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Churners are users who stop using a given service after previously signing up. In the domain of telecommu-
nications and video games, churners represent a loss of revenue as a user leaving indicates that they will no

longer pay for the service. In the context of online community platforms (e.g. community message boards,

social networking sites, question-answering systems, etc.) the churning of a user can represent different kinds
of loss: of social capital, of expertise, or of a vibrant individual who is a mediator for interaction and com-

munication. Detecting which users are likely to churn from online communities therefore enables community
managers to offer incentives to entice those users back; as retention is less expensive than re-signing users

up. In this paper we tackle the task of detecting churners on four online community platforms by mining

user development signals. These signals explain how users have evolved along different dimensions (i.e. social
and lexical) relative to their prior behaviour and the community in which they have interacted. We present

a linear model, based upon elastic-net regularisation, that uses extracted features from the signals to detect

churners. Our evaluation of this model against several state of the art baselines, including our own prior
work, empirically demonstrates the superior performance that this approach achieves for several experi-

mental settings. This paper presents a novel approach to churn prediction that takes a different route from

existing approaches that are based on measuring static social network properties of users (e.g. centrality,
in-degree, etc.).
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1. INTRODUCTION
The problem of users churning (i.e. leaving a service) can have a significant impact
upon service adoption and thus return on investment. Therefore, churn detection, the
process of identifying which users will drop out of using a given service, is an important
challenge in a number of domains including: (i) telecommunications, where operators
wish to know who is likely to leave the service so that incentives may be given to those
individuals to remain as customers; (ii) online games, where users may cancel their
subscription to the service and thus result in a financial loss to the service provider;
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1:2 M. Rowe

(iii) social networks, where brand managers and social media marketers wish to main-
tain large subscriber networks to increase the number of individuals who see their
published information, and finally; (iv) online community management, where the
churning of certain users, in particular in communities which revolve around knowl-
edge sharing, can have a significant impact upon the utility of the community and its
ability to provide solutions to support requests.

To date, the majority of work within the area of churn detection, and from the dis-
parate domains cited above, has focussed on building a detection model using informa-
tion about a user’s social network position, and thus the extent to which he is interact-
ing with other users, and/or the activity of a given user up until a given point in time.
As a result, few pieces of work have considered how a user has developed throughout
his lifecycle (i.e. the period of time between a user joining a service to the present)
when using the service, and how this information can be used to detect which users
will churn. This leads to two questions: Are there salient differences in how churners
and non-churners develop? And; how can such development information be incorpo-
rated into an approach to detect churners?

In this paper we present the results from examining both of these questions with
an analysis of the development signals of churners and non-churners mined from four
online community platforms, and a detection model that leverages features of these
signals to identify who will churn and who will remain. In our prior work [Rowe 2014]
we presented a detection model based upon Gaussian Sequences, in this paper we ad-
vance over this work by explaining how a linear model with elastic net regularisation
offers significantly better detection accuracy (e.g. yielding ROC value of 0.706 in one
instance) in certain cases, and examining the impact of smoothing on detection accu-
racy of the Gaussian Sequence model [Rowe 2014]. We build on our other prior work
[Rowe 2013] which presented an approach to model the lifecycles of users in online
communities by examining different lifecycle fidelities, rather than the 20 stages in-
spected previously, and without the need to induce development trajectory functions.
This paper also presents a more thorough, fine-grained, and deeper analysis of how
churners and non-churners differ in their development; thereby expanding over our
prior work [Rowe 2014; 2013], and leading to the proposition of a theory for churner
development. We hope that the framework and approach outlined in this paper, and
the theory of churner development, will be tested in future work within the commu-
nity on differing datasets and platforms. We make the following contributions in this
paper:

— An approach to model the development signals of web users across different lifecycle
fidelities (i.e. 5, 10, 20 stages) rather than one fidelity setting [Rowe 2013].

— Inspection of churners’ and non-churners’ development signals across four online
community platforms, and the proposal of a theory for churners’ development from
development observations.

— A method to mine static and rate features from users’ development signals.
— A detection model based upon linear models with elastic net regularisation trained

using a stochastic coordinate descent learning approach - rather than average coor-
dinate descent.

— Evaluation of the detection model across the four platforms’ datasets showing that
we significantly outperform existing models including baselines from current work
[Karnstedt et al. 2011; Rowe 2014].

We have structured the paper as follows: Section 2 presents related work from the
related fields of social network evolution, user lifecycles, and churn prediction. Sec-
tion 3 details the datasets that we used for our experiments and analyses within this
paper. Section 4 explains how we model users’ lifecycles, elaborating on model design
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decisions that we made previously [Rowe 2013]. Section 5 describes how we decide
who is a churner and who is not a churner in the context of online community plat-
forms, and examines how churners and non-churners develop differently across the
examined platforms. Section 6 defines the process of engineering features from users’
development signals, and section 7 presents the various detection models that harness
those features and the evaluation of those models. Section 8 discusses the implications
of this work and plans for future work, within both churn prediction and social com-
puting, and section 9 finishes the paper with the conclusions that we drew from this
work.

2. RELATED WORK
2.1. Social Network Evolution
Social network evolution concentrates on examining social network development
across disparate systems. For instance, work by Kossinets and Watts [Kossinets and
Watts 2006] examined university social networks derived from email headers passed
between students and university staff, finding that network properties reached a
global equilibrium in terms of the proportion of mutual acquaintances between individ-
uals in the network and shared study classes. Mislove et al. [Mislove et al. 2007] com-
pared the social network properties (link symmetry, power law distributions of edges
and nodes, and local clustering of users) of Flickr, LiveJournal, Orkut and YouTube,
and found high degrees of local clustering on the different platforms which contained
densely populated subgroups of similar users. Similar cross-platform inspections were
performed by Leskovec et al. [Leskovec et al. 2008] using Flickr, Delicious, Answers
and LinkedIn, by deriving network processes such as node arrival and edge creation
rates. The authors showed similar effects in terms of the social processes at work
throughout the social platforms. Zheleva et al. [Zheleva et al. 2009] examined the
evolution of users’ social networks and affiliation networks on Flickr and used a gen-
erative model to replicate the processes of users creating edges and joining affiliate
networks.

Panzarasa et al. [Panzarasa et al. 2009] used an online community platform provided
for students of the University of California, Irvine, to assess how the social network
structure of the community platform evolved over time. The authors found that certain
users acted consistently as hubs through which communication was mediated. Similar
work by Backstrom et al. [Backstrom et al. 2006] explored the effects that govern group
formation and joining behaviour on LiveJournal, and found that using the proportion
of a user’s friends already within a group had a key effect on identifying group joiners.
Kairam et al. [Kairam et al. 2012] assessed the dynamics of group formations within
the social networking platform Ning. Like Backstrom et al., the authors found that the
probability of a user joining a group was linked to the number of prior members within
whom he has a relationship. Recent work by Gong et al. [Gong et al. 2012] inspected
the evolution of social networks on Google+ as the platform was growing in mem-
berships, in particular they focused on social-attribute networks (i.e. bipartite graphs
containing people and their attributes as nodes), finding that the platform exhibited
unique growth and characteristics of the networks as more people joined Google+ (i.e.
reduced reciprocity). Chung et al. [Chung et al. 2012] examined the assortativity (i.e.
the degree to which similar degree nodes interact with one another) of social networks
derived from an online community building web site over a ten-year period, and found
assortativity to increase with time.
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2.2. User Lifecycles
The above works from the field of social network evolution allow one to understand the
latent processes governing social network formation and development. Although use-
ful, they do not afford insights into how specific users develop over their lifetimes in
social systems, or how user development differs between users. Several pieces of recent
work have explored this gap by characterising users’ development throughout their
lifecycles within both social platforms and adopted services. For instance, Miritello et
al. [Miritello et al. 2013] examined the social evolution of users over time in terms of:
a) communication capacity of users (the limit of the number of social connections they
can maintain), and b) the activity rate of users (the number of edges users created),
using call records data. The authors found that as people aged throughout their life-
cycle that their social circle reduced in size and that interaction occurs less towards
later life periods. Similarly Danescu-Niculescu-Mizil et al. [Danescu-Niculescu-Mizil
et al. 2013] assessed the lexical dynamics of online community members by modelling
their lexical term distributions and how these changed relative to the community, find-
ing that users began their lifecycle within the community by adapting their language
to the community but then stopped doing so. McAuley and Leskovec [McAuley and
Leskovec 2013] examined how users evolved in their expertise (assuming a monotonic
progression) over time in the same beer rating communities as [Danescu-Niculescu-
Mizil et al. 2013]. The authors defined users as evolving based on their own ‘personal
clock’ where the rate of progression is user-dependent, and used this notion to mine
latent experience levels for each user and then use these for recommendations.

In this paper we build on the prior work of McAuley et al. [McAuley and Leskovec
2013] by using the same notion of a personal clock from which to derive lifecycle periods
of users. We then combine the social dynamics, examined in prior work of Miritello
et al. [Miritello et al. 2013], and the lexical dynamics, inspected in the prior work
of Danescu et al. [Danescu-Niculescu-Mizil et al. 2013], to assess how users evolve
throughout their lifecycle periods. Not only do we compare the user’s development with
the community in which they are interacting, as in [Danescu-Niculescu-Mizil et al.
2013], but we also assess how the user has developed relative to their prior states and
behaviour. This analysis of user evolution is used to discern how churners and non-
churners differ in their development signals, and how this information can inform our
churn prediction model with features to use. To gather sufficient observations from
which to base a theory of churner development upon, we examine these development
signals across four different online community platforms; finding commonalities in the
patterns of user evolution.

2.3. Churn Prediction
The prediction of churners has been studied across a variety of domains. Dasgupta
et al. [Dasgupta et al. 2008] analysed Call Detail Records from a large (unnamed)
telecommunications provider, using initial insights from inspecting the data to show
that churn likelihood, for a given user, was dependent on the number of their friends
who had previously churned. A spreading activation model was then implemented to
predict churn, finding that network effects are better predictors than other features
such as call usage and activity. For instance, Zhang et al. [Zhang et al. 2010] predicted
churners in a Chinese telecommunications network by inducing a decision tree clas-
sifier from user activity features (e.g. call duration) and network properties (e.g. 2nd
order ego-network clustering coefficient), finding that a combination of activity and
network features performed best for predicting churners. McGowan et al. [McGowan
et al. 2011] also predicted churners from a telecommunications provider by experi-
menting with different dimensionality reduction and boosting methods, finding that
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reducing model complexity, via information gain ratio and χ2-testing, improved pre-
dictive performance. Meanwhile earlier work from Stutzbach and Rejaie [Stutzbach
and Rejaie 2006] assessed the churning (i.e. dropping-off) of users from peer-to-peer
sharing networks (e.g. Gnutella, and BitTorrent), finding that the peers who join to
share files and churn demonstrate a heavy-tailed distribution of how long they remain
to share information - i.e. the majority of churners remain only for a short time.

Analogous to churn prediction in telecommunications is the prediction of churn-
ers from online games such as Massive Multiplayer Online Role Playing Games
(MMORPGs). Borbora et al. [Borbora et al. 2011] presented an approach to predict
churners from Sony’s game Everquest II. The authors examined theories on user par-
ticipation as to what motivates users to play the game (e.g. progression and power,
story lines, collaboration with groups, etc.), before then engineering features that cap-
ture, in a tangible form, the realisation of such motivations ( e.g. rate of quest partic-
ipation, experience points gained, number of characters interacted with). By inducing
a decision tree classifier, using different feature sets (achievement-oriented, socialisa-
tion, data-driven), Borbora et al. found that socialisation features provided the best
predictive performance.

Several works have examined the prediction of churners from social networks: Lewis
et al. [Lewis et al. 2012] examined Facebook networks of college students over a 4 year
period and found an association between friendship maintenance and geographical
proximity and shared tastes. Quercia et al. [Quercia et al. 2012] analysed Facebook
friendships and users’ personality traits, finding that churn was likely to happen if the
ages of connected users differed and if one of the users was neurotic or introverted.
Kwak et al. have examined churners from Twitter networks in [Kwak et al. 2011]
and [Kwak et al. 2012]: in the former the authors analysed the differences between
social network snapshots, separated by 6 weeks, of Korean Twitter users finding that
users unfollowed other users when the users talked about uninteresting topics; while
in the latter work [Kwak et al. 2012], the authors induced a logistic regression model to
predict churners based on pairwise features (formed between the user and each of his
subscribers), finding the more common tags between users, then the less likely they are
to churn. Dror et al. [Dror et al. 2012] predicted the churning of ‘new users’ on Yahoo!
answers by examining user features mined over a 7-day period. Features included
information related to questions posed (e.g. number of questions asked), answers given
(e.g. number of answers given), and gratification-received (e.g. number of best answers,
number of up-votes); unsurprisingly key features for discriminating between churners
and non-churners were found to be the number of answers given, the fraction of time
between posting answers, and the number of answers the user submits before he/she
wins the ‘best answer’ for a given question.

The detection of churners from the Irish online community message board Boards.ie
was examined in the work of Karnstedt et al. [Karnstedt et al. 2010; Karnstedt et al.
2011] The authors found in [Karnstedt et al. 2010] that the probability of a user churn-
ing was related to the number of prior users with whom the individual has communi-
cated having churned before. Based on such initial insights, the authors’ follow-up
work [Karnstedt et al. 2011] then sought to engineer a model to identify which users
would churn. For this, the authors examined the social network properties of churners
against non-churners (i.e. in-degree, out-degree, clustering coefficient, closeness cen-
trality, etc.), and then used this information to learn a decision tree classifier. In order
to provide a comparison between our proposed detection models, and that of prior work,
we use the approach from [Karnstedt et al. 2011] as our baseline, along with a model
from our own prior work based on a dual-gaussian sequence model [Rowe 2014]. We
empirically demonstrate that our proposed linear detection model significantly outper-
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forms these existing approaches, and therefore indicates the utility in using features
mined from users’ development signals to identify churners.

3. ONLINE COMMUNITY DATASETS
In order to examine the development of users across a multitude of online community
platforms, and to see how our proposed churn detection models fare in disparate set-
tings, we collected and employed four community platform datasets for our analyses
and experiments: Facebook, the SAP Community Network (SAP), Server Fault, and
Boards.ie. Figure 1 presents distribution plots of the user life periods (in days) and the
posts per-user across the three platforms, and Table I provides summary statistics of
the datasets.

(a) Facebook (b) SAP (c) Server Fault (d) Boards.ie

Fig. 1. Distribution plots of user life periods and posts-per-user across the four platforms. The dashed red
lines indicate the mean of each distribution.

3.1. Facebook
We obtained data from Facebook groups related to Open University degree course dis-
cussions. The groups allow users to discuss the problems and issues that they may be
having with degree course material and potential avenues for solving those problems.
Although Facebook provides the ability to collect social network data for users, we did
not collect such data in this instance and instead used the reply-to graph within the
groups to build social networks for individual users. In doing so we would constrain
the social dynamics at play to those within the context of the groups.

3.2. SAP Community Network (SAP)
SAP provides a range of software solutions for enterprises, therefore it also offers a
community question-answering platform in which users can post questions related to
the issues they may be having and receive advice and solutions from the other commu-
nity members; this platform is known as the SAP Community Network. Should users
provide answers to questions then they receive points as rewards, thereby building up
a reputation over time as being an expert in some SAP technology or software domain.
We used the reply-to graph to form implicit connections between users, given that
users cannot ’friend’ other users on the platform - and we therefore have consistent
social dynamics across the analysed platforms based upon communication patterns.

3.3. Server Fault
Server Fault is a platform that is part of the Stack Overflow question answering site
collection.1 The platform functions in a similar vein to SAP by providing users with the

1http://stackoverflow.com/

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article 1, Publication date: January 2015.



Mining User Development Signals for Online Community Churner Detection 1:7

Table I. Statistics of the community platform datasets.

Platform #Users #Posts Time Span
Facebook 4,745 118,432 [18-08-2007,24-01-2013]
SAP 32,926 427,221 [15-12-2003,20-07-2011]
Server Fault 33,285 234,790 [01-08-2008,31-03-2011]
Boards.ie 65,528 6,120,008 [01-01-2005,13-02-2008]

means to post questions pertaining to a variety of server-related issues, and allowing
other community members to reply with potential answers. Similar to SAP, Server
Fault also lacks explicit edge-creation features, therefore we use the reply-to graph (i.e.
where a user has replied to another user’s question) to form an implicit edge between
the users.

3.4. Boards.ie
For the fourth dataset we were provided with data from the online community message
board Boards.ie, the most popular message board in Ireland, where we had access to
all posts from 2005 to 2008. On Boards.ie users post to dedicated forums where each
forum contains discussions related to a specific topic (e.g. football, rugby union, chess,
etc.). Users interact with one another through discussion threads where one user will
post a message to initiate a thread and to which users subsequently reply. Unlike on
SAP and Server Fault, on Boards.ie there is no notion of expertise, instead users build
up a reputation through the total number of posts that they made. Given the nature of
the platform, and in a similar vein to the above three platforms, we used the reply-to
graph (formed from users replying to one another in threaded discussions) as implicit
edges between users.

4. REPRESENTING USER LIFECYCLES
User lifecycles describe the lifetime period of a user in a given platform, or service. In
the context of our work, a user’s lifecycle is bound by the first and last time that they
posted within the datasets that we have available. In this section we explain how such
lifecycles are split up into periods, or stages, and how different user dimensions can
then be inspected by analysing discrete lifecycle periods.

4.1. Deriving Lifecycle Periods
Existing recent work [Miritello et al. 2013; Danescu-Niculescu-Mizil et al. 2013;
McAuley and Leskovec 2013] has demonstrated the extent to which users develop at
their own pace and thus evolve according to their own ‘personal clock’ [McAuley and
Leskovec 2013]. We validated this finding in the context of our datasets by deriving
each user’s lifetime in the system into 20-equally time sliced windows and examining
the proportion of the user’s activity (posts) within each windowed interval. Let birth(P )
denote a utility function that returns the timestamp of the earliest post within a given
set of posts P and death(P ) also be a utility function that returns the the timestamp
of the final post of a user given his set of the posts. We define interval(P ) to return
the interval width of a user’s lifetime (between birth and death) when divided into 20
segments. We then derived the set of equally time-sliced life periods for a given user
as a set of tuples representing closed time intervals ([ti, tj ], ti < tj):

Ttime = {[ti, tj ] : k ∈ Z+
20,ti = birth(Pui

) + k × interval(Pui
),

tj = birth(Pui
) + (k + 1)× interval(Pui

)} (1)

We were therefore provided with 20 time periods over which we could inspect the
development of the user. We began by analysing the posting activity of each user within
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our respective datasets within the different lifetime periods, therefore given a user
ui ∈ U and a time interval [ti, tj ] ∈ Ttime we derive the proportion of activity that took
place within the given period as follows:

activity(ui, [ti, tj ]) =
|{p : p ∈ Pui , ti ≤ time(p) < tj)}|

|Pui
|

(2)

where time(p) denotes a function that returns the time and date at which the post
was made, thus defining the set in the numerator as being those posts which fall
within the given interval. Figure 2 presents the activity distribution across the time-
sliced lifetime period averaged over all users in our datasets. We found that for each
platform user activity peaks at the start of their lifetimes, before reducing and then
increasing again towards the end, suggesting that users join the community and par-
ticipate initially, before reducing their activity over time gradually. We also examined
the distribution of initiations (thread starters) and replies (responses to previously ini-
tiated threads) across the platforms and found the same u-shaped curve as with the
activity plots.

(a) Facebook (b) SAP (c) Server Fault (d) Boards.ie

Fig. 2. Proportion of activity per lifecycle period (i.e. 0 = first period, 1 = final) across the online community
platforms’ users.

To further examine whether this behaviour is common across users who have only
contributed a few posts to each platform, and those who had contributed a lot we plot-
ted the same activity distribution for users divided into two groups: (i) users who had
posted 10 or more times, and; (ii) users who had posted less than 10 times. Figure 3
shows these plots for each platform. We find here that regardless of the type of user
(i.e. light or heavy poster) these activity distributions have the same U-shape: a user
posts a lot initially, before tailing off, and then posting again.

In the above plots it is clear that users follow a U-shape activity curve across their
lifecycles irrespective of their total post frequency, however it is not clear to what ex-
tent users’ lifecycle periods contain no activity at all (i.e. the user has effectively tem-
porarily churned). Therefore, we assessed each user’s activity throughout their life
periods and recorded, for each user, the frequency of inactive periods (from the 20 pe-
riods under assessment). Figure 4 presents the distribution of the no activity stages
per user across each of the platforms. We find that Facebook has a fairly symmetri-
cal distribution about its mean of 10 inactive periods, while SAP and Server Fault
have left-skewed distributions. One can imagine that the use of question-answering
community platforms such as SAP and Server Fault include users who only partici-
pate when they have a given information need and thus need to find the solution to
a problem, the remainder of the time they would be either lurking and not directly
contributing or not visiting the site at all. Boards.ie meanwhile has a right-skew, as

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article 1, Publication date: January 2015.



Mining User Development Signals for Online Community Churner Detection 1:9

(a) Facebook (b) SAP (c) Server Fault (d) Boards.ie

Fig. 3. Proportion of activity per lifecycle period with users who have posted 10 or more times (main plot)
and users who have posted less than 10 times (inset plot)

over 30% of users have posted in every lifecycle period; however this is symptomatic of
a community-message board where the needs of the community users to interact (i.e.
for conversation and social sharing) differ from the information and issue-resolution
needs of more question-answering oriented communities.

(a) Facebook (b) SAP (c) Server Fault (d) Boards.ie

Fig. 4. Distribution of 0% activity stages throughout individual users’ time-sliced lifeperiods.

These findings suggest that a time-sliced approach to deriving the lifetime periods of
a user would be inappropriate as the lack of activity within certain periods would have
a strong effect on the social and lexical dynamics that could be observed. For instance,
a reduction in activity has a strong effect on the user socialising with other users, as
he is not contributing any content he is not participating socially. Therefore for deriv-
ing the lifecycle periods of users within the platforms we adopted an activity-slicing
approach that divides a user’s lifetime into k discrete time intervals but with an equal
proportion of activity within each period; this approach is analogous to those adopted
in prior work [Miritello et al. 2013; Danescu-Niculescu-Mizil et al. 2013; McAuley and
Leskovec 2013], and is an extension of our prior work in which we fixed k = 20 [Rowe
2013]. We defined this approach in Algorithm 1 which functions as follows: we derive
the set of interval tuples ({[ti, tj ]} ∈ T ) by first deriving the chunk size (i.e. the num-
ber of posts in a single period) for each user, we then sort the posts in ascending date
order, before deriving the start and end points of each interval in an incremental man-
ner. This derives the set of time intervals T that are specific to a given user, these are
then used to assess the evolution of users across disparate properties. In order to aid
comprehension and set notation, we hereafter use an equivalence mapping between
T and S where the latter is a set of integers (S = Z+

k ) corresponding to each of the k
lifecycle stages, thus we choose s ∈ S for a given lifecycle stage that actually maps to
a discrete time-interval [t, t′]. We now define the modelling of users’ social and lexical
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ALGORITHM 1: Deriving the set of lifecycle periods (T ) given fidelity k
Input: Collection of a user’s posts Pu and lifecycle fidelity k.
Output: Set of lifycycle periods modelled as discrete closed time intervals T .
chunkSize← |Pui |/k
Qui ← sort(Pui)
i← 0
T ← ∅
while i < k do

start← i× chunkSize
end← (i+ 1)× chunkSize
if end > |Qui | − 1 then

end = |Qui | − 1
end
ti ← time(Qui [start])
tj ← time(Qui [end])
T ← T ∪ {[ti, tj ]}

end
return T

dimensions in the form of discrete probability distributions - these are later used to
mine development signals.

4.2. Social Dimensions
We begin by modelling the social dimensions of users using their in-degree and out-
degree distributions. The former describes the number of edges that connect to a given
user, while the latter describes the number of edges from the user. As we are dealing
with conversation-based platforms for our experiments we can use the reply-to graph
to construct these edges, where we define an edge connecting to a given user ui if
another user uj has replied to him. Likewise, we also define an edge from a given user
ui to another user uj if the former has replied to the latter.

Given our use of lifecycle periods we use the discrete time intervals that constitute
s ∈ S to derive the set of users who replied to ui, defining this set as ΓINs .2

ΓINs = {author(q) : p ∈ Pui , q ∈ P, time(q) ∈ s, q → p} (3)

We also define the set of users that ui has replied to within a given time interval as
ΓOUTs :

ΓOUTs = {author(q) : p ∈ Pui
, q ∈ P, time(q) ∈ s, p→ q} (4)

From these definitions we can then form a discrete probability distribution that cap-
tures the distribution of repliers to user ui, using ΓINs , and user ui responding to com-
munity users, and hence using ΓOUTs . For an arbitrary user (uj ∈ ΓINs ) who has con-
tacted user ui within period s we define this probability of interaction as follows:

Pr(uj | ΓINs ) =
|{q : p ∈ Pui

, q ∈ Puj
, time(q) ∈ s, q → p}|∑

uk∈ΓIN
s
|{q : p ∈ Pui

, q ∈ Puk
, time(q) ∈ s, q → p}|

(5)

And for an arbitrary user (uj ∈ Γoutuit ) who user ui has contacted within period s we
define the probability of interaction as follows:

Pr(uj | ΓOUTs ) =
|{p : p ∈ Pui

, q ∈ Puj
, time(p) ∈ s, p→ q}|∑

uk∈ΓOUT
s
|{p : p ∈ Pui , q ∈ Puk

, time(p) ∈ s, p→ q}|
(6)

2We use p→ q to denote message q replying to message p.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article 1, Publication date: January 2015.



Mining User Development Signals for Online Community Churner Detection 1:11

Given this formulation we now have time-dependent discrete probability distribu-
tions for a given user’s in-degree and out-degree distribution, thereby allowing the
social changes of users to be analysed in terms of the users communicating with a
given user over time.

4.3. Lexical Dimensions
We model the lexical dimensions of users based on their term usage over time. To derive
the set of terms we first retrieve all posts made by a given user within a lifecycle period
and then remove stop words and filter out any punctuation. Having derived the set of
cleaned posts, we then define the discrete probability distribution for a user ui within
period s based on the conditional probability of term x being used within the time
interval. We define a multiset as containing the set of terms used by ui in a given time
period: x ∈ Cs and a mapping function µ : Cs → N that returns the multiplicity of a
given term’s usage by the user at a given time period. Thus we define the conditional
probability for term x being used by ui during s as:

Pr(x | s) =
µ(x)∑

x′∈Csµ(x′)

(7)

5. MINING DEVELOPMENT SIGNALS: CHURNERS VS. NON-CHURNERS
On subscription-based services, such telecommunications networks and gaming plat-
forms, a churner is identifiable by the cancellation of the service (e.g. cancelling a mo-
bile phone contract), however on online community platforms we do not have such
information. Instead, we must examine what is normal in terms of users’ activity and
then decide on a suitable inactivity threshold where, should a user remain inactive for
more than that period (i.e. x days) then we can say he has churned. To decide on this
threshold, we first examined the gap distribution of the users: let ∆ define the max-
imum number of days between posts across the platforms’ datasets for each user, we
are then interested in seeing how ∆ is distributed for all users of the platforms.

(a) Facebook (b) SAP (c) Server Fault (d) Boards.ie

Fig. 5. Gap distributions across users of the different platforms. The mean of each distribution, and its
median, are shown using blue dashed and red dotted lines respectively.

Figure 5 shows the relative frequency distribution as a function of ∆ across the plat-
forms. We note that each platform is heavy-tailed: indicating that many users have a
short maximum span between their posts, while only a few users actually have large
windows of inactivity. We also measured two quantities of each distribution: its mean
and median - these have been plotted on each distribution in blue dashed and red dot-
ted lines respectively. As each distribution is characteristic of a left-skew we find that
the median is smaller than the mean in each instance. We selected each distribution’s
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Table II. Splits of users within the datasets and the churn window duration

Platform #Churners #Non-churners Churn Window
Facebook 1,033 1,199 [04-11-2011, 28-08-2012]
SAP 10,421 7,255 [29-11-2009,07-09-2010]
Server Fault 12,314 11,144 [13-06-2010,24-12-2010]
Boards.ie 18,778 30,335 [29-06-2006,30-07-2007]

mean as the churn control window, the usage of this window is then used a safety bar-
rier when we decide who has churned and who has not: it is set to 149 days, 141 days,
97 days and 198 days for Facebook, SAP, ServerFault and Boards.ie respectively.

Having derived the churn control window for each of our respective platforms we
then derived the churners as follows: we began by taking the final post date in a given
dataset and went back n days, where n denotes the size of the churn control window,
this date gives the churn window end point (t′′). We then went back a further 2n days
back to give the churn window start point (t′), thus the churn window is defined as
a closed date interval [t′, t′′]. We then defined anyone who posted for the final time in
[t′, t′′] as a churner and anyone who posted after the end of the churn window as a
non-churner, as a result we are only inspecting the behaviour of users who are active
after the start of the churn window, ignoring anyone who churned before this point.
The reason for this is that we not only want to predict who has churned, but also when
they post for the last time - we will be exploring this in our future work - thereby
mimicking a real-world community management scenario where we are provided with
information up to the start of the churn window and nothing else.

Having defined the churn windows for each platform, we then derived the churners
and non-churners in each of our datasets; the resultant statistics are shown in Table
II. As our aim is to both detect churners and then predict the churn point of those
users, we split each platform’s users up into a training and test set using an 80:20%
split respectively. We then used the former set to inspect how users develop and evolve
along the above-mentioned dimensions, and engineer features to capture such evolu-
tion; and the latter set (test) to detect churners from non-churners. We now move on
to examining how users evolve along social and lexical dimensions, and how we can
derive signals that capture such evolution.

(a) Facebook (b) SAP (c) Server Fault (d) Boards.ie

Fig. 6. Posts per-day for the datasets with the churn window and churn control window highlighted with
red and blue overlays respectively.

5.1. Period-Variation Signals
We are provided with different lifecycle-period-specific dimensions (i.e. in-degree) mod-
elled in the form of discrete probability distributions. This therefore allows us to use
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information theory measures to quantify the variance and change in such distribu-
tions over time. We begin by looking at the variation of each of such dimensions’ dis-
tributions through entropy. To aid legibility we define a measure, or measurement, as
constituting the combination of a user dimension (e.g. in-degree) assessed along a sin-
gle development indicator (e.g. entropy), thus an example measure would be in-degree
period entropy. Entropy describes the amount of variation within a random variable,
and therefore provides a useful means to gauge how much a given user is varying: (i)
the people with whom he is communicating, and (ii) the terms that he is using within
his posts. We define the entropy of an arbitrary probability distribution P as:

H(P ) = −
∑
x

p(x) log p(x) (8)

For each platform we derived the entropy of each user in each of his individual
lifecycle periods based on the in-degree, out-degree and term distributions. We then
recorded the mean of these entropy values over each lifecycle period, thereby provid-
ing an assessment of the general changes that users go through. By segmenting the
users up into their respective classes (churner or non-churner), we were then able to
plot the development signals of these different classes over time - showing the mean
and 95% confidence intervals for the different lifecycle stages in Figure 7. One thing
becomes clear from an initial inspection of these development signals: churners vary
significantly less than non-churners, and that this is consistent across all platforms,
all dimensions (i.e. in-degree, out-degree, lexical terms), and lifecycle fidelities (set-
tings of k). It is particularly stark when one focuses on Boards.ie: in this case, there
is markedly little variation in the users with whom churners interact, and the lan-
guage they use. For other platforms, in particular for Facebook, as the lifecycle fidelity
is increased the development signals become closer - in particular for the lexical terms
used where there is little to distinguish between churners and non-churners in terms
of their language.

5.2. Retrospective-Comparison Signals
We now move on to examining the changes that users go through relative to earlier
lifecycle periods, this is quantified using the cross-entropy between one lifecycle pe-
riod’s distribution and an earlier lifecycle period that minimises the cross-entropy. To
inform such cross-period assessment we examined the users’ in-degree, out-degree and
lexical term distributions across lifecycle periods by computing the cross-entropy of one
probability distribution with respect to another distribution from a lifecycle period (i.e.
retrospectively), and then selected the distribution that minimises cross-entropy. As-
suming we have a probability distribution (P ) formed from a given lifecycle period (s),
and a probability distribution (Q) from an earlier lifecycle period, then we define the
cross-entropy between the distributions as follows:

H(P,Q) = −
∑
x

p(x) log q(x) (9)

Figure 8 shows the in-degree, out-degree and lexical period cross-entopies for the
four platforms. As above, we derived these plots by deriving the measures for each
user across their disparate lifecycle periods, before then deriving the mean measure
for each period for both the churners and non-churners, together with their 95% confi-
dence intervals. We note that across all of the plots churner signals are lower in mag-
nitude than non-churners signals, indicating that the properties of the non-churners
tend to have a greater divergence with respect to earlier properties than the churners.
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(a) Facebook (b) SAP

(c) Serverfault (d) Boards.ie

Fig. 7. Period entropy distribution for different fidelity settings (k) for users’ lifecycles and different mea-
sures of social (indegree and out degree) and lexical dynamics. The green dashed line shows the non-
churners, while the red solid line shows the churners.

This suggests that churners’ behaviour is more formulaic than non-churners, that is
they exhibit less divergence from what has occurred beforehand. Looking at the dif-
ferent user properties in isolation we see that, in general, the curve of churners and
non-churners diminishes towards the end of their lifecycles but with different gradi-
ents. For the in-degree property, churners on Facebook and Server Fault have notice-
ably flatter curves which reduce at a slower rate than the non-churners, while for
SAP the curves are similar for churners and non-churners. For users’ out-degree the
cross-entropy of churners converges on a lower value much sooner than non-churners
across all platforms; this effect is particularly marked for Server Fault indicating that
non-churners tend to vary the people with whom they are communicating throughout
their lifecycles markedly more than churners. For the cross-entropy of users’ lexical
term distributions we find the signals of churners and non-churners to follow a similar
curvature (converging on a limit with a decaying rate) but with different magnitudes.
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(a) Facebook (b) SAP

(c) Serverfault (d) Boards.ie

Fig. 8. Retrospective cross-entropy distributions for different fidelity settings (k) for users’ lifecycles and
different measures of social (indegree and out degree) and lexical dynamics. The green dashed line shows
the non-churners, while the red solid line shows the churners.

5.3. Community-Comparison Signals
For the third inspection of user lifecycles and how user properties change, we exam-
ined how users compare with the platform in which they are interacting over the same
time interval. We used the in-degree, out-degree and lexical term distributions and
compared them with the same distributions derived globally over the same time peri-
ods. For the global probability distributions we used the same means as for forming
user-specific distributions, but rather than using the set of posts that a given user had
authored (Pui

) to derive the probability distribution, we instead used all posts. For
instance, for the global in-degree distribution we used the frequencies of received mes-
sages for all users. Given the discrete probability distribution of a user from a time
interval (Ps), and the global probability distribution over the same time interval (Qs),
we derived the cross-entropy as above between the distributions. (H(Ps, Qs)).
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Figure 9 shows the development signals when comparing users’ individual distribu-
tions with that of the community platforms over the same time-interval (i.e. lifecycle
period). Again, as with retrospective-comparison signals, we find churners’ signals to
have a lower magnitude than non-churners suggesting that non-churners’ properties
tend to diverge from the community as they progress throughout their lifetime within
the online community platforms. There are some noticeably noisy signals however, in
particular for Facebook and the in-degree distribution and lexical term distributions of
non-churners. Generally for each signal we see a growing curve towards later lifecycle
periods for both churners and non-churners, while the magnitudes of the curves are
the salient differentiating features.

These findings both corroborate, and contribute further to, that found in the work
of Danescu-Niculescu-Mizil et al. [Danescu-Niculescu-Mizil et al. 2013] as follows.
Firstly, our examination looks at the evolution of users’ social and lexical dimensions
relative to their community of interaction over each lifecycle period for differing lifecy-
cle fidelities and for both churners and non-churners. As a result, we find that for the
top-most lifecycle fidelity (k = 20) that non-churners’ language adapts to the commu-
nity - what Danescu-Niculescu-Mizil et al. refer to as ‘linguistic adolescence’ - before
then diverging away: thereby corroborating what has been found previously. However,
our findings show that for different social dimensions, for reduced lifecycle fidelities,
and for churners this is not the case: instead churners tend to show clear signals of
diverging from the community with little adaptation occurring. Therefore our exami-
nation with different fidelities and dimensions has extended current investigation in
this space to reveal new insights into the development of churners and non-churners
across other, additional platforms.

5.4. A Proposed Theory for Churner Development
As with any emerging body of research, little is known of how and why churners de-
velop in the manner that they do. We believe that the observations offered above pro-
vide the basis for a theory of how churners develop differently to non-churners. Our
hope is that by outlining the principles of this theory, that can be operationalised as
above, that other researchers can repeat our experiments on alternative datasets - not
necessarily restricted to online community platforms - in order to gather observations
that either support or refute the theory. The (testable) principles of this proposed the-
ory for churner development are as follows:

— Churners vary their behaviour less and are thus more formulaic.
— Churners diverge from community norms over time, but less so than non-churners.

The former of these principles is based on our observations of the entropy of users’
dimensions and the retrospective-comparison entropy too; as in both cases churners
exhibited behaviour with less variation and that diverged less from previous observed
behaviour. The latter of these principles however is based on our comparison of the
users with their communities of interaction, where both churners and non-churners
diverged from community norms (i.e. we observed an increase in the cross-entropy over
time for all measures) yet churners’ divergence was clearly lower than that of normal
users. To further examine the development of churners and non-churners we plotted
the cumulative distribution of innovations per-lifecycle period between the two groups.
We define an innovation here on a per-user basis where an innovation occurs when a
user: (i) is contacted by a new person (in-degree); (ii) contacts a new person himself
(out-degree), or; (iii) uses a new term (lexical). Figure 10 shows these distributions over
the churners and non-churners. One thing is immediately obvious: in-general all users
follow a similar pattern of communication and language used in terms of innovations;
the differences occur when we consider the variance of user behaviour (as above) and
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(a) Facebook (b) SAP

(c) Serverfault (d) Boards.ie

Fig. 9. Community cross-entropy distributions for different fidelity settings (k) for users’ lifecycles and
different measures of social (indegree and out degree) and lexical dynamics. The green dashed line shows
the non-churners, while the red solid line shows the churners.

the individuals the person is contacting, and the language they are using, both relative
to their earlier behaviour and relative to their community of interaction.

6. FEATURE ENGINEERING
In this section we describe the process of mining features from the development sig-
nals of users that are then used for the detection of churners. The earlier examination
of how users develop based on different dimensions (indegree, outdegree, lexical) indi-
cated differences between churners and non-churners across all lifecycle fidelities. Our
aim therefore was to leverage this information in the form of features that some model
could then be induced from for churn detection. We identified two types of features that
could be harnessed: static features, that relate to the absolute value of a given dynamic
(e.g. indegree) and entropy measure (e.g. period entropy) at a given lifecycle stage; and
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(a) Facebook (b) SAP

(c) Serverfault (d) Boards.ie

Fig. 10. Cumulative innovation distributions across the platforms, lifecycle fidelities, and different mea-
sures for both churners and non-churners.

rate features, that measure the change in a given static feature from lifecycle stage to
the next.

6.1. Static Features
We define the following function: fkdh(u, s) that returns the value, or magnitude, of
a given dynamic (d ∈ D) and entropy measure (h ∈ H) based on lifecycle fidelity k
for user u in lifecycle stage s; the codomain is therefore a real valued number of the
entropy value. As we have three dynamics, three entropy measures (period entropy
and historical comparison entropy, and cross-community entropy) we measure static
features for each lifecycle stage across the k stages, resulting in |D| × |H| × k = 9k
static features per user.3

3Therefore, by varying k = {5, 10, 20} we produce 45, 90 and 180 static feature respectively, depending on
the lifecycle fidelity that we choose.
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Table III. Feature Counts for static and rate
features at different lifecycle fidelity settings
(k)

Fidelity (k) #Static #Rate #Total
5 45 36 81
10 90 81 171
20 180 171 351

6.2. Rate Features
Our second type of features captures the change in a given static feature that a user
goes through, from one lifecycle stage to the next. In this context we can capture how
a user is evolving given the observed dynamic. To derive the rate of change of a given
dynamic (d ∈ D) and entropy measure (h ∈ H) based on lifecycle fidelity k for user u
into stage s, we used the following proportionate growth rate function:4

δkdh(u, s) =
fkdh(u, s)− fkdh(u, s− 1)

fkdh(u, s− 1)
(10)

As with the static features, we have three dynamics and three entropy measures,
however we only have k − 1 lifecycle stages - as we cannot measure the rate of change
of a static feature prior to the primary lifecycle stage - this results in |D|×|H|×(k−1) =
9(k − 1) rate features.

Table III summarises the number of features that are produced using this feature
engineering technique for static features, rate features, and then in total, for different
lifecycle fidelities: i.e. variance of k.

7. CHURNER DETECTION
In this section we now turn to the task of picking out which users will churn from
the online community platforms, and which will not. Unlike previous approaches to
detecting churners, we do not focus on mining social network features of users (i.e.
in-degree at time t) or the number of previous friends that have churned, instead we
use the features defined above that are mined from user development signals. We be-
gin this section by first defining three detection models, before then evaluating their
performance in detecting which users will churn.

7.1. Detection Models
The goal of the churn detection models is to identify which users are churners from
their development signals to date. In essence, we can represent this problem of recov-
ering the churn labels vector across all users (y ∈ {0, 1}m) using the development sig-
nal features (X ∈ Rm×n) and an induced weight vector (b ∈ Rn) such that: y ≈ f(X|b),
with m users and n features in the given dataset. Each platform’s dataset is provided
in the following format: D = {(xi, yi) : xi ∈ Rn, yi ∈ {0, 1}}, and we distinguish between
the training, and test users splits using Dtrain and Dtest respectively.

Our aim therefore is to induce some function f that has as its domain a given user’s
development signal modelled as a feature vector (x) and the churn probability as its
co-domain, hence: f : Rn → [0, 1]. To induce this function we used three methods: (i)
logistic regression; (ii) a dual-gaussian sequence model; and (ii) a linear model with
elastic-net regularisation. We now explain each in turn.

4N.b. in this context, δkdh(u, s) ≡ (∂d∂h)/∂s
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7.1.1. Detection Model 1: Logistic Regression Model. We used the logistic regression model
to predict the conditional probability of user ui churning as follows:

Pr(Y = 1 | xi) =
1

1 + e−bᵀxi
(11)

The model’s coefficients (b) define the weight attached to each feature within the
linear model (f(xi|b) = bᵀxi). In order to derive the model’s coefficients we used the
maximum likelihood estimation β̂ of the model’s coefficients. Following fitting, the de-
rived model is used to predict the churn probability of each user within the test portion
of the data. We also include a regularised version of the model that uses the L2 (ridge)
penalty for control for overfitting.

7.1.2. Detection Model 2: Dual-Gaussian Sequence Model. When inspecting each different
measurement (e.g. the period entropy of users’ in-degree at lifecycle stage 1) for both
churners and non-churners, we plotted the the development signals for both sets of
users along with their 95% confidence intervals.. Our second model, presented ini-
tially in our earlier work [Rowe 2014], is based upon the premise that a given mea-
surement (m) at a particular lifecycle stage (s) is normally distributed. Thus, for each
measurement we have two signals (one for churners and one for non-churners) that
each correspond to a sequence of Gaussians measured over the k lifecycle stages. We
define this more concretely as follows: given a measurement m,5 and a lifecycle stage
s drawn from a set of lifecycle stages S, we assume that m is normally distributed at
s and thus characterised by N

(
µ̂m,s, (σ̂m,s)

2
)

where µ̂m,s and σ̂m,s denote the maxi-
mum likelihood estimates of the mean and standard deviation respectively. Then the
Gaussian Sequence of m is defined as follows:

Gm =
(
N
(
µ̂m,1, (σ̂m,1)2,N

(
µ̂m,2, (σ̂m,2)2, . . . ,N

(
µ̂m,|S|, (σ̂m,|S|)

2
))

(12)

In essence we have two competing gaussian distributions at a particular lifecycle
stage: the churn gaussian, formed from measurements of the known churner users,
and; the non-churn gaussian, formed from measurements of known non-churners. We
can therefore specify the probability of the user u belonging to the churner class based
on measurement m and lifecycle stage s as follows:

P (u|βm,s) ∝
[
βm,sN

(
f(u,m, s)|µ̂cm,s, (σ̂cm,s)2

)
− (1− βm,s)N

(
f(u,m, s)|µ̂nm,s, (σ̂nm,s)2

)]
+

(13)

Above we have modified the maximum likelihood estimates for the mean and stan-
dard deviation to correspond to the churner (c) and non-churner classes (n). We also
incorporated the slack variable βm,s which is indexed by the measurement and lifecy-
cle stage, and controls for over-penalising class membership - we learn this parameter
as βm,s ∈ b. The subtraction of the churn-distribution membership probability by the
βm,s-scaled non-churn-distribution membership probability is wrapped within the pos-
itive value operand []+ in order to return a non-negative value. We can then calculate
the joint churn probability over observed measures and lifecycle stages as follows - we
term this the Dual-Gaussian Sequence Model:

5We defined a measurement, or measure, earlier as the combination of a given dynamics (e.g. in-degree) and
a given development indicator (e.g. period entropy); hence M is the set of all 9 possible measurements.
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Q(u|b) =
∏
m∈M

∏
s∈S

ρ
[
βm,sN

(
f(u,m, s)|µ̂cm,s, (σ̂cm,s)2

)
− (1− βm,s)N

(
f(u,m, s)|µ̂nm,s, (σ̂nm,s)2

)]
+

(14)

Here ρ acts as a smoother to chain together zero-probability values.6 Now, for this de-
tection model, our objective is to minimise the squared-loss between a user’s forecasted
churn probability and the observed churn label - given that the former is in the closed
interval [0, 1] and the latter is from the set {0, 1} - our parameters are L2-regularised
to control for over-fitting:

arg min
b∗

∑
(xi,yi)∈D

(
yi −Q(u|b)

)2
+ λ||b||2 (15)

Using this objective, we then used stochastic gradient descent to calculate the set-
ting of each β ∈ b by minimising the loss between a single user’s forecasted churn
probability and his actual churn label (i.e. either 0 - did not churn - or 1 - did churn).
We experimented with two learning procedures: stochastic gradient descent (SGD),
and dual-stochastic gradient descent (D-SGD) - the latter being a novel contribution
in our prior work [Rowe 2014] - however we found the difference in performance to be
insignificant and thus favoured the former given its reduced computational complex-
ity (i.e. O(m) per learning epoch rather than O(m × m)). We refer the reader to our
prior work [Rowe 2014] for a more thorough presentation of the models and learning
procedures used.

7.1.3. Detection Model 3: Linear Model with Elastic-Net Regularisation. Our third detection
model combines a linear model with elastic-net regularisation to predict the probabil-
ity of a given user churning using the linear combination of the user’s feature vector
and the learnt weight vector (b). We combine both L1 and L2 regularisation within
the predictive function to control for overfitting in the training segment by using α-
weighting between the L1 and L2 penalties (i.e. Lasso and Ridge). To learn the param-
eters of the model we used two learning approaches: (i) Average Coordinate Descent
proposed by Friedman et al. [Friedman et al. 2010], and; (ii) Stochastic Coordinate
Descent, which we propose within this paper.7

Learning with Average Coordinate Descent. Our first learning routine, from [Fried-
man et al. 2010], seeks to learn the linear churn prediction by minimising the following
objective function, using the entire training dataset:

min
b∗

1

2N

∑
(xi,yi)∈D

(
yi − bᵀxi

)2
+ λ(1− α)

1

2
||b||22 + λα||b||1 (16)

Learning the model therefore requires updating the parameters in the n-
dimensional weight vector (b) based on the prediction error. We therefore update one
parameter’s value at a time based on the derivative with respect to βj , derived using
the chain rule from Equation 16, using the average error across the training dataset:

6See Appendix A for an examination of the effects tuning ρ on model performance.
7This is a modified version of Friedman et al.’s approach to update a given parameter vector’s element
one-at-a-time.
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∇j = − 1

N

∑
(xi,yi)∈D

xij(yi − bᵀxi) + λ(1− α)βj + λα (17)

The parameter (βj ∈ b) is then updated within the model using the following update
rule:

βj = βj − η∇j (18)

Learning with Stochastic Coordinate Descent. The second learning routine extends
Average Coordinate Descent into a Stochastic setting, by updating each element of the
parameter vector using a single training set’s instance and thus its resultant error.
We modified the objective function to enable a gradient to be calculated for a single
instance as follows:

arg min
b∗

1

N

∑
(xi,yi)∈D

(
1

2

(
yi − bᵀxi

)2
+ λ(1− α)

1

2
||b||22 + λα||b||1

)
(19)

Based on this, we calculated the derivative of βj ∈ b using a single instance (i.e.
(xi, yi) ∈ D) at a time as follows, by applying the chain rule to Equation 19:

∇ij = −xij(yi − bᵀxi) + λ(1− α)βj + λα (20)

Unlike with the average coordinate descent model, in this instance we use the
stochastic learning routine of shuffling the order of D each training epoch and then
iterating through the set of training instances, deriving the error in prediction and the
derivative of each parameter and thus updating accordingly. As a result our update
rule is the following, for a given training instance with index i:

βj = βj − η∇ij (21)

With the linear model using elastic-net regularisation we have two hyperparame-
ters than must be tuned: the learning rate η and the regularisation weight λ. The use
of elastic-net regularisation means that we can examine the spectrum between using
solely a lasso penalty (α = 1), or solely a ridge penalty (α = 0), or somewhere in the
middle (α = 0.5). Rather than tuning α as a hyperparameter, we adopted a different ap-
proach and indexed linear models using the following settings: α = {0, 0.5, 1}, thereby
tuning a hyperpameter vector θ = {η, λ}, for each setting. We explain in the following
section the model tuning approach that was applied.

For the above linear model, our aim is to ensure that the induced function’s codomain
is constrained to the closed interval [0, 1]. However when learning, the resultant pa-
rameter vector can exceed those bounds. In order to control for this, when inducing the
predicted probabilities of a set of users in a given test set we normalise the codomain
to restrict it to the closed probability interval. For an arbitrary user vector xi, and
having computed all predicted probabilities (which may exceed the bounds of [0, 1]) we
normalise the churn probability of i as follows: Pr(xi|b) = f(xi|b)/(fmax − fmin).

7.2. Experiments
In order to compare the above models and judge how well they fare against existing
work, we conducted a series of experiments: firstly, to tune the different models’ hyper-
parameters; and secondly, to apply them to a held-out test portion of users. We begin
by first defining our experimental setup.
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Table IV. Number of instances within the training and testing datasets used for the exper-
iments across the different lifecycle fidelities. The number of instances decreases as the
lifecycle fidelity increases as we require each user to have posted double the fidelity number
of posts.

Fidelity Facebook SAP ServerFault Boards.ie
|Train| |Test| |Train| |Test| |Train| |Test| |Train| |Test|

5 306 72 1,099 302 1,229 338 6,338 1,700
10 204 48 716 205 688 177 4,979 1,334
20 123 27 448 129 375 84 3,635 995

7.2.1. Experimental Setup. As mentioned above, for the four platforms’ datasets we di-
vided users into training and testing sets using an 80%:20% split respectively. Given
that we experimented with different lifecycle fidelities (k = {5, 10, 20}), this reduced
the number of users, and thus instances, in our dataset and hence the training and
testing splits - Table IV shows the number of instances per split and lifecycle fidelity.
The reason for this reduction is that we require each user to have posted 2k posts
prior to the churn cutoff point at which we perform our analysis, this provides suf-
ficient information from which to mine users’ development signals from. For setting
up our experiments we first performed model tuning (using the training set for each
platform), and then applied the tuned models to the held-out test split - in this latter
setting we repeatedly applied each tuned model 25 times and took the average area
under the Receiver Operator Characteristic curve (ROC).

Model Tuning. For our experiments we had two models to tune: the dual-gaussian
sequence model and the linear model using elastic-net regularisation; both of which
require their hyperparameters to be selected. To tune the hyperparameters (λ and
η) we ran 10-fold cross validation over the training splits and recorded the average
ROC; we then selected the best performing hyperparameter combinations. Both λ and
η were varied through {10−3, 10−2, 10−1, 0.2, . . . , 0.5}. For the dual-gaussian sequence
model we also tuned ρ as an additional hyperparameter in this model - see Appendix A
for more information on this. While for the linear model with elastic-net regularisation
we tuned three variants of the model with different settings for α where α = {0, 0.5, 1} -
this allowed us to examine the performance of solely L1 (i.e. lasso) regularisation (α =
1), solely L2 (i.e. ridge) regularisation (α = 0), or combining both equally (α = 0.5). The
logistic regression model did not require the tuning of hyperparameters, however the
regularised version of the logistic regression did require tuning of the regularisation
weight (λ). Once model tuning was completed all tested models, including the baseline
to be defined below, was trained using the entire training split and, using the best
tuned hyperparameters should the model require them, applied to the held-out test
split of users.

Baselines. To provide a suitable baseline against which to compare our approach we
implemented the approach defined in Karnstedt et al.’s work [Karnstedt et al. 2011].
This approach used features derived from the social network of users: in-degree, out-
degree, closeness-centrality, betweenness-centrality, reciprocity, average number of posts
in initiated threads, average number of posts within participated threads, popularity
(% of user authored posts that receive replies), initialisation (% of threads authored by
the user), and polarity. We first tested the J48 classifier, as used in [Karnstedt et al.
2011], but found this to perform poorly8 therefore we used the Naive Bayes classifier
instead which yielded the best performance of the available classification models at

8We also tested support vector machines and the perceptron classifier.
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Table V. Area under the Receiver Operator Characteristic (ROC) Curve results for the different proposed models

k Baseline Logistic SVM Dual-N Linear Elastic-Net (ACD / SCD)
None / Ridge α = 0 α = 0.5 α = 1

Facebook 5 0.461 0.560 / 0.571 0.491 0.500 0.491 / 0.438 0.484 / 0.432 0.482 / 0.450
10 0.492 0.599 / 0.625 0.466 0.570 0.558 / 0.542 0.554 / 0.542 0.561 / 0.538
20 0.444 0.528 / 0.528 0.500 0.664 0.679 / 0.544 0.674 / 0.523 0.685 / 0.554

SAP 5 0.497 0.596 / 0.609 0.599 0.572 0.518 / 0.596 0.505 / 0.539 0.498 / 0.604
10 0.495 0.616 / 0.631 0.636 0.553 0.531 / 0.614 0.541 / 0.639 0.489 / 0.645
20 0.582 0.597 / 0.611 0.638 0.525 0.547 / 0.706 0.518 / 0.701 0.548 / 0.675

ServerF 5 0.530 0.612 / 0.620 0.569 0.523 0.529 / 0.598 0.520 / 0.590 0.527 / 0.604
10 0.546 0.505 / 0.494 0.554 0.568 0.523 / 0.584 0.491 / 0.615 0.510 / 0.608
20 0.530 0.503 / 0.508 - 0.502 0.512 / 0.536 0.507 / 0.564 0.509 / 0.563

Boards 5 0.611 0.513 / 0.514 0.522 0.542 0.540 / 0.648 0.492 / 0.571 0.516 / 0.647
10 0.593 0.515 / 0.515 0.501 0.501 0.497 / 0.621 0.493 / 0.595 0.517 / 0.597
20 0.553 0.521 / 0.521 0.503 0.500 0.585 / 0.624 0.551 / 0.613 0.587 / 0.622

our disposal.9 We also included the Support Vector Machine (SVM) classifier with L2
regularisation10 as an additional model against which to compare our models’ perfor-
mance.

7.2.2. Results. Table V presents the ROC values that we produced when running the
various models over each platform’s test split and varying the lifecycle fidelity. The first
thing that is striking about these results is how well the linear model with elastic net
regularisation performs, in particular in relation to the logistic regression model. We
achieve performance that is significantly (p < 0.0001) better than all other models for 8
out of 12 of the experimental settings;11 thereby demonstrating how accurately we can
detect who is likely to churn and who is likely to remain by mining user development
information. Our results show that we consistently surpass the SVM baseline,12 and
the use of our stochastic coordinate descent learning routine generally yields the best
performance.

The dual-quassian sequence model did not fare so well, in particular when com-
pared against the logistic regression model. The reason for such poor performance is
likely due to the complexity of the model, despite adding L2 regularisation, rendering
the model’s capacity to generalise to unseen users’ development information limited.
We tuned the smoothing parameter ρ as with the other hyperparameters, unlike set-
ting ρ = 0.1 as in our prior work, yet this did not yield a satisfactory level of perfor-
mance. Different lifecycle fidelities rendered no clear pattern in preference between
α settings for the linear model with elastic net regularisation, nor did one platform’s
results demonstrate that one model was better than the rest. Appendix B shows the
heat maps produced from tuning the hyperparameters for the various α-indexed linear
models with elastic-net regularisation and the two learning routines used.

8. DISCUSSION AND FUTURE WORK
Our churn detection approach makes use of the development signals that users ex-
hibit along both social and lexical dimensions in order to differentiate between who
will churn and who will remain within the online community platform. In compari-
son with the work of Kernstadt et al. [Karnstedt et al. 2011], we use dynamic user
information, that is: information about how the user has evolved throughout his life-

9We used the Weka machine learning toolkit for the classification models that were tested.
10This also used the Weka machine learning toolkit with the LibLinear library.
11N.b. Statistical significance testing was performed by comparing the distribution of ROC values from the
25 applications to the test set using Student’s T-Test between models.
12N.b. When applying the SVM model to the ServerFault dataset with k = 20 the model repeatedly failed.
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cycle to date, while Kernstadt et al. adopt static user information derived using a 6-
month window prior to a given analysis point. The results from using this information
within the presented linear model empirically demonstrate the superior performance
that we can achieve. Additionally, we examined the use of social and lexical informa-
tion in characterising differences in the development of churners and non-churners -
in both cases using basic relative-frequency distributions to encapsulate such infor-
mation over a variety of platforms. Existing work of Danescu-Niculescu-Mizil et al.
[Danescu-Niculescu-Mizil et al. 2013] presented a more in-depth analysis of lexical in-
formation (e.g. first person singular pronouns, number of words) and how this can be
used to forecast user lifespan. Our future work will examine how such information can
be incorporated into our approach, and also how additional, more nuanced and fine-
grained, social network features can be used: ultimately to boost our current prediction
accuracy.

In this paper we have proposed a theory of how churners develop and how such
evolution signals differ from non-churners; the listed principles are based upon the ob-
servations that we have made in this work across the four platforms, the three lifecy-
cle fidelity settings, and the different examined dimensions (i.e. in-degree, out-degree,
lexical terms). Our hope is that these principles, which can be operationalised in the
approach that we have presented (i.e. using measures from information theory), will
be tested by our colleagues from the data mining and social computing communities.
Future work in this area will test how these principles hold along other dimensions,
that can act as a measurement of behaviour variation (e.g. sharing behaviour, recipro-
cation of interaction, etc.), and on other platforms and domains also (i.e. not restricting
this application to merely online community platforms, but subscription-based services
also such as online gaming). We also wish to follow up our quantitative analyses of user
behaviour, and its development for churners, with qualitative feedback on why users
choose to leave. At present we have little idea behind such rationale, however the cre-
ation of effective retention campaigns depends such an understanding.

The natural extension of the classification task described in our work is to examine
how we can predict the point at which a user leaves. Initial steps in this area will be to
examine prediction functions that produce a ranked-list of users, from soonest-to-latest
churners, and thus explore how objective functions from approaches that learn to rank
can be incorporated - without loss of generality our existing approach can be easily
adapted to this setting. In exploring this area, we will be able to provide community
mangers and service providers with actionable information about prioritising whom
to contact in order to retain their services with the community, or subscription to the
service.

9. CONCLUSIONS
In this paper we examined two key research questions: Are there salient differences
in how churners and non-churners develop? And; How can such development informa-
tion be incorporated into an approach to detect churners? We presented an approach to
mine the development signals of users based on their lifecycles in online community
platforms, and found that churners and non-churners exhibited different development
signals that were consistent across the various online community platforms and lifecy-
cle fidelity settings - thereby advancing over our prior work which concentrated on one
fidelity setting [Rowe 2013]. A method was presented that extracted static and rate
features from users’ development signals, and we were able to utilise those features
in a range of detection models to identify churners. One of our proposed models, a lin-
ear model with elastic net regularisation learnt using a stochastic coordinate descent
strategy, significantly outperforming existing models including baselines from current
work [Karnstedt et al. 2011; Rowe 2014]. We believe that our work has implications
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on the churn prediction community that spans both social computing and data mining
research, in particular when applied to both telecommunications and online gaming
providers’ systems, as it provides a new approach to user modelling that can be lever-
aged for accurately detecting churners.
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A. THE EFFECTS OF ρ ON GAUSSIAN-SEQUENCE PERFORMANCE
In our above-described Gaussian Sequence model, the parameter ρ acts as a smoother
for zero-probabilities returned from the joint probability function. In our prior work
we kept ρ fixed to 0.1, however in this paper we extended this experimental setting by
testing different values of ρ and their impact on model performance. We therefore ex-
perimented with various settings of ρ to examine how different settings would impact
accuracy during the tuning phase of the hyperparameters; along with the regularisa-
tion weight (λ), and the learning rate (η). In Figure 11 we have plotted the mean ROC
values across all different hyperparameter settings (i.e. of θ = {λ, η}) together with the
95% confidence intervals of these values. We find that the setting of ρ has some impact
on the performance of the model where value of around ρ = 0.9 appear to the optimum.
In fact the previous setting of ρ = 0.1 appears to be sub-optimal as this appears in
the lower portions of the curves. This result implies that smoothing zero probabilities
should be used with a higher weight, given the consistent knees we observe at higher
values.

(a) Facebook (b) SAP (c) Server Fault (d) Boards.ie

Fig. 11. Performance of different ρ-indexed Gaussian-sequence models as a function of variance settings of
ρ.
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B. HYPERPARAMETER TUNING FOR LINEAR DETECTION MODELS
One of the key challenges that we had when engineering the linear detection model
using elastic-net regularisation, was tuning the hyperparameters of the model. As we
were interested in seeing the impact of α-indexed models, where α controls the tradeoff
between an L1 (hinge) penalty and an L2 (ridge) penalty when overfitting, we used 10-
fold cross-validation over the training set and recorded the average ROC value. The
learning procedure was varied between the use of average coordinate descent, and
stochastic coordinate descent. Below we show the heat maps from tuning the learning
rate (η) and the regularisation weight (λ) that make up each α-indexed linear model,
learning using either ACD or SCD - where red indicates a reduction in ROC and thus
an increase in the detection error, while white the contrary.

B.1. Learning via Average Coordinate Descent
When tuning we find that a lower learning rate, generally, results in a reduction in the
ROC value, while the regularisation weight is mixed across both the platforms under
inspection and the setting of α.

(a) Facebook (b) SAP

(c) Server Fault (d) Boards.ie

Fig. 12. Heatmaps showing the resultant ROC values following 10-fold cross validation with the different
hyperparameters (λ and η) and indexed models (by k and by alpha) when learning using average coordinate
descent (ACD).

B.2. Learning via Stochastic Coordinate Descent
The heat maps produced from tuning the hyperparamters when learning using
stochastic coordinate descent differ from those above - when using an average coor-
dinate descent. We note that a reduced learning rate (η) yields higher ROC values
across all models: given that we are updating the model using a stochastic learning
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routine, this is not entirely surprising as larger updates lead to greater variance in the
model’s coefficients and thus moves away from a potential global optimum over time.
Greater variance occurs when we consider the role of the regularisation weight (λ), but
only at larger values of η, as at the lowest tested setting there is little variation of ROC
values for different values of λ.

(a) Facebook (b) SAP

(c) Server Fault (d) Boards.ie

Fig. 13. Heatmaps showing the resultant ROC values following 10-fold cross validation with the different
hyperparameters (λ and η) and indexed models (by k and by alpha).
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