and deposited onto 

PLL-mica before being imaged using TM, UFM and HFM AFM modes. As TM AFM is 

the most frequently employed AFM mode for the studying of biological samples27, 98, 

due to its reduction in shear forces and friction placed upon the sample, it is the 

logical starting point for imaging Aβ1:42. However TM seem to be inefficient in 

providing the user any information beyond topographical properties of the sample 

being imaged, and, unlike UFM and HFM, could not easily differentiate between Ab 

and the PLL substrate, as may have a reduced resolution compared to CM. This 

chapter details the information which could be gathered on samples of Aβ1:42 

across a range of time points, and the differences between the details of 

nanomechanical variations within the sample these techniques can provide.  

 

4.2 Tapping Mode imaging of Aβ1:42 – detection of metal ions induced 

alterations in morphology. 

As with all modes of AFM, TM captures the topography of the sample, but in addition 

to this, the phase is also captured. The phase provides an indicator of local sample 

adhesion, and variations within this feature across the sample, (Fig. 4.1 (B)). 

Following 72 h aggregated samples of Aβ1:42 were imaged using TM and showed the 

presence of elongated mature fibres (MF), often greater than 1 μm in length, 

although shorter fragments were present, (indicated in Fig. 4.1 (A and B)). A few 

smaller aggregates can also be seen. When the profile of these fibres is drawn, and 

tip convolution is taken into consideration, MF are 4.15 ±1.3 nm high and 17.72 ±8.8 
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nm wide, (n = 32). The width vs height difference is seen in all modes of AFM, and is 

linked to the tip convolution, and tip-sample forces interacting98, 216, leading to an 

increase in fibre width. In addition the z resolution of an AFM is limited by the 

scanner being used, and the z-limit imposed by the scanner. Higher resolution 

scanners are able to take finer steps in the z axis and thus produce a higher 

resolution image.  Aβ fibres diameters are typically reported based on their heights, 

and measured to be between 5 to 13 nm, however this does vary depending on the 

incubation conditions being used81, 82, 98, 99. The stacking nature of β-sheets suggests 

that the fibril morphology represents a flattened cylinder shape12, 91, 217, 218. If this is 

the case, height is not necessarily an accurate reflection of diameter. Any dimensions 

reported in this thesis will endeavour to take tip convolution into consideration. 

Ultimately, one can be assured that the samples of Aβ1:42 are consistent with those 

within the literature, if batch to batch variations are taken into account197.  

As a further study of TM being used to study the morphology of Aβ1:42 fibres, 

samples of peptide were exposed to specific metal ions, Cu(II) and Zn(II), which have 

previously been shown to bind to Aβ219, 220, and that Aβ can subsequently reduce 

these metal ions via the Fenton’s reaction, leading to the production of hydroxyl 

radicals155, 166, 170, (for more discussion of this please refer to Chapter 1.B 1.13). 

Peptide was incubated at 0, 1:4 and 1:1 molar ratios of Cu(II)/Zn(II): Aβ and examined 

for changes in morphology. It was noted that profound changes in aggregate size and 

morphology can be seen with increasing levels of Cu(II) presence in the buffer 

medium, (Fig. 4.2). Where no Cu(II) was present individual fibres were measured at 

3.71 ±0.7 nm high and 9.19 ±0.1 nm wide, (n =19), while some larger fibres were also 

present, at almost double the dimensions, 6.88 ±0.5 nm and 18.45±0.5 nm wide, (n 

=13). This latter population is indicative of two thinner fibres (protofibrils) having 

intertwined during aggregation, such as those seen at 24 h in Fig 4.4 (E). Over the 

increase in Cu(II): Aβ ratio an additional category of aggregate, smaller non-fibrillar 

aggregates appear, in addition to fibres. Finally at a 1:1 ratio of Cu: Aβ the sample 

consisted entirely of shorter, amorphous aggregates with no fibres present at all.  In 

terms of dimensions this population reflects that of the fibres, in that its height (3.96 

±1. nm) and width (7.91 ±0.1 nm, n = 14) are similar but the aggregates are much 
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shorter and clearly non-fibrillar, (Fig. 4.2 (C)). These images also highlight common 

features seen when imaging amyloid fibres: a periodic twist along the fibres axis as a 

result of the β-sheet stacking and fibres unwinding at their ends to reveal their 

protofibril substructure. When examined using both the topographical information 

and elastic profiles (UFM) the periodicity of the fibres studied here was found to be 

25.7 ±3.9 nm, in agreement with other studies of Aβ78, 221. 

It was also noted that the morphology of Aβ1:42 as determined by TM AFM could be 

further modified by the addition of Zn(II) to the buffer, and that its ratio with Cu(II) 

was also vital for any influence on morphology, as shown in Fig. 4.3. When Zn(II) is 

present in the buffer at a 1:1 ratio with Aβ1:42, but Cu(II) is absent there is a 

dramatic alteration in Aβ1:42 morphology, from fibillar aggregates to small, 

amorphous almost spherical aggregates which are clearly non-fibrillar. These small 

aggregates are 5.97 ±1.4 nm high and 27.50 ±2.73 nm wide (n = 16). However the 

fibril morphology is rescued when Cu(II) is added at the same 1:1:1 ratio, with fibres 

being seen which are4.62 ±0.8 nm high and 14.68 ±0.9 nm wide. 

The production of small, amorphous aggregates when Aβ1:42 is incubated with Cu(II) 

have been reported elsewhere222, 223, but the effect of Cu(II) on Aβ1:42 aggregation is 

highly sensitive to changes in pH, temperature and other experimental conditions224, 

225. It is generally thought that Cu(II) has a promoting effect on Aβ aggregation226, 227 

but the extent to which is alters peptide morphology, particularly that of the fibres, 

Figure 4.1. TM images of 72 h aggregated Aβ1:42 showing (A) topography (B) phase and (C) fibre profile 

generated from the topography channel. MF = mature fibre and indicated by the solid arrow.  
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remains unclear. It appears that Zn(II) affects the morphology by leading to the 

formation of non-fibrillary aggregates, but with the effect depending on the 

concentration of Zn(II)228, 229. Cu(II) on the other hand, also stimulates Aβ 

aggregation, but when present alongside Zn(II) prevents the Zn(II) induced 

aggregation230. This is in line with the results seen here, that when Cu(II):Zn(II): 

Aβ1:42 are present at a 1:1:1 ratio the sample contains a mix of fibrillar and non-

fibrillar aggregates, whereas when Cu(II) is removed from the ratio only non-fibrillar 

aggregates can be seen. That Aβ1:42 aggregates into non-fibrillar aggregates as the 

ratio of Cu(II) increases is also comparable with what has been seen by others222. 

Figure 4.2. Increasing levels of Cu(II) lead to alterations to fibre morphology. Panel (A) also shows the common 

characteristics of amyloid fibres and has been enlarged in (D) to highlight the periodic twist (solid arrow) and a 

MF unwinding (dashed arrow). 
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4.3 UFM of  Aβ1:42 

UFM has already been shown to be superior to other techniques for the 

nanomechanical mapping of stiff sample properties1 as well as proteins2 and shows 

promise for its application to biological materials. By applying a vibration frequency 

in the low MHz region alongside a sub-nm to nm range amplitude to a sample, the 

tip-surface contact is broken, thus reducing shear forces which are introduced in CM 

AFM. When samples of Aβ1:42 are imaged using UFM, the topography produces 

comparable morphological detail to that of TM, (Fig. 4.1 (A) compared with Fig. 4.4 

(A)), and no difference in size dimensions of the MF is noted between the imaging 

modes, (Profile (C) Fig. 4.4). What is interesting is the presence of smaller aggregates 

in the UFM stiffness profile, (Fig. 4.4 (B) and (E)), which are not visible on 

topographical imaging of either TM or UFM, or the phase channel of TM, (Fig. 4.1(B)). 

These smaller aggregates are similar in size to what can be predicted to be 

protofibrils or small oligomeric aggregates.  

This population of smaller aggregates has been studied further. By taking samples of 

Aβ1-42 at various time points it was possible to monitor the changes in populations 

seen throughout aggregation. Immediately after a working aliquot of Aβ1-42 is 

solubilized samples were taken, dried and imaged, (Fig. 4.5 (A) and (D)), revealing a 

layer of globulomers across the PLL-mica surface. These globulomers were again 

more identifiable on the UFM profile, and this was used to locate them on the 

topography profile. Measurements indicated they were 1.52 ±0.6 nm (n =892) in 

height, which is comparable with the values proposed to be monomers and dimers, 

and therefore typical for   an oligomeric population75, 76, 87, 207.  Several larger features 

of approximately 6 nm in height are also seen, and suggested to be conglomerates of 

monomers and dimers, a feature of Aβ1-42 oligomers that was also noted by Lin and 

colleagues207. After 24 h incubation short flexible chains could be identified, and 

given their morphological and topographical features, were determined to be PF, 

(Fig. 4.5 (B) and (E)). Individual PF at 24 h were approximately 0.74 nm ±0.5 nm high 

and 1.75 ±0.9 nm wide (n = 30). Lengths of PF ranged from 50 -200nm as previously 

reported86, 231. 
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One interesting discovery from the use of UFM for mapping the surface stiffness of 

samples was the ever present population of oligomers and PF, regardless of the 

timepoint being studied. As can be seen in Fig. 4.5 (C) and (F), alongside MF, at 72 h 

incubation, a large number of oligomers, > 80 per 1 μm2, are still detectable. In 

addition aggregates of a similar size to those determined to be PF are present, with 

heights of 0.59 ±0.3 nm and a width of 4.82 ±2.1 nm (n = 30). These latter PF are not 

visible on their corresponding topography data so must be measured using UFM. 

These aggregates are thought to appear within the earlier stages of aggregation as a  

transient population which is sequestered into MF over time.  While these earlier 

stages are far less stable, with binding being readily reversible and unstable, MFs are 

typically considered to be more stable, with dissociation of oligomers and monomers 

not occurring at appreciable levels73, 74, 98, 231.  Given the complex nature of Aβ1-42 

aggregation it would be naïve to assume that monomer  protofibril  mature fibre 

is the only viable pathway of aggregation. The hierarchy of amyloid aggregation has 

already been discussed in Chapter 1: Part B (1.12) and begins with the miss-folding of 

the Aβ monomer into a β-sheeted conformation74, 107. Monomers will gradually 

aggregated by binding together using key peptide sequences stabilised with 

hydrogen bonding and salt bridges to produce small aggregates such as 

dimers/trimmers144, 145. These are further able to aggregate and elongate into 

protofibrils, which ultimately associate to stack in such a way that their β-sheet 

Figure 4.3. The presence of Zn(II) within the sample disrupts fibre morphology in the absence of Cu(II), 

however when both metal ions are present at a 1:1 ratio with Aβ1:42 fibre morphology is restored. 
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component is perpendicular to the MF axis183. The MF themselves can be made of 

multiple protofibrils, with some debate about the actual number12, 80, 90, 91. Evidence 

suggests that off-pathway aggregation does occur via the presence232 of oligomers 

and PF which may fail to aggregate further. Early aggregates are considered to be the 

most neurotoxic form of Aβ1-42, so the presence of this possible off-pathway 

population of oligomers could have implications for disease progression and the 

damage which occurs in AD122, 157, 158, 165, 233, and off-pathway aggregates could 

potentially alter their conformation to release toxic oligomers over a longer timespan 

than those which end up rapidly sequestered into MF. Alternatively this surviving 

population of PF could represent a linear colloidal dispersion susceptible to the laws 

of Brownian motion72. For monomers/oligomers to aggregate they must undergo 

favourable collisions with one another and PF/MF already forming. As more, smaller 

Figure 4.4. UFM of Aβ1:42 samples aggregated for 72 h. while the topography panels (A) and 

(D) show similar detail to that seen in the topography panels from TM, the UFM image map (B) 

and (E) shows enhanced detail, including smaller aggregates and protofibrils still present 

within the sample at this later time point, (indicated by PF (protofibril) and OA (oligomeric 

aggregate). These smaller aggregates are much smaller in height and width dimensions than 

the MF (C) and (F). 
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aggregates are sequestered into MF the likelihood of a successful collision decreases, 

and the longer the aggregate persists. Although UFM allows the ready detection and 

confirmation of the persistence of an oligomeric population within samples of Aβ1-

42, it unfortunately does not provide an explanation for it. 

 

4.5 Determination of fine structural details of Aβ1-42  with UFM  

By overlaying the topography profile with UFM data simultaneously collected a 

correlation between changes in sample stiffness and height can be seen. Analysis of 

the UFM profile of the whole fibre width indicates that its elastic properties are not 

uniform across it, (Fig. 4.6, (C)). In the case of the MF of Aβ1-42 an internal structure 

can be seen, with a softer region approximately 1 nm (full width at half maximum) 

across in the centre of the fibre being apparent, flanked by 2 stiffer regions. This 

suggests that 2 PF intertwine to produce an individual MF, as previously described 

elsewhere100. It has already been established that Aβ1-42 fibrils have a domain 

architecture caused by packing of the β-sheets and H-bonding between PF217, 218. It 

has been suggested that Aβ1-42 MF would have a hollow core to their structure, 

with 2 peripheral regions surrounding one central hollow core88, 90, 94, 95. This core 

4t earlier timerpoints nd before of friction seen when the ultrasonic vibration is switched off.  CM 

and the remain protein seen 
Figure 4.5. Timepoints of Aβ1-42 were taken and imaged to follow the changes in aggregate size 

during incubation. 
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itself has recently been shown to have regions of lower density and 2 small, higher 

density packed regions12, 89.  Although there is still debate about the actual number 

of PF which interact to make up an individual MF, a factor which is possibly 

determined by aggregation conditions, what becomes clear from these images is that 

UFM can provide more evidence for the complicated nanostructure of Aβ1-42, which 

supports previously published cryo-EM work89, 222. Equally important from a 

methodology perspective is that UFM can apparently provide a resolution in the 

region of ~ 5nm, whilst providing nanomechanical details which is ideal for imaging 

biological molecules, with a certain sub-surface imaging possibility as already shown 

with graphene based nanostructures29, 33, 234.  

Another criterion regularly seen in Aβ1-42 MF is a periodic twist, again due to the 

nature of interactions between β-sheets which stabilize its structure100, 231, 235, 236. 

Although frequently reported, it is not always found in topographical images, this 

feature nevertheless is much more readily available in UFM data. In Fig. 4.7 (B) the 

periodicity of Aβ1-42 MF can clearly been seen as a variation in elastic properties 

along the fibre length, and was determined to be approximately 25.7 ±3.9 nm. The 

corresponding topography shows a slight decrease in height (Fig. 4.7 (A)), but does 

not show the level of detail that is seen with UFM. The periodicity does affect the 

Figure 4.6. (A) topography and (B) UFM image of Aβ1-42 after 72 h incubation. (C) When the UFM 

profile is overlaid with its corresponding topography the internal structure of a MF is revealed. 

Corresponding UFM stiffness profile (red dots) across the MF (dashed lines in (a) and (b) reveals 

internal structure invisible neither in the topography image nor in the topography profile (c), black 

dots) with the width of the softer region in the fibre centre being approximately 5 nm (c), arrows in 

UFM profile). 
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measured fibre width, however, as each MF’s distinct UFM profile is not affected by 

this twisting nature of the Aβ1-42 MF – the feature described above. 

A hollow core in β-sheeted amyloid fibres is a common structural feature93, 237, 238 

and has been noted in numerous techniques, including cryo-EM, solid-state NMR 

spectroscopy, x-ray diffraction and circular dichroism. Although the hollow core in Aβ 

has been noted in numerous studies91, 94, 95  the use of UFM to detect the potential 

hollow core within Aβ1-42 could be further validated by the study of well-defined 

peptide fibres which are known to have this structural feature. There are numerous 

proteins which could be studied, including transthyretin, which has been shown to 

make fibres consisting of numerous numbers of protofilaments. Regardless of the 

number of protofilaments within the MF a hollow core can be detected within the 

centre of transthyretin93, 239. Microtubules also make ideal proteins to study if trying 

to identify a hollow core. Between 8 and 17 protofilaments made of tubulin 

heterodimers associate to form a microtubule240. At 7–10 nm in diameter for 

transthyretin fibrils and approximately 25 nm for microtubules both make an ideal 

comparison93, 241.  

 

4.6 Reducing friction forces and sample damage artefacts via UFM 

A key feature of UFM is the significant reduction in shear (friction) forces acting on 

Figure 4.7. UFM (B) can readily detect the periodicity of Aβ1-42 during imaging, a feature 

which can be difficult to detect by topography (A). 
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the sample in CM AFM, thus allowing the user to have the enhanced resolution and 

reduced damage even in comparison to TM. In UFM it has been shown that when the 

tip-surface contact is broken due to the out-of-plane vibration friction vanishes, as 

well as being reduced before the contact is broken30. One must also be aware that 

fibres formed at earlier timepoints were more susceptible to tearing and 

manipulation by the cantilever, suggesting a less rigid morphology than those seen at 

t > 72 h. Care was therefore taken with early timepoints to minimise the force being 

applied to the sample regardless of the AFM mode being used. 

The damage to samples of Aβ1-42 when CM is used can be seen in Fig. 4.8 (B). An 

area of Aβ1-42 was scanned first using UFM, (Fig. 4.8 (A)), before the ultrasonic 

vibration was removed by simply turning off the AC source. The set-force being  

applied to the sample remained the same (0.2V) while the same area was then 

rescanned (Fig. 4.8 (D)), showing a less clear image and evidence of streaking which 

is a result of increased friction and torsion on the cantilever as it scans across the 

Figure 4.8. (A) Topographical image of amyloid fibrils and oligomer aggregates in the presence of 

ultrasonic vibration (UFM mode).  (B) UFM scans of a wider area showing the damage caused when 

imaging in CM alone, without ultrasonic vibration. (C) raw friction data showing the reduction when 

the ultrasonic vibration is switched on.  (D)  subsequent topographical image of the same area 

without ultrasound (CM) with the image being lower in quality without UFM (compared to (A). (E) 

corresponding UFM channel data to (B). (F) the increased friction seen in CM, without the ultrasonic 

vibration being applied. 
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sample surface. Following this scan the UFM was turned on, and a larger area 

encompassing the previous one was imaged. As can clearly be seen in (Fig. 4. 8 (B) 

and (E)), the morphology of the fibres within the area imaged without UFM has been 

grossly and irreversibly damaged. Despite the low set-force applied to the sample, 

without the applied ultrasonic vibration of UFM, any CM imaging is almost useless if 

repeat scanning of an area is needed, and also reducing the resolution of the 

topography. When the friction channel itself is studied, (Fig. 4.8 (C) and (F)), on can 

clearly see the huge jump between UFM on, (C) and off (F) in the level of friction 

detected.  

 

4.7 Application of UFM underliquid 

The aim of the under-liquid results presented here was to produce a reliable under-

liquid imaging method for Aβ1-42 at an improved resolution to what has been seen 

before which could be used both in and ex-situ.  By employing the use of a liquid cell 

in the AFM setup, UFM can easily be applied underliquid32, providing the ideal 

imaging environment for any biological sample is to image them in their native 

environment. The application of AFM underliquid is challenging, and even more so 

when working with Aβ1-42. Although some groups have had some success with Aβ1-

42 under-liquid the results in the literature are mixed. Innocenti and colleagues223 

were able to follow the aggregation of Aβ1-42 for 48 h after injection in the liquid 

cell, monitoring fibril growth and the effect of metal ions upon the aggregates.  

However the concentration of peptide was considerably higher than that which we 

choose to work with, (100 μM compared to 25-50 μM), and surprisingly no 

aggregates were detected by this group until 24h had elapsed. As can clearly be seen 

from our samples taken on PLL-mica at this time point and at earlier timepoints , 

small aggregates we suggest to be oligomers/monomers, protofibrils and even some 

fibres are present <24 h (Fig. 4.5). However other groups have had more success at 

imaging smaller aggregates in situ86, 148, with both fibrils and aggregates of various 

sizes being imaged. In most of these studies however, the attachment of Aβ1-42 is 
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poor, leading to increased friction and damage to the fibres/aggregates as the 

sample is scanned, thus reducing the resolution of the data collected.  

Initial efforts with under-liquid imaging of Aβ1-42 involved the application of UFM 

using the liquid cell for samples of already dried peptide (deposited onto PLL-mica). 

Unfortunately the results were not promising. Imaging in an aqueous environment 

appears to result in a loss of UFM signal and therefore a reduction in sensitivity (Fig. 

4.9). Alterations were made to the peptide used, with the removal of excess 

fluorinated deseeding treatments and different re-treated forms of the peptide being 

used. While these peptides showed aggregation potential when monitored by ThT, 

no improved attachment was seen when used in-situ. 

An alternative approach was to rehydrate samples previously imaged and image 

these ex-situ. As noted with previous studies9, rehydration of a sample appears to 

cause instability within the protein structure, resulting in the gradual appearance of 

globules (C, D) within 30 mins and the  complete  disintegration of fibres by 80 mins 

(E, F). Maurstad and collegues9 have previously noted this was the case with imaging 

of Aβ1-42 fibres. They found, similar to our observations, that initial drying of fibres 

on its own does not affect their morphology or indeed their stability, whereas the 

following rehydration does lead to the deterioration. They suggested that 

dehydration causes an internal change to the peptide, which further weakens once 

rehydrated.  
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Figure 4.9. The under-liquid imaging of Aβ1-42 proved challenging. Although it was possible to 

image in a liquid environment, Aβ1-42 fibres proved to be unstable and deteriorated over 

time, as noted with previous studies9. Rehydration of a sample appears to cause instability 

within the protein structure, resulting in the gradual appearance of globules (C, D) within 30 

min and the  complete  disintegration of fibres by 80 min (E, F). 
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4.8 Tip only ultrasonic excitation - waveguide-UFM; further 

enhancement of the technique. 

 

The application of UFM has already been shown to be an ideal technique for studying 

Aβ1-42, with enhanced sensitivity over TM and also other CM techniques. Standard 

UFM protocol involves applying an ultrasonic vibration to the sample by the 

utilisation of a piezo crystal stage, requiring that the sample to be mounted on a 

suitable thin, ultrasonically transparent substrate. In contrast, this ultrasonic 

vibration can be applied directly to the cantilever by use of a modified holder, 

Figure 4.10. w-UFM delivers the ultrasonic vibration to the cantilever directly (D) 

compared to a piezo transducer placed beneath the sample (C). An alternative method of 

measuring sample stiffness is HFM (B). 
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exciting the cantilever at a frequency in the MHz range, allowing realisation of the 

nano-mechanical imaging on any substrate. The mode is called the Waveguide UFM 

(W-UFM) as the cantilever acts as an ultrasonic waveguide in this case242. The 

principle is identical, with the cantilever becoming infinitely rigid, and briefly 

indenting into the sample surface before pulling away. The high frequency 

modulated vibration is also detected in this mode via force-vs-distance non-linearity, 

and a contrast image map of the samples stiffness is produced. In order to compare 

the detail available from each technique the same sample area was imaged with 

both. This was made possible by briefly placing the cantilever out of contact with the 

sample surface (by using of a reduced set-point amplitude) and the adjustment of 

the ultrasonic vibration amplitude. This ensured an identical area could be re-imaged 

and the data could therefore be directly compared. While Fig. 4.10 shows that it is 

possible to identify Aβ1-42 aggregates of all sizes using UFM (C) and w-UFM (D) but 

imaging conducted with w-UFM is sharper, and features are more readily 

identifiable. When compared to the topography (A) there is better definition 

between topographical details and the w-UFM image than with sample UFM.  

 

Figure 4.11. When topography is overlaid with the nanomechanics channel better contrast and a 

better spatial resolution is provided by w-UFM (B) than HFM (A). 
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An additional method of identifying variations in nanomechanical properties of the 

substrate is HFM, a method stemming from the UFM approach243. In a manner which 

combines both UFM and w-UFM the ultrasonic vibration is applied to both the base 

of the cantilever and a transducer beneath the sample simultaneously, with a 3 kHz 

difference between these frequencies to allow for detection of a response, the non-

linear deflection of the cantilever. HFM of Aβ1-42 can be seen in Fig. 4.11(B) and was 

also collected on an identical area to UFM/w-UFM. Of the three techniques for 

identifying changes in the elastic properties of a sample surface HFM data is less 

clear and detailed compared to the UFM/w-UFM data. Although the image (B) map 

shows the presence of fibres, smaller aggregates present around them are much less 

clear and areas with a lack of overall clarity are present. When the HFM and w-UFM 

channels are overlaid with the topographical channel the difference between the 

level of detail captured is obvious. While both techniques are capable of identifying 

differences in nanomechanical responses across the sample surface, UFM, in 

particular w-UFM provides the greatest detail without damaging the delicate Aβ1-42 

aggregates. 

It is possible to extract information about the nanomechanical properties of samples 

using the UFM data gathered during scanning. Friction can be quantified by analysing 

the lateral force and lateral amplitude during scanning244. The Young’s modulus, and 

therefore the elasticity of the sample, can be determined from the UFM signal itself 

by calculating the load dependent indentation of the tip into the sample using the 

JKR model. Indentation of the cantilever in IFM is determined by the adhesion 

properties of the sample, the tip curvature, the Young’s modulus of the tip-sample 

interaction and the load placed on the sample245. The load on the cantilever is 

controlled by the setpoint value used during scanning. A simple quantitative analysis 

of local sample stiffness can also be performed by averaging the UFM response of 

the material  over the representative force interval35. To quantify the UFM response 

of Aβ1:42 fibres, and others, at varying stages of aggregation would be the next step 

for this work. 
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4.9 Conclusion 

The widely used AFM mode for imaging biological samples - TM27, 98 seem to limit the 

contact with the sample surface, and therefore any potentially destructive friction 

forces applied to the sample. The imaging of Aβ1:42 aggregates at different 

timepoints using TM was successful, with both smaller aggregates (at earlier 

timepoints) and MF (> 24 h), being readily identifiable. Our samples of Aβ1:42 

aggregated into fibres with morphologies that are in agreement with previous 

studies82, 98, with typical dimensions being 4.15 ±1.3 nm high and 17.72 ±8.8 nm 

wide, (n = 32). It was also possible to determine alternations in fibre morphology as a 

result of incubation with AD relevant metal ions. It was noted that following 

incubation with increasing concentrations of Cu(II) that Aβ1:42 aggregates became 

non-fibrillar in appearance. In addition a similar effect was seen with Zn(II) 

concentrations. To add further dimension to this when Aβ1:42:Zn(II):Cu(II) were 

present at a 1:1:1 ratio the non-fibrillar morphology seen at 1:1 Aβ1:42:Zn(II) was 

rescued by the presence of the Cu(II) suggesting a complex interplay between AD 

relevant metal ions. It is clear that while TM AFM studies can shed light on the 

sensitive and flexible nature of Aβ1:42 aggregated morphology, more work is needed 

to clarify how metal ions influence it. 

While TM is an ideal method of AFM study for biological materials it is limited by 

being unable to offer any additional information on the sample, e.g. nanomechanical 

properties of the sample. In contrast, UFM, whether standard or waveguide, and 

HFM allows the mapping the stiffness of a sample using ultrasonic vibrations. This 

ultrasonic vibration, particularly well documented here in the case of UFM, reduces 

friction being placed on Aβ1:42 and prevents damage to it that would otherwise be 

seen in contact mode, (Fig. 5). No differences in aggregate sizes were noted with 

UFM compared to TM, however it UFM is able to detect the presence of small 

aggregates comparable to monomers and dimers, which is undetectable on the 

topography channel. This discovery has led to the identification of a persistent 

population of oligomeric aggregates, which are present at least as late as 72 h after 

aggregation first begins.  
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In addition to the identification of the persistent oligomeric population, UFM was 

able to identify finer structural features such as a periodic twist, which is often 

difficult to identify via the topography channel. Furthermore it was possible to use 

the elastic profile details gained by scanning with UFM to infer details of the MF 

substructure. While HFM also allows details of the samples stiffness to be mapped 

when compared to UFM/w-UFM it was not found to be as efficient at mapping. In 

conclusion UFM can be considered to be an ideal technique for studying biological 

molecules, and has proven very effective at detecting aggregates <5 nm while 

allowing details of the internal MF structure to be detected. The success of UFM in 

providing new information on Aβ1:42 in addition to details about its topography 

prompted the exploration of other physical parameters, which may reveal new 

contrast and nanoscale properties, including thermal conductivity and spectrally 

selective optical absorption. Data in the following chapter was collected utilising 

techniques which allow this, including the development of novel methods of SPM.
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Chapter Five 

 Spectroscopy and Thermal SPM Methods of studying Aβ1:42 

 

5.1 Introduction 

This chapter builds on the previous work into the imaging of Aβ with SPM 

techniques. Previously it has been shown that with careful substrate design is it 

possible to capture a variety of aggregate sizes and study their nanomechanics in 

detail. The SPM methods in this chapter move forward to focus on exploring Aβ 

beyond these nanomechanical properties. SThM maps thermal conductivity of the 

sample using a Joule heated cantilever42, 43, and can also be modified using an IR 

laser pulse to provide the heat to detect a cantilever response which is wavelength 

(and therefore chemical feature) specific. Chemical features of biological samples 

have for years been identified using techniques such as FT-IR, particularly in the mid-

IR range. However these techniques are typically limited by the spatial resolution 

~5μm due to the diffraction limit of IR light20, and as such tip-enhanced techniques 

have been developed246-249. Recently work has been done to combine the nanoscale 

resolution of AFM with spectroscopy data which can be collected in the IR range. 

One such system, the Nano-IR designed by Anasys Instruments (Santa Barbra, USA), 

has used a tuneable, pulsed IR laser focussed onto the sample, but near an AFM 

cantilever to deliver IR information with a resolution of ~100nm20, 55-57, 250, 251. The 

Nano-IR examines the nanoscale thermal properties of the sample under 

investigation, a pulsed, tuneable IR laser excites the molecular bonds within the 

sample, causing it to vibrate and expand via a phonon thermal wave. This transient 

dilation of the sample then excites resonant oscillations within the cantilever, the 

amplitude of which is directly proportional to the samples absorption coefficient52. 

Over time the oscillations naturally reduce, until the next pulse and this is known as 

the cantilever ring down. By extracting information from the subsequent cantilever 

ring-down (between IR pulses) details of local absorption spectra can be generated, 

alongside topography and sample stiffness, all at the nanoscale.  
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In this chapter work on the Free Electron Laser (FEL) at ALICE is detailed, a tuneable 

mid-IR facility, which was utilised to further develop the technique of SThM-IR, a 

technique similar to AFM-IR19. Currently this technique provides details on samples 

with ~100nm resolution; however the aim of this project was to create a system 

which could improve this resolution to closer to that of traditional AFM (5-10 nm). 

Work detailed here is from the early stages of establishing such a system, and was 

limited by time constraints and system challenges beyond our control, but does show 

the promise a SThM-IR technique with true nanoscale resolution has. All SThM-IR 

work was carried out in conjunction with Dr. Peter Tovee, (Department of Physics, 

Lancaster University, UK), who was also responsible for calculating the time decays, 

(the heating and cooling of the cantilever until the response to the thermal 

expansion has passes), for the SThM-IR thermal and deflection signals. These values 

provide information on the thermal conductivity of the sample and its behaviour 

during thermal expansion. 

 

Figure 5.1. SThM data gather on Aβ1:42 samples on (A) silicon and (B) CaF2 disks. In order 

to compare the substrates the topography data has been converted into 3D, and the 

thermal data overlaid. This was achieved using Bruker NanoScope v6.14r1 software.  
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5.2 Scanning Thermal Microscopy nanoscale mapping of thermal 

conductivity of Aβ1:42 

The SThM AFM system previously used at Lancaster University22, 23, 35, 188, 252, employs 

a Joule heated cantilever. During scanning the AFM probe is kept at a constant 

voltage, and thus the heating to the probe remains constant. As the probe moves 

across the sample surface, heat dissipates from the tip into the sample, based on the 

samples thermal resistance, which changes the sensor temperature. This 

temperature change quadratic relationship between the probe and the sample and is 

detectable by a change in the probe’s electrical resistance, measured through an 

electrical bridge configuration. On a SThM image darker areas are those of increased 

thermal conductivity while brighter areas have lower thermal conductivity.  

Samples of Aβ1:42 were aggregated for 144 h before being spun down to sediment 

fibres. The buffer and any remaining monomers were then pipetted off to create a 

pellet containing β-sheeted MF. The supernatant was tested via ThT to ensure it did 

not give a response above background levels meaning that one could assume all β-

sheet structures remained in the pellet. This sample was then resuspended in dH2O 

and deposited onto substrates.  

The thermal response of the sample can depend on the substrate on which it sits as 

some substrates have a greater thermal contrast than others, due to their thermal 

conductive properties and potential to act as a heat sink during experiments. The MF 

from Aβ1:42 were deposited onto both silicon and CaF2 substrates.  Silicon and 

silicon dioxide can make ideal substrates for SThM based on their atomic flatness, 

low cost and good thermal contrast properties due to their relativity high thermal 

conductivity compared to the amyloid fibres. Aβ1:42 MF were readily attached to the 

sample surface, and were found to be stable during imaging. The fibres show a lower 

level of thermal conductivity than the surrounding silicon, but the contrast is clear 

between peptide and substrate (Fig. 5.1 (B)). Calcium fluoride, while considerably 

more expensive than Si, makes an ideal substrate for later AFM-IR work as it is 

transparent in the whole mid-IR range, while Si is not. However, as can be seen from 

Fig. 5.1 (B), it does not provide the strongest thermal contrast for the fibres. Fibres 
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and substrate both show low thermal contrast in comparison to Si substrates, and it 

can be difficult on CaF2 disks to differentiate one from another. In addition, because 

the individual disks are produced by cleaving a larger cylinder of CaF2 multiple 

trenches can be seen across the sample surface increasing roughness. As with other 

surface sensitive microscopies253 thermal microscopy is susceptible to topographical 

features and therefore more care must be taken when making determinations from 

these results as the higher the sensor is from the substrate, the higher the 

temperature and resulting signal (reflected as brighter contrast in the images). SThM 

imaging is also affected by the size of the contact area, increased roughness and 

contact of the sample along the side of the cantilever (thus leading to a higher 

contact area) and therefore increased heat flow and a lower signal.  

 

5.3 SThM-IR imaging at fixed wavelength of Aβ1:42  

For SThM-IR measurements, the tuneable laser from the ALICE FEL was used, as 

previously done with Scanning Near-field Optical Microscopy (SNOM)190. A guiding 

Figure 5.2. Standard contact imaging of Aβ1:42 fibres on CaF2 substrates (A) Topography 

and (B) Deflection. The FEL trigger pulse received from the boxcar can be seen as a 

repeating diagonal line across the image map, and is due to the FEL pulse “kicking” the 

cantilever. The FEL lines were not processed from the image as evidence that the signal 

seen (i.e. topography and deflection) was indeed as a result of the FEL being focussed 

onto the cantilever in the correct position. If the FEL was not focussed onto the 

cantilever so signal, and therefore not image, would be recorded, (in a manner 

analogous to a standard 670 nm AFM laser not being correctly aligned with the 

cantilever). 
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HeNe laser along with some gold mirrors and a CaF2 lens was used to focus the FEL 

onto the thermal cantilever, and when in contact the FEL could be confirmed in one 

of two ways. The particular FEL in operation for these experiments delivers short 

pulses every 10 Hz of 5-9µm, which can show itself as diagonal lines across an AFM 

scan topography and deflection (Fig. 5.2). These represent the FEL pulse heating the 

sample, and the subsequent thermal expansion “kicking” the cantilever. Contact is 

not lost with the sample surface during these “kicks” due to the cantilever acting as a 

spring. The FEL pulse can also be detected by monitoring the thermal response of the 

cantilever. When the FEL is focused onto the cantilever, the IR light causes it to heat, 

which is detected by the sensor, (Fig. 5.3 “out of contact”, pale grey line). This 

heating of the cantilever causes it to bend as well as oscillate, leading to a ring down 

that ceases well before the next pulse of IR light. Due to its metal coating and 

increased width, SThM cantilevers are also susceptible to more torsional excitation 

than standard cantilevers. The use of metallic substrates and cantilevers, i.e. a gold 

coating can be used to further enhance the thermal expansion of the sample as 

metallic surfaces are highly reflective with regards to thermal radiation.254 The use of 

gold substrates can generate both propagating and evanescent waves from the initial 

IR induced thermal expansion, which reflect and amplify between the two metallic 

surfaces until they are absorbed by whichever surface is coolest254.  

The signal strength both in and out of contact was highly variable, due to the FEL 

having an irregular spatial structure modulating the beam intensity. The FEL is 

focused both longitudinally and transversely by the DC photoelectron gun before the 

main linac within ALICE. Analysis of the beam structure following the first 

experimental period at ALICE has shown than the FEL has a distinct substructure, 

made of 2 beams at the head and the tail of each electron bunch accelerated 

through the system255. This is likely to be the result of the low energy dynamics of 

the beam injector and is considered to be a likely feature of all beams produced in 

this manner. The result is even the slightest change in laser position could 

dramatically affect the signal, and the results of SThM-IR measurements. The 

majority of the signal seen from the cantilever in SThM-IR mode is the result of the 

FEL heating the metal backed cantilever and it bending, creating deflection (Fig. 5.3). 
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This results in a high signal overall, but actually only a small proportionate of it is the 

result of the samples response to the pulsed IR source. The signal from the cantilever 

is lower when in contact due to the dissipation of heat from the cantilever into the 

sample. 

Once it had been established that the FEL provides sufficient signal for the AFM 

cantilever, it was tested on samples of Aβ1:42 MF on IR transparent disks, (as seen in 

Fig. 5.1 (B)). Scans were taken in CM until a suitable area was found. Once this had 

occurred, the slow scan feature of the SPM software was disabled, meaning the 

same line was being scanned continually allowing efficient averaging of the data. 

Care was taken here to not apply too much set force to the sample, as CM scanning 

can be destructive for biological samples. Continuous 3D line scans were collected 

while ALICE was tuned to fixed wavelengths of 1650 cm-1, 1610 cm-1 and 1660 cm-1 

which correspond to absorptions of Amide I, β-sheet and α-helix respectively. After 

data collection some processing of the data was needed with MATLAB: 250 line scans  
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Figure 5.3. Detection of the SThM signal from the cantilever using the FEL pulse. The 

cantilever response can be seen both in and out of contact. Data collected is the sum of at 

least 3 line scans. 
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(each of the same line) were summed, averaged and normalised with respect to the 

I0 (background) signal collected from the boxcar averager. This processed data is 

presented in Fig. 5.4 along with AFM topography and deflection of the scanned area. 

It was possible to collect two types of data from the SThM-IR system. The first was 

the thermal response through the electrical bridge and SThM cantilever, 

(corresponding to the sample conductivity) and the second was the deflection 

caused by the photothermal expansion of the sample. This expansion leads to a 

temporary knock of the cantilever, which itself, and the ringdown, can be recorded 

and analysed. The thermal response of the sample (heating and cooling of the 

Figure 5.4.  SThM-IR data collected on samples of Aβ1:42 (A) and (B) show the topography and 

deflection from preliminary scans before data collected from the cantilever response was 

collected while (C) shows the resulting photothermal data. Data was collected by fixing ALICE at 

Amide I (1650 cm-1), β-sheet (1610 cm-1) and α-helix (1660 cm-1).  The approximate position of the 

line scan is indicated in blue on topography (A) and deflection (B) panels, and is an example of the 

overall dataset collected. 
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cantilever), and the ringdown of the deflection follow a similar pattern, however 

have different time constants; SThM-IR thermal time decay was 2.074 x10-4 ± 8 x10-7 

s  while the SThM-IR cantilever deflection ringdown was 4.28 x10-4 ± 1.6 x10-5. As is 

seen in Fig. 5.4 it is possible to detect the deflection of the cantilever resulting from 

the IR laser focused onto the sample near it, however reproducibility of the ALICE 

system meant data collection was limited.  

The spatial resolution of ALICE in mid-IR wavelengths is estimated to be 100 nm190, 

and the wavelengths of interest were sufficiently far apart to provide spectrally 

significant information. The most commonly used IR wavelengths used to study 

proteins are the amide bands, and the absorption features within them, which are 

specific to the structural properties and components of the sample256. Amide I is the 

result of C=O stretching vibrations, determined by the protein backbone and located 

typically between 1690-1600 cm-1 (~5.91 μm). When Aβ has been analysed for 

structural features previously with a similar technique, by attenuated total 

reflectance Fourier transform infrared spectroscopy (ATR−FTIR) key structural 

components of Aβ peptides have been located. The component most commonly 

found in the monomeric form, the α-helix is located between 1654-1660 cm-1(6.02-

04 μm) 249, 256, 257  while β-sheets have been detected between 1628-1630 cm-1 (6.13-

14 μm) 256-259. Amyloid aggregates are noted to have a specific maximum  between 

1910-1630 cm-1 256  and it is possible to detect a difference between parallel and anti-

parallel β-sheets258, 259. The slight variations between wavelengths is possibly the 

result of system specifics, differing techniques and different sample preparations of 

amyloid proteins (including different suppliers and deseeding techniques), as each 

will affect the final protein secondary structure in unique ways, with the gross 

structure still being α-helix versus β-sheet197, 260. Given the wavelength resolution is 

estimated to be 100 nm broad peaks to reflect the three key structural components 

were chosen (1650 cm-1 (6.06 μm), 1610 cm-1 (6.21 μm) and 1660 cm-1 (6.02 μm); 

Amide I, β-sheet and α-helix respectively). The processed data from ALICE is rather 

difficult to interpret due to relatively poor reproducibility and strong fluctuations in 

FEL power throughout the experimental period; however it is possible to determine 

that where fibres are present there is a variation in the strength of the SThM 
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response from the cantilever. While there is clearly a strong β-sheet signal, (Fig. 5.4 

(C)), the signal from the cantilever at an α-helix specific wavelength is almost as 

intense. The sample preparation involved an extended aggregation period of 

produce fibres, which were then isolated and have been shown to be wholly β-

sheeted in content167 so this possible detection of an α-helix content is conflicting. 

There is a possibility that some of this conflict is the result of power fluctuations, 

sample thickness (amyloid peptides are thin in comparison to other materials imaged 

with SThM) or poor signal conductivity between the cantilever and sample. However 

this small signal from such a thin sample has still made imaging challenging and more 

work is needed to improve the sample design.  

 

5.4 Measurements of Aβ on Anasys “Nano-IR” system 

One of the most promising advances of the AFM-IR field is the development of the 

Nano-IR by Anasys Instruments, (Santa Barbara, USA) 18-20, 51-53. This system has a 

comparable spatial resolution to ALICE (100 nm) and in a manner similar to the AFM-

IR system described above uses an gold coated AFM cantilever in conjunction with a 

pulsed tuneable IR laser source  to detect the photothermal absorption of the 

sample18-20, 51-53. Success with this system and amyloid proteins has already been 

seen. Mὔller and colleagues successfully identified differences between aggregated 

and monomeric lysozyme using this system256. Samples of Aβ1:42 prepared as for 

SThM-IR experiments were studied by Anasys Instruments using the Nano-IR, for 

AFM-IR experiments. Initial experiments on CaF2 disks proved to have too limited a 

signal for the system. In order to enhance the signal the sample was then deposited 

onto gold coated silicon wafers.  The sample was then analysed at 1650 cm-1 (Amide 

I) both on the peptide sample and on the gold substrate and gold coated tip. This 

background can then be compared to that of a freshly cleaved gold slide, and that of 

the peptide (Fig. 5.5). Some substrate signal is always present due to absorption of 

the signal from the probe itself, (Fig. 5.5 (C) grey line), while a much lower signal can 

be detected on the surface of the gold slide onto which peptide was deposited (Fig.  

5.5 (C), blue line). This reduced signal could potentially be the result of the probe  



   
 

119 
 

 

Figure 5.5 Shows the response of wavelength sweeps on samples of Aβ1:42 

conducted on the Nano-IR. (A) standard AFM topography of the area imaged. 

(B) the red pointers from panel (A) correspond to spectra taken on amyloid, 

while blue corresponds to the Au-Si substrate. (C) data for the averaged 

Aβ1:42 response at Amide I (red), the exposed AU substrate response (blue) 

and the background signal detected when freshly cleaved Au substrates are 

imaged (grey). Data is curtsy of Kevin Kjoller, Anasys Instruments.  
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initial contact with the sample required to locate the sample surface. SThM-IR is a 

modification of CM-AFM, which typically involves higher forces being placed upon 

the sample.  The Aβ1:42 fibres are likely to detach if too much force is applied and be 

dragged across the sample surface, detaching in another location, and subsequently 

causing a false (reduced) signal. A similar effect was seen when bacteria cells were 

mapped using AFM-IR by its creator, Dazzi (2007)52 where small pieces of the 

bacteria cell wall were found to be dragged across the sample surface during 

scanning. A strong signal was seen at approximately 1640-50 cm-1 which correlates 

well with the detection of Amide I from the protein sample256, 261. A second strong 

peak is seen at 1540 cm-1 which correlates with Amide II, which is generated by the 

out of phase NH bending and CN stretching261. There is some evidence from the 

repeat spectra, before scanning (Fig. 5.6, B), that the sample has been affected by 

Figure 5.6. Data collected on the Nano-IR system on samples of Aβ1:42 deposited onto Au-Si 

substrate. While the topography panels (A) and (C) do not indicate any issues with scanning a 

multitude of issues were found when imaging at fixed wavelengths. Poor contrast and thermal drift 

can be clearly seen in (B) while the friction and subsequent contamination of the tip is evident in 

(D). Data shown was collected at 1628 cm-1 (β sheet). Data is curtsy of Kevin Kjoller, Anasys 

Instruments. 
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the presence of water molecules within the peptide film. Although not obvious a 

slight double-peak can be seen in Amide I could be attributed to a response by water 

molecules, which responds strongly between 1640-50 cm-1, thus affecting the 

resolution of true structural components within the sample261, 262. The detecting of a 

small peak at 1640 cm-1 could indicate the Amide I response as a result of a strong β-

sheet component, as noted when immunoglobulin G was studied under hydrated 

conditions262. This protein is 70% β-sheeted with almost no α-helix components and 

comparable to that of the MF of Aβ1:42262. It is possible to deconvolute the Amide I 

band to remove the water bands presence, a fact which should be considered for 

future work with any IR spectroscopy and Aβ1:42, as it will be almost impossible to 

remove, and prevent the reabsorption of water molecules into the peptide film.  

In addition to the data collected at Amide I, further information was gathered at 

further wavelengths ideal of determining the structure of Aβ1:42 and successfully 

testing the technique of AFM-IR. Scans were taken at 1610, 1628, 1630 (parallel β-

sheets), and 1696 cm-1 (anti-parallel β-sheets) which are all indicated to represent 

amyloid aggregates or β-sheets by similar IR based techniques256-259. However it was 

proved to be difficult to detect spectra with reliability and reproducibility at these 

wavelengths, (Fig. 5.6). Numerous factors could affect the data collection; rapid and 

unavoidable contamination of the probe (Fig. 5.6, (D)),  variations in sample thickness 

due to the deposition of the peptide,  and a strong effect of thermal drift have all 

hampered collecting results on more specific wavelengths within the time frame of 

this thesis. It is possible that with refinement of the technique i.e. generating a more 

uniform, thicker layer of Aβ MF which is more permanently attached to the sample 

surface could reduce probe contamination, and unreliability due to sample thickness 

and also provide a stronger response from the sample. 

 

5.5 Conclusion 

The work in this chapter largely details the attempt to advance the existing technique 

of SThM and AFM into a technique which is able to provide information on the 

chemical composition of samples. First samples were examined using SThM, and it 
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was found that providing an appropriate substrate was used, they produced a strong 

enough thermal response to be detected, and that no immediate destruction of the 

sample (or obvious, gross morphological alterations) were seen. At this point SThM 

was used in conjunction with a pulsed tuneable IR source from the FEL at ALICE to 

measure the photothermal response of Aβ MF. While the data are preliminary, due 

to unavoidable variations in IR intensity, and reliability issues, it was nevertheless 

possible to detect a sample dependent photothermal response using an AFM 

cantilever designed for SThM. The same samples were then examined using the 

Nano-IR for comparison. What has been shown by the Nano-IR is that it is possible to 

resolve at least some structural details of Aβ on the nanoscale, and that with 

continued improvements SThM-IR could rival if not better the current Nano-IR 

system. Ideally, in the future, it would be possible to collect IR data on the spatial 

resolution of a typical AFM cantilever (~10 nm). This could prove essential for 

detection and understanding of the pathology of AD. Analysis of plaques from AD 

patient’s brains has used FTIR to detect their composition, finding that in addition to 

the predictable amyloid core the plaque itself and its surrounding regions shows high 

levels of lipid peroxidation, which lends evidence to the method of possible cell 

death and neuronal damage seen in AD155, 263. 

The next chapter will move away from SPM methods of analysing Aβ, focussing on 

the detection of aggregate sizes and populations with DLS. It is discussed whether 

this technique can assist in the determining the effect of Aβ-aggregation inhibitors 

alongside classical biological methods and SPM.  
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Chapter Six 

The application of biophysical techniques to the study of the 

inhibition of aggregation of Aβ using PINPs liposomes 

 

6.1 Introduction 

Although one of the key pathological factors of AD is the occurrence of senile 

plaques of Aβ peptide and neurofibrillary tangles made of the phosphorylated 

peptide tau, there is increasing evidence that early aggregates of Aβ are the most 

toxic form of the peptide122, 157, 158, 160, 264-266.  Preventing oligomer formation is 

therefore an ideal therapeutic strategy. Given current treatments of AD include the 

use of drugs such as donepezil hydrochloride, rivastigmine, galantamine and 

memantine which are only able to provide temporary relief from the symptoms and 

cannot halt the disease progression, more therapeutics, particularly those which 

target the early aggregates, are desperately needed on the market.  Promising 

therapeutics designed to target the monomeric form include Solanezumab, a 

humanised monocolonal antibody which targets the key aggregation sequence of 

Aβ177, 267, 268 This chapter focuses on work to further the development a potential 

therapeutic to target the monomeric form of Aβ, RI-OR2-TAT PINPs. In order to 

better understand how the drug interacts with Aβ1:42 aggregates, AFM and DLS 

work have been employed. To better understand the data given by the DLS system it 

was first tested on standard sized particles, or those which have been modelled and 

therefore their size and behaviour is more readily predictable. This chapter will 

briefly discuss the development of RI-OR2-TAT PINPs to its current state before 

moving on to discuss how AFM and DLS have been useful in understanding the drug’s 

action. 
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6.2 Development of the RI-OR2-TAT PINP inhibitor  

We have previously shown that a small peptide known as OR2, (H2N-RGKLVFFGR-

NH2, Fig. 6.1 (B)), is capable of inhibiting Aβ aggregation269. This peptide has 

undergone several modifications before it is the peptide-PINP conjugate presented 

here. Firstly its stability was greatly improved by replacing the L-amino acids with D-

amino acids, and reversing the peptide’s sequence thus rendering it resistant to 

proteolysis. This retro-inverted peptide is known as RI-OR2, (Ac-rGffvlkGr-NH2 Fig. 6.1 

(C)) 270. A further modification was made with the aim of improving the peptide’s 

ability to cross the blood-brain barrier, (BBB) by the addition of a retro-inverted cell-

penetrating TAT sequence from the HIV virus, (RI-OR2-TAT, Fig. 6.1 (D))271. This final 

modification has produced a peptide which when tested at 100 nM/kg on 10 month 

old APP/PS1 mice is able to reduce soluble Aβ oligomer levels in the brain by 25% 

Figure 6.1. Development of the RI-OR2-TAT-PINP liposome inhibitor A) the native peptide sequence of 

Aβ1:42. B)  OR2; residues 16-20 of the native sequence were selected, with Arg-Gly spacers to prevent self-

aggregation of the inhibitor. C) RI-OR2; retro-inverso peptide sequence. Natural L-amino acids are replaced 

with D-amino acids, along with a reversal of the peptide bonds. This allows the tertiary structure of the 

peptide fragment to be maintained and therefore full biological activity. D) RI-OR2-TAT; in order to improve 

BBB penetration a retro-inverso TAT sequence was added to RI-OR2. L-Amino acids are in uppercase and D-

amino acids in lowercase, with the direction of peptide bonds indicated by arrows. There are no separate 

enantiomers of glycine, which is represented in uppercase. E) RI-OR2-TAT-PINPs liposomes; the RI-OR2-TAT 

peptide is attached to a cholesterol/sphyingomyelin liposome using a malamide-PEG conjugate. 

D A E F R H D S G Y E V H H Q K L V F F A E D V G S N K G A I I G L M V G G V V I A
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HS-cyGrkkrrqrrrrGklvffGr-Ac Malamide/PEG conjugate
RI-OR2-TAT
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(p<0.01) and reduce cortical Aβ plaque load after 21 days of daily injections, while 

also showing a reduction in levels of inflammation and oxidation markers. However 

the in-vitro potential of the peptide was somewhat limited, with RI-OR2-TAT needing 

to be present at relatively high ratios, 1:5 inhibitor: peptide and therefore work has  

been undertaken to improve its potency further.  

One current popular method of delivering therapeutics is the use of nanoparticles 

constructed of amphipathic lipids, known as liposomes. These are attractive for 

several reasons, including biocompatibility, biodegradability, and stability, with 

several liposome based systems already in use by clinicians68. Readily multi-

functionalised at the surface, drug delivery systems with multi-ligand decorated 

surfaces have already been shown to be efficient at recognising their specific 

molecular targets. A PEG molecule acts as a steric stabiliser when added to the 

surface of the liposome by protecting it from immediate clearance by cells and 

therefore increasing its half-life68. In order to add functionalization onto the 

liposome surface a malamide group is used to conjugate the desired peptide or 

antibody onto the liposome-PEG surface68. 

 

It is possible to design nanoliposomes covalently attached to which is RI-OR2-TAT, 

using “click chemistry” (Fig. 6.1 (E)). “Click chemistry” refers to a group of high yield, 
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Figure 6.2. Inhibition of Aβ:42 aggregation using the inhibitor RI-OR2-TAT. Panels A and B show the 

height profiles when samples were imaged in Tapping Mode using AFM. Samples were incubated in 

the absence (B) and presence (A) of 12.5 μM inhibitor. While samples incubated with the inhibitor 

show only small aggregates (B) fibres can be detected (arrow) when they are not present. 
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stereospecific reactions that produce no harmful byproducts.272 Reaction conditions 

are typical simple and utilise readily available ingredients coupled with 

chromatographic methods for purification of the desired products and since it’s 

development in 2009 it has become a common method for polymer scientists to 

employ. “Click chemistry” employs a series of linking reactions alongside a catalyst to 

produce the high yield associated with the technique272. In this case the technique 

was used to conjugate a nanoliposome to the RI-OR2-TAT sequence using a 

malemide-PEG conjugate. The nanoliposomes are composed of cholesterol and 

sphingomyelin in a 1:1 ratio, and 2.5% malemide-PEG to allow for the attachment of 

the peptide sequence. RI-OR2-TAT was modified slightly by the incorporation of a 

cysteine residue at one end, to give the peptide sequence Ac-rGffvlkGrrrrqrrGyc-NH2. 

It is expected that the liposomes will interact with the monomeric form of Aβ via the 

positive charge of the TAT sequence and the KLVFF binding sequence on the RI-OR2-

TAT inhibitory peptide attached to the liposome. In addition it is possible for the long 

PEG molecules to have multiple interactions with oligomeric forms of Aβ. A third 

possible interaction is for multimeric Aβ to insert into the lipid bilayer of the 

liposome, as previously seen elsewhere273, 274. Experiments conducted within this 

chapter utilise PINPs liposomes donated by Maria Gregori, (University of Milano-

Bicocca, Italy), to study the inhibition of Aβ1:40 and Aβ1:42 aggregation. 

 

6.3 Use of TM-AFM to confirm the inhibition of Aβ1:42 using RI-TAT. 

As previously discussed it was necessary to attach a sequence to the original RI-OR2 

inhibitor sequence to improve penetration of the inhibitor across the BBB. This was 

done by attaching the TAT sequence from the HIV virus onto OR2271. Alongside cell 

penetration and toxicity experiments, and more conventional methods of monitoring 

the effects on an inhibitor on Aβ1:42 aggregation, such as ThT, AFM was used to 

confirm that RI-OR2-TAT did indeed prevent the aggregation of Aβ1:42. After 24 h 

samples were taken and examined and it was noted that in samples where the 

inhibitor was present much smaller aggregates were present, in comparison to the 

sample incubated without inhibitor, in which small fibres could be seen, (see Fig. 

6.2). The results from AFM imaging of Aβ1:42 agree with the findings of other 
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researchers working on this project who found that RI-OR2-TAT was able to reduce 

Aβ1:42 oligomer levels, plaque load and oxidative damage271 and able to inhibit the 

aggregation of the peptide. 

 

6.4 Test study of non-biological samples of well-defined behaviours 

using DLS. 

The next stage in the design of RI-OR2-TAT PINPs was the attachment of the RI-OR2-

TAT peptide to a sphingomyelin-cholesterol liposome by click chemistry. It was vital 

to have a method of measuring the size of these liposomes to ensure their size was 

consistent and that they were stable over the period of time the experiment was 

conducted and they were exposed to Aβ1:42. DLS is an ideal technique to do just this 

as it uses the Brownian motion of a particle to determine their size69-71. To achieve 

this, the DLS system used in this work (Zetasizer Nano, Malvern, UK) capable of 

producing accurate results the system was tested with non-biological samples of 

known size and behaviour. 

 

Gold Nanoparticle Standards. These were tested over a scale of 2 to 100 nm and 

treated as a reference sample. These particles are more predictable in size, than, say, 

aggregates of Aβ1:42, and were therefore an ideal sample to develop a method for 

data capture with the DLS system. From Fig. 6.3 it can clearly be identified that while 

the gold nanoparticles were of distinct size populations, there is a large range of sizes 

seen within the sample. The number of particles present within the solutions varied 

with the size of the gold colloid, from 1.5 x 1014 to 5.6 x 102, with there being more 

particles present the smaller in size they were. As it was possible that neighbouring 

particles would interfere with the light scattering from the individual particles being 

measured, the gold colloid suspensions were diluted 1:50 in PB. This reduced the 

population distribution present, and additional dilution was likely to have reduced it 

further. It was noted that the 2 nm gold colloids had a tendency to “aggregate” or 

clump together, regardless of the dilution. The measurements of these colloids 

suggested that interference from neighbouring particles was a problem which was 
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likely to be encountered when using Aβ1:42 samples and that dilution of the samples 

may be necessary to collect representative data, in particular for smaller aggregates. 

It was considered that DLS was a potentially appropriate technique for studying 

Aβ1:42 aggregates based on the range of sizes regularly identifiable by the system. 

Confirmation of DLS sensitivity to the size variations - 2D micelles temperature-

dependent behaviour via DLS. Surfactants designed to form self-assembled 2D 

‘starfish’ micelles at predictable and tuneable temperatures were studied using DLS. 

These micelles were produced with varying lengths of oligoethylene glycol bridges 

attached to hydrophobic or hydrophilic pyrene based moieties to create a surfactant 

with specific and predictable dynamics and shape in the presence of water. 

Modelling predicted that each of these individual surfactant molecules would be 

approximately 2 nm in size, which is comparable to that of the Aβ1:42 monomer75, 76. 

At a specific Lower Critical Solution Temperature (LCST) the surfactants were 

predicted to arrange into micelles that collapse once the temperature exceeds this 

LCST. It is possible to collect multiple data sets over a range of temperatures using 

the DLS system and this feature was employed to test some of the samples to 

determine whether their predicted LCST was comparable to their measured LSCT.  

As can be seen from Fig. 6.4 (D) the predicted LCST point for the three compounds 

studied here correlates well with the actual LSCT point recorded using DLS to detect 

 

Figure 6.3. Running of standard gold colloids from Agar Scientific (Essex, UK), and is representative 

of 30 runs of the DLS system, taken in triplicate. 
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the change in particle size. Measurements were taken over a range of 1 ºC 

temperature steps, and once the LCST transition temperature was reached the 

average particle diameter detected by the DLS changed from ~2-5 nm to >1000 nm. 

Above the transition temperature the size of the particles gradually reduced as the 

micelles collapsed.  Not only does this study show the accuracy to which the 

Figure 6.4. (A-C) Chemical structure of the 2D ‘starfish’ micelles studied for determination of their LCST via 

DLS. (D) Predicted and actual LCST of the compounds. (E) Data on particle size and detection of the transition 

temperature using DLS. 

-500

0

500

1000

1500

2000

2500

3000

30 40 50 60 70 80 90

Pa
rt

ic
le

 S
iz

e 
(n

m
) 

Temperature (ºC) 

Sample A

Sample B

Sample C

A 

B 

C 

E 

D 



   
 

130 
 

compounds were modelled but also the sensitivity to which that DLS can detect real-

time fluctuations in the size of the population being studied. This shows promise as a 

means of detecting Aβ1:42 aggregation, during which, as already identified by AFM, 

comprises of a variety of sizes and size populations depending on the stage of 

aggregation. 

6.5 Characterisation of the morphology and sizes of PINPs liposomes  

Characterisation by DLS. Before DLS could be applied to studying the aggregation of 

Aβ1:42 the RI-OR2-TAT PINPs themselves had to be characterised. Samples in PBS 

were taken and analysed, both with the DLS here and also on production of the 

PINPs in Italy. Both decorated PINPs and undecorated (UD) PINPs (liposomes lacking 

the attachment of the RI-OR2-TAT peptide by “click chemistry”) have been analysed. 

When measured at 37ºC RI-OR2-TAT-PINPs were found to be 139.72 ±4.1 nm, while 

UD-PINPs are 126.15 ±2.2 nm in size. This difference in size can be attributed to the 

attachment of RI-OR2-TAT to the liposome via the MAL-PEG sequence.  

Multiple batches of PINPs have been produced for the purpose of this study, and 

were initially measured at the University of Milano-Bicocca, (Department of 

Experimental Medicine), using a ZetaPlus DLS system (Brookhaven Instruments 

Corporation, Holtsville, NY, USA). The functional PINPs (i.e. those with the peptide 

inhibitor sequence attached), were found to be 143 ±1 nm in size. Again the slight 

difference in size can be attributed to the number of OR-RI2-TAT molecules attached 

to the outside of the liposome. A critical size for the liposome functionality was 

noted, as liposomes of ~30 nm were made inadvertently and found to be ineffective 

at preventing the aggregation of Aβ1:42. All liposomes studied here were also 

checked for stability, with no change in size at 37ºC for 7 days, (the duration of the 

experiment). Liposomes of similar composition have been measured for zeta 

potential in other studies and found to be strongly negative, with a high zeta 

potential, indicating that they are also stable in solution70, 71 

Sample polydispersity was also monitored, with RI-OR2-TAT PINPs being slightly 

more polydispersed than UD-PINPs, (0.123 ±0.03 compared to 0.042 ±0.01 

respectively). The slight increased variation in size is likely to be the result of a 
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variation in the number of inhibitor peptide fragments attached to the liposome. 

Samples are considered monodispersed as a result. 

Figure 6.5. AFM characterisation of RI-OR2-TAT PINPs. Panels (A) and (B) show the smooth 

topography detected by the AFM tip, while panels (C-F) show the variation in the surface phase (C 

and D) and UFM (E and  F) detects. 
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AFM characterisation of PINPs. RI-OR2-TAT PINPs were also studied in ex-situ using 

various AFM techniques, including TM and UFM after incubation with Aβ1:42 for 24 

h. Standard topography TM imaging (Fig. 6.5 (A)) of RI-OR2-TAT PINPs revealed that 

the liposomes, dehydrated once, as work was conducted ex-situ, collapse to 

approximately 100 nm in size, and have a smooth topography which does not imply 

any change in surface stiffness on contact of the cantilever tip (Fig. 6.5 (B)). However 

both TM Phase imaging and UFM imaging suggest otherwise (Fig. 6.5 (C-F). The 

nanomechanical stiffness profile of the liposome measured across a central region 

becomes apparently softer regardless of the nanomechanical method being applied. 

In TM Phase images (Fig. 6.5 (D)) a region of lower phase response is located in the 

centre of the liposome. Phase imaging of soft materials is particularly sensitive to 

changes in adhesion and viscoelastic properties275 as well as general alterations in 

topography. UFM imaging also shows a less stiff, more elastic region at the periphery 

of the PINP (Fig. 6.5 (F)), which combined with the Phase data would suggest that the 

RI-OR2-TAT peptide and the aggregates they collected are located on the periphery 

of the liposome, and not sequestered internally.  

 

6.6 AFM of Aβ1:42 exposed to RI-OR2-TAT PINPs 

In order to confirm that Aβ1:42 aggregation could be inhibited by RI-OR2-TAT PINPs 

and that this prevention could be detected with AFM, a 25 μM Aβ1:42 was incubated 

a 1:20 ratio for 144 h.  In Fig. 6.6 (A) shows the peptide immediately after wetting 

and is therefore representative for T= 0 for all samples, and small aggregates which 

are comparable with monomers and small oligomers are present across the 

substrate surface. After 144 h incubation Aβ1:42 alone and then incubation with UD-

PINPs they aggregated into MF covering the PLL-mica surface (solid arrow, Fig. 6 .6 

(B)) regardless of the presence of UD-PINPs. Conversely, panel (C) shows Aβ1:42 

incubated with RI-OR2-TAT PINPs, indicating the clear absence of fibres after the 

same incubation period. Smaller aggregates are still present, and also what can be 

identified as the PINPs themselves as indicated by the dashed arrow. It is therefore 
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clear by the results of AFM imaging that this technique can be used alongside 

classical methods of monitoring Aβ1:42 aggregation when testing the effects of 

aggregation inhibitors, as they clearly show that while UD-PINPs do not interfere 

with Aβ1:42 aggregation the decorated ones prevent the formation of fibres and 

appear to reduce the number of aggregates generated. 

6.7 Monitoring aggregation of Aβ1:42 using DLS 

Firstly it was necessary to determine a suitable concentration of RI-OR2-TAT PINPs to 
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Figure 6.6. AFM detection of the inhibition of Aβ1:42 aggregation over 7 144 h. (A) 25 μM Aβ1:42 alone at 

T=0, (B) 25 μM Aβ1:42 ± UD-PINPs at a 20:1 ratio after 144 h, (C) 25 μM Aβ1:42 plus RI-OR2-TAT PINPs at 

20:1 ratio after 144 h and (D) RI-OR2-TAT PINPs alone. PINPs are indicated by dashed arrows in panels C 

and D, while solid arrows indicate MF (A). 



   
 

134 
 

use in this pilot study, and then the conditions under which a wide range of 

aggregates could be detected. 

 

Determination of RI-OR2-TAT PINPs concentration for inhibitor experiments. It was 

necessary to determine an inhibitor concentration at which the liposomes were 

effective at inhibiting Aβ1:42 but ensure this was due to their mode of action, not 

merely the liposome acting as a lipid sink274, 276-278. Due to a supplier issue these 

experiments were conducted with Aβ1:40, which is the shorter isoform of the 

peptide but just as biologically significant.  When Aβ1:40 was incubated with PINPs 

over a range of ratios with they were found to be able to inhibit aggregation at least 

as far as 1:50 peptide: lipid, with higher concentrations of inhibitor being more 

effective as aggregation was reduced by 30-80% depending on the ratio of PINPs 

used (Fig. 6.7 (A)).  This is evidenced further by the incubation of Aβ1:40 with UD-

PINPs (Fig. 6.7 (B)). After 7 days incubation little difference between peptide 

incubated ± UD-PINPs can be seen. At higher ratios, (1:2 and 1:10 Aβ1:40:UD-PINP), 

the PINPs appear to slow or impede aggregation. Again this is likely to be due to 

them acting as a “sink” for Aβ1:40 monomers and oligomers. It has been well 

documented that Aβ is capable of interacting with lipid bilayers and inserting within 

them. At a sufficiently high concentration they are therefore able to slow but not halt 

aggregation, while at low concentrations (1:50) the UD-PINPs have a contrasting 

effect of increasing aggregation by ~10% compared to the control. 

 

As previously mentioned Aβ oligomers have a tendency to insert themselves into 

lipid bilayers, so at high enough concentrations liposomes are capable or acting as 

sink for the peptide and lipids have been shown to interact with Aβ aggregates to 

enhance fibrillisation274, 276-278. A ratio of inhibitor within the centre of this scale was 

therefore chosen for further experiments with Aβ1:42 (1:20) and representative data 

can be seen in Fig. 6.7 (C). Although a slight increase in Aβ1:42 aggregation is seen 

over the first 48 h compared to where no RI-OR2-TAT PINPs are present there is a 55-

60% reduction in detected levels of aggregation after 72 h, indicating that the 

decorated PINPs are, even at a low concentration, capable of reducing aggregation 

significantly. As with UD-PINPs for Aβ1:40, when Aβ1:42 was incubated with UD- 



   
 

135 
 

 

Figure 6.7. ThT monitoring of Aβ incubation with decorated and UD-PINPs (A) Aβ1:40 was 

incubated with a range of concentrations of RI-OR2-TAT PINPs before a concentration was 

decided upon for work with Aβ1:42. (B) Aβ1:40 aggregation with UD-PINPs was also 

monitored to ensure they did not prevent aggregation. (C) Aβ1:42 incubated at 1:20 with RI-

OR2-TAT PINPs shows they prevent aggregation at this concentration. Data was taken in 

triplicate and is representative of at least three experiments. 
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PINPs 1:20 as a control it was noted that after 24 h the UD-PINPs decreased 

aggregation by as much as 26% (144 h Fig. 6.7 (C)). This suggests that simply by being 

able to attract Aβ early aggregates liposomes may have effective therapeutic 

potential, particularly when coupled with inhibitory peptides to further enhance 

their potency. 

 

Determination of a strategy for DLS data collection. As was seen with the gold 

colloidal particles, dilution can be necessary for the detection of small aggregates 

due to the DLS feature that larger particles being capable of obscuring smaller ones 

during the process of data collection. As the laser hits the particle, it scatters the 

light, with larger particles scattering the light with greater intensity than smaller 

ones. The Zetasizer records this scattered light and its intensity and produces the 

data seen using the Stokes-Einstein equation. Given the hydrodynamic radius of the 

Aβ monomer is predicted to be 1-2 nm75, 76, and that “seeds” may still be present 

within the sample it was essential that a suitable dilution of Aβ1:40 was found. 

 

An aliquot of Aβ1:40 was freshly wetted and then diluted in 10 mM PB from a 1:1 
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Figure 6.8. In order to detect Aβ1:40 monomers it was necessary to dilute the initial timepoint 

sample further with 10 mM PB. By 1:30 dilution the monomer was detectable while other 

populations were readily seen also.  
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ratio to a 1:50 (Fig. 6.8). The more concentrated dilutions of peptide:PB show that 

larger aggregates >100 nm are present in a significant enough population to obscure 

detection of smaller aggregates at dilutions <1:20. A significant population of 

aggregates <10 nm is present within the sample but the peptide must be diluted 1:30 

or greater before this population can be observed in a consistent manner.  When the 

PINPs were diluted 1:30 in PB they became unstable due to insufficient salt 

concentrations. However the transient population seen in this dilution was not in 

conflict with any detectable population size seen when Aβ1:40/2 was incubated with 

RI-OR2-TAT PINPs directly, suggesting that perhaps the liposomes are more stable 

once aggregates have become attached. When the liposomes (both decorated and 

undecorated) were tested for stability this was done in comparable conditions to an 

experiment with peptide present. 

 

6.8 Inhibition of Aβ1:42 aggregation using RI-OR2-TAT PINPs as 

detected by DLS.  

The aggregation of Aβ1:42 was monitored alone, and with both decorated and 

undecorated PINPs (Fig. 6.9). On initial wetting of the peptide three distinct 

populations could be identified, one approximately 1-2 nm large, a population which 

varied between 30-100 nm and in the case of Aβ1:42 alone, a population around 

1000 nm, which was likely to be a “seed” which resisted the deseeding process. 

 No other populations of this size were detected by the DLS, most likely due to their 

rapid sedimentation from the sample bulk83. As aggregation proceeds the population 

of small aggregates approximately ~2 nm cannot be detected and the population 

becomes more uniform in size, with detectable aggregates between 10-100 nm 

readily detected between 24-48 h, and a larger population >100 nm detected 

thereafter. Aggregates greater than 1000 nm in size were not readily detected and 

thought to sediment out of the solution too rapidly to be detected. Currently it is not 

possible to agitate the sample as measurements are being taken and therefore 

impossible to detect the size of rapidly sedimenting particles. Separation of MF of Aβ 

using sedimentation has already been shown to occur167,279 so this phenomena was  
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not considered new. A similar situation can be seen when Aβ1:42 is incubated with 

UD-PINPs, (Fig. 6.9 (C)), with the smaller aggregate population being replaced by 

detectable populations around 100 nm. Conversely the population remains <100 nm 

after 144 h when RI-OR2-TAT PINPs are incubated with Aβ1:42, suggesting larger 

aggregates are prevented from forming (Fig. 6.9 (B)). This correlates well with visual 

evidence provided by AFM imaging of these samples (Fig. 4.6), and ThT results which 

is a more standard method of monitoring the aggregation of amyloid peptides (Fig. 

6.7). 

 

6.9 Conclusion 

There is emerging evidence that early aggregates, such as small oligomers, are the 

most toxic form of Aβ1:42122, 157, 158, 160, 264-266, and new therapeutics are designed 

with this in mind. The drug discussed in this chapter has been previously shown to be 

effective at inhibiting the aggregation of Aβ1:42 and reducing the effect of increased 

Aβ1:42 within neurons269-271  and now is one of many liposome based drug delivery 

systems currently being developed for preventing the aggregation of Aβ68-71, 280-282. 

This chapter has focused on the concept that physical techniques such as AFM and 

DLS can be applied alongside classical biological methods for the monitoring of 

Aβ1:42 aggregation, or prevention of this, by its incubation with RI-OR2-TAT PINPs. 

 

Dynamic Light Scattering is often applied to the development of liposomes as a 

method of determining size and stability68-70, 281, 282 but it is possible to apply the 

capabilities of DLS to monitor the aggregation process of Aβ1:42. A wide range of 

particle sizes have been shown to be readily detectable with the DLS system 

(Zetasizer Nano, Malvern, UK) used here. Particles of ~2 nm (gold colloids and 2D 

starfish micelles) were easily detected with the system, suggesting it had promise as 

a method of detecting the monomeric form of Aβ. Particles of >1000 nm were also 

detectable, along with temperature sensitive measurements. With careful attention 

to dilutions to prevent larger particles obscuring smaller ones DLS was found to be 

capable of detecting Aβ1:40/2 molecules as small as 1-2 nm, which presumably 
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indicates detection of the monomeric form75, 76, 83 and also the disappearance of this 

population as aggregation progresses. DLS was able to detect differences in 

populations when RI-OR2-TAT-PINPs were present compared to incubation in their 

absence, suggesting it may be ideal to use alongside methods such as ThT for 

monitoring aggregation by the particle size. Again AFM was also considered an ideal 

methods of providing a visual representation of the effects of RI-OR2-TAT PINPs on 

Aβ1:42 aggregation, showing that in their presence at a 1:20 ratio the PINPs 

prevented the formation of any MF of Aβ1:42 and thus prevented aggregation. Work 

continues with this drug, and also the involvement of DLS in the production of PINPs 

liposomes in-house and the subsequent monitoring of Aβ1:42 aggregation with this 

technique.  
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Chapter 7: Conclusion and future perspectives 

 

7.1 Conclusions 

Typical AFM substrates are usually atomically flat muscovite mica, which is 

inexpensive and can be readily reusable by cleaving the uppermost layers. It was 

initially considered the ideal starting point in developing an attachment protocol for 

deposition of Aβ onto, as it has proven successful for other groups. However Aβ is 

noted for its inconsistency among suppliers, and for batch-to-batch variations. As a 

result, despite extensive deposition and imaging trials a freshly cleaved muscovite 

mica was not found to be a suitable substrate. In addition to poor attachment due to 

similarities between the charge of Aβ and mica (both are negatively charged at 

neutral pH198, 199) a secondary problem was noted in the presence of salt crystals of 

buffer residues on the sample surface. These obscured any fibres which had 

attached, damaged AFM tips during imaging and also created image artefacts due to 

their increased charge as AFM imaging is dependent on tip-surface interactions. 

Washing the sample was only reducing the presence of both Aβ aggregates and salt 

crystals and was therefore not deemed to be helpful.  

Following the decision that cleaved mica would not be a suitable surface two lines of 

enquiry were followed; one involving adapting the incubation buffer Aβ was 

aggregated in and the other modification of the mica surface. The former line of 

enquiry was quickly ruled out; Aβ is highly sensitive to alterations in pH, salt 

concentration and other buffer conditions145, 200-202. Reducing the salt concentration 

to reduce artefacts would have presented an incubation system which lacked 

physiological relevance. It was more promising to modify the mica surface to alter its 

charge and thus increase attachment, as a variety of modifications are published and 

indicated as ideal for biological samples. DNA attachment has been mediated by the 

addition of glutaraldehyde or ATPES, while divalent ions have proven successful at 

increasing attachment in a variety of protein based samples203-206. For advanced cyro-
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EM work of the protein Titin ultrastable Au evaporated substrates have been 

produced214, 215.  

Ultimately it was concluded that the most successful method of substrate 

modification was to coat freshly cleaved mica with a dilute solution of PLL, and bake 

it to create a coating of PLL 0.3 ± 0.1 nm thick. This produced a robust, anatomically 

flat surface with a positive charge that allowed the attachment of Aβ aggregates. 

When analysed further it was found that not only did this concentration of PLL not 

interfere with Aβ aggregation, but it was capable of attracting the attachment of 

aggregates over a wide range of sizes, most importantly aggregates which correlate 

well with that on the monomer (~1-2 nm)75, 76. Confirmation of attachment by Aβ 

came from a variety of methods, including confocal microscopy, immunogold assay 

and AFM. The use of PLL to coat substrates for further analysis is well established, 

and it has been used to image supercoiled DNA in a liquid environment209 and 

amyloid proteins such as apolipoprotein C-II circularisation and surface catalysed 

amyloid fibril formation in amyloid protien196, 210.  

AFM was also found to be well suited for studying the effect of additional factors on 

Aβ aggregation. Metal ions exist in the brains of AD patients at elevated levels, and 

Aβ itself has metal binding capabilities155, 166, 219, 220, 226. In addition it had been shown 

that Aβ, in conjunction with redox active metal ions, can reduce hydrogen peroxide 

via Fenton’s chemistry to the more toxic and damaging hydroxyl radical166, 167. 

Considerable interest has therefore been given to the effect incubation with metal 

ions have on the morphology of Aβ. As part of a study into the effect metal ions have 

on Aβ samples incubated with Cu(II) and Zn(II), and AFM samples imaged in 

conjunction with further analysis on their redox active nature. Increasing levels of 

Cu(II) produced profound changes in fibre morphology, from a population consisting 

in the majority of MF where no Cu(II) was present to a population dominated by 

small amorphous aggregates lacking in MF at a 1:1 ratio. When Aβ was incubated 

with Zn(II) is also disrupted fibre morphology to the same amorphous aggregates, 

however co-incubation of Cu(II) and Zn(II) at a 1:1:1 ratio resulted in rescuing of the 

fibre appearance to a degree.  
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The contribution of AFM to detect morphology changes as a result of incubation with 

metal ions shows the emerging importance of physical techniques for studying 

aggregation. Both Zn(II) and Cu(II) have shown to have dramatic effects of the 

aggregation of Aβ, with reports indicating these metals are capable of both 

enhancing or inhibiting aggregation, presumably due to other interplaying factors 

which can affect Aβ aggregation224, 225, 230. It is of general consensus that Cu(II) 

stimulates aggregation, to produce the rapid production of aggregates226, 227. 

Detailed analysis has shown that Cu(II) hinders the formation of the β-sheet while 

still promoting the aggregation of the peptide283, and in addition AFM and EM have 

shown that Cu(II) has a similar effect on other amyloid peptides. When human islet 

amyloid polypeptide is incubated with Cu(II) fibrillisation is suppressed but the 

population of aggregates is smaller, and increased ROS over-production and 

mitochondrial dysfunction are noted283. AFM has also shown the concentration 

dependent effect of Zn(II) on Aβ aggregation to be stimulated in the direction of 

formation of non-fibrillar aggregates228, 229, and that this can be rescued by the 

presence of Cu(II) in the incubation environment167, 230. Imaging with AFM is 

therefore a complimentary technique when establishing the effect of additional 

factors on the aggregation of amyloid peptides in a manner which less visual 

techniques such as ThT do not allow.  

One main goal of the work undertaken in this thesis was to apply new, novel 

methods of AFM to biological samples, namely Aβ peptides. Following confirmation 

that PLL-mica was an ideal substrate for attachment it was imaged using UFM. This 

adaption of CM AFM allows for frictionless and nondestructive sample imaging to 

map the elastic and contact stiffness behaviour of the sample surface. The technique 

was found to be ideal for imaging fragile biological samples such as Aβ, which limited 

destruction or disruption of the sample surface while the ultrasonic frequency was 

being applied. In addition the technique was vastly more sensitive than imaging with 

TM for biological samples. It was noted that small aggregates could readily be 

identified on the UFM image map which were absent, or hard to detect on the 

topographical map. This population of aggregates could be identified by size to be 

akin to monomers/early oligomeric aggregates and persisted across all time points. 
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This lends weight to the theory that MF of Aβ are able to act as sinks for Aβ 

monomers, a sub-population of which are off-pathway and do not aggregate. AFM 

was also used to confirm the presence or absence of MF following incubation with 

developing therapeutics, which was found to be a complementary technique to the 

typical method of monitoring the contribution of MF via β-sheets (ThT). Given the 

likely toxic nature of oligomeric aggregates the detection by UFM of a persistent 

population adds weight to the argument that therapeutics targeting them could be 

ideal for reducing neuronal death. Studies of the interaction of early stage 

aggregates with liposome based inhibitors using the KVLFF sequence from Aβ to 

attract monomers are particularly timely given the promising news reanalysis of the 

drug Solanezumab shows. This humanised monocolonal antibody is designed to use 

the same sequence from Aβ to target the monomeric form as the PINPs liposomes 

reported here267, 268. Although initial phase III studies into the use of Solanezumab 

showed that it was not effective at alleviating the symptoms of mild to moderate AD, 

reanalysis has lead to another phase III trial focusing on the effect of Solanezumab 

when given earlier in the disease progression177, 284. This trial showed that early 

delivery of Solanezumab resulted in reduced cognitive decline and delayed functional 

decline when compared to control patients, or those receiving delayed treatment, 

suggesting that early treatment is most effective when given early by reducing the 

cognitive decline, and may make Solanezumab and ideal treatment for early stage 

patients.  Solanezumab appears to reduce the overall Aβ1:40/42 cerebral load by 

promoting its efflux from the CNS to the peripheral circulatory systems284.  

Techniques which allow the detection of early stage aggregates and their 

interactions with potential therapeutics in vitro will allow further development of 

potential therapeutics which focus on this aggregation stage such as the RI-OR2-

PINPs liposomes studied in this work. 

UFM also allowed the detection of finer structural details to the MF of Aβ through its 

nanomechanical mapping abilities. Each MF of Aβ has an internal structure which is 

composed of a softer region flanked by regions of increased stiffness, indicative of a 

hollow core. This has been proposed by numerous studies, including those using 

advanced cryo-EM, and the structure detected by UFM is in agreement with 
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experimental data which indicates the structure of Aβ1:42 MF consists of 2 

intertwined protofibrils, and the stacking of the β-sheets produces the domain 

structure seen here12, 89. Miller et. al. (2010) showed that Aβ1:42 fibres are 

composed of 2 interwinding protofilaments surrounding a tubular hollow core at 

both acid and physiologically pH, although this conformation requires the C-terminus 

of the peptide facing the exterior and the core is reduced in size at physiological 

pH94. The hollow core is frequently difficult to detect, and these studies found 

evidence that although no less stable than its acid counterpart, only 8% Aβ1:42 fibres 

incubated at physiological pH showed signs of a hollow core94. Conflictingly an 

alternative study has found that Aβ1:42 is composed of only 1 protofilament based 

on the mapping of its hollow core structure and analysis of the number of molecules 

in each β-cross12. The structure of Aβ1:40 has been shown to differ to that of Aβ1:42, 

with this isomer having a triangular cavity along its length made95. Multiple 

conformations of Aβ1:40 have been studied by cryo-EM, one which has a 2 

protofilament structure and a wider, single protofilament conformation12.  The 

former structure shares similarities with that of Aβ1:42 in that it has an identical 

number of molecules per β-cross and similar size dimensions, while the wider one 

contains a larger number of molecules across the β-turn12. Amyloid fibres are 

notorious for having a high level of inter- and intra- sample heterogeneity resulting 

from structural polymorphism, deformation due to flexibility, as well as being 

sensitive to incubation conditions and deseeding treatments89, 224, 225. To reliably 

deduce details about the sample structure multiple techniques must be applied, 

including AFM and EM.  

In addition to an interest in the nanomechanical mapping of a sample it is also 

desirable to map the thermal or chemical features of it. Amyloid proteins make ideal 

samples for testing the detection of chemical changes due to the structural transition 

they undergo during aggregation. The aim of one line of work reported in this thesis 

was to develop the technique of spectroscopical SThM, as an extension of 

Photothermal Microspectrosopy to true nanoscale resolution. This would require 

attention to the sample protocol and substrate again. Samples being images for 

thermal conductivity ideally require a substrate which has a good thermal contrast, 
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while any work being conducted in the mid-IR range requires a sample substrate 

which is transparent in this region. It would be necessary to compromise between 

the features of an ideal AFM substrate for these experiments. The most suitable 

substrate which Aβ readily attaches to is silicon, while CaF2 is ideal for work in the 

mid-IR yet due to its production suffers from a rough, trenched topography. SThM is 

highly sensitive to topographical affects during scanning, making deductions about 

thermal properties harder to determine. The sample protocol was refined to allow 

production of samples containing only the MF, which theoretically represented a 

completely β-sheeted peptide for simplicity of data collection. 

 Samples of Aβ were initially imaged using SThM to test their compatibility with the 

technique, and while their small size meant thermal conductivity was limited they 

were not found to be destroyed by the imaging method. This technique was then 

combined with a FEL from the ALICE energy recovery accelerator to focus a pulsed, 

tunable mid-IR laser onto the cantilever. This would produce a local photothermal 

expansion of the sample at wavelengths to which it would be excited by. The 

transient expansion of the sample would induce a “kick” in the cantilever which 

could be detected.  This experimental period provide highly challenging due to 

inconsistencies and fluctuations with the ALICE FEL255, making the collection of 

enough data to determine its reliability impossible within the time frame of this 

thesis. However some early conclusions can be taken on from this work. It was 

possible to successfully focus the laser onto the cantilever, and detect the 

photothermal response of the cantilever and its subsequent ringdown as the heat 

dissipated. Some variation in sample response was seen when imaged a key 

wavelengths for amyloid samples, include Amide I which has the strongest response 

in biological materials however it was not possible to gather enough data to confirm 

differences. Numerous spectroscopical studies of Aβ have been able to detect the 

differences between aggregation stages, and structural transitions259, 285. ATR-FTIR 

has been shown to detect oligomeric and fibril populations within the same samples 

of Aβ and it is hoped that the same identification could be made using SThM-IR, 

given UFM has also detected this heterogeneity within later stage samples259, 286 .  
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In order to elucidate whether Aβ could be imaged using a mid-IR laser in conjunction 

with and AFM samples were tested on the Nano-IR system, (Anasys Instruments). 

One of the most advanced systems in use, the Nano-IR uses an Au coated cantilever 

in conjunction with a pulsed, tunable IR source to detect the photothermal 

absorption of the sample18-20, 51-53.  These were deposited onto gold substrates which 

were found to be more anatomically flat than CaF2 however they have not been 

analysed for thermal contrast at this time. Imaging with this commercially available 

system was also semi-successful, with a clear distinction between sample and 

substrate at Amide I being possible. However more detailed analysis at amyloid 

specific wavelengths was hampered by tip contamination, variations in sample height 

and increased thermal drift, problems already associated with the Nano-IR, as it 

operates in CM52. When Dazzi and colleagues combined topographical and nano-

chemical mapping during the imaging of Escherichia coli they noted that initial scans 

to locate the cells were enough to damage the cell wall and contaminate the 

surrounding area with it, thus producing a weaker signal around the cells location52.  

More recently nano-IR spectroscopy has been applied to detect structural changes in 

the amyloid protein ataxin-3, the missfolding and aggregation of which is implicated 

in spinocerebellar ataxia-3285. This research utilised the Nano-IR2 system to 

characterise the conformation rearrangements that occur during the α- helix - β-

sheet transition of ataxin-3 as it aggregates. Both oligomeric and fibre conformations 

of the peptide were characterised. This research opens the door to the study of more 

disease related amyloid proteins and provides a method of studying the structural 

transitions on the nanoscale.  

Taking a different approach Muller and colleagues sought to develop a high-

throughput method of screening samples for their chemical signatures, and have 

developed a sophisticated “lab on a chip” method256. This allows hundreds of 

microdroplets from a sample to be analysed by IR spectroscopy on a sub-micron 

spatial resolution. They were able to resolve the structural differences between 

monomeric and aggregated lysozyme within the amide bands of the chemical spectra 

gathered from the microdrolets, presenting promising results of nano-IR 

techniques256. The possibility of expanding such a technique to study pathogenic 
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amyloid proteins interactions with potential therapeutics makes this particular 

branch of IR spectroscopy very appealing. By combining the experiences with both 

the in-house AFM-IR system and the Nano-IR it is possible to see where further 

modifications and attention needs to lie to enhance this technique.  

Conclusions in brief; 

• PLL-mica is an ideal substrate for the imaging of Aβ. It is anatomically flat, 

lacking in either topographical or nanomechnical features and capable of 

capturing aggregates ranging from 1-2 nm (monomeric) to larger MF, making 

it ideal for the study of amyloid aggregation. 

• Imaging with AFM is capable of offering support to biological and biochemical 

tests into the effect of additional factors, such as metal ions and developing 

therapeutics on the aggregation of Aβ. 

• UFM is a highly sensitive technique, and is greatly effective when applied to 

biological molecules. It provides non-destructive nanomechanical mapping of 

the sample surface, with a resolution of ~5nm. This technique was able to 

highlight the presence of a persistent population of small aggregates, which 

are otherwise not detected by TM imaging, and also provide fine structural 

details for the MF morphology. 

• Samples of biological materials offer new challenges to thermal and 

spectroscopical methods of AFM. Their thicknesses, increased propensity to 

contaminate cantilever tips and poor contrast with respect to their substrate 

are all challenges to be overcome even if this technique is successful. 

 

7.2 Future perspectives 

The work in this thesis covers the application of multiple modes of AFM to the study 

the aggregation of the peptide Aβ, which is implicated in the pathology of AD, and 

effect of metal ions and developing therapeutics in the aggregation process. 

UFM was developed to overcome the limitations previously found in imaging the 

nanomechanical properties of a sample. During scanning of the sample surface the 
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sample is oscillated at an ultrasonic frequency above that of the cantilevers 

resonance, creating an rigid cantilever which briefly indents into the sample surface 

thus probing its elastic properties. UFM was successfully applied to the imaging of 

Aβ1:42 and in addition to various nanostructure details for the MF it enabled the 

identification of a population of early aggregates detectable at a variety of time 

points.  UFM does not provide an explanation for this clearly present but persistent 

monomeric/oligomeric population. This should be investigated further in conjunction 

with separation techniques to attempt to isolate this population. It is already 

possible to separate the MF from the bulk solution via centrifugation; however no 

work has been done to confirm that these MF do not release smaller aggregates over 

time. MF are typically thought to be stable structures, however it is possible that 

early aggregates remain associated with them which could be released over time. 

Identification and isolation of specific aggregate populations is complex but possible 

thanks to advances in size-exclusion chromatography protocols287. In addition to 

further work to better identify this population of Aβ aggregates it would be ideal to 

image other amyloid peptides. Amylin, α-synuclein and ABri would all require the 

same attention to detail with regards to substrate development and imaging 

conditions due to each having their own specific incubation environment, but it 

would be interesting to compare the nanostructure as identified by UFM and 

discover potentially common structures in regions of elasticity and stiffness.  

Another key area for further development is that of UFM applied underliquid. 

Samples of individual peptides were found to attach too poorly to image, and 

therefore a method of increasing this attachment or more permanent fixation need 

to be considered. Additionally biomembranes are an area of increasing interest and 

membranes made of collagen or similar would be inherently more stable, and 

therefore open to imaging than poorly attached individual protein moieties and offer 

an interesting opportunity. AFM techniques have been used in a liquid environment 

to image Aβ previously, with particular attention given to its interactions with lipid 

membranes. Liposomes reconstituted in the presence of Aβ show increased 

permeability to calcium, while deterioration of an intact lipid bilayer following 

exposure to Aβ has been observed using underliquid-AFM207, 288, 289. Furthermore the 
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cholesterol content of the lipid bilayer has been noted to correlate with Aβ1:42 

fibrillisation and modulate the rate of aggregation289. Parbhu et al. (2002) preformed 

a comprehensive study of the real time monitoring of Aβ1:42 aggregation, studying 

the effect of buffers and peptide concentration on aggregation, and found that 

imaging with higher concentrations (100 µM) was ideal, with PBS being a successful 

buffer for incubation compared to water alone. This study also monitored the real 

time effects of Zn upon aggregation and noted the enhancement of fibrillisation in its 

presence75. Ultimately it appears that to move towards the successful adaption of 

UFM to monitor Aβ aggregation under liquid imaging and aggregation must be 

conducted in a buffer with a higher salt level, such as PBS, at a higher peptide levels, 

than used within this work75, 288, 289. The monitoring of DNA and lipid membrane 

interactions with high-speed AFM is becoming increasingly common. This technique 

utilises ultra-short cantilevers in a liquid environtment to follow biological events in 

real time. During a high-speed study of DNA: protein interactions quantification of 

the forces acting upon the DNA noted that a significant amount of the overall force 

results from the AFM cantilever tip290. In addition the levels of Ni2+ within the buffer 

could be tuned to control the level of DNA mobility. Caution should be taken when 

manipulating the attachment of Aβ with metal ions, given the tendency of them to 

alter the aggregation process223. Imaging Aβ in real time would be an ideal method of 

following the aggregation process given the instability seen when the peptide is 

rehydrated9, and has already been done with TM and nano-IR spectroscopy285, 288, 289, 

while UFM itself has been shown to work in the liquid regime32, 34 .  However 

successful studies of biological molecules using high-speed AFM offers lessons which 

can be adapted for the use of UFM underliquid.  

Moving beyond UFM the technique of SThM-IR requires further development. The 

first line on enquiry would be to test and develop additional substrates for SThM-IR 

to find one that offers a better thermal contrast, is transparent in the mid-IR region 

while has a more anatomically flat surface, beginning with Au coated Si, as per 

experiments with the Nano-IR. This would hopefully reduce the contamination seen 

when imaging with commercial systems such as the Nano-IR. The topographical 

effects of such a thin sample may also need some care and consideration. 
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Preliminary work conducted with stained cells indicates that a larger, more robust 

sample may be a more ideal starting point for this work.  

 It is also important to address the stability and reliability issues seen at ALICE using a 

mid-IR laser generated by a FEL. One alternative which has been proposed is the use 

of a Quantum Cascade Laser (QCL) to generate the tuneable mid-IR source. Excitation 

of a sample with this method requires care in order to separate the effect of the shift 

in resonance frequency due to the samples elastic response with that of a 

wavelength specific IR absorption of the sample. Alternatively, adjustment of the 

cantilver used, or the resonant frequency of the cantilever could be made, as 

fluctuations in signal intensity have been linked to the resonant frequency the 

cantilever is tuned to52. Ideally one would seek to combine independent 

nanomechanical measurements with spectroscopical data taken from a mid-IR 

source, taking reference from Ruggeri et al. (2015) who combined the IR-

spectroscopical study of ataxin-3 with characterisation of its Young’s Modulus during 

aggregation285. This combination of advanced SPM techniques allowed the team to 

not only monitor the structural changes seen during aggregation but also to identify 

that the Young’s Modulus of a peptide increases along the aggregation process, 

indicating and increased stiffness and structural stability in MF compared to 

monomers285.   

A final area of development is the application of DLS to the aggregation of amyloid 

peptides in conjunction with drug development. This technique has shown to be 

highly sensitive when different time points of Aβ1:40/1:42 were analysed, and was 

able to detect differences between samples incubated with and without inhibitors. 

Ideally this technique would continue with the addition of analysing populations for 

molecular weight, and alterations in charge in addition to particle size. Liposomes of 

different sizes, with different functional modifications could also bet tested using this 

method in addition to that of ThT or immunoassays. 

In conclusion the work presented in this thesis lays the groundwork for the 

advancements of developing techniques such as AFM-IR, as well as confirming the 

application of pre-existing ones such as DLS and UFM. The application of physical 
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methods to samples such as proteins has been shown to be highly applicable and 

offer great potential to shed light on their formation and interaction with other 

factors.  

 

  



   
 

153 
 

Academic Publications 

 

Amyloid-β fibrils in Alzheimer's Disease are not inert when bound to copper ions 

but can degrade hydrogen peroxide and generate reactive oxygen species 

Mayes, J., Tinker-Mill, C., Kolosov, O., Zhang, H., Tabner, B. & Allsop, D.  

Journal of Biological Chemistry. 289, p. 12052-12062 11 p. 25/04/2014 

 

Ultrasonic force microscopy for nanomechanical characterization of early and late-

stage amyloid-β peptide aggregation 

Tinker-Mill, C., Mayes, J., Allsop, D. & Kolosov, O.  

Scientific Reports. 4, 7 p.4004, 2014 

 

A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and 

inflammation and stimulates neurogenesis in the APPswe/PS1ΔE9 mouse model of 

Alzheimer's Disease 

Parthsarathy, V., McClean, P. L., Hölscher, C., Taylor, M., Tinker, C., Jones, G., Kolosov, 

O., Salvati, E., Gregori, M., Masserini, M. & Allsop, D.  

PloS ONE. 8, 1, 11 p.e54769, 2013 

 

Also in preparation 

Retro-inverso peptide inhibitory nanoparticles (PINPs) as potent inhibitors of 

aggregation of the Alzheimer’s Aβ peptide 

Gregori, M., Taylor, M., Tinker-Mill, C., Michael, M., Kolosov, O., Salvati, E, Re, F., 

Minniti, S., Zambelli, V., Masserini, M. & Allsop, D. 

 



   
 

154 
 

Comparison of photothermal and opto-acoustic response of nanoscale probes for 

Mid-IR photothermal microspectroscopy (PTMS) of nanostructured biological 

materials  

Tovee, P.D., Tinker-Mill, C., Kjoller, K., Allsop, D., Weightman, P., Surman,, M., Siggel-

King, M., Wolski, A. & Kolosov, O.V.  

Scanning thermal microscopy imaging of Amyloid-β 

Tovee, P.D., Tinker-Mill, C., Allsop, D.,. & Kolosov, O.V.  

 

Presentations at Conferences 

 

Nanoscale SPM Characterisation of Nacre Aragonite Plates and Synthetic Human 

Amyloid Fibres. 

Grishin, I., Tinker, C., Allsop, D., Robson, A & O.V. Kolosov. 

Nanotech 2012 Santa Clara, California. 

Proceedings of Nanotech - 2012, TechConnect World 2012, pages 2,940 ISBN: 978-1-

4665-6278-3, NSTI, CRC press, Santa Clara, USA (2012). 

 

Nanoscale morphology and nanomechanical characterisation of recombinant 

human Amyloid-β 1-42 via tapping mode and ultrasonic force microscopies. 

Tinker, C.,  Allsop D. & Kolosov, O. 

Seeing at the Nanoscale, July 2012, Bristol University. 

 

Nanoscale morphology and nanomechanical characterisation of recombinant 

human Amyloid-β 1-42 via tapping mode and ultrasonic force microscopies. 



   
 

155 
 

Tinker, C., Allsop D. & Kolosov, O. 

European Microscopy Conference, September 2012, Manchester. 

 

Nanoscale dynamics of Amyloid-β fibres on poly-L-Lysine substrate in air and liquid 

environments via atomic force and ultrasonic force microscopy 

Tinker, C., Allsop, D., Kolosova,K., Dinelli, F & Kolosov, O 

Multifrequency Conference, October 2012, Madrid. 

 

Nanoscale imaging of Alzheimer’s Disease: Getting to the core of it 

Tinker, C., Allsop, D., Robson, A. & Kolosov, O 

Lancaster University Sci-Tech Christmas Conference, 17th December 2012, Lancaster. 

 

Ultrasonic force microscopy studies of the nanoscale structure of Amyloid-β fibres 

in a liquid environment 

Tinker C., Allsop, D., Kolosova, K., Dinelli, F. & Kolosov O. 

Bristol University Nanomaterial Futures Conference, 17th February 2013, Bristol. 

 

Nanostructure of Amyloid Fibres using Ultrasonic Force Microscopy 

Tinker, C., Allsop D. & Kolosov, O. 

Waterloo University talk as a visiting student, September 2013, Waterloo, Canada.  

 



   
 

156 
 

Nanomechanical and nanothermal mapping of initial stages of amyloid fibres 

formation 

Kolosov, O., Tovee, P., Tinker-Mill, C. & Allsop, D.  

Bristol Nanoscience Symposium 15/09/2014, Bristol 

 

 

Press articles 

http://www.labnews.co.uk/news/sewing-machine-inspires-imaging-tool-for-

alzheimers/ 

21/04/14:  (Lab News) 

Tinker-Mill, C., Mayes, J., Allsop, D. & Kolosov, O. 

Imaging tool gives insight into origins of Alzheimer's 

2/04/14:  (Medical Express) 

Tinker-Mill, C., Mayes, J., Allsop, D. & Kolosov, O. 

 

New imaging tool provides fresh insight into origins of Alzheimer's, Parkinson's 

disease 

2/04/14:  (News medical) 

Tinker-Mill, C., Mayes, J., Allsop, D. & Kolosov, O. 

 

Sewing machine' idea gives insight into origins of Alzheimer's 

1/04/14:  (USA Daily news) (Science daily) (Deccan chronicle) (Business Standard) 

Tinker-Mill, C., Mayes, J., Allsop, D. & Kolosov, O. 

 

Tools of the Trade 

26/02/14:  (BioTechniques - The International Journal of Life Science Methods) 

Tinker-Mill, C., Mayes, J., Allsop, D. & Kolosov, O. 

 

 



   
 

157 
 

Awards 

 

Juno Award for Research Excellence 2014 

Juno Award for Research Excellence 2012 

 

 

  



   
 

158 
 

References 

 

1. Dinelli, F., Biswas, S.K., Briggs, G.A.D. & Kolosov, O.V. Measurements of stiff-material 
compliance on the nanoscale using ultrasonic force microscopy. Physical Review B 
61, 13995-14006 (2000). 

2. Dinelli, F. et al. Mapping surface elastic properties of stiff and compliant materials on 
the nanoscale using ultrasonic force microscopy. Philosophical Magazine a-Physics of 
Condensed Matter Structure Defects and Mechanical Properties 80, 2299-2323 
(2000). 

3. Xiao, Y. & Ma, B. Abeta(1-42) fibril structure illuminates self-recognition and 
replication of amyloid in Alzheimer's disease.  (2015). 

4. Blennow, K., de Leon, M.J. & Zetterberg, H. Alzheimer's disease. Lancet 368, 387-403 
(2006). 

5. Cao, X.W. & Sudhof, T.C. A transcriptively active complex of APP with Fe65 and 
histone acetyltransferase Tip60. Science 293, 115-120 (2001). 

6. Shoji, M. et al. Production Of The Alzheimer Amyloid-Beta Protein By Normal 
Proteolytic Processing. Science 258, 126-129 (1992). 

7. Digital Insturments MultiMode SPM Manual (1999). 
8. DoITPoMS. in University of Cambridge, Teaching and Learning Package, 

(http://www.doitpoms.ac.uk/tlplib/afm/tip_surface_interaction.php Accessed 
24/02/15, 2013). 

9. Maurstad, G., Prass, M., Serpell, L.C. & Sikorski, P. Dehydration stability of amyloid 
fibrils studied by AFM. European Biophysics Journal with Biophysics Letters 38, 1135-
1140 (2009). 

10. Fändrich, M., Schmidt, M. & Grigorieff, N. Recent progress in understanding 
Alzheimer's β-amyloid structures. Trends in Biochemical Sciences 36, 338-345 (2011). 

11. Fischer-Cripps, A.C. Introduction to contact mechanics (Springer, New York, 2007). 
12. Schmidt, M. et al. Comparison of Alzheimer Aβ(1-40) and Aβ(1-42) Amyloid Fibrils 

Reveals Similar Protofilament Structures. Proceedings of the National Academy of 
Sciences of the United States of America 106, 19813-19818 (2009). 

13. Binnig, G., Quate, C.F. & Gerber, C. ATOMIC FORCE MICROSCOPE. Physical Review 
Letters 56, 930-933 (1986). 

14. Binnig, G. & Rohrer, H. Scanning Tunneling Microscopy. Helvetica Physica Acta 55, 
726-735 (1982). 

15. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. TUNNELING THROUGH A 
CONTROLLABLE VACUUM GAP. Applied Physics Letters 40, 178-180 (1982). 

16. Jandt, K.D. Atomic force microscopy of biomaterials surfaces and interfaces. Surface 
Science 491, 303-332 (2001). 

17. Dinelli, F., Assender, H.E., Takeda, N., Briggs, G.A.D. & Kolosov, O.V. Elastic mapping 
of heterogeneous nanostructures with ultrasonic force microscopy (UFM). Surface 
and Interface Analysis 27, 562-567 (1999). 

18. Dazzi, A. et al. AFM-IR: Combining Atomic Force Microscopy and Infrared 
Spectroscopy for Nanoscale Chemical Characterization. Applied Spectroscopy 66, 
1365-1384 (2012). 

19. Dazzi, A., Prazeres, R., Glotin, E. & Ortega, J.M. Local infrared microspectroscopy 
with subwavelength spatial resolution with an atomic force microscope tip used as a 
photothermal sensor. Optics Letters 30, 2388-2390 (2005). 

http://www.doitpoms.ac.uk/tlplib/afm/tip_surface_interaction.php


   
 

159 
 

20. Marcott, C. et al. Nanoscale IR Spectroscopy: AFM-IR - A New Technique. 
Spectroscopy 27, 60-65 (2012). 

21. Tovee, P.D. & Kolosov, O.V. Mapping nanoscale thermal transfer in-liquid 
environment-immersion scanning thermal microscopy. Nanotechnology 24 (2013). 

22. Tovee, P.D. et al. Nanoscale resolution scanning thermal microscopy using carbon 
nanotube tipped thermal probes. Physical Chemistry Chemical Physics 16, 1174-1181 
(2014). 

23. Tovee, P., Pumarol, M., Zeze, D., Kjoller, K. & Kolosov, O. Nanoscale spatial resolution 
probes for scanning thermal microscopy of solid state materials. Journal of Applied 
Physics 112, - (2012). 

24. Gandyra, D., Walheim, S., Gorb, S., Barthlott, W. & Schimmel, T. The capillary 
adhesion technique: a versatile method for determining the liquid adhesion force 
and sample stiffness. Beilstein Journal of Nanotechnology 6, 11-18 (2015). 

25. Weisenhorn, A.L., Hansma, P.K., Albrecht, T.R. & Quate, C.F. FORCES IN ATOMIC 
FORCE MICROSCOPY IN AIR AND WATER. Applied Physics Letters 54, 2651-2653 
(1989). 

26. (ed. Baro, A.M.R., R. G. ) (Wiley-VCH, 2012). 
27. Bonnell, D. Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and 

Applications (Wiley-Blackwell, New York, USA, 2001). 
28. Eaton, P.W., P. Atomic Force Microscopy (Oxford University Press, 2010). 
29. Kolosov, O.V. & Yamanaka, K. Nonlinear detection of ultrasonic vibrations in an 

atomic force microscope. Japanese Journal of Applied Physics Part 2-Letters 32, 
L1095-L1098 (1993). 

30. Dinelli, F., Biswas, S.K., Briggs, G.A.D. & Kolosov, O.V. Ultrasound induced lubricity in 
microscopic contact. Applied Physics Letters 71, 1177-1179 (1997). 

31. Sader, J.E., Chon, J.W.M. & Mulvaney, P. Calibration of rectangular atomic force 
microscope cantilevers. Review of Scientific Instruments 70, 3967-3969 (1999). 

32. Robinson, B.J., Kay, N.D. & Kolosov, O.V. Nanoscale Interfacial Interactions of 
Graphene with Polar and Nonpolar Liquids. Langmuir 29, 7735-7742 (2013). 

33. Robinson, B.J. et al. Nanomechanical mapping of graphene layers and interfaces in 
suspended graphene nanostructures grown via carbon diffusion. Thin Solid Films 
550, 472-479 (2014). 

34. Robinson, B.J. & Kolosov, O.V. Probing nanoscale graphene-liquid interfacial 
interactions via ultrasonic force spectroscopy. Nanoscale 6, 10806-10816 (2014). 

35. Bosse, J.L., Tovee, P.D., Huey, B.D. & Kolosov, O.V. Physical mechanisms of 
megahertz vibrations and nonlinear detection in ultrasonic force and related 
microscopies. Journal of Applied Physics 115 (2014). 

36. Chaudhury, M.K. & Owen, M.J. Adhesion hysteresis and friction. Langmuir 9, 29-31 
(1993). 

37. Wei, Z., He, M.-F. & Zhao, Y.-P. The Effects of Roughness on Adhesion Hysteresis. 
Journal of Adhesion Science and Technology 24, 1045-1054 (2010). 

38. Johnson, K.L., Kendall, K. & Roberts, A.D. SURFACE ENERGY AND CONTACT OF 
ELASTIC SOLIDS. Proceedings of the Royal Society of London Series a-Mathematical 
and Physical Sciences 324, 301-& (1971). 

39. Rabe, U., Janser, K. & Arnold, W. Vibrations of free and surface-coupled atomic force 
microscope cantilevers: Theory and experiment. Review of Scientific Instruments 67, 
3281-3293 (1996). 

40. Rajakarunanayake, Y.N. & Wickramasinghe, H.K. Nonlinear Photothermal Imaging. 
Applied Physics Letters 48, 218-220 (1986). 

41. Williams, C.C. & Wickramasinghe, H.K. Scanning Thermal Profiler. Applied Physics 
Letters 49, 1587-1589 (1986). 



   
 

160 
 

42. Igeta, M., Inoue, T., Varesi, J. & Majumdar, A. Thermal expansion and temperature 
measurement in a microscopic scale by using the Atomic Force Microscope. Jsme 
International Journal Series B-Fluids and Thermal Engineering 42, 723-730 (1999). 

43. Majumdar, A., Carrejo, J.P. & Lai, J. Thermal Imaging Using The Atomic Force 
Microscope. Applied Physics Letters 62, 2501-2503 (1993). 

44. Fischer, H. Quantitative determination of heat conductivities by scanning thermal 
microscopy. Thermochimica Acta 425, 69-74 (2005). 

45. Lee, J. et al. Electrical, thermal, and mechanical characterization of silicon 
microcantilever heaters. Journal of Microelectromechanical Systems 15, 1644-1655 
(2006). 

46. Gazit, E. The "Correctly folded" state of proteins: Is it a metastable state. 
Angewandte Chemie-International Edition 41, 257-+ (2002). 

47. Dandurand, J. et al. Conformational and thermal characterization of a synthetic 
peptidic fragment inspired from human tropoelastin: Signature of the amyloid fibers. 
Pathologie Biologie 62, 100-107 (2014). 

48. Blancas-Mejia, L.M. et al. Kinetic Control in Protein Folding for Light Chain 
Amyloidosis and the Differential Effects of Somatic Mutations. Journal of Molecular 
Biology 426, 347-361 (2014). 

49. Morel, B., Varela, L. & Conejero-Lara, F. The Thermodynamic Stability of Amyloid 
Fibrils Studied by Differential Scanning Calorimetry. Journal of Physical Chemistry B 
114, 4010-4019 (2010). 

50. Ortega, J.M., Glotin, F. & Prazeres, R. Extension in far-infrared of the CLIO free-
electron laser. Infrared Physics & Technology 49, 133-138 (2006). 

51. Dazzi, A., Goumri-Said, S. & Salomon, L. Theoretical study of an absorbing sample in 
infrared near-field spectromicroscopy. Optics Communications 235, 351-360 (2004). 

52. Dazzi, A., Prazeres, R., Glotin, F. & Ortega, J.M. Analysis of nano-chemical mapping 
performed by an AFM-based ("AFMIR") acousto-optic technique. Ultramicroscopy 
107, 1194-1200 (2007). 

53. Dazzi, A., Prazeres, R., Glotin, F. & Ortega, J.M. Subwavelength infrared 
spectromicroscopy using an AFM as a local absorption sensor. Infrared Physics & 
Technology 49, 113-121 (2006). 

54. Wolkers, W.F., Oldenhof, H., Alberda, M. & Hoekstra, F.A. A Fourier transform 
infrared microspectroscopy study of sugar glasses: application to anhydrobiotic 
higher plant cells. Biochimica Et Biophysica Acta-General Subjects 1379, 83-96 
(1998). 

55. Marcott, C. et al. Nanoscale infrared (IR) spectroscopy and imaging of structural 
lipids in human stratum corneum using an atomic force microscope to directly detect 
absorbed light from a tunable IR laser source. Experimental Dermatology 22, 419-
421 (2013). 

56. Marcott, C. et al. Localization of Human Hair Structural Lipids Using Nanoscale 
Infrared Spectroscopy and Imaging. Applied Spectroscopy 68, 564-569 (2014). 

57. Van Eerdenbrugh, B., Lo, M., Kjoller, K., Marcott, C. & Taylor, L.S. Nanoscale mid-
infrared imaging of phase separation in a drug-polymer blend. Journal of 
Pharmaceutical Sciences 101, 2066-2073 (2012). 

58. Paschalis, E.P., Betts, F., DiCarlo, E., Mendelsohn, R. & Boskey, A.L. FTIR 
microspectroscopic analysis of normal human cortical and trabecular bone. Calcified 
Tissue International 61, 480-486 (1997). 

59. Paschalis, E.P., Betts, F., DiCarlo, E., Mendelsohn, R. & Boskey, A.L. FTIR 
microspectroscopic analysis of human iliac crest biopsies from untreated 
osteoporotic bone. Calcified Tissue International 61, 487-492 (1997). 



   
 

161 
 

60. Mendelsohn, R., Paschalis, E.P. & Boskey, A.L. Infrared spectroscopy, microscopy, 
and microscopic imaging of mineralizing tissues: Spectra-structure correlations from 
human iliac crest biopsies. Journal of Biomedical Optics 4, 14-21 (1999). 

61. Lasch, P., Boese, M., Pacifico, A. & Diem, M. FT-IR spectroscopic investigations of 
single cells on the subcellular level. Vibrational Spectroscopy 28, 147-157 (2002). 

62. Wood, B.R. et al. FTIR microspectroscopic study of cell types and potential 
confounding variables in screening for cervical malignancies. Biospectroscopy 4, 75-
91 (1998). 

63. Lasch, P., Haensch, W., Lewis, E.N., Kidder, L.H. & Naumann, D. Characterization of 
colorectal adenocarcinoma sections by spatially resolved FT-IR microspectroscopy. 
Applied Spectroscopy 56, 1-9 (2002). 

64. Lasch, P., Haensch, W., Naumann, D. & Diem, M. Imaging of colorectal 
adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochimica Et 
Biophysica Acta-Molecular Basis of Disease 1688, 176-186 (2004). 

65. Mordechai, S. et al. Possible common biomarkers from FTIR microspectroscopy of 
cervical cancer and melanoma. Journal of Microscopy-Oxford 215, 86-91 (2004). 

66. Mueller, T. et al. Nanoscale spatially resolved infrared spectra from single 
microdroplets. Lab on a Chip 14, 1315-1319 (2014). 

67. Pryor, N.E., Moss, M.A. & Hestekin, C.N. Unraveling the Early Events of Amyloid-beta 
Protein (A beta) Aggregation: Techniques for the Determination of A beta Aggregate 
Size. International Journal of Molecular Sciences 13, 3038-3072 (2012). 

68. Loureiro, J.A., Gomes, B., Coelho, M.A.N., Pereira, M.D. & Rocha, S. Targeting 
nanoparticles across the blood-brain barrier with monoclonal antibodies. 
Nanomedicine 9, 709-722 (2014). 

69. Yang, Z.Z. et al. Enhanced brain distribution and pharmacodynamics of rivastigmine 
by liposomes following intranasal administration. International Journal of 
Pharmaceutics 452, 344-354 (2013). 

70. Salvati, E. et al. Liposomes functionalized to overcome the blood-brain barrier and to 
target amyloid-beta peptide: the chemical design affects the permeability across an 
in vitro model. International Journal of Nanomedicine 8 (2013). 

71. Gobbi, M. et al. Lipid-based nanoparticles with high binding affinity for amyloid-
beta(1-42) peptide. Biomaterials 31, 6519-6529 (2010). 

72. Carrotta, R., Manno, M., Bulone, D., Martorana, V. & San Biagio, P.L. Protofibril 
formation of amyloid beta-protein at low pH via a non-cooperative elongation 
mechanism. Journal of Biological Chemistry 280, 30001-30008 (2005). 

73. Lomakin, A., Chung, D.S., Benedek, G.B., Kirschner, D.A. & Teplow, D.B. On the 
nucleation and growth of amyloid beta-protein fibrils: Detection of nuclei and 
quantitation of rate constants. Proceedings of the National Academy of Sciences of 
the United States of America 93, 1125-1129 (1996). 

74. Lomakin, A., Teplow, D.B., Kirschner, D.A. & Benedek, G.B. Kinetic theory of 
fibrillogenesis of amyloid beta-protein. Proceedings of the National Academy of 
Sciences of the United States of America 94, 7942-7947 (1997). 

75. Parbhu, A., Lin, H., Thimm, J. & Lal, R. Imaging real-time aggregation of amyloid beta 
protein (1-42) by atomic force microscopy. Peptides 23, 1265-1270 (2002). 

76. Cizas, P. et al. Size-dependent neurotoxicity of beta-amyloid oligomers. Archives of 
Biochemistry and Biophysics 496, 84-92 (2010). 

77. Streets, A.M., Sourigues, Y., Kopito, R.R., Melki, R. & Quake, S.R. Simultaneous 
Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and 
Fluorescence Reveals Complex Aggregation Kinetics. Plos One 8 (2013). 

78. Blackley, H.K.L. et al. Morphological development of beta(1-40) amyloid fibrils. 
Experimental Neurology 158, 437-443 (1999). 



   
 

162 
 

79. Roher, A.E. et al. Oligomerization and fibril assembly of the amyloid-beta protein. 
Biochimica Et Biophysica Acta-Molecular Basis of Disease 1502, 31-43 (2000). 

80. Harper, J.D., Wong, S.S., Lieber, C.M. & Lansbury, P.T. Observation of metastable A 
beta amyloid protofibrils by atomic force microscopy. Chemistry & Biology 4, 119-
125 (1997). 

81. Walsh, D.M., Lomakin, A., Benedek, G.B., Condron, M.M. & Teplow, D.B. Amyloid 
beta-protein fibrillogenesis - Detection of a protofibrillar intermediate. Journal of 
Biological Chemistry 272, 22364-22372 (1997). 

82. Harper, J.D., Wong, S.S., Lieber, C.M. & Lansbury, P.T. Assembly of A beta amyloid 
protofibrils: An in vitro model for a possible early event in Alzheimer's disease. 
Biochemistry 38, 8972-8980 (1999). 

83. Walsh, D.M. et al. Amyloid beta-protein fibrillogenesis - Structure and biological 
activity of protofibrillar intermediates. Journal of Biological Chemistry 274, 25945-
25952 (1999). 

84. Serem, W.K., Bett, C.K., Ngunjiri, J.N. & Garno, J.C. Studies of the Growth, Evolution, 
and Self-Aggregation of beta-Amyloid Fibrils Using Tapping-Mode Atomic Force 
Microscopy. Microscopy Research and Technique 74, 699-708 (2011). 

85. Gosal, W.S., Clark, A.H. & Ross-Murphy, S.B. Fibrillar beta-lactoglobulin gels: Part 1. 
Fibril formation and structure. Biomacromolecules 5, 2408-2419 (2004). 

86. Arimon, M. et al. Fine structure study of A beta(1-42) fibrillogenesis with atomic 
force microscopy. Faseb Journal 19, 1344-+ (2005). 

87. Moores, B., Drolle, E., Attwood, S.J., Simons, J. & Leonenko, Z. Effect of Surfaces on 
Amyloid Fibril Formation. Plos One 6, 8 (2011). 

88. Wang, Z.G. et al. AFM and STM study of beta-amyloid aggregation on graphite. 
Ultramicroscopy 97, 73-79 (2003). 

89. Fändrich, M., Schmidt, M. & Grigorieff, N. Recent progress in understanding 
Alzheimer&#039;s β- amyloid structures. Trends in Biochemical Sciences 36, 338-345 
(2011). 

90. Miyakawa, T., Watanabe, K. & Katsuragi, S. Ultrastructure of amyloid fibrils in 
Alzheimers-Disease and Downs-Syndrome. Virchows Archiv B-Cell Pathology 
Including Molecular Pathology 52, 99-106 (1986). 

91. Zhang, R. et al. Interprotofilament interactions between Alzheimer's A beta(1-42) 
peptides in amyloid fibrils revealed by cryoEM. Proceedings of the National Academy 
of Sciences of the United States of America 106, 4653-4658 (2009). 

92. Serpell, L.C. Alzheimer's amyloid fibrils: structure and assembly. Biochimica Et 
Biophysica Acta-Molecular Basis of Disease 1502, 16-30 (2000). 

93. Serpell, L.C. et al. Examination Of The Structure Of The Transthyretin Amyloid Fibril 
By Image-Reconstruction From Electron-Micrographs. Journal of Molecular Biology 
254, 113-118 (1995). 

94. Miller, Y., Ma, B.Y., Tsai, C.J. & Nussinov, R. Hollow core of Alzheimer's A beta(42) 
amyloid observed by cryoEM is relevant at physiological pH. Proceedings of the 
National Academy of Sciences of the United States of America 107, 14128-14133 
(2010). 

95. Miller, Y., Ma, B.Y. & Nussinov, R. The Unique Alzheimer's beta-Amyloid Triangular 
Fibril Has a Cavity along the Fibril Axis under Physiological Conditions. Journal of the 
American Chemical Society 133, 2742-2748 (2011). 

96. Sachse, C. et al. Quaternary structure of a mature amyloid fibril from Alzheimer's a 
beta(1-40) peptide. Journal of Molecular Biology 362, 347-354 (2006). 

97. Meinhardt, J., Sachse, C., Hortschansky, P., Grigorieff, N. & Fandrich, M. A beta(1-40) 
Fibril Polymorphism Implies Diverse Interaction Patterns in Amyloid Fibrils. Journal of 
Molecular Biology 386, 869-877 (2009). 



   
 

163 
 

98. Gosal, W.S., Myers, S.L., Radford, S.E. & Thomson, N.H. Amyloid under the atomic 
force microscope. Protein and Peptide Letters 13, 261-270 (2006). 

99. Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat 
Rev Neurosci 4, 49-60 (2003). 

100. Rochet, J.C. & Lansbury, P.T. Amyloid fibrillogenesis: themes and variations. Current 
Opinion in Structural Biology 10, 60-68 (2000). 

101. Selkoe, D.J. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81, 741-66 
(2001). 

102. Citron, M. beta-secretase as a target for the treatment of Alzheimer's disease. 
Journal of Neuroscience Research 70, 373-379 (2002). 

103. Games, D. et al. Alzheimer-Type Neuropathology In Transgenic Mice Overexpressing 
V717f Beta-Amyloid Precursor Protein. Nature 373, 523-527 (1995). 

104. Wurtman, R. Biomarkers in the diagnosis and management of Alzheimer’s disease. 
Metabolism 64, S47-S50 (2015). 

105. Eckerstrom, C. et al. A combination of neuropsychological, neuroimaging, and 
cerebrospinal fluid markers predicts conversion from mild cognitive impairment to 
dementia. J Alzheimers Dis 36, 421-31 (2013). 

106. Petersen, R.C. Mild cognitive impairment as a diagnostic entity. Journal of Internal 
Medicine 256, 183-194 (2004). 

107. Harper, J.D. & Lansbury, P.T. Models of amyloid seeding in Alzheimier's disease and 
scrapie: Mechanistic truths and physiological consequences of the time-dependent 
solubility of amyloid proteins. Annual Review of Biochemistry 66, 385-407 (1997). 

108. Glenner, G.G. & Wong, C.W. Alzheimer's disease: initial report of the purification and 
characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res 
Commun 120, 885-90 (1984). 

109. Knauer, M.F., Soreghan, B., Burdick, D., Kosmoski, J. & Glabe, C.G. Intracellular 
Accumulation And Resistance To Degradation Of The Alzheimer Amyloid A4/Beta-
Protein. Proceedings of the National Academy of Sciences of the United States of 
America 89, 7437-7441 (1992). 

110. Burdick, D. et al. ASSEMBLY AND AGGREGATION PROPERTIES OF SYNTHETIC 
ALZHEIMERS A4/BETA AMYLOID PEPTIDE ANALOGS. Journal of Biological Chemistry 
267, 546-554 (1992). 

111. Kidd, M. Paired helical filaments in electron microscopy of Alzheimer's disease. 
Nature 197, 192-3 (1963). 

112. Thies, W. & Bleiler, L. 2013 Alzheimer's disease facts and figures. Alzheimers Dement 
9, 208-45 (2013). 

113. Corrada, M.M., Brookmeyer, R., Paganini-Hill, A., Berlau, D. & Kawas, C.H. Dementia 
Incidence Continues to Increase with Age in the Oldest Old The 90+Study. Annals of 
Neurology 67, 114-121 (2010). 

114. Prince, M., Knapp, M, Guerchet,, M, M., P, Prina, M, Comas-Herrera, A, Wittenberg, 
R, & Adelaja, B., Hu, B, King, D, Rehill, A and Salimkumar, D. in Alzheimer’s Society 
(2014). 

115. Brookmeyer, R., Johnson, E., Ziegler-Graham, K. & Arrighi, H.M. Forecasting the 
global burden of Alzheimer's disease. Alzheimers & Dementia 3, 186-191 (2007). 

116. Schellenberg, G.D. & Montine, T.J. The genetics and neuropathology of Alzheimer's 
disease. Acta Neuropathol 124, 305-23 (2012). 

117. Lambert, J.C. & Amouyel, P. Genetic heterogeneity of Alzheimer's disease: 
complexity and advances. Psychoneuroendocrinology 32 Suppl 1, S62-70 (2007). 

118. Tang, T.-C. et al. Conformational Changes Induced by the A21G Flemish Mutation in 
the Amyloid Precursor Protein Lead to Increased A beta Production. Structure 22, 
387-396 (2014). 



   
 

164 
 

119. Muller, U., Winter, P. & Graeber, M.B. A presenilin 1 mutation in the first case of 
Alzheimer's disease. Lancet Neurol 12, 129-30 (2013). 

120. Jonsson, T. et al. A mutation in APP protects against Alzheimer's disease and age-
related cognitive decline. Nature 488, 96-9 (2012). 

121. Corder, E.H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of 
Alzheimer's disease in late onset families. Science 261, 921-3 (1993). 

122. Walsh, D.M. & Selkoe, D.J. A beta Oligomers - a decade of discovery. Journal of 
Neurochemistry 101, 1172-1184 (2007). 

123. Holtzman, D.M. et al. Apolipoprotein E isoform-dependent amyloid deposition and 
neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U 
S A 97, 2892-7 (2000). 

124. Lauderback, C.M. et al. Apolipoprotein E modulates Alzheimer's Abeta(1-42)-induced 
oxidative damage to synaptosomes in an allele-specific manner. Brain Res 924, 90-7 
(2002). 

125. Mattson, M.P. et al. Evidence for excitoprotective and intraneuronal calcium-
regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 
10, 243-54 (1993). 

126. Barnham, K.J. et al. Structure of the Alzheimer's disease amyloid precursor protein 
copper binding domain. A regulator of neuronal copper homeostasis. J Biol Chem 
278, 17401-7 (2003). 

127. Small, D.H. et al. A heparin-binding domain in the amyloid protein precursor of 
Alzheimer's disease is involved in the regulation of neurite outgrowth. J Neurosci 14, 
2117-27 (1994). 

128. Hardy, J. The 'amyloid cascade hypothesis' of AD: decoy or real McCoy? Reply. 
Trends in Neurosciences 20, 559-559 (1997). 

129. White, A.R. et al. Copper levels are increased in the cerebral cortex and liver of APP 
and APLP2 knockout mice. Brain Res 842, 439-44 (1999). 

130. Lichtenthaler, S.F., Haass, C. & Steiner, H. Regulated intramembrane proteolysis - 
lessons from amyloid precursor protein processing. Journal of Neurochemistry 117, 
779-796 (2011). 

131. Zhang, H., Ma, Q.L., Zhang, Y.W. & Xu, H.X. Proteolytic processing of Alzheimer's ss-
amyloid precursor protein. Journal of Neurochemistry 120, 9-21 (2012). 

132. Grimm, M.O.W., Rothhaar, T.L. & Hartmann, T. The role of APP proteolytic 
processing in lipid metabolism. Experimental Brain Research 217, 365-375 (2012). 

133. Citron, M., Teplow, D.B. & Selkoe, D.J. Generation Of Amyloid-Beta Protein From Its 
Precursor Is Sequence-Specific. Neuron 14, 661-670 (1995). 

134. De Strooper, B. Aph-1, Pen-2, and nicastrin with presenilin generate an active 
gamma-secretase complex. Neuron 38, 9-12 (2003). 

135. Schroeter, E.H. et al. A presenilin dimer at the core of the gamma-secretase enzyme: 
Insights from parallel analysis of Notch 1 and APP proteolysis. Proceedings of the 
National Academy of Sciences of the United States of America 100, 13075-13080 
(2003). 

136. Zheng, H. & Koo, E.H. Biology and pathophysiology of the amyloid precursor protein. 
Molecular Neurodegeneration 6 (2011). 

137. Farzan, M., Schnitzler, C.E., Vasilieva, N., Leung, D. & Choe, H. BACE2, a beta-
secretase homolog, cleaves at the beta site and within the amyloid-beta region of 
the amyloid-beta precursor protein. Proceedings of the National Academy of 
Sciences of the United States of America 97, 9712-9717 (2000). 

138. Yagishita, S., Morishima-Kawashima, M., Ishiura, S. & Ihara, Y. A beta 46 is processed 
to A beta 40 and A beta 43, but not to A beta 42, in the low density membrane 
domains. Journal of Biological Chemistry 283, 733-738 (2008). 



   
 

165 
 

139. Qi-Takahara, Y. et al. Longer forms of amyloid beta protein: Implications for the 
mechanism of intramembrane cleavage by gamma-secretase. Journal of 
Neuroscience 25, 436-445 (2005). 

140. Hardy, J.A. & Higgins, G.A. Alzheimers-Disease - The Amyloid Cascade HypothesiS. 
Science 256, 184-185 (1992). 

141. Hardy, J. & Allsop, D. Amyloid Deposition As The Central Event In The Etiology Of 
Alzheimers-Disease. Trends in Pharmacological Sciences 12, 383-388 (1991). 

142. Selkoe, D.J. Proteolysis of integral membrane proteins and the mechanism of 
Alzheimer's disease. Molecular Biology of the Cell 10, 351A-351A (1999). 

143. Chiti, F. et al. Designing conditions for in vitro formation of amyloid protofilaments 
and fibrils. Proceedings of the National Academy of Sciences of the United States of 
America 96, 3590-3594 (1999). 

144. Nelson, R. et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 
773-778 (2005). 

145. Zagorski, M.G. & Barrow, C.J. NMR-Studies Of Amyloid Beta-Peptides - Proton 
Assignments, Secondary Structure, And Mechanism Of An Alpha-Helix- Beta-Sheet 
Conversion For A Homologous, 28-Residue, N-Terminal Fragment. Biochemistry 31, 
5621-5631 (1992). 

146. Petkova, A.T. et al. A structural model for Alzheimer's beta-amyloid fibrils based on 
experimental constraints from solid state NMR. Proceedings of the National 
Academy of Sciences of the United States of America 99, 16742-16747 (2002). 

147. Di Carlo, M. Beta amyloid peptide: from different aggregation forms to the activation 
of different biochemical pathways. European Biophysics Journal with Biophysics 
Letters 39, 877-888 (2010). 

148. Karsai, A. et al. Mechanical manipulation of Alzheimer's amyloid beta 1-42 fibrils. 
Journal of Structural Biology 155, 316-326 (2006). 

149. Hoyer, W. & Hard, T. Interaction of Alzheimer's A beta peptide with an engineered 
binding protein - Thermodynamics and kinetics of coupled folding-binding. Journal of 
Molecular Biology 378, 398-411 (2008). 

150. Guo, M., Gorman, P.M., Rico, M., Chakrabartty, A. & Laurents, D.V. Charge 
substitution shows that repulsive electrostatic interactions impede the 
oligomerization of Alzheimer amyloid peptides. Febs Letters 579, 3574-3578 (2005). 

151. Bitan, G. et al. Amyloid beta-protein (A beta) assembly: A beta 40 and A beta 42 
oligomerize through distinct pathways. Proceedings of the National Academy of 
Sciences of the United States of America 100, 330-335 (2003). 

152. Lazo, N.D., Grant, M.A., Condron, M.C., Rigby, A.C. & Teplow, D.B. On the nucleation 
of amyloid β-protein monomer folding. Protein Science 14, 1581-1596 (2005). 

153. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and 
problems on the road to therapeutics. Science 297, 353-356 (2002). 

154. Armstrong, R.A. A critical analysis of the 'amyloid cascade hypothesis'. Folia 
Neuropathologica 52, 211-225 (2014). 

155. Tabner, B.J., El-Agnaf, O.M.A., German, M.J., Fullwood, N.J. & Allsop, D. Protein 
aggregation, metals and oxidative stress in neurodegenerative diseases. Biochemical 
Society Transactions 33, 1082-1086 (2005). 

156. Shankar, G.M. & Walsh, D.M. Alzheimer's disease: synaptic dysfunction and A beta. 
Molecular Neurodegeneration 4 (2009). 

157. Shankar, G.M. et al. Amyloid-beta protein dimers isolated directly from Alzheimer's 
brains impair synaptic plasticity and memory. Nature Medicine 14, 837-842 (2008). 

158. Shankar, G.M. et al. Natural oligomers of the Alzheimer amyloid-beta protein induce 
reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent 
signaling pathway. Journal of Neuroscience 27, 2866-2875 (2007). 



   
 

166 
 

159. Welzel, A.T. et al. Secreted Amyloid beta-Proteins in a Cell Culture Model Include N-
Terminally Extended Peptides That Impair Synaptic Plasticity. Biochemistry 53, 3908-
3921 (2014). 

160. Walsh, D.M. et al. Naturally secreted oligomers of amyloid beta protein potently 
inhibit hippocampal long-term potentiation in vivo. Nature 416, 535-539 (2002). 

161. Lacor, P.N. et al. A beta oligomer-induced aberrations in synapse composition, 
shape, and density provide a molecular basis for loss of connectivity in Alzheimer's 
disease. Journal of Neuroscience 27, 796-807 (2007). 

162. Klyubin, I. et al. Amyloid beta protein immunotherapy neutralizes A beta oligomers 
that disrupt synaptic plasticity in vivo. Nature Medicine 11, 556-561 (2005). 

163. O'Malley, T.T. et al. A beta dimers differ from monomers in structural propensity, 
aggregation paths and population of synaptotoxic assemblies. Biochemical Journal 
461, 413-426 (2014). 

164. Borlikova, G.G. et al. Alzheimer brain-derived amyloid beta-protein impairs synaptic 
remodeling and memory consolidation. Neurobiology of Aging 34, 1315-1327 (2013). 

165. Shrestha, B.R. et al. Amyloid beta peptide adversely affects spine number and 
motility in hippocampal neurons. Molecular and Cellular Neuroscience 33, 274-282 
(2006). 

166. Tabner, B.J. et al. Hydrogen peroxide is generated during the very early stages of 
aggregation of the amyloid peptides implicated in Alzheimer disease and familial 
British dementia. Journal of Biological Chemistry 280, 35789-35792 (2005). 

167. Mayes, J. et al. beta-Amyloid Fibrils in Alzheimer Disease Are Not Inert When Bound 
to Copper Ions but Can Degrade Hydrogen Peroxide and Generate Reactive Oxygen 
Species. Journal of Biological Chemistry 289, 12052-12062 (2014). 

168. Opazo, C. et al. Metalloenzyme-like activity of Alzheimer's disease beta-amyloid - Cu-
dependent catalytic conversion of dopamine, cholesterol, and biological reducing 
agents to neurotoxic H2O2. Journal of Biological Chemistry 277, 40302-40308 (2002). 

169. Dikalov, S.I., Vitek, M.P. & Mason, R.P. Cupric-amyloid beta peptide complex 
stimulates oxidation of ascorbate and generation of hydroxyl radical. Free Radical 
Biology and Medicine 36, 340-347 (2004). 

170. Turnbull, S. et al. alpha-Synuclein implicated in Parkinson's disease catalyses the 
formation of hydrogen peroxide in vitro. Free Radical Biology and Medicine 30, 1163-
1170 (2001). 

171. El Khoury, Y., Dorlet, P., Faller, P. & Hellwig, P. New Insights into the Coordination of 
Cu(II) by the Amyloid-B 16 Peptide from Fourier Transform IR Spectroscopy and 
Isotopic Labeling. The Journal of Physical Chemistry B 115, 14812-14821 (2011). 

172. Castello, M.A., Jeppson, J.D. & Soriano, S. Moving beyond anti-amyloid therapy for 
the prevention and treatment of Alzheimer's disease. Bmc Neurology 14 (2014). 

173. Jack, C.R., Jr. et al. Amyloid-first and neurodegeneration-first profiles characterize 
incident amyloid PET positivity. Neurology 81, 1732-1740 (2013). 

174. Hyman, B.T. et al. National Institute on Aging-Alzheimer's Association guidelines for 
the neuropathologic assessment of Alzheimer's disease. Alzheimers & Dementia 8, 1-
13 (2012). 

175. McGeer, P.L. & McGeer, E.G. The amyloid cascade-inflammatory hypothesis of 
Alzheimer disease: implications for therapy. Acta Neuropathologica 126, 479-497 
(2013). 

176. Anand, R., Gill, K.D. & Mahdi, A.A. Therapeutics of Alzheimer's disease: Past, present 
and future. Neuropharmacology 76, 27-50 (2014). 

177. Liu-Seifert, H. et al. Cognitive and Functional Decline and Their Relationship in 
Patients with Mild Alzheimer's Dementia. Journal of Alzheimers Disease 43, 949-955 
(2015). 



   
 

167 
 

178. Bereczki, E., Re, F., Masserini, M.E., Winblad, B. & Pei, J.J. Liposomes functionalized 
with acidic lipids rescue A beta-induced toxicity in murine neuroblastoma cells. 
Nanomedicine-Nanotechnology Biology and Medicine 7, 560-571 (2011). 

179. Millucci, L. et al. Alkaptonuria is a novel human secondary amyloidogenic disease. 
Biochimica Et Biophysica Acta-Molecular Basis of Disease 1822, 1682-1691 (2012). 

180. Huang, L., Liu, X., Cheng, B. & Huang, K. How our bodies fight amyloidosis: Effects of 
physiological factors on pathogenic aggregation of amyloidogenic proteins. Archives 
of Biochemistry and Biophysics 568, 46-55 (2015). 

181. De Jong, K.L., Incledon, B., Yip, C.M. & DeFelippis, M.R. Amyloid Fibrils of Glucagon 
Characterized by High-Resolution Atomic Force Microscopy. Biophysical Journal 91, 
1905-1914. 

182. Dong, M.D. et al. AFM-based force spectroscopy measurements of mature amyloid 
fibrils of the peptide glucagon. Nanotechnology 19, 7 (2008). 

183. Shammas, S.L. et al. Perturbation of the Stability of Amyloid Fibrils through 
Alteration of Electrostatic Interactions. Biophysical Journal 100, 2783-2791 (2011). 

184. Millucci, L. et al. Amyloidosis in alkaptonuria. Journal of inherited metabolic disease 
38, 797-805 (2015). 

185. Green, J.D., Goldsbury, C., Kistler, J., Cooper, G.J.S. & Aebi, U. Human amylin 
oligomer growth and fibril elongation define two distinct phases in amyloid 
formation. The Journal of biological chemistry 279, 12206 (2004). 

186. Ganchev, D.N., Cobb, N.J., Surewicz, K. & Surewicz, W.K. Nanomechanical properties 
of human prion protein amyloid as probed by force spectroscopy. Biophysical Journal 
95, 2909-2915 (2008). 

187. Yamanaka, K., Ogiso, H. & Kolosov, O. Analysis Of Subsurface Imaging And Effect Of 
Contact Elasticity In The Ultrasonic Force Microscope. Japanese Journal of Applied 
Physics Part 1-Regular Papers Short Notes & Review Papers 33, 3197-3203 (1994). 

188. Tovee, P.D. & Kolosov, O.V. Mapping nanoscale thermal transfer in-liquid 
environment-immersion scanning thermal microscopy. Nanotechnology 24, 8 (2013). 

189. Dobson, P.S., Weaver, J. M. R., Mills, G. . New methods for calibrated Scanning 
Thermal Microscopy (SThM). Ieee Sensors, (2007). 

190. Smith, A.D. et al. Near-field optical microscopy with an infra-red free electron laser 
applied to cancer diagnosis. Applied Physics Letters 102 (2013). 

191. Thompson, N.R. et al. First lasing of the ALICE infra-red Free-Electron Laser. Nuclear 
Instruments & Methods in Physics Research Section a-Accelerators Spectrometers 
Detectors and Associated Equipment 680, 117-123 (2012). 

192. Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for 
nanotechnology. Review of Scientific Instruments 78, 013705 (2007). 

193. Kiselyova, O. & Yaminsky, I. in Atomic Force Microscopy (eds. Braga, P. & Ricci, D.) 
217-230 (Humana Press, 2004). 

194. Manzoni, C. et al. Overcoming synthetic A beta peptide aging: a new approach to an 
age-old problem. Amyloid-Journal of Protein Folding Disorders 16, 71-80 (2009). 

195. Levine, H. Thioflavine-T Interaction With Synthetic Alzheimers-Disease Beta-Amyloid 
Peptides - Detection Of Amyloid Aggregation In Solution. Protein Science 2, 404-410 
(1993). 

196. Zhu, M., Souillac, P.O., Ionescu-Zanetti, C., Carter, S.A. & Fink, A.L. Surface-catalyzed 
amyloid fibril formation. Journal of Biological Chemistry 277, 50914-50922 (2002). 

197. May, P.C. et al. β-amyloid peptide in vitro toxicity: Lot-to-lot variability. Neurobiology 
of Aging 13, 605-607 (1992). 

198. Arimon, M., Sanz, F., Giralt, E. & Carulla, N. Template-Assisted Lateral Growth of 
Amyloid-beta 42 Fibrils Studied by Differential Labeling with Gold Nanoparticles. 
Bioconjugate Chemistry 23, 27-32 (2012). 



   
 

168 
 

199. Gaines, G.L. & Tabor, D. Surface adhesion and elastic properties of mica. Nature 178, 
1304-1305 (1956). 

200. Zagorski, M.G. et al. Methodological and chemical factors affecting amyloid beta 
peptide amyloidogenicity. Amyloid, Prions, and Other Protein Aggregates 309, 189-
204 (1999). 

201. Orlando, R., Kenny, P.T.M. & Zagorski, M.G. Covalent modification of Alzheimer's 
amyloid β-peptide in formic acid solutions. Biochemical and Biophysical Research 
Communications 184, 686-691 (1992). 

202. Kirshenbaum, K. & Daggett, V. PH-Dependent Conformations Of The Amyloid Beta(1-
28) Peptide Fragment Explored Using Molecular-Dynamics. Biochemistry 34, 7629-
7639 (1995). 

203. Bezanilla, M., Manne, S., Laney, D.E., Lyubchenko, Y.L. & Hansma, H.G. Adsorption Of 
Dna To Mica, Silylated Mice, And Minerals - Characterization By Atomic-Force 
Microscopy. Langmuir 11, 655-659 (1995). 

204. Wang, H.D. et al. Glutaraldehyde modified mica: A new surface for atomic force 
microscopy of chromatin. Biophysical Journal 83, 3619-3625 (2002). 

205. Hansma, H.G. & Laney, D.E. DNA binding to mica correlates with cationic radius: 
Assay by atomic force microscopy. Biophysical Journal 70, 1933-1939 (1996). 

206. Sherratt, M.J., Baldock, C., Morgan, A. & Kielty, C.M. The morphology of adsorbed 
extracellular matrix assemblies is critically dependent on solution calcium 
concentration. Matrix Biology 26, 156-166 (2007). 

207. Lin, H., Zhu, Y.W.J. & Lal, R. Amyloid beta protein (1-40) forms calcium-permeable, 
Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry 38, 11189-11196 
(1999). 

208. Sherratt, M.J. et al. Fibrillin microfibrils are stiff reinforcing fibres in compliant 
tissues. Journal of Molecular Biology 332, 183-193 (2003). 

209. Bussiek, M., Mucke, N. & Langowski, J. Polylysine-coated mica can be used to 
observe systematic changes in the supercoiled DNA conformation by scanning force 
microscopy in solution. Nucleic Acids Research 31 (2003). 

210. Hatters, D.M. et al. The circularization of amyloid fibrils formed by apolipoprotein C-
II. Biophysical Journal 85, 3979-3990 (2003). 

211. van Bommel, K.J.C., Jung, J.H. & Shinkai, S. Poly(L-lysine) aggregates as templates for 
the formation of hollow silica spheres. Advanced Materials 13, 1472-+ (2001). 

212. Greenfield, N.J. & Fasman, G.D. Computed circular dichroism spectra for the 
evaluation of protein conformation. Biochemistry 8, 4108-4116 (1969). 

213. Nguyen, K.V., Gendrault, J.-L. & Wolff, C.-M. Poly-l-lysine Dissolves Fibrillar 
Aggregation of the Alzheimer β-Amyloid Peptide in Vitro. Biochemical and 
Biophysical Research Communications 291, 764-768 (2002). 

214. Fowler, S.B. et al. Mechanical unfolding of a titin Ig domain: Structure of unfolding 
intermediate revealed by combining AFM, molecular dynamics simulations, NMR and 
protein engineering. Journal of Molecular Biology 322, 841-849 (2002). 

215. Russo, C.J. & Passmore, L.A. Ultrastable gold substrates for electron cryomicroscopy. 
Science 346, 1377-1380 (2014). 

216. Dinelli, F., Albonetti, C. & Kolosov, O.V. Ultrasonic force microscopy: Detection and 
imaging of ultra-thin molecular domains. Ultramicroscopy 111, 267-272 (2011). 

217. Tsai, H.-H., Gunasekaran, K. & Nussinov, R. Sequence and Structure Analysis of 
Parallel β Helices: Implication for Constructing Amyloid Structural Models. Structure 
14, 1059-1072 (2006). 

218. Richardson, J.S. & Richardson, D.C. Natural β-sheet proteins use negative design to 
avoid edge-to-edge aggregation. Proceedings of the National Academy of Sciences 
99, 2754-2759 (2002). 



   
 

169 
 

219. Huang, X.D. et al. The A beta peptide of Alzheimer's disease directly produces 
hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609-7616 (1999). 

220. Huang, X.D. et al. Cu(II) potentiation of Alzheimer A beta neurotoxicity - Correlation 
with cell-free hydrogen peroxide production and metal reduction. Journal of 
Biological Chemistry 274, 37111-37116 (1999). 

221. Harper, J.D., Lieber, C.M. & Lansbury, P.T. Atomic force microscopic imaging of 
seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta 
protein. Chemistry & Biology 4, 951-959 (1997). 

222. Smith, D.P. et al. Concentration dependent Cu2+ induced aggregation and dityrosine 
formation of the Alzheimer's disease amyloid-beta peptide. Biochemistry 46, 2881-
2891 (2007). 

223. Innocenti, M. et al. Trace Copper(II) or Zinc(II) Ions Drastically Modify the 
Aggregation Behavior of Amyloid-beta(1-42): An AFM Study. Journal of Alzheimers 
Disease 19, 1323-1329 (2010). 

224. Klug, G. et al. beta-amyloid protein oligomers induced by metal ions and acid pH are 
distinct from those generated by slow spontaneous ageing at neutral pH. European 
Journal of Biochemistry 270, 4282-4293 (2003). 

225. Olubiyi, O.O. & Strodel, B. Structures of the Amyloid beta-Peptides A beta(1-40) and 
A beta(1-42) as Influenced by pH and a D-Peptide. Journal of Physical Chemistry B 
116, 3280-3291 (2012). 

226. Lin, C.-J., Huang, H.-C. & Jiang, Z.-F. Cu(II) interaction with amyloid-beta peptide: A 
review of neuroactive mechanisms in AD brains. Brain Research Bulletin 82, 235-242 
(2010). 

227. Faller, P. Copper and Zinc Binding to Amyloid-beta: Coordination, Dynamics, 
Aggregation, Reactivity and Metal-Ion Transfer. Chembiochem 10, 2837-2845 (2009). 

228. Garai, K., Sahoo, B., Kaushalya, S.K., Desai, R. & Maiti, S. Zinc lowers amyloid-beta 
toxicity by selectively precipitating aggregation intermediates. Biochemistry 46, 
10655-10663 (2007). 

229. Garai, K., Sengupta, P., Sahoo, B. & Maiti, S. Selective destabilization of soluble 
amyloid beta oligomers by divalent metal ions. Biochemical and Biophysical Research 
Communications 345, 210-215 (2006). 

230. Tougu, V., Tiiman, A. & Palumaa, P. Interactions of Zn(II) and Cu(II) ions with 
Alzheimer's amyloid-beta peptide. Metal ion binding, contribution to fibrillization 
and toxicity. Metallomics 3, 250-261 (2011). 

231. Blackley, H.K.L. et al. High resolution investigations of beta-amyloid fibrillization by 
atomic force microscopy. Faseb Journal 13, A1574 (1999). 

232. Powers, E.T. & Powers, D.L. Mechanisms of protein fibril formation: Nucleated 
polymerization with competing off-pathway aggregation. Biophysical Journal 94, 
379-391 (2008). 

233. Walsh, D.M. et al. Certain inhibitors of synthetic amyloid beta-peptide (A beta) 
fibrillogenesis block oligomerization of natural A beta and thereby rescue long-term 
potentiation. Journal of Neuroscience 25, 2455-2462 (2005). 

234. Trabelsi, A.B. et al. Charged nano-domes and bubbles in epitaxial graphene. 
Nanotechnology 25, 16 (2014). 

235. Goldsbury, C. et al. Amyloid structure and assembly: Insights from scanning 
transmission electron microscopy. Journal of Structural Biology 173, 1-13 (2011). 

236. Blackley, H.K.L. et al. In-situ atomic force microscopy study of beta-amyloid 
fibrillization. Journal of Molecular Biology 298, 833-840 (2000). 

237. Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray 
diffraction. Journal of Molecular Biology 273, 729-739 (1997). 

238. Jimenez, J.L. et al. Cryo-electron microscopy structure of an SH3 amyloid fibril and 
model of the molecular packing. Embo Journal 18, 815-821 (1999). 



   
 

170 
 

239. Fitzpatrick, A.W.P. et al. Atomic structure and hierarchical assembly of a cross-beta 
amyloid fibril. Proceedings of the National Academy of Sciences of the United States 
of America 110, 5468-5473 (2013). 

240. Donhauser, Z.J., Jobs, W.B. & Binka, E.C. Mechanics of Microtubules: Effects of 
Protofilament Orientation. Biophysical Journal 99, 1668-1675 (2010). 

241. Vinckier, A. et al. Immobilizing And Imaging Microtubules By Atomic-Force 
Microscopy. Ultramicroscopy 57, 337-343 (1995). 

242. Inagaki, K., Kolosov, O.V., Briggs, G.A.D. & Wright, O.B. Waveguide ultrasonic force 
microscopy at 60 MHz. Applied Physics Letters 76, 1836-1838 (2000). 

243. Cuberes, M.T., Assender, H.E., Briggs, G.A.D. & Kolosov, O.V. Heterodyne force 
microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic 
response at ultrasonic frequencies. Journal of Physics D-Applied Physics 33, 2347-
2355 (2000). 

244. Skilbeck, M.S. et al. Multimodal microscopy using 'half and half' contact mode and 
ultrasonic force microscopy. Nanotechnology 25 (2014). 

245. Kraatz, M., Geisler, H. & Zschech, E. in Characterization and Metrology for Ulsi 
Technology (eds. Seiler, D.G. et al.) 343-347 (2003). 

246. Moran, S.D. & Zanni, M.T. How to Get Insight into Amyloid Structure and Formation 
from Infrared Spectroscopy. Journal of Physical Chemistry Letters 5, 1984-1993 
(2014). 

247. Benseny-Cases, N., Klementieva, O., Cotte, M., Ferrer, I. & Cladera, J. 
Microspectroscopy (mu FTIR) Reveals Co-localization of Lipid Oxidation and Amyloid 
Plaques in Human Alzheimer Disease Brains. Analytical Chemistry 86, 12047-12054 
(2014). 

248. Xue, L. et al. High-Resolution Chemical Identification of Polymer Blend Thin Films 
Using Tip-Enhanced Raman Mapping. Macromolecules 44, 2852-2858 (2011). 

249. Amenabar, I. et al. Structural analysis and mapping of individual protein complexes 
by infrared nanospectroscopy. Nature Communications 4 (2013). 

250. Marcott, C. et al. Using 2D correlation analysis to enhance spectral information 
available from highly spatially resolved AFM-IR spectra. Journal of Molecular 
Structure 1069, 284-289 (2014). 

251. Van Eerdenbrugh, B., Lo, M., Kjoller, K., Marcott, C. & Taylor, L.S. Nanoscale Mid-
Infrared Evaluation of the Miscibility Behavior of Blends of Dextran or Maltodextrin 
with Poly(vinylpyrrolidone). Molecular Pharmaceutics 9, 1459-1469 (2012). 

252. Bosse, J.L. et al. Nanothermal characterization of amorphous and crystalline phases 
in chalcogenide thin films with scanning thermal microscopy. Journal of Applied 
Physics 116 (2014). 

253. Sadewasser, S., Leendertz, C., Streicher, F. & Lux-Steiner, M.C. The influence of 
surface topography on Kelvin probe force microscopy. Nanotechnology 20 (2009). 

254. Shen, S., Mavrokefalos, A., Sambegoro, P. & Chen, G. Nanoscale thermal radiation 
between two gold surfaces. Applied Physics Letters 100, 233114 (2012). 

255. Saveliev, Y.M., Jackson, F., Jones, J., McKenzie, J. in International Particle Accelerator 
Conference (New Orleans, USA, 2012). 

256. Muller, T. et al. Nanoscale spatially resolved infrared spectra from single 
microdroplets. Lab on a Chip 14, 1315-1319 (2014). 

257. Shivu, B. et al. Distinct beta-Sheet Structure in Protein Aggregates Determined by 
ATR-FTIR Spectroscopy. Biochemistry 52, 5176-5183 (2013). 

258. Stroud, J.C., Liu, C., Teng, P.K. & Eisenberg, D. Toxic fibrillar oligomers of amyloid-β 
have cross-β structure. Proceedings of the National Academy of Sciences (2012). 

259. Cerf, E., Ruysschaert, J.-M., Goormaghtigh, E. & Raussens, V. ATR-FTIR, a new tool to 
analyze the oligomeric content of A beta samples in the presence of apolipoprotein E 
isoforms. Spectroscopy-an International Journal 24, 245-249 (2010). 



   
 

171 
 

260. Olofsson, A., Lindhagen-Persson, M., Sauer-Eriksson, A.E. & Ohman, A. Amide solvent 
protection analysis demonstrates that amyloid-beta(1-40) and amyloid-beta(1-42) 
form different fibrillar structures under identical conditions. Biochemical Journal 
404, 63-70 (2007). 

261. Barth, A. Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA) - 
Bioenergetics 1767, 1073-1101 (2007). 

262. Kong, J. & Yu, S. Fourier transform infrared spectroscopic analysis of protein 
secondary structures. Acta Biochimica Et Biophysica Sinica 39, 549-559 (2007). 

263. Benseny-Cases, N., Cocera, M. & Cladera, J. Conversion of non-fibrillar beta-sheet 
oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation. 
Biochemical and Biophysical Research Communications 361, 916-921 (2007). 

264. Bieschke, J. et al. Small-molecule conversion of toxic oligomers to nontoxic beta-
sheet-rich amyloid fibrils. Nature Chemical Biology 8, 93-101 (2012). 

265. Cleary, J.P. et al. Natural oligomers of the amyloid-protein specifically disrupt 
cognitive function. Nature Neuroscience 8, 79-84 (2005). 

266. Freir, D.B. et al. A beta oligomers inhibit synapse remodelling necessary for memory 
consolidation. Neurobiology of Aging 32, 2211-2218 (2011). 

267. Farlow, M. et al. Safety and biomarker effects of solanezumab in patients 
with Alzheimer’s disease. Alzheimer's & Dementia: The Journal of the Alzheimer's 
Association 8, 261-271. 

268. Dodart, J.-C. et al. Immunization reverses memory deficits without reducing brain Aβ 
burden in Alzheimer's disease model. Nature Neuroscience 5, 452 (2002). 

269. Austen, B.M. et al. Designing peptide inhibitors for oligomerization and toxicity of 
Alzheimer's beta-amyloid peptide. Biochemistry 47, 1984-1992 (2008). 

270. Taylor, M. et al. Development of a Proteolytically Stable Retro-Inverso Peptide 
Inhibitor of beta-Amyloid Oligomerization as a Potential Novel Treatment for 
Alzheimer's Disease. Biochemistry 49, 3261-3272 (2010). 

271. Parthsarathy, V. et al. A Novel Retro-Inverso Peptide Inhibitor Reduces Amyloid 
Deposition, Oxidation and Inflammation and Stimulates Neurogenesis in the 
APPswe/PS1 Delta E9 Mouse Model of Alzheimer's Disease. Plos One 8 (2013). 

272. Hein, C.D., Liu, X.M. & Wang, D. Click chemistry, a powerful tool for pharmaceutical 
sciences. Pharm Res 25, 2216-30 (2008). 

273. Davis, C.H. & Berkowitz, M.L. Interaction Between Amyloid-β (1–42) Peptide and 
Phospholipid Bilayers: A Molecular Dynamics Study. Biophysical Journal 96, 785-797 
(2009). 

274. Qiang, W., Yau, W.-M. & Schulte, J. Fibrillation of beta amyloid peptides in the 
presence of phospholipid bilayers and the consequent membrane disruption. 
Biochimica et biophysica acta 1848, 266-76 (2015). 

275. Tamayo, J. & Garcia, R. Deformation, contact time, and phase contrast in tapping 
mode scanning force microscopy. Langmuir 12, 4430-4435 (1996). 

276. Poojari, C. & Strodel, B. Stability of Transmembrane Amyloid beta-Peptide and 
Membrane Integrity Tested by Molecular Modeling of Site-Specific A beta 42 
Mutations. Plos One 8, 12 (2013). 

277. Ambroggio, E.E. et al. Surface Behavior and Lipid Interaction of Alzheimer β-Amyloid 
Peptide 1–42: A Membrane-Disrupting Peptide. Biophysical Journal 88, 2706-2713 
(2005). 

278. Sublimi Saponetti, M. et al. Aggregation of Aß(25-35) on DOPC and DOPC/DHA 
Bilayers: An Atomic Force Microscopy Study. PLoS ONE 9, e115780 (2014). 

279. Kumar, A. et al. Specific Soluble Oligomers of Amyloid-beta Peptide Undergo 
Replication and Form Non-fibrillar Aggregates in Interfacial Environments. Journal of 
Biological Chemistry 287, 21253-21264 (2012). 



   
 

172 
 

280. Kuo, Y.C. & Wang, C.T. Protection of SK-N-MC cells against beta-amyloid peptide-
induced degeneration using neuron growth factor-loaded liposomes with surface 
lactoferrin. Biomaterials 35, 5954-5964 (2014). 

281. Theunis, C. et al. Efficacy and Safety of A Liposome-Based Vaccine against Protein 
Tau, Assessed in Tau.P301L Mice That Model Tauopathy. Plos One 8 (2013). 

282. Vu, H.T. et al. Effect of liposome membranes on disaggregation of amyloid beta 
fibrils by dopamine. Biochemical Engineering Journal 71, 118-126 (2013). 

283. Bin, Y., Li, X., He, Y., Chen, S. & Xiang, J. Amyloid- peptide (142) aggregation induced 
by copper ions under acidic conditions. Acta Biochimica Et Biophysica Sinica 45, 570-
577 (2013). 

284. Doody, R.S. et al. Phase 3 Trials of Solanezumab for Mild-to-Moderate Alzheimer's 
Disease. New England Journal of Medicine 370, 311-321 (2014). 

285. Ruggeri, F.S. et al. Infrared nanospectroscopy characterization of oligomeric and 
fibrillar aggregates during amyloid formation. Nat Commun 6 (2015). 

286. Tinker-Mill, C., Mayes, J., Allsop, D. & Kolosov, O.V. Ultrasonic force microscopy for 
nanomechanical characterization of early and late-stage amyloid-β peptide 
aggregation. Sci. Rep. 4 (2014). 

287. Jan, A., Hartley, D.M. & Lashuel, H.A. Preparation and characterization of toxic A 
beta aggregates for structural and functional studies in Alzheimer's disease research. 
Nature Protocols 5, 1186-1209 (2010). 

288. Yip, C.M. & McLaurin, J. Amyloid-beta peptide assembly: A critical step in 
fibrillogenesis and membrane disruption. Biophysical Journal 80, 1359-1371 (2001). 

289. Yip, C.M., Darabie, A.A. & McLaurin, J. A beta 42-peptide assembly on lipid Bilayers. 
Journal of Molecular Biology 318, 97-107 (2002). 

290. Lee, A.J., Szymonik, M., Hobbs, J.K. & Walti, C. Tuning the translational freedom of 
DNA for high speed AFM. Nano Research 8, 1811-1821 (2015). 

 

 

 

 

 

 

 

 

 

 


	Acknowledgments and dedications

