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Abstract 

The reliability of automatically estimating human ages, by processing input facial images, has 

generally been found to be poor. On other hand, various real world applications, often 

relating to safety and security, depend on an accurate estimate of a person’s age. In such 

situations, Face Image based Automatic Age Estimation (FI-AAE) systems which are more 

reliable and may ideally surpass human ability, are of importance as and represent a critical 

pre-requisite technology. Unfortunately, in terms of estimation accuracy and thus   

performance, contemporary FI-AAE systems are impeded by challenges which exist in both 

of the two major FI-AAE processing phases i.e. i) Age based feature extraction and 

representation and ii) Age group classification. Challenges in the former phase arise because 

facial shape and texture change independently and the magnitude of these changes vary 

during the different stages of a person’s life. Additionally, contemporary schemes struggle to 

exploit age group specific characteristics of these features, which in turn has a detrimental 

effect on overall system performance. Furthermore misclassification errors which occur in the 

second processing phase and are caused by the smooth inter-class variations often observed 

between adjacent age groups, pose another major challenge and are responsible for low 

overall FI-AAE performance.  

In this thesis a novel Multi-Level Age Estimation (ML-AE) framework is proposed that 

addresses the aforementioned challenges and improves upon state-of-the-art FI-AAE system 

performance. The proposed ML-AE is a hierarchical classification scheme that maximizes 

and then exploits inter-class variation among different age groups at each level of the 
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hierarchy. Furthermore, the proposed scheme exploits age based discriminating information 

taken from two different cues (i.e. facial shape and texture) at the decision level which 

improves age estimation results. 

During the process of achieving our main objective of age estimation, this research work also 

contributes to two associated image processing/analysis areas: i) Face image modeling and 

synthesis; a process of representing face image data with a low dimensionality set of 

parameters. This is considered as precursor to every face image based age estimation system 

and has been studied in this thesis within the context of image face recognition  ii) measuring 

face image data variability that can help in representing/ranking different face image datasets 

according to their classification difficulty level. Thus a variability measure is proposed that 

can also be used to predict the classification performance of a given face recognition system 

operating upon a particular input face dataset.  

Experimental results based on well-known face image datasets revealed the superior 

performance of our proposed face analysis, synthesis and face image based age classification 

methodologies, as compared to that obtained from conventional schemes.  
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Chapter 1  

Introduction 

1.1 Motivation of Research Work  

In real life, human faces have always been considered as the first source of information 

during Human-Human Interactions (HHI). One can gather a variety of information from 

another person’s face, such as gender, identity, ethnicity, expression and age, that influences 

the course of subsequent oral communication between the two. Therefore, with the progress 

in the field of Human-Machine Interaction (HMI), the human face has become gradually the 

focus of research to develop Natural User Interfaces (NUIs) that offer natural interaction 

using facial characteristics. As a result, researchers have come up in last few decades with a 

plethora of techniques for the extraction and use of these facial characteristics in areas such 

as Automatic Face-based human Identification, Gender classification, Age estimation, Facial 

expression recognition, and Race classification. Among these, person identification based on 

face images is relatively a well-explored area in real-life applications such as security, 

surveillance, access control, image database search, identity verification, etc. Furthermore 

and within the context of HHI, the automatic extraction of age information from face images 

hasn’t received enough research attention. Moreover, human based age estimation is in 

general less accurate than identity and gender estimation. As a result relying on humans to 

supply this information from face images often becomes problematic. Hence, there is a
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growing need for the development of automatic facial age estimation systems that are reliable 

and possibly superior to human based age estimation. 

Face image based automatic age estimation (FI-AAE), whose objective is to determine the 

specific age or age range of a person based on a given facial image, is a challenging yet 

attractive topic due to its roots in numerous real-life applications such as:  

 Law Enforcement: A system equipped with good automatic age estimation module can be 

helpful in filtering out the potential suspects more efficiently and accurately from a 

database using the estimated age of the input mugshot.  

 Security Control and Surveillance: Security control and surveillance monitoring issues are 

becoming more and more crucial in daily life. For example, an accurate age estimation 

system can prevent minors from entering bars or wine shops; stop underage smokers from 

purchasing cigarettes from vending machines; refuse the aged when he/she wants to try a 

roller coaster in an amusement park; and deny children access to adult websites or 

restricted movies.  

 Health Care: Face image based automatic age estimation can also be helpful in health care 

systems, such as robotic nurse and intelligent intensive care unit, for customized services. 

For example, a personalized Avatar will be selected automatically from the custom-built 

Avatar database to interact with patients from different age groups with particular 

preferences. 

 Human-computer interaction (HCI): The system can adjust the contents presented to a user 

based on his/her age. For example, a smart shopping cart can be designed to provide 

recommendations according to the age of the customer. 

 FI-AAE system can further be used in age based indexing of face images, thereby 

allowing age based retrieval of face images as per need. Moreover, now different mobile  
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applications (e.g. Age Detector for IPhones) are being developed that can estimate age for 

entertainment purposes. 

These few example application areas not only highlight the contribution of FI-AAE to real 

world but also inspire the need for more research work that can produce state-of-the-art 

systems to accurately estimate human age.   

1.2 Face Image based Automatic Age Estimation (FI-AAE) 

In general, face image based automatic age estimation (FI-AAE) systems are comprised of 

the following two major components (see figure 1.1).  

1.2.1 Feature Extraction Process 

Feature extraction is a process that extracts those facial features that are affected by the aging 

process. Aging affects the human facial appearance considerably, see in figure 1.2. 

Furthermore facial aging is an irreversible natural process that cannot be controlled during 

face image acquisition, like other facial variation due to pose and expression. Moreover, 

although age progression affects facial appearance of different people differently, biological  

Feature Extraction 

Figure 1.2: Aging effects on a human facial appearance. 

Age Estimation 

 

Face Image 
Age Year/Age 

Range 

Figure 1.1: Block diagram of a typical automatic age estimation system. 
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or anthropometric studies suggests that on basis of some common features, facial aging can 

be roughly divided into two stages [3, 4]; i) birth-to-adulthood and ii) adulthood-to-old. 

During birth-to-adulthood, usually bone growth takes place that causes major changes in the 

facial shape as shown by the six prototype images of figure 1.3 (originally given in [1] and 

then reproduced in [3]). During the adulthood-to-old stage the most perceptible age-related 

deformations are associated with texture changes (see figure 1.4).  

Figure 1.3: Craniofacial growth (shape change) on a human face with age progression, 

originally given in [1]and then [3]. 

Figure 1.4: Skin aging (Texture change) with age progression, originally given in [1, 3]. 
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In particular common changes in the facial shape and texture during these two stages of 

human life, are reported in [3] and  are as follows: 

1) Birth-to-Adulthood Stage: 

 Forehead slopes back, shrinks and releases space on the cranium. 

 Facial features such as eyes, nose, mouth and ears grow their areas. 

 Cheeks expand their areas and chin becomes more bulging. 

 Skin texture does not change much but facial hair become denser. 

2) Adulthood-to-Old Age Stage: 

 Facial skin becomes thinner, darker, less flexible, and more leathery. 

 Adynamic wrinkles and blemishes due to biologic aging gradually appear. 

 Dynamic wrinkles and folds due to muscle motion become more prominent. 

 Cheeks start dropping, double chin and lower eyelid bags appear. 

 Although the craniofacial growth is not dramatic during this aging period, the facial 

geometry change is still evident from 30 to 80 years, especially in the female faces. Faces 

change from a U-shaped or upside-down triangle shape to a trapezoid or rectangle. 

Now, since aging affects both the geometry (shape) and texture of human faces, a system 

based on a feature set representing only one of them would not be capable of estimating 

human age accurately. For example, shape based features can only be used to estimate age for 

children. That is why researchers have come up with different techniques to merge or fuse the 

shape and texture information for the purpose of age estimation such as the use of Gabor 

Wavelet Transforms (GWT) [5, 6], Subspace Features using the image intensity [7, 8], Active 

Appearance Models (AAM) and image frequency [9]. Among these, the most popular 

technique for feature extraction is that based on Active Appearance Models (AAM) [10-14].  
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The AAM is a well-known method that is used to produce a single generative parametric 

model that represents both face  shape and texture and  which is subsequently used to produce 

multiple instances of that face using a small number of parameters [15]. For this purpose, 

AAM applies Principal Component Analysis (PCA) in two stages. First, PCA is applied on 

shape and texture, separately, to form two sets of parameters, which are then combined to 

form a single set. The second PCA is applied to this combined set to generate the final set of 

parameters. Although this two-stage PCA reduces feature dimension substantially, while 

retaining general individual characteristics.  

It has been reported [2], that there is loss of  some critical aging details related to wrinkles 

and skin texture, see figure 1.5. Even though some techniques [2, 16, 17] have been proposed 

in an attempt to overcome this problem, by introducing separate models for the missing 

features, performance gains are negligible and don’t justify the significant additional 

complexity that is often introduced in the overall system. 

Figure 1.5: Comparison of the original image and the reconstructed image from the low 

dimensional set of appearance parameters of the AAM. The inability to synthesis fine aging 

details is obvious in reconstructed image. 

Reconstructed Image Original Image 



Chapter-1: Introduction 7 

 
 

The above discussion suggests that despite of all previous efforts, still there exists a need for 

the development of appropriate methods which use effectively shape and texture aging 

characteristics, and thus yield improved age estimation performance. Hence the initial goal of 

this research work was identified as: 

“The extraction of geometric (shape) and texture related information, from face images, 

without the loss of important aging characteristics.”  

1.2.2 Age Estimation Process (ASP) 

The second major component of any FI-AAE system is ASP. In general, age estimation is 

considered as a multi-class, classification problem. According to authors in [2],  the work 

done so far that deals with this classification problem, can be divided into systems which 

offer Age-group classification [5, 6, 18, 19], or those which operate using  i)  Single-level age 

estimation [7, 11, 13, 14, 16] or ii) Hierarchical age estimation [2, 11, 20-23] system 

architectures. An age-group classification approach is used to classify an input face into one 

of many age groups, for example, an input face can be classified as that of a child, adult or 

old person. The remaining two approaches relate to the overall classification system 

architecture. Furthermore, single-level age estimation methods try to find age label while 

using information derived from a whole input dataset and without taking into consideration 

group-specific characteristics. 

However and as discussed earlier, shape changes the most during the child to adulthood 

period whereas during the adulthood to old age period all major face changes relate to 

texture. This implies that  two separate classifiers are needed to be trained using two different 

face datasets, which in turn suggests a hierarchical classification system architecture. 

Hierarchical age estimation methods can potentially provide better age estimation 
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performance by using classifiers trained on sub-age group related characteristics. Moreover, 

as the classifiers are trained on relatively smaller groups this helps in reducing overall system 

computational complexity.  

Note that such hierarchical classification age estimation techniques are prone to error 

propagation effects. As aging is a very slow process, some images at the boundaries of two 

adjacent groups are often quite similar and that makes it very hard for a classifier to always 

classify correctly these faces. Furthermore, miss-classification errors propagate within the 

hierarchy of groups.   

This raises the need for the development of a new hierarchical face classification framework, 

as applied to age estimation, that operates on age partitions having large inter-group 

variations and mitigates miss-classification errors. Thus, the second goal of this research 

work can be stated as: 

“The development of an advanced hierarchical age estimation / classification framework that 

maximizes inter-group variability.”   

1.3 Facial Aging Dataset 

In addition to the two primary types of components discussed in previous section, the 

performance of FI-AAE systems is also heavily dependent on the adopted and application 

related face dataset generation methodology and resulting dataset characteristics. Thus face 

data collection is a critical element of system performance and deserves considerable 

attention. Note that, it is very hard to obtain in practice a large size face dataset of images 

taken at different ages per person and there is a scarcity of such publically available datasets. 

The most popular facial aging datasets used to assess FI-AAE system performance are FG-

NET [24] and MORPH [25, 26].  Both datasets are publically available with FG-NET being 
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free to use for research purposes. FG-NET contains more than thousand images of 82 

subjects of different races with high levels of non-aging variations in terms of pose, 

expression, and lighting image capturing conditions. 

Thus the performance of any classification process involved in face image based automatic 

age estimation (FI-AAE) as well as face recognition (FR), is significantly affected by the 

intrinsic characteristics of the available face dataset which in turn is used to train/design or 

test FI-AAE and FR system performance. 

Generally, these dataset characteristics are defined as the inter-class and intra-class variations 

among different dataset images. Furthermore, datasets, used for a particular application, are 

often captured under different capturing conditions that cause different types of data 

variability. For example, such conditions relate to are subject illumination, pose, expression, 

makeup, facial attributes (i.e. moustache, beard, glasses) and age. Also note that in addition to 

the type of data variation, the amount of variability allowed per type, during image capturing, 

is also a factor to affect the classification performance. Consider for example the severe 

visual changes between images of the same class that large pose variations can create, 

whereas, at the same time, have the potential to increase similarity between the images of 

different classes. This implies that a relationship exists between the amount of image 

variability and system classification performance and, given an appropriate measure of image 

data variability, this relationship could be modeled. This in turn suggests that given a 

classification system its performance could be possibly predicted for any given input dataset 

without the need to perform extensive experimentation. 

Thus the ability to i) measure and then model data variability and ii) predict classification 

performance of a system, is an important research aim. Also note that such a capability can be 

used to select a classification system whose performance is suitable to a given application. 
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Recently in [27], authors proposed a set of different variability measures in order to represent 

object class properties in object classification applications. Here several variability measures 

are proposed which are based only on intra-class similarities. As a consequence they can only 

be used with binary types of classification problems and definitely not in multiclass scenarios 

such as those encountered in FI-AAE and FR systems. The above discussion indicative of the 

third and final general goal of the research work presented in this thesis, that is 

“To develop i) dataset dependent multi-class data variability measure(s) and associated 

models per classification system and ii) given an input dataset and its data variability 

measure, predict system classification performance.”   

1.4 Research Objectives 

The purpose of this investigation is to explore the possibilities and challenges in accurately 

estimating human age from facial images. As discussed earlier, aging affects the human face 

differently in different stages of human life i.e. facial geometry changes, significantly in 

young ages whereas in older ages most of face changes are linked to facial texture. Therefore 

for obtaining accurate human age estimates, face image based automatic age estimation (FI-

AAE) systems are required to fully exploit these two features (i.e. face shape and texture) in 

their respective periods of time. Conventional systems lack this capability and accuracy 

during the feature extraction process which then adversely affects subsequent age 

classification. This raises many challenges with the selection of optimal features and 

subsequent classification being the most important.   

In this thesis, we have focused our attention to these main age estimation research challenges 

and proposed novel solutions. The individual goals, discussed earlier which stem from our 

main age estimation research objective are listed here again:  
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 To extract geometric (shape) and texture information from input face images without 

losing important aging characteristics. 

 To propose a hierarchical framework for age estimation while operating on age partitions 

having large inter-group variation characteristics. 

 To measure and model the multi-class face data variability and to predict the classification 

performance of a given system. 

1.5 Author’s Contributions 

This thesis offers three major contributions which are briefly described next. Lists of 

publications corresponding to these contributions are also provided in this section. 

1.5.1 Face Image Modeling and Synthesis 

Commonly used Active Appearance Model (AAM) based face image modeling techniques 

usually suffer in the presence of high image data variability, especially with respect to subject 

pose and expression. Hence, the face texture and shape parameters produced, result in large 

face synthesis errors and also generated texture lacks important aging features such as 

wrinkles. In Chapter-3, we  propose novel face image modeling and Synthesis systems based 

on  i)  a  Multi-Model AAM framework MM-AAM [28] and ii) a components-based, Multi-

Component/Multi-Model AAM MC/MM-AAM [29] approach, with advanced performance 

characteristics. Thus MM-AAM performance is evaluated and compared with that of 

conventional AAM, when employed in face recognition and experimental results are 

indicative of the  effectiveness of the new proposed methodology [30]. Note that in face 

recognition, synthesised shape has been used in both systems to extract the original face 

texture from the input image, so that texture synthesis errors are avoided and don’t affect 

overall face recognition system performance.  
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Related Publications 

Muhammad Aurangzeb Khan, C. S. Xydeas, and Hassan Ahmed. "Multi-Component/Multi-

Model AAM framework for face image modeling." In Acoustics, Speech and Signal 

Processing (ICASSP), 2013 IEEE International Conference on, pp. 2124-2128. IEEE, 2013. 

Muhammad Aurangzeb Khan, C. S. Xydeas, and Hassan Ahmed. "Multi-model AAM 

framework for face image modeling." In Digital Signal Processing (DSP), 2013 18th 

International Conference on, pp. 1-5. IEEE, 2013. 

Muhammad Aurangzeb Khan, C. S. Xydeas, and Hassan Ahmed. "ON THE APPLICATION 

OF AAM-BASED SYSTEMS IN FACE RECOGNITION." 22nd European Signal 

Processing Conference (EUSIPCO 2014), 2014. 

1.5.2 Face Image Data Variability Measure 

As mentioned earlier, face data variability plays an important role in the overall performance 

of face classification used within the context of age estimation. This in turn is indicative of 

the need to measure and model such variability and thus to hopefully predict classification 

performance. In Chapter-4 of the thesis, a novel face image data variability measure is 

proposed. Furthermore, due to scarcity of age related image data, the validity of this 

variability measure (VM) and its usage for prediction purposes is established in face 

recognition (FR), that is a sister application domain to age estimation. Thus the proposed 

variability measure is successfully used to model the recognition performance of different FR 

systems. FR classification system related Models are derived and tested using a total of 

eleven publically available face datasets. 
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Related Publication 

Muhammad Aurangzeb Khan, C. S. Xydeas, and Hassan Ahmed. "Face Image data 

variability." To be submitted in IEEE.  

1.5.3 Hierarchical Classification Framework for Automatic Age Estimation 

This final topic of contribution offered in this thesis (see Chapter-5) takes the form of a novel 

hierarchical framework conceived for face image based automatic age estimation. It operates 

on face shape and texture separately, at each level of hierarchy, and classification estimates 

are fused in order to select the next branch to be followed in a classification decision tree. At 

each tree level and in order to avoid miss-classifications, due to smooth change in aging 

process, classifiers are trained on appropriately defined age-related data having large inter-

class variation. Computer simulation experimental results demonstrated an advanced 

performance when compared to that obtained from conventional FI-AAE systems.  

Related Publication 

Muhammad Aurangzeb Khan, C. S. Xydeas, and Hassan Ahmed. "Face Image based 

Automatic Age Estimation." To be submitted to IEEE. 

1.6 Thesis Organization 

This thesis is organized into 6 chapters.  

Chapter 1 provides an introduction to the thesis and thus presents i) the motivation and issues 

driving research activities and ii) basic  information on face image based automatic age 

estimation processing.  
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Aspects of related existing knowledge in face image synthesis, quantifying face data 

variability and human age estimation techniques are presented in chapter 2.  

Chapter 3 describes, in detail, the design of i) a novel  Multi-Model AAM (MM-AAM) 

processing framework and ii) a  Multi-Component/Multi-Model AAM (MC/MM-AAM) 

approach together with  a comparative analysis of both systems with conventional Active 

Appearance Model (AAM).  

In chapter 4, a detailed formulation of new face data variability measure (VM) along with its 

performance evaluation, using different face recognition (FR) systems, is presented.  

Chapter 5 presents design details and performance evaluation of a proposed Multi-Level Age 

Estimation (ML-AE) framework, whereas chapter 6 provides overall conclusions and 

possible directions of future studies. 
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Chapter 2  

Related Research Work and Background Material 

Face image based age estimation may be considered as a two-step process: First, extraction of 

the age-related information from the face image and its representation using a lower 

dimensional feature set is performed, followed by age classification using the selected feature 

representation. The extraction and representation step is necessary as pixel value data of a 

facial image is normally of  too high dimensionality and therefore complex to be used in a 

classification phase. This chapter presents a brief introduction of the existing work associated 

with both of these processes. 

The chapter is organised as follows: Section 2.1 presents  existing research work related to 

Facial Feature Extraction, Age Estimation and Classification. Note that our proposed face 

image modeling and representation techniques [28, 29] (see Chapter-3) are based on the 

Active Appearance Model (AAM) and therefore, Section 2.2 presents the design and 

structure of AAM as background material.   

2.1 Related Research Work 

2.1.1 Feature Extraction and Representation 

Existing research work on feature extraction may be categorized into the following classes: 
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1) Anthropometric Models 

These methods are based on face anthropometry, which is a science of measuring sizes and 

proportions on human faces. Some known feature extraction methods based on 

anthropometric models include Kwon and Lobo [31], Farkas [32], Ramanathan and 

Chellappa [1], Gunay and Nabiyev [33], etc. 

Kwon and Lobo [31] are considered as the pioneers in the field of human age estimation 

using facial images. They computed six distance ratios by dividing the distance between two 

features by the distance between two another features (e.g. distance between the eyes over 

distance between the eyes and the nose). These ratios are then used to distinguish between 

images of babies and adults. The features, used to compute ratios, are located by using 

template matching. For further classification among adults, Kwon and Lobo extracted 

wrinkle information from several facial regions such as forehead and around eyes using the 

snakelets method [34].  

Horng, Lee and Chen [18] proposed a variant of Kwon and Lobo’s work for the classification 

of facial images into four age groups: babies, young adults, middle-aged, and old adults. They 

located the facial features by finding high intensity regions within an edge map of the face 

image. These features were then used to compute two distance ratios to distinguish between 

babies and adults. Secondly, they used Sobel filtered images, instead of snakelets, to measure 

the amount of wrinkles on a face image. The use of Sobel operator made this method simpler 

and faster.  

Farkas [32] provided anthropometric measurements based on 57 landmarks on human face. 

Similarly, Ramanathan and Chellappa [1] proposed eight distance ratios to model the age 

progression among young faces for the purpose of face recognition across age progression. 



Chapter-2: Related Research Work and Background Material 17 

 
 

Gunay and Nabiyey [33] also proposed a variant of this approach to represent anthropometric 

features. 

In summary, the age estimation techniques based on anthropometric models are majorly 

based on geometric features and can only deal with young ages, as the human facial features 

in terms of measurements and ratios do not change much in older ages. Furthermore and most 

importantly anthropometric models are restricted to only frontal images as the ratios of 

distances are computed from 2D face images which are sensitive to head pose. 

Even the anthropometric models supported by the wrinkle information could not provide 

better age classification as wrinkle extraction from a facial image is a quite hard task due to 

lighting conditions, camera resolution, and make-up.  

2) Active Appearance Models 

The second category of age estimation methods is based on the Active Appearance Model 

(AAM) work originally proposed by Cootes et al. [15] for encoding facial geometry and 

texture. Later Lanitis et al. [11, 14] applied AAMs, for the first time, to the age estimation 

problem. They showed that the aging pattern could be represented by a quadratic function 

called aging function and proposed the Weighted Appearance Specific (WAS) method [14] 

and the Appearance and Age Specific (AAS) method [11]. Lanitis et al. used aging functions 

in the form of quadratic equations for relating the coded representation of faces to the actual 

age for the purpose of age estimation. According to their results the use of person specific 

aging functions produced improved age estimation results when compared to the use of a 

common aging function for all subjects. 

Xin Geng et al. [10] proposed an age estimation method called  AGES (AGing pattErn 

Subspace) to handle the highly incomplete age based face image dataset. They generated 
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aging patterns, i.e. a sequence of personal facial images sorted in chronological order, for 

each person in a dataset consisting of face images showing each subject at different ages. 

Although,  images are represented by AAM based feature vectors in the same way as given 

by [11, 14]; the AGES method uses several images of the same individual, taken across 

different ages together to represent aging patterns. Each collection of temporal feature vectors 

is considered as a single sample, which can then be projected to a low dimensional space. 

Given a previously unseen face, the face is substituted at different positions in a pattern. The 

position that minimizes the reconstruction error indicates the age of the subject. Xin Geng et 

al. modified their earlier work AGES [10] to develop AGESLDA that additionally applies 

Linear Discriminant Analysis (LDA) to the AAM-based feature vectors to deal with  pose, 

expression, and illumination variations. As AGES relies on person-specific aging patterns, it 

assumes that for a given input face image there exist face images of the same individual but 

at different ages, or at least a similar aging pattern for that face image in the training 

database. However, for real world application it may not be practicable to collect a large 

aging database having face images of same individual across many ages.  

The use of AAM as a feature extraction and representation tool in age estimation field is not 

limited to the research work reported previously. As AAM encodes both facial shape and 

texture simultaneously, it is quite popular among the researchers and many image analysis 

schemes available in literature are based on AAM. For example, Yan et al. [13] designed a 

regressor based on training samples with uncertain nonnegative labels using AAM features. 

Karl Ricanek et al. [22, 35]  applied Least Angle Regression (LAR) by Efron et al. [36] to 

identify the most important AAM features. Khoa Luu et al. [22] used Active Appearance 

Model (AAM) to extract a combined feature vector of  facial images. Sethuram et al. [37] 

used Support Vector Regression (SVR) to learn age-based properties of  AAM parameters 

and gradient-regression-based AAMs to represent  texture information. Suo et al. [17] 
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designed sparse features consisting of the AAM, wrinkles, skin, hair, and the configuration of 

the facial components features using the hierarchical face model. In each component, four 

types of features were extracted: topology, geometry, photometry, and configuration features. 

Choi et al. [2] proposed an  extraction method for wrinkle and skin features which are then 

combined with AAM features to estimate age in a hierarchal framework. The wrinkle features 

are effectively extracted by a Gabor filter set based on the direction of wrinkles on the face. 

The skin features used in skin aging analysis are extracted by Local Binary Pattern (LBP) 

[38]. Chen et al. [39] used AAM features and proposed a method of pair wise age ranking 

based on subspace learning for age prediction. Chao et al. [40] applied age-oriented local 

regression using distance metric learning and dimensionality reduction using AAM features. 

Notice that approaches based only on AAM-based features generally have performance 

limitations due to the following major factors: 

i) AAMs’ lack of ability to automatically fit facial landmarks on unseen images that exhibit 

illumination, pose, or expression variation [41, 42],  

ii) Although AAMs are an excellent model based approach for face related problems [22, 35], 

they only represent holistic and not local aging information such as wrinkles [2, 3]. 

In this thesis, to deal with the above mentioned AAM feature  issues, we have proposed two 

variants of AAM called Multi-Model AAM (MM-AAM) [28] and Multi-Component/Multi-

Model AAM (MC/MM-AAM) [29]. These new models provide an improved synthesis 

capability for unseen face images (see Chapter-3).  

3) Appearance based Features 

The third category of feature extraction methods is based on a set of visual or appearance 

based features. For example, Günay et al. used  Local Binary Patterns (LBP) [38] for 

appearance feature extraction in an automatic age estimation system [19]. Gao et al. [6] used 
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Gabor features [43] in their  purposed  age estimation system and reported better performance 

than that obtained from  LBP. Gao et al. proposed an age estimation system based on Bio-

Inspired Features (BIF) [44], and its different variants have been used for the purpose of age 

estimation [21].  

2.1.2 Face Image based Age Estimation System Architectures 

Existing age estimation or age classification techniques generally operate in one of the 

following two system architectures: 

1) Single-Level Age classifiers 

Single-level age estimation methods aim at finding the age label of a given input face image 

taken from a dataset. Single-level system architectures  are employed in  systems such as 

quadratic regression [14], SVR [7], AGES [10], MLP [11], RUN [13], etc. As discussed 

earlier in Chapter-1, aging affects face images differently in different stages of human life, 

for example, shape changes the most during the child to adulthood period whereas during the 

adulthood to old age period all major face changes relate to texture and since single-level age 

estimation methods perform classification while using information derived from a whole 

input age based dataset, they are not able to exploit these group-specific aging characteristics 

of face images. 

2) Hierarchical or Multi-Level Age classifiers 

As discussed in Chapter-1, facial shape and texture change differently during different 

periods of life. Therefore, for obtaining better age estimation performance a hierarchical 

classification system architecture is required, in which separate classifiers are trained using 

different face image datasets corresponding to each period of life. 
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Thus Hierarchical Age Estimation methods can potentially provide better age estimation 

performance by using classifiers trained on sub-age group related characteristics. Moreover, 

as the classifiers are trained on relatively smaller groups this helps in reducing overall system 

computational complexity. Note however that Hierarchical age estimation methods are often 

prone to error propagation. Existing Hierarchical Age Estimation systems are of two types: i) 

systems based on hard boundaries between adjacent age groups [11, 21, 22] and ii) systems 

based on soft boundaries or with overlapping age groups [2, 20]. The performance of the first 

type of system suffers due to smooth aging variation across adjacent groups. In fact, images 

located at the boundaries of two adjacent groups are often so similar that it makes it very hard 

for a classifier to correctly classify them. Such classification errors propagate within the 

system hierarchy and adversely affect overall age estimation performance. To deal with this 

problem, researchers [2, 20] have proposed the idea of soft boundaries or the use of 

overlapping age groups. Choi et al. [2] designed each age group classifier to have an 

overlapping estimated age range, which considers the false acceptance error (FAE) and false 

rejection error (FRE) of each classifier. By compensating for classification errors using 

overlapping classes, the total age estimation performance is improved. Han et al. [20] used a 

similar strategy to partition the face image dataset into different age groups. These solutions 

reduce errors in the coarse levels of hierarchy; however, errors at finer levels are still quite 

large, which make overall system improvement in age estimation insignificant.   

Note that in this thesis we propose a novel Multi-level Age Estimation (ML-AE) framework 

(see Chapter-5) that minimizes classification error significantly by overcoming the challenge 

of smooth variation among images of different age groups. This is achieved through a novel 

hierarchical method in the selection of training data which allows large inter-class variation 

between classifiers. 
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2.2 AAM Review 

2.2.1 Active Appearance Model (AAM) 

Active Appearance Model (AAM), originally proposed by Cootes et al. [15], is an algorithm 

for constructing a synthetic image,  by using all the image region information related to cove 

a target object (a face in this case) in terms of both shape and appearance (texture), that is a 

close match to an input face image. Matching to an image involves finding a set of model 

parameters that minimizes the difference between the given image texture and the texture 

synthesized using the model.  

This section briefly introduces the basic AAM algorithm [15], which is comprised of two 

operations: AAM Modeling and AAM Fitting.  

1) AAM Modeling  

AAM models the facial shape and texture and yields a low dimensional hybrid set of 

parameters that can then be used to reconstruct a given facial image. The shape is represented 

by a vector containing the coordinates of the landmark points as given below: 

 𝑠𝑖 = [𝑥1, 𝑥2, … , 𝑥𝑀, 𝑦1, 𝑦2, … , 𝑦𝑀]𝑇 , (2.1) 

where {(xm, ym)} are the coordinates of the m = 1,2,… ,M landmark points outlining 

different facial components of face image 𝑖. On the other hand, the texture is described by the 

intensity values contained within the landmark points. The modeling operation requires a 

training dataset of face images with corresponding labeled landmarks. As mentioned in [15], 

first facial shape is modeled using the labeled landmark points. The shapes corresponding to 

all training images are then normalized by the Procrustes Analysis [45]. Then these 
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normalized shape vectors are projected onto the shape subspace created by Principal 

Component Analysis (PCA) 

 𝑠 = 𝑠0 + 𝑃𝑠. 𝑏𝑠, (2.2) 

where  𝑠0 is the mean shape of the training dataset, 𝑃𝑠 is the matrix that contains orthonormal 

base vectors derived from training set, and 𝑏𝑠 represents a set of shape parameters in the 

shape subspace.  

Afterwards, facial texture is extracted from the face image using corresponding landmark 

points. For this purpose, all the images in training dataset are warped to the mean shape to 

produce a shape free texture. Subsequently, a model is generated for each extracted texture. 

First, each texture vector 𝑔𝑖 is linearly normalized by the parameters 𝑢 = (𝜇,𝜎2)𝑇 as given 

below 

 𝑔𝑖 =
𝑔𝑖 − 𝜇

𝜎2
, (2.3) 

where 𝜇 and 𝜎2 are, respectively, the mean and the variance of the texture 𝑔𝑖. The texture is 

then projected onto the texture subspace obtained using PCA  

 𝑔 = 𝑔0 + 𝑃𝑔. 𝑏𝑔 , (2.4) 

where 𝑔0 is the mean texture, 𝑃𝑔 is the matrix containing orthonormal base vectors and 

𝑏𝑔  represents the set of texture parameters.  

Finally, these shape and texture models are combined to generate an appearance model. It is 

achieved by concatenating the parameter vectors 𝑏𝑠 and 𝑏𝑔 to form a hybrid parameter 

vector 𝑏𝑠𝑔as given below 
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  𝑏𝑠𝑔 = (
𝑊𝑠𝑏𝑠

𝑏𝑔
), (2.5) 

where 𝑊𝑠 is a weight matrix [15] to normalize 𝑏𝑠 to same scale as of 𝑏𝑔. Now PCA is applied 

again to  𝑏𝑠𝑔 to get the final appearance model  

  𝑏𝑠𝑔 = 𝑃𝑐 . 𝑐, (2.6) 

where 𝑃𝑐  are the Eigen vectors and 𝑐 is the set of appearance parameters. Due to the linear 

nature of the model, the shape and texture can be expressed as  

 𝑠 = 𝑠0 + 𝑃𝑠.𝑊𝑠𝑄𝑠. 𝑐, 

(2.7) 

 𝑔 = 𝑔0 + 𝑃𝑔. 𝑄𝑔. 𝑏𝑔 , 

where 

 𝑃 = (
𝑄𝑠

𝑄𝑔
), (2.8) 

2) Model Fitting  

Once the model is created, it is important to fit the model to a given face image for obtaining 

the accurate model parameters. The AAM model fitting operation is an iterative procedure as 

given below:  

Step-1: Extract the texture of given image using synthesized shape of that iteration and 

project it to the texture model space. Note: in first iteration texture is extracted on basis of 

mean shape of training images.  

Step-2: Calculate the current texture error vector, 𝑟 = 𝑔𝑠 − 𝑔𝑚, where 𝑔𝑠 is the normalized 

extracted texture sample at the currently estimated shape and 𝑔𝑚 the normalized grey-levels 

of the synthesized face.  
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Step-3: Compute the current error vector using 𝐸 = |𝑟|2, where |. | represent the 2-norm. 

Step-4: Compute the next displacement 𝛿𝑝 = −𝑅. 𝑟(𝑝), where 𝑅 is the regression matrix, 

which is pre-computed during the AAM modeling, it describes the parameter variation that 

leads to convergence. 𝑝 is the set of AAM parameters (𝑝𝑇 = (𝑐𝑇|𝑡𝑇|𝑢𝑇) is the combination 

of the appearance parameters 𝑐, pose parameters 𝑡, and the texture transformation parameters 

𝑢). 

Step-5: Update the model parameters 𝑝 = 𝑝 + 𝑘𝛿𝑝, where 𝑘 = 1 initially.  

Step-6: Obtain the new model texture, 𝑔′𝑚, and extract the original texture, 𝑔′𝑠 from the 

given image using new synthesized shape. 

Step-7: Calculate the new texture error vector, 𝑟′ = 𝑔′𝑠 − 𝑔′𝑚 and 𝐸′ = |𝑟′|2. 

Step-8: If the new error 𝐸′ < 𝐸, then accept the new estimation, otherwise go to Step-5 and 

try a smaller value of step (𝑘 = 1.5, 0.5, 0.25,…). 

Step-9: Repeat until the convergence is achieved or maximum number of iterations is 

reached.
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Chapter 3  

Face Image Modeling And Synthesis  

As discussed in Chapter-1, the first and the most important component in any face image 

based automatic age estimation (FI-AAE) system, to accurately estimate human age, is the 

extraction and representation of aging features. Therefore, researchers have done a lot of 

work in this area and have come up with a plethora of feature extraction and representation 

techniques. In general, the techniques available in literature for aging features extraction and 

representation are divided into three categories, i.e. i) Anthropometric Models [1, 18, 31-33], 

ii) Active Appearance Models (AAMs) [10, 11, 13, 14, 22, 25, 35, 37] and iii) Appearance 

based Features [6, 19, 21, 44]. However, as discussed in Chapter-2, among these three the 

most widely used are the techniques based on Active Appearance Models (AAM).  

The AAM modeling involves the representation of both face geometry (i.e. shape) and 

texture characteristics using a small set of parameters, whereas face image synthesis is a 

process that recovers facial characteristics from these parameters to form face image. In 

addition to FI-AAE, the roots of AAM and similar face image modeling and synthesis 

techniques can be found in many real-life application areas such as facial expression 

recognition, eye tracking, visual speech understanding, video teleconferencing, interactive 

animation of cartoon characters using facial motions, etc. All these applications require facial
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models that are computationally efficient and also realistic enough to synthesize the various 

nuances of facial structure and motion. 

The AAM is considered as a general optimization process that constructs a synthetic image, 

in terms of both shape and texture, that is a close match to an input face image by minimizing 

the difference between the synthesized image and the real appearance of the input image. 

AAM’s ability of differentiating and modeling shape and texture helps in the synthesis of 

more photorealistic images. 

Note that there are two types of application scenarios for modeling face images [42]. One 

relates to applications such as gaze estimation, head pose estimation or expression 

recognition and involves person-specific models. The second type deals with the construction 

of unseen faces and involves generic face models. Modeling a face image for the purpose of 

age estimation comes under the later of the two scenarios discussed above. Authors in [42] 

have shown that person-specific AAMs are easier to build, whereas generic AAMs appear to 

be problematic in texture modeling, due to high data variability, especially pose and 

expression, among images. Hence, the face texture and shape, they produce, not only result in 

large synthesis errors but also texture lacks aging features such as wrinkles. 

To overcome this hindrance of large data variability among images that affects the formation 

of generic face image models and to improve the feature extraction and representation 

process to achieve our main objective of improving the state-of-the-art in face-image based 

automatic age estimation (FI-AAE), two image modeling frameworks have been developed 

during this research work, i.e. i) Multi-Model AAM (MM-AAM) [28] and ii) Multi-

Component/Multi-Model AAM (MC/MM-AAM) [29]. MM-AAM is a holistic approach that 

operates on the whole face at once, whereas MC/MM-AAM, which can be considered as an 
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extension to MM-AAM, models each facial component separately and then combines all the 

synthesised components to form a full face image. These proposed face modeling 

frameworks aim at the creation of generic AAM based face models, which are robust to 

unconstrained input conditions and can preserve discriminative information when generating 

“unseen” face images. 

Both proposed frameworks operate in two phases: i) Modeling and ii) Synthesis phase. The 

modeling phase of MM-AAM involves two major steps. In the first step, face images, taken 

from a training dataset, are grouped into a number of clusters. This is achieved on the basis of 

shape similarities among images and as a result, a given face image training dataset can be 

represented by several subsets (or clusters) having relatively lesser data variations, which in 

turn facilitates the subsequent modeling process. Note that the idea of grouping face images 

into a number of clusters is also presented in [46, 47], but clustering is done on the basis of 

shape orientation (pose) only, whereas clustering here caters for both face orientation and 

expression. The second step involves the application of a conventional AAM to each cluster, 

giving rise to several AAM models. The synthesis phase of MM-AAM, allows for more than 

one face images to be produced as possible representations of an unseen input face image. 

The best synthesized face image is then selected according to the criteria explained in next 

section.  

In contrast, in the modeling phase of MC/MM-AAM training face images are first 

decomposed into face related components, e.g. eyes, mouth, nose, etc., to form facial 

component specific datasets. Then each facial component dataset is partitioned into several 

clusters, which subsequently results in several AAM models for each component. This 

decomposition aims to exploit the local characteristics of each component and can result in 

better model fitting as suggested by [48, 49]. The synthesis phase of MC/MM-AAM, allows 
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for more than one shape for each component of the input face image to be synthesized. The 

best component shape is then chosen for each component on basis of the criteria explained 

later. Finally, the selected shapes of all components are combined to form a whole face shape, 

which then presented into a whole face conventional AAM [15] that delivers the synthesized 

texture of the final reconstructed face image. 

Computer simulation experiments, performed on two different sets of face images, show that 

the proposed MM-AAM and MC/MM-AAM approaches produce more accurate 

representations of unseen face images, in terms of both shape and texture, as compared to 

conventional AAM. Although, out of the two proposed methodologies, MC/MM-AAM has 

performed slightly better, the difference may not be significant when considering the extra 

system complexity introduced by MC/MM-AAM. 

Furthermore, as the goal of the work in this chapter is to develop a novel and effective 

method of aging feature extraction and representation that can be helpful in achieving our 

main research objective of developing a state-of-the-art face image based automatic age 

estimation (FI-AAE), therefore to further examine and ascertain the effectiveness of the 

proposed MM-AAM system in generating face image models, it is employed under face 

recognition (FR) application. Thus a FR system framework i.e. FR-MM-AAM [30] is 

developed and studied. Here, we have used only MM-AAM synthesized shape to extract the 

original texture of the face image that is subsequently used for the recognition purpose. The 

performance of the proposed FR-MM-AAM is compared against the recognition performance 

of the FR system based on the conventional AAM.  

In this chapter, the design and structure of the above mentioned two improved AAM-type of 

systems are first presented, in sections 3.1, 3.2 respectively. Section 3.3 presents a 

comparative analysis, with respect to face image synthesis, between the proposed systems 
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and conventional AAM. Section 3.4 provides a detailed formulation of FR-MM-AAM 

together with a system performance comparison with FR-AAM. Finally, concluding remarks 

are presented in section 3.5.  

3.1 Multi-Model AAM (MM-AAM) 

The proposed MM-AAM framework, which operates on the face image as a whole, 

comprises of a Modeling and a Synthesis phase. 

3.1.1 MM-AAM Modeling Phase 

The MM-AAM Modeling phase involves two major steps, as it is explained below and shown 

in figure 3.1. 

STEP-1: Involves clustering, using only the shape information taken from a training dataset 

of face images. This dataset contains both shape information 𝑺, in the form of landmark 

points, and texture 𝑮 in the form of intensity values (see figure 3.2). 

Consider that i) shape in a face image 𝑖 = 1,2, … , 𝐿  is represented by a vector 𝑓𝑖  where: 

 𝑓𝑖 = [𝑥1, 𝑥2, … , 𝑥𝑀, 𝑦1, 𝑦2, … , 𝑦𝑀]𝑇 (3.1) 

and {(𝑥𝑚, 𝑦𝑚)} are the coordinates of the 𝑚 = 1,2,… ,𝑀 landmark points outlining different 

facial components, and ii) texture information is represented by a vector 𝑔𝑖. Then the sets of 

shape information 𝑺 and texture information 𝑮 from all 𝑳 training images can be represented 

as 

 𝑺 = [𝑓1, 𝑓2, 𝑓3, … , 𝑓𝐿], 
(3.2) 

 𝑮 = [𝑔1, 𝑔2, 𝑔3, … , 𝑔𝐿]. 
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Face Images

VQ-based Clustering

AAM AAM AAM. . . 

STEP-1: Shape-based Clustering

C1 C2 CP

R1 R2 RP

STEP-2: AAM Modeling

Figure 3.1: System Diagram of proposed MM-AAM. Here 𝑪1, 𝑪2, … , 𝑪𝑃 are 𝑃 

clusters of face dataset, which are used to produce 𝑃 model matrices 𝑹𝑃. 

Figure 3.2: Some sample face images with their superimposed shape coordinates (red dots) 

and corresponding facial texture. 
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Face images in the training dataset 𝑭 are then divided into 𝑃  clusters via LBG-Vector 

Quantization (VQ) [50] operating on shape information  𝑺, i.e. 

 𝑪𝑝 = 𝑉𝑄{𝑺}, (3.3) 

where 𝑪𝑝 for 𝑝 = 1,2,3, … , 𝑃 is 𝑝th cluster training dataset and is obtained by employing VQ 

on shape information set 𝑺 .  

LBG-VQ is an iterative algorithm that starts with taking the average of whole training set to 

be the initial code vector. This is subsequently split into two code vectors which are then 

optimized and divide the initial set into two clusters. These two clusters are split into four and 

the LBG-VQ process continues until the desired number of clusters is obtained. 

Figure 3.3: Example shapes of face images taken from three different clusters: images shown 

in one row are representing one cluster. Intra-cluster similarities and inter-cluster variations, 

in terms of both pose and expression, can be observed. 
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Note that following clustering, corresponding texture information is attached to cluster 

members, i.e. clusters contain both shape and texture information and thus the union of 𝑃 

𝑪𝑝 clusters gives 𝑭. Figure 3.3 shows sample shapes of face images taken from three different 

clusters having low intra-cluster and high inter-cluster variation. 

STEP-2: Here a corresponding parametric model and a model matrix 𝑹𝑝 is constructed for 

each cluster using conventional AAM optimization [15], see figure 3.1. Thus a training 

process produces 𝑃 model matrices 𝑹𝑝 which are stored and can be subsequently used in the 

synthesis of an unseen input face image. 

The above steps increase modeling accuracy by exploiting similarities in the shape 

characteristics of different person’s face images. This in turn can be viewed as an attempt to 

bridge the existing gap between the observed relatively low modeling accuracy of generic 

AAMs with the much higher accuracy of specific AAMs. 

3.1.2 MM-AAM Synthesis Phase 

Following the previously generated appearance model matrices 𝑹𝑝, one model for an unseen 

input face image is selected to obtain a single set of parameters that can give the best 

representation of the face image. The proposed model fitting or synthesis process can be 

explained as follows: 

1) For a given input face image 𝑡, apply 𝑃 conventional iterative AAM fitting algorithms 

based on model matrices 𝑹𝑝 (𝑝 = 1,2, … , 𝑃) and obtain same number of model 

parameters’ vectors 𝑐1
𝑡, 𝑐2

𝑡 , … , 𝑐𝑃
𝑡 . 

2) Select the best model parameters’ vector 𝑐 on the basis of a minimum average Mean 

Square Error (MSE). MSEs are formed between the original input face texture and the 
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textures associated with the 𝑃 models and averaged across all iterations of the fitting 

algorithm [15]. 

3) Finally synthesize face texture and shape using the best model parameters’ vector and 

their corresponding Eigenspace obtained in previous step. 

3.2 Multi-Component/Multi-Model AAM (MC/MM-AAM) 

The proposed Multi-Component/Multi-Model AAM (MC/MM-AAM) framework is an 

extension to the MM-AAM that models different facial components (i.e. eyes, mouth, nose, 

etc.) separately and produces the best synthesised shapes and textures for all components, 

which are then combined to form face images. The rationale behind this is to study and 

analyse the synthesis performance of the framework on basis of different local features (i.e. 

components) and compare it with the performance obtained using the global feature (i.e. 

face). The proposed MC/MM-AAM, like MM-AAM, also comprises of a Modeling and a 

Synthesis phase that are explained below. 

3.2.1 MC/MM-AAM Modeling Phase 

In contrast to MM-AAM, the Modeling phase of MC/MM-AAM involves one extra step, as it 

is explained below and shown in figure 3.4. 

STEP-1: Involves the component-based decomposition of images into facial components. 

Face images taken from a training dataset are decomposed on the basis of 𝑁 facial 

components (𝑁 = 4 in our case i.e. cheeks + eyebrows, eyes, mouth and nose, see figure 3.5). 

This component-based decomposition is being used to account for the local shape and texture 

variability that characterizes different facial components. As given in Eq. 3.1, the shape in a 

face image 𝑖 = 1,2, … , 𝐿 is represented by a vector 𝑓𝑖 that contains the 𝑀 landmark points 
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outlining the different facial components. In this step, the shape vector 𝑓𝑖  for each 𝑖th face 

image is decomposed into 𝑁 sub vectors of different lengths, such that 

 𝑓1
𝑖 = [𝑥11, 𝑥12, … , 𝑥1𝑎, 𝑦11, 𝑦12, … , 𝑦1𝑎]𝑇 , 

(3.4) 

 𝑓2
𝑖 = [𝑥21, 𝑥22 … , 𝑥2𝑏 , 𝑦21, 𝑦22, … , 𝑦2𝑏]

𝑇 , 

 

…
 

 𝑓𝑁
𝑖 = [𝑥𝑁1, 𝑥𝑁2, … , 𝑥𝑁𝑐 , 𝑦𝑁1, 𝑦𝑁2, … , 𝑦𝑁𝑐]

𝑇 , 

where 𝑓𝑛
𝑖  is the shape vector of nth facial component of the 𝑖th image. After decomposition of 

all training face images, shape and texture vectors belonging to the same component, are 

grouped into separate sets to form 𝑁 component-based datasets as given by: 

 𝑺𝑛 = [𝑓𝑛
1, 𝑓𝑛

2, 𝑓𝑛
3, … , 𝑓𝑛

𝐿], 

(3.5)  𝑮𝑛 = [𝑔𝑛
1 , 𝑔𝑛

2, 𝑔𝑛
3, … , 𝑔𝑛

𝐿], 

 𝑭𝑛 = {𝑺𝑛|𝑮𝑛}, 

where 𝑭𝑛 is the 𝑛th component-based dataset containing shape vectors 𝑺𝑛 and texture vectors 

𝑮𝑛 from all 𝐿 training images. 

STEP-2: Each component-based dataset 𝑭𝑛 is then partitioned, on basis of shape vectors 𝑺𝒏, 

into a number of clusters 𝑪𝑛𝑘 (for 𝑘 = 1,2,3, … , 𝐾) by using same LBG-VQ process as 

explained earlier.  In general, the number of clusters for each component i.e. 𝑝, 𝑞, etc. can be 

different as shown in figure 3.4. Every cluster contains both shape and texture information so 

𝑪𝑛𝑘 = {𝑺𝑛𝑘|𝑮𝑛𝑘} and the union of 𝑝  𝑪𝑛𝑘 clusters gives 𝑭𝑛 . Figure 3.6 shows sample shapes 

of cheeks + eyebrows taken from two different clusters. 
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STEP-3: A corresponding component model and a model matrix 𝑹𝑛𝑘 is constructed for each 

cluster using conventional AAM optimization, see figure 3.4. Thus a training process 

produces (𝑝 + 𝑞 + ⋯+ 𝑟) model matrices 𝑹𝑛𝑘which are stored and can be subsequently 

used in the synthesis of an unseen input face image.  

Face Images

Component-based Decomposition

VQ-based Clustering

AAM

VQ-based Clustering VQ-based Clustering

AAM. . . AAM AAM. . . AAM AAM. . . 

. . . 

STEP-1: Component-based Decomposition

F1 F2 FN

C11 C1p C21 C2q CN1 CNr

R11 R1p R21 R2q RN1 RNr

STEP-2: Clustering

STEP-3: AAM Modeling

Figure 3.4: System Diagram of proposed MC/MM-AAM. Here 𝑭1, 𝑭2, 𝑭3, . . . , 𝑭𝑁  are 

(𝑁 = 4) components-based datasets and 𝑪𝑛𝑘’s are corresponding component clusters. These 

are used to produce component based model matrices 𝑹𝑛𝑘’s. The number of clusters 

employed for each component can be the same i.e. 𝑝 = 𝑞 = 𝑟 = 8 or it can differ. 
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3.2.2 MC/MM-AAM Synthesis Phase 

Following the previously generated component models, the best model for each component is 

selected and these are subsequently fused to form a single set of parameters that represents 

the complete face. The proposed synthesis process can be explained as follows: 

1) Given face image t is decomposed into components to form 𝑓1
𝑡, 𝑓2

𝑡, … , 𝑓𝑁
𝑡 shape vectors 

and their corresponding texture vectors 𝑔1
𝑡 , 𝑔2

𝑡 , … , 𝑔𝑁
𝑡 . 

2)  Apply 𝑝 conventional iterative AAM fitting algorithms based on model matrices 

𝑹𝑛𝑘 (k = 1,2, … , p) for each 𝑛 = 1,2, … ,𝑁 component. Obtain same number of model 

parameters’ vectors 𝑐𝑛1
𝑡 , 𝑐𝑛2

𝑡 , … , 𝑐𝑛𝑝
𝑡  for each component. 

3) For each component, select the best model parameters’ vector on the basis of a minimum 

average Mean Square Error (MSE).  MSEs are formed between the original texture and the 

textures associated with the 𝑝 models of each component and calculated across all 

iterations of the fitting algorithm as given in case of conventional AAM. 

4) Synthesize only the shape vectors 𝑓1
𝑡, 𝑓2

𝑡 , … , 𝑓𝑁
𝑡  of all 𝑁 components with the best model 

parameters selected above. Combine all component-based shape vectors to form one 

single vector that represents the whole face shape i.e. 

 𝑓𝑡 = [𝑓1
𝑡 , 𝑓2

𝑡 , 𝑓3
𝑡 , … , 𝑓𝑁

𝑡]. ( 3.6) 

5) Finally in the last step, the whole face texture is synthesized for the shape vector obtained 

in previous step. For this purpose, the corresponding texture of the best shape vector is 

projected in the Eigenspace obtained from a whole face conventional AAM. The resulting 

model parameters are then used to synthesize the whole face texture. 
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(a) 

Figure 3.6: Example shapes of cheeks + eyebrows component taken from two different 

clusters: first row shapes belong to one cluster and second row belong to another cluster. 

Intra-cluster similarities and inter-cluster variations can be observed here as well. 

(b) 

(d) 

(c) 

Figure 3.5: Example shapes of four components i.e. cheeks + eyebrows, nose, mouth and 

eyes. 



Chapter-3: Face Image Modeling And Synthesis 39 

 
 

 

1 2 3 4 6 12 24
5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

No: of Clusters

A
v

er
a

g
e 

E
rr

o
r

1 2 3 4 6 12 24
0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

No: of Clusters

A
v

er
a

g
e 

E
rr

o
r
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(b) 

Figure 3.7: Error Vs No. of Clusters. (a) Error between synthesized shape coordinates and 

ground truth coordinates averaged across 108 test images for each value of p, (b) error 

between synthesized texture intensities and ground truth texture intensities averaged a across 

108 test images. 
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3.3 Experimental Results and Discussion  

Performance assessment and thus comparisons between MM-AAM, MC/MM-AAM and 

conventional AAM were performed in two experimental setups: i) a first experiment, which 

involved only MM-AAM due to its lesser complexity, explains the impact of number of 

clusters on overall synthesis performance and ii) a second experiment which compares the 

performance of all three frameworks i.e. conventional AAM, MM-AAM and MC/MM-AAM.  

3.3.1 Impact of Number of Clusters 

This experiment investigates how the proposed MM-AAM system performance changes with 

respect to number of clusters. For this purpose, a subset of publically available facial dataset 

IMM [51] was used for modeling and synthesis purpose. IMM consists of 240 annotated 

images (6  images per person). Each image is 640 × 480 pixels in size and comes with 

𝑀 = 58 hand labeled shape points which outline face contours. From these images, in order 

to constrain experimental complexity, only 72 images (12 persons with 6 images per person) 

have been used to train the system for different number of clusters i.e. 𝑝 = 1,2,3,4,6,12,24. 

Note that the number of training images per cluster varies, for a given value of  𝑝. 

Furthermore from the remaining 168 images 108 images of 18 persons with 6 images per 

person were used for each value of 𝑝 to test the system performance. 

Note that model accuracy or fitting was evaluated with respect to both shape and texture. In 

the case of shape and for each input test image 𝑡, an average point-to-point error 𝐸(𝑓𝑡 , 𝑓𝑔𝑡) 

between modeled shape and ground truth shape coordinates was calculated as suggested in 

[52], i.e.: 
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where 𝑀 is total number of landmark points. Similarly, a normalized Mean Square Error 

(MSE) 𝐸(�̂�𝑡, 𝑔𝑔𝑡) was calculated between modeled texture �̂�𝑡 and the ground truth texture 

𝑔𝑔𝑡which is effectively contained by ground truth shape points 𝑓𝑔𝑡.  In particular, 

where 𝑁 is the length of the texture vectors �̂�𝑡 and 𝑔𝑔𝑡. Then  𝐸(𝑓𝑡, 𝑓𝑔𝑡) and  𝐸(�̂�𝑡, 𝑔𝑔𝑡) are 

averaged over the 108 test images available for each value of  𝑝, see figure 3.7. 

In general, figure 3.7 suggests that MSE decreases as number of clusters are increased and 

thus overall modeling system performance increases by applying the proposed MM-AAM 

approach. It also suggests that there is an “optimum” value of number of clusters 𝑝𝑜𝑝, in this 

experiment, for which MSE is minimum. 

Note that MSE values start to increase for 𝑝 > 𝑝𝑜𝑝, due to the population of images per 

cluster becoming relatively small and as a consequence, model fitting accuracy per cluster 

deteriorates. Furthermore system training using a considerably larger number of input 

images, that will allow large number of clusters with enough number of images per cluster for 

better AAM modeling, is expected to reveal a type of convergence towards a minimum MSE 

floor value in system performance behaviour.  
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3.3.2 Synthesis Performance Comparisons 

The second experiment employs a different and much larger input image dataset and thus 

provides a more accurate performance comparison between MM-AAM, MC/MM-AAM with 

𝑝 = 8 and conventional AAM systems. Thus all three systems have been trained using face 

images taken from the IMM dataset [51] and also from another publically available FG-NET 

facial dataset [24]. FG-NET is a database of subject faces at different ages and contains 1002 

color or gray-scale face images of 82 persons (12 images per person on average) with an age 

range from infant to 69 years. Note: the images from both datasets are converted to gray 

scale and extracted textures are made equal in size using cubic spline interpolation. 

Experimentation during training involved 175 images of 35 persons (5 images per person) 

from the IMM dataset and 480 images of 60 persons (8 images per person) from FG-NET 

dataset. Note that the number 𝑀 of hand labeled face shape points is kept to 𝑀 = 58 in both 

datasets. Experimentation during testing involved two different test datasets. One dataset, 

named as “seen dataset”, contains 35 images from IMM dataset and 240 images from FG-

NET dataset (4 images per person on average) of persons having example images included in 

the training set, whereas the second test dataset contains 30 images of 5 completely unseen 

persons (6 images per person) from IMM dataset and 160 images of 20 completely unseen 

persons (8 images per person on average) from FG-NET dataset, and hence it is named as 

“unseen dataset”. Again, point-to-point MSE error 𝐸(𝑓𝑡 , 𝑓𝑔𝑡) and 𝐸(�̂�𝑡, 𝑔𝑔𝑡) values (see Eq. 

3.7 and 3.8) were calculated for the images of both types of test datasets. Table 3.1 shows 

shape and texture errors, averaged across all the test images, for both “seen dataset” and 

“unseen dataset” respectively, note that both the proposed frameworks, i.e. MM-AAM and 

MC/MM-AAM, outperform the conventional AAM system. Moreover, although the 

component based system has performed better than the system based on whole face image, 
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the difference in performance may be considered too small, as shown in table 3.1, when 

taking into consideration the added complexity of MC/MM-AAM. System complexity with 

respect to separate model initialization and optimization for each individual component 

restricted us to use MC/MM-AAM for face recognition or automatic age estimation. 

However, in future if somehow this complexity is reduced, MC/MM-AAM may be used 

effectively in real-life applications. A further illustration of this fact is shown in figure 3.8 

and figure 3.9, here sample synthesized shapes from all three systems are compared with the 

corresponding ground truth shapes, and the better model fitting performance of MM-AAM 

and MC/MM-AAM over AAM becomes apparent. 

Table 3.1: Average Shape and Texture Errors (Average; Standard Deviation) for both 

Seen and Unseen Datasets. 

 

Unseen Dataset Seen Dataset 

Shape Error  

(Avg; Std) 

Texture Error 

 (Avg; Std) 

Shape Error 

 (Avg; Std) 

Texture Error  

(Avg; Std) 

AAM [14] (12.1174; 6.7521) (0.4966; 0.2107) (10.8399; 4.3520) (0.4957; 0.2416) 

MM-AAM [33] (7.5937; 8.5774) (0.1647; 0.0938) (6.1006; 2.1624) (0.1306; 0.0504) 

MC/MM-AAM 

[32] 

(7.1256; 6.2458) (0.0583; 0.0919) (6.0292; 2.3074) (0.0332; 0.0154) 

Finally, figure 3.10 illustrates visually and possibly more effectively, the MM-AAM and 

MC/MM-AAM advantage over AAM, by offering a comparison between “Target”, MM-

AAM modeled textures, MC/MM-AAM modeled textures and AAM modeled textures of 

some of the test images from both types of dataset. Again a small improvement in 

performance, offered by MC/MM-AAM, over MM-AAM is evident.  
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Figure 3.8: Sample synthesized shapes for “Seen Dataset”; first column in red is Ground 

Truth, second column is MM-AAM, third column is MC/MM-AAM and the last column is 

AAM. The difference between results obtained using MM-AAM and MC/MM-AAM is not 

large but they both significantly outperformed conventional AAM.   

Figure 3.9: Sample synthesized shapes for “Unseen Dataset”; first column in red is Ground 

Truth, second column is MM-AAM, third column is MC/MM-AAM and the last column is 

AAM. Again MM-AAM and MC/MM-AAM significantly outperformed conventional AAM. 
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Figure 3.10: Sample synthesized textures; first column is Ground Truth, second column is 

MM-AAM, third column is MC/MM-AAM and the last column is AAM. MM-AAM and 

MC/MM-AAM outperformed conventional AAM, but the difference between the two new 

schemes is not significant. 
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3.4 MM-AAM as Applied to Face Recognition  

This section examines the applicability of AAM and MM-AAM in face recognition and 

proposes an FR-MM-AAM [30] system that is far less affected by input data variability and 

thus outperforms FR-AAM. Here, input data variability relates to differences in face 

illumination, pose and expression [53]. Furthermore, input data variability is generally been 

accepted as having an adverse effect on the overall performance of both face 

modeling/synthesis (FM/S) procedures and on face recognition (FR) systems. Note that due 

to the excessive complexity characteristics of MC/MM-AAM only MM-AAM has been used 

for the face recognition experiments. 

This proposed FR-MM-AAM framework has been developed and evaluated in two phases, 

that is: i) a design phase based on system training and using a wide range of input face 

images and ii) a system performance testing phase, using both “seen” and “unseen”, by the 

face modeling and synthesis processes, input image data.  

System training involves three major steps: Firstly, face image models, created according to 

MM-AAM procedures given in previous sections, are used to model the shape information of 

all faces included in the training input dataset. Shape information is then employed to extract, 

from corresponding training images, the actual facial texture, i.e. those face pixels contained 

within corresponding shapes. It is this actual face texture information that forms the basis for 

information discrimination and face recognition.  

Secondly, Principal Component Analysis (PCA) [54] is employed on this texture information 

in order to obtain a lower dimensionality feature/texture space than that created in the 

previous step.  
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Finally, a given classification system is designed via training to operate on PCA derived 

information. Note that two classification methods have been employed in this work, i.e. 

Linear Discriminant Analysis (LDA) [55] and Multi-Class, Radial basis function (RBF) 

kernel Support Vector Machines (SVM) [56].  

Testing system performance involves the synthesis of face shape information for a given 

input image and the subsequent extraction of corresponding texture information. This face 

STEP-2: Creating Lower Dimensional Feature Space using Principal Component Analysis (PCA)

STEP-1: MM-AAM Synthesis Phase

Face Image Dataset

Shape Synthesis using MM-AAM

Principal Component Analysis (PCA)

Face Texture Extraction on basis of Synthesized Shape

STEP-3: Training of Classifier (LDA / Multi-Class SVM) using Lower Dimensional Feature Set

Classifier (LDA / Multi-Class SVM)

S = [f 1, f 2, f 3, . . ., f L ]

G = [g 1, g 2, g 3, . . ., g L ]

P = [p 1, p 2, p 3, . . ., p L ]

Figure 3.11: FR-MM-AAM Training. This involves the synthesis of face image shapes for 

the complete training image dataset 𝑭, using the MM-AAM procedures. MM-AAM training 

is a precursor to FR-MM-AAM training. 
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texture is projected on the PCA Eigen-Space that is created during the training phase, to yield 

a lower dimensional feature vector, which then is classified to one of a number of possible 

subjects. 

Face recognition system performance has been evaluated using i) “seen” and ii) “unseen” 

input face images. In the first case, face shape models were defined during training using a 

set of 655 input images (taken from 95 subjects), whereas system recognition performance 

was evaluated based on a set of images of 35 out of the 95  subjects. In the second case the 

previous images of 35 subjects were used only during recognition and they were therefore 

“unseen” by the shape modeling process.   

3.4.1 FR-MM-AAM System Training 

Training encompasses three major steps. These are shown in figure 3.11 and discussed below. 

Note that MM-AAM operation is a precursor to FR-MM-AAM training. 

1) Consider that the MM-AAM synthesized shape information of the 𝑖th input face image  is 

represented as 

 𝑓𝑖 = [𝑥1, 𝑥2, … , 𝑥𝑀, �̂�1, �̂�2, … , �̂�𝑀]𝑇 (3.9) 

where {(�̂�m, �̂�m)} are the synthesized coordinates of the m = 1,2,… ,M landmark points 

outlining different facial components. Furthermore, the set �̂� of shape information 

obtained from all the L training images of dataset F is given by 

 �̂� = [𝑓1, 𝑓2, 𝑓3, … , 𝑓𝐿], (3.10)  
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Now, for each face image 𝑖, face texture information 𝑔𝑖 is extracted (i.e. pixels contained 

within shape defined face outlines) using corresponding shape coordinates𝑓𝑖. Thus, the 

set 𝑮 of face texture information obtained from all 𝐿 training images is represented by 

2) Principal Component Analysis (PCA) is applied on dataset 𝑮, to obtain a lower 𝑁-

dimensional representation, texture only related, 𝑝𝑖 for each texture vector 𝑔𝑖. This is 

achieved by PCA selecting a relatively small number of 𝑁 Eigen-Vectors on the basis of 

percentage energy captured by corresponding Eigen-Values [54]. 

3) Finally, a classifier (LDA or Multi-Class SVM) is trained using the set 𝑷 of feature 

vectors  𝑝𝑖 𝑖 = 1, 2, … , 𝐿. 

3.4.2 FR-MM-AAM System Testing 

System operation involves the following three procedures: 

1) Given an input face image 𝑡, MM-AAM synthesis is applied that derives shape coordinate 

information 𝑓𝑡. This information allows the corresponding face texture  𝑔𝑡 to be obtained 

from the input image. 

2) Texture  𝑔𝑡 is projected onto the 𝑁-dimensional Eigenspace produced during training, in 

order to obtain the 𝑁-dimensional feature set 𝑝𝑡. 

3) Finally,  𝑝𝑡 is given as input to the classifier, that has been designed during training, the 

output of which returns a label class i.e. person assigned to image. 

 𝑮 = [𝑔1, 𝑔2, 𝑔3, … , 𝑔𝐿]. (3.11)  
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3.4.3 Experimental Results and Discussion 

Experimentation was performed using computer simulation of FR systems and involved two 

different facial datasets i) FG-NET and ii) the IMM face dataset that are employed in two 

different experiments to assess the FR performance of systems.  

In the first experiment, MM-AAM and AAM training, involved i) 480 images of 60 persons 

(8 images per person) from FG-NET dataset and ii) 175 images of 35 persons (5 images per 

person) from the IMM dataset. The number 𝑀 of hand labeled face shape points was kept to 

𝑀 = 58 in both datasets. Recall that MM-AAM and AAM training, as specified previously, 

is a precursor to the FR-MM-AAM three steps training process described in the previous 

section. In this experiment, face recognition system performance was evaluated using a 

“seen” dataset composed of the above 175 IMM images (used in shape modeling) plus 

another 35 image version of the same IMM subjects.  

In the second experiment, MM-AAM and AAM training involved only the 480  images taken 

from FG-NET, whereas during face recognition the “unseen” dataset of  210 IMM images 

was employed as input data. Examples of MM-AAM and AAM synthesized shapes with their 

corresponding extracted textures, for both “seen” and “unseen” input datasets are shown in 

figure 3.12. These images are indicative of the improved shape modeling accuracy of MM-

AAM, as compared to AAM, particularly in the case of “unseen” images. Furthermore, and in 

both experiments, FR system training and testing has been performed using the Leave One 

Image Out (LOIO) fold approach, i.e. in each fold one image taken from each person is left 

out for testing whereas all remaining images are used for system training. 
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(d) 

(b) 

(c) 

(a) 

Figure 3.12: Examples of synthesized shapes and their corresponding extracted textures: a) and 

b) are examples obtained from previously “seen” data with images that are known to modeling 

process and correspond to MM-AAM and AAM respectively, whereas c) and d) are results 

with MM-AAM and AAM operating on “unseen” data with images that are unknown to 

modeling process. 
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Notice that in addition to the above techniques, a conventional FR-PCA system has been 

simulated and tested. Here cropped image face information i.e. pixels, see figure 3.13, are 

used directly in dimensionality reduction (PCA) and resulting coefficients are classified. The 

purpose for using manually cropped image data is to compare the FR-PCA system 

performance with that obtained from the FR-AAM and FR-MM-AAM systems, where 

texture is obtained via shape modeling. 

FR system performance bars are plotted in figure 3.14 and figure 3.15 that show recognition 

rates for systems using two different classification techniques i.e. LDA and Multi-Class 

SVM. Note that throughout this work, retained Eigen-Vectors correspond to the largest 

Eigen-Values that capture 90% of cumulative signal energy. In both figures, results indicate 

clearly that FR performance based on texture extracted using MM-AAM modeled shapes and 

with the system operating on “seen” input data is significantly better than that obtained from 

both FR-AAM and FR-PCA. 

In the case of LDA classification, see figure 3.14, FR-MM-AAM offers a recognition rate of 

94.29% and 69.05% for “seen” and “unseen” datasets, respectively.  Furthermore FR-MM-

Figure 3.13: Examples of manually cropped images used in the performance evaluation of 

conventional FR-PCA. The purpose of using cropped images is to generate input images 

which are therefore comparable to those used in FR-MM-AAM and FR-AAM system 

performance experiments, see figure 3.12.    
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AAM outperforms FR-AAM by 42.39% and 25.50%, for “seen” and “unseen” datasets, 

respectively. This is indicative of AAM’s inability to cope with input data variability, even in 

the case of previously “seen” inputs. Furthermore, and in the case of “seen” input images, 

FR-MM-AAM outperforms FR-PCA by 21.91%. The above noted general trends in FR 

performance remain valid in figure 3.15. Note that the implementation of Multi-Class SVM, 

used in this work, is from the statistical pattern recognition (STPR) toolbox for Matlab [57] 

and furthermore the RBF kernel is optimized for each FR system, separately, for both types 

of datasets.  
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Figure 3.14: LDA Classifier: Bars show recognition rates achieved by the three FR methods 

under consideration for all three types of datasets i.e. Seen Dataset (Blue Bar), Unseen 

Dataset (Red Bar) and Manually Cropped Dataset (Green Bar). 



Chapter-3: Face Image Modeling And Synthesis 55 

 
 

 

 

 

 

 

 

 

 

FR-PCA FR-MM-AAM FR-AAM
0

10

20

30

40

50

60

70

80

90

100

 

 

Face Recognition Systems

R
ec

o
g

n
it

io
n

 R
a

te
 (

%
a

g
e)

Seen Dataset

Unseen Dataset

Manually Cropped Dataset

Figure 3.15: Multi-Class SVM Classifier: Bars show recognition rates achieved by the three 

FR methods under consideration for all three types of datasets i.e. Seen Dataset (Blue Bar), 

Unseen Dataset (Red Bar) and Manually Cropped Dataset (Green Bar). 
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3.5 Conclusion 

The proposed face image modeling/synthesis methodologies, MM-AAM and MC/MM-AAM, 

improve image synthesis performance as compared to existing and commonly used active 

appearance model (AAM) technique and provide a novel solution to the problem of feature 

extraction and representation with respect to FI-AAE application. Furthermore, both 

proposed systems are generic in nature and can model/synthesise even face images that are 

unseen for the system. MM-AAM operates on the whole face image whereas MC/MM-AAM 

exploits the local information by using each face component separately. They cluster face 

image data into small groups on basis of shape similarities and yield multiple models, out of 

which the best one is selected for the synthesis of unknown test image. The novelty of the 

proposed frameworks stem from the notion that face data variability (i.e. due to pose, 

expression, illumination) can be reduced by splitting data into smaller groups of similar 

characteristics, an action that eventually facilitates the subsequent modeling and synthesis 

process. Although MC/MM-AAM performs better than MM-AMM in terms of synthesis 

performance, computational complexity with respect to separate initialization and 

optimization of AAM for each component is prohibitively large for use in applications such 

as face recognition or automatic age estimation. However, if somehow this complexity is 

reduced in future, MC/MM-AAM may be a better option to use in real-life applications due 

to its better synthesis performance.  

In conclusion computer simulation based experimental results, obtained using two different 

types of input databases, show that MM-AAM and MC/MM-AAM can deliver improved face 

image modeling/synthesis performance of the order of 37%, when compared to conventional 

active appearance model (AAM). Furthermore before employing MM-AAM as a tool for 

feature extraction in the proposed FI-AAE system, discussed in Chapter-5, its capability of 
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synthesize unseen facial shapes is ascertained by employing it in FR application and obtained 

simulation results shown that FR-MM-AAM recognition rages outperform those obtained 

from FR-AAM by as much as 42.39% and 25.50%, for “seen” and “unseen” datasets, 

respectively.
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Chapter 4  

Face Image Data Variability 

In addition to the age related feature extraction and representation discussed in Chapter-3 

under face image modeling and synthesis, the performance of face image based automatic age 

estimation (FI-AAE) systems is also heavily dependent on the application related face dataset 

generation methodology and resulting input dataset characteristics. Thus face data collection 

is a critical element of system performance and deserves considerable attention. 

In general, datasets associated with any type of classification system of a particular 

application domain come with some undesired variation among their samples that adversely 

affects performance of that system. For example, an age-related face image dataset is desired 

to contain only aging variation among face images of different age groups. However it is very 

common for these datasets, such as FG-NET dataset [24], to have high levels of non-aging 

variation. Such variability is due to capturing conditions such as:  

 Illumination 

 Pose 

 Expression 

 Makeup 

 Facial attributes  i.e. moustache, beard, glasses, 

The data variation among different samples of a dataset is, generally, divided into two 

categories, i) inter-class variation or between class variation and ii) intra-class variation or
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within class variation. It is believed that to distinguish between two different classes of a 

dataset, intra-class variation must be smaller than the inter-class variation [58]. However, the 

variation caused due to the factors mentioned earlier may potentially increase the intra-class 

variation and thus create overlap between different class distributions which in turn may 

make class separability an even more difficult task. In the case of FI-AAE and since aging is 

a slow process, face image datasets, used to train/test the age classifiers, usually suffer with 

small inter-class/inter-group age variation and large intra-class variation. This is due to the 

non-aging variation factors given above, which make it quite hard for classifiers to 

distinguish between images of two different age groups and cause a decrease in overall 

system performance. This implies that a relationship exists between the face image data 

variability and classification performance of a given system. Therefore, the ability to 

somehow measure dataset variability can lead to prediction of classification performance and 

thus to the selection of an appropriate system suitable to a given application. Furthermore an 

appropriate face image variability measure can be also used to rank face image datasets in 

terms of their classification difficulty level.   

Now several researchers have proposed a variety of techniques to cope with face image data 

variability and thus improve age classification performance, see Chapter-5. However, to the 

best of our knowledge no one has come up with a measure of face data variability that can be 

used to i) predict system classification performance and ii) select appropriate face image 

datasets to train/test a given age estimation application. The conceptually nearest publication 

[27] proposes a set of different variability measures in order to represent object class 

properties in object classification. Here several variability measures are proposed which are 

based on intra-class similarities. As a consequence they can only be used with binary types of 
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classification problems and definitely not in multiclass scenarios such as those encountered in 

FI-AAE.  

In this chapter, we  propose a method to i) quantify the overall variation present in a face 

image dataset and ii) model the relationship between proposed variability measure and 

system classification performance. However, modeling of this relationship requires a large 

number of face image datasets to be used for model training and testing. Furthermore in the 

case of FI-AAE where the face images correspond to different ages, there is a scarcity of 

publically available age based face image datasets. Therefore in this chapter, instead of FI-

AAE type of data we have studied variability using face image datasets employed in face 

recognition (FR). Thus, the capturing conditions mentioned earlier, which affect FR related 

face datasets, are expected to have  similar  detrimental effects on  FI-AAE systems, while 

increasing  intra-class variability to significant levels as compared to  inter-class variations. It 

is for this reason that the proposed in this chapter formulation of FR “related” variability 

measure should in general be applicable to FI-AAE. Of course this logical assumption, which 

should be verified in future work, allowed us to work with easily available FR datasets and 

associated systems. Table 4.1 presents several well-known face image datasets, each created 

with its own image capture specification.   

In addition to the above types of variation, the amount of variability allowed per type, during 

image capturing, is also of importance and emphasizes the need of a single variability 

measure to be defined. Consider for example the type of variability “pose” (see table 4.2) in 

FR related face datasets which can vary from 0 to ±90 degrees. Large variations in pose can 

create severe visual changes between images taken of the same person, whereas, at the same 

time, have the potential to increase similarity between the images of different subjects. Of 

course in both cases recognition/classification becomes a more challenging task with adverse 
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implications in system performance. This general dependency of system performance upon 

specific input image sets and their associated types and levels of variability is also discussed 

in [59], see table 4.3. 

Table 4.1: Some of the widely used Face Datasets in Face Recognition Applications 

Database RGB/Gray Image Size 
No: of 

Subjects 

No: of 

Images / 

Subject 

Variation 

AT&T Face 

Dataset [60] 
Gray 112x92 40 10 

Pose, 

Illumination, 

expression 

IMM Face 

Dataset [51] 
RGB/Gray 640x480 40 6 

Pose, 

Illumination, 

expression 

The Extended 

Yale Face Dataset 

[61] 

Gray 168x192 28 ~576 
Illumination, 

pose 

Georgia Tech. 

Face Dataset [62] 
RGB 640x480 50 15 

Pose, 

Illumination, 

expression 

Stirling Face 

Dataset [63] 
Gray 269x369 35 9 

Pose, 

expression 

Indian Face 

Dataset [64] 
RGB 640x480 61 11 

Pose, 

Illumination, 

expression 

FEI Face Dataset 

[65] 
RGB 640x480 200 14 

Pose, 

Illumination, 

expression 

XM2VTSDB [66] RGB 576x720 295 8 Pose 

UMIST Face 

Dataset [67] 
Gray 220x220 20 19-36 Pose 
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Table 4.2: Face Datasets having Pose Variation 

Database 
No: of 

Subjects 
Pose Variation 

AT&T Face Dataset [60] 40 
10 random poses within ±20 in Yaw 

and Tilt 

Bern Uni Face Dataset [68] 30 5 poses: 0
o
, ±20 in Yaw and Tilt 

XM2VTSDB [66] 125 5 poses: 0
o
, ±30 in Yaw and Tilt 

WVU [69] 40 7 poses: 0
o
, ±20, ±40, ±60 in Yaw 

MIT Face Dataset [70] 62 
10 random poses within ±40 in Yaw 

and Tilt 

Asian Face Dataset [71] 46 5 poses: 0
o
, ±20, ±25  in Yaw 

 

Table 4.3: Recognition Rate reported for different Pose Variation 

Database 
No: of 

Subjects 

Pose Difference among 

Images 

Reported Recognition 

Rate 

FERET [72] 100 22.5
o
 / 67.5

o
 / 90

o
 100 / 99 / 92 [72] 

CMU PIE [73] 68 16
o
 / 45

o
 99.85 / 89.7 [74] 

CMU PIE [73] 34 45
o
 / 67.5

o
 / 90

o
 100 / 80 / 40 [75] 

 

Here the authors employed their proposed Tied Factor Analysis based FR algorithm and 

results show i) that an FR system trained and optimized using a specific type of image 

variability performs differently when operating over datasets having different variability 
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characteristics and ii) that a relationship exists between the amount of image variability and 

system recognition performance.  

All of the above discussion suggest that the ability to i) measure and then model image face 

data variability and ii) predict system performance, is an important research aim. Therefore, 

in this chapter, based on the above background and for a given dataset of face images, inter- 

and intra-subject dataset measures are first defined for face image datasets. These are 

subsequently combined to form a single variability measure (VM) which can be used to 

quantify the overall level of image variability in the dataset. Furthermore the relationship 

between VM values and face recognition rates is modeled using nth-degree polynomials. 

Thus VM/FR performance models are derived for four different face recognition (FR) 

systems and eleven publically available face image datasets.  

Experimental results show that the modeling of FR performance in terms of VM allows 

relatively good performance prediction estimates. That is to say, given an input face dataset 

and its VM value as well as an FR versus VM model, FR system performance can be 

predicted reasonably well. Furthermore, the prediction capability of our proposed VM/FR 

models is evaluated using the face image datasets that were coded using JPEG at four 

different PSNR values as the test samples. Results show ability for VM/FR performance 

models to operate well even under noisy input conditions. .  

The chapter is organized as follows:  Section 4.1 explains in detail VM formulation, whereas, 

Section 4.2 describes the experimental set up used to produce computer simulation results. 

These results are then presented and discussed in the second part of Section 4.2. Concluding 

remarks are given in Section 4.3. 
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4.1 Variability measure (VM)  

The proposed overall variability measure VM of an image dataset is composed of two 

components i.e. an inter- and an intra-Subject Class, denoted as VM-interSC and VM-intraSC 

respectively.  

4.1.1 VM-intra- and VM-inter-Subject Class Components 

Here the Normalized Cross Correlation (NCC-AB) [76] is used as a generic similarity 

measure between two face images A and B. In VM-intraSC, NCC is calculated among all the 

available images of each subject, whereas in VM-interSC, NCC is calculated among all 

images of one subject with respect to all images of all other subjects.  

1) VM-intraSC  

First step to calculate VM-intraSC is to create a matrix 𝐂 ̂of order 𝑃 × 𝑄 which contains NCC 

values for all the subjects as given below: 

�̂� =

[
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]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, (4.1) 

here number of columns 𝑃 are equal to the number of subjects 𝑀 and number of rows 𝑄 are 

equal to 
𝑁(𝑁−1)

2
; where 𝑁 is the number of images per subject in a particular face dataset. 
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Each element ϑ𝑛𝑘
𝑚  of matrix 𝐂 ̂is representing the maximum NCC value between two images 

𝑛 and 𝑘 of 𝑚th subject which is calculated as  

 ϑ𝑛𝑘
𝑚 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑙𝑒𝑚𝑒𝑛𝑡{𝜸𝑛𝑘

𝑚 (𝑢, 𝑣)}, (4.2) 

here, the matrix 𝜸𝑛𝑘
𝑚  contains all the normalized cross correlation NCC values between the 

two images 𝐈𝑛
𝑚 and 𝐈𝑘

𝑚 of same subject. Furthermore 𝜸𝑛
𝑚, originally given in [76], can be 

written as 

𝜸𝑛𝑘
𝑚 (𝑢, 𝑣) =

∑ [𝐈𝑛
𝑚(𝑥, 𝑦) − 𝐈𝑛

𝑚] [𝐈𝑘
𝑚(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝐈𝑘

𝑚]𝑥,𝑦

√∑ [𝐈𝑛
𝑚(𝑥, 𝑦) − 𝐈𝑛

𝑚]
2

𝑥,𝑦 ∑ [𝐈𝑘
𝑚(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝐈𝑘

𝑚]
2

𝑥,𝑦

, (4.3) 

where 𝑥 and 𝑦 are the pixel coordinates while 𝑢 and 𝑣 refer to the shift at which the NCC 

value is calculated. Moreover, 𝐈𝑛
𝑚 and 𝐈𝑘

𝑚  are the means of the overlapped regions of the two 

images. Once,   Ĉ  is populated with NCC values of a whole dataset, it is used to calculate 

VM-intraSc ∅̂  in the way given below: 

  ∅̂   = �̂� × �̂�2, 

where 

�̂� =
1

(𝑃 × 𝑄)
∑ ∑ �̂�(𝑝, 𝑞)

𝑄

𝑞=1

𝑃

𝑝=1

, 

and 

�̂�2 =
1

(𝑃 × 𝑄) − 1
∑ ∑(�̂�(𝑝, 𝑞) − �̂�)2

𝑄

𝑞=1

𝑃

𝑝=1

. 

(4.4) 
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In Eq. 4.4, a large value of mean �̂� represents a larger similarity or lesser variation among 

images of each subject, whereas a large value of variance �̂�2 corresponds to the whole range 

of variation covered by all the images of a subject. Therefore, a face dataset having large 

number of images per subject, changing smoothly from one image to other to cover a larger 

variation, will produce a larger value of VM-intraSC ∅̂. 

To validate the above mentioned assumptions, we performed two different experiments. Both 

of these experiments involve Part-2 of the FEI face dataset [65]. FEI is a publically available 

face dataset that comes in four different parts. Each part contains 50 subjects with 14 color 

images per subject. 10 out of these 14 images smoothly cover a profile rotation of upto 180°, 

whereas remaining 4  images contain illumination and expression variation. In the first 

experiment, two �̂�1 and �̂�2 are formed from two different subsets of FEI face dataset (Part-2). 

The first subset is comprised of all those 10 images per subject that contain smooth rotational 

variation, whereas the other subset contains only 3 images per subject having approximate 

rotation of 0°, 90°and 180° respectively. In figure 4.1, two normalized histograms 

corresponding to both �̂�1 and �̂�2 are shown, respectively. The histogram corresponding to 

dataset having a smooth pose variation from 0°to 180° (figure 4.1(a)) covers a larger range of 

NCC and hence yields a larger intra-subject measure value ∅̂1 = 0.0119  as compared to 

∅̂2 = 0.0061  that corresponds to the dataset with larger variation among images of a subject 

(figure 4.1 (b)). 

In the second experiment, VM-intraSC values are calculated for four different datasets named 

as DS1, DS2, DS3 and DS4 to produce a curve shown in figure 4.2. All four datasets, used 

here, are different from each other with respect to both number of images per subject and 

pose variation form one image to other image.  
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Figure 4.1: Normalized Histogram; a) represents �̂�𝟏 that contains the NCC values 

corresponding to the face dataset with 10 images per subject that smoothly change pose from 

one image to other to cover a rotation of upto 180°, b) represents set  �̂�𝟐 comprised of NCC 

values for the face dataset with only three images per person having approximate pose 

rotation of 0°, 90°and 180° , respectively. 
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DS1 dataset contains three images per person with approximate rotation of 0°, 90°and 

180° respectively, DS2 comprises of four images per person with approximate rotation 

of 0°, 60°, 120°and 180°, respectively, DS3 contains five images per subject with 

approximate rotation of 0°, 45°, 90°, 135°and 180°, respectively and DS4 contains all the ten 

images per subject. It is obvious from the figure 4.2 that an increase in number of images per 

subject, that smoothly cover a large range of variation, increases VM-intraSc. Hence it can be  

concluded from both  experiments that: i)VM-intraSC is an effective representation of intra-

subject variation among images of a face dataset and ii) A face image dataset with a large 

number of images per person, changing smoothly from one image to other, has a better 

capability to cope with environment conditions. 
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Figure 4.2: Intra-subject variability Vs face datasets Curve: Here face datasets shown on x-

axis comprised of different numbers of images per person and different levels of pose 

variation from one image to other of same subject.  
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2) VM-interSC  

As discussed in the previous section, quantifying intra-subject variation alone is not sufficient 

since inter-subject dataset properties are also equally important and should also be quantified. 

To easily/successfully distinguish one subject from others, there must be a large variation 

among the images of different subjects. Thus to quantify such inter-subject variability, 

another matrix Č is created that contains Normalized Cross-Correlation values among images 

of one subject and all other images. Č is populated in the way shown below: 

�̌� =

[
 
 
 
 

𝑪12 𝟎 𝟎
𝑪13 𝑪23 𝟎
𝑪14 𝑪24 𝑪34

⋯
𝟎
𝟎
𝟎

   ⋮       ⋮        ⋮    ⋱ ⋮

𝑪1𝑀 𝑪2𝑀 𝑪3𝑀 ⋯ 𝑪(𝑀−1)𝑀]
 
 
 
 

, 

 

(4.5) 

 

and 

𝑪𝑚𝑙 =

[
 
 
 
 
 
 
 
 
 
 
 
 
ϑ11

𝑚𝑙

ϑ12
𝑚𝑙

⋮
ϑ1𝑁

𝑚𝑙

ϑ21
𝑚𝑙

ϑ22
𝑚𝑙

⋮
ϑ2𝑁

𝑚𝑙

⋮
ϑ𝑁1

𝑚𝑙

⋮
ϑ𝑁𝑁

𝑚𝑙 ]
 
 
 
 
 
 
 
 
 
 
 
 

,                  with 𝑚 < 𝑙. 

In Eq. 4.5 ϑ𝑛𝑘
𝑚𝑙   is the maximum NCC between 𝑛th image of subject 𝑚 i.e. 𝑰𝑛

𝑚, and 𝑘th image 

of subject 𝑙 i.e. 𝑰𝑘
𝑙 . The value of ϑ𝑛𝑘

𝑚𝑙   is calculated in the same way as given in Eq. 4.2 and 

Eq. 4.3. The order of matrix �̌�   is 𝐺 × 𝐻 where the number of rows 𝐺 is equal to (𝑀 − 1) ×

𝑁2 and number of columns are equal to 𝑀 − 1. Once the matrix �̌� is obtained, it is used to 
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form VM-interSC (∅̌ ) as given in Eq. 4.4. The corresponding �̌� and �̌�2 are calculated using 

only elements present in the lower triangle of the matrix �̌�.  

In case of inter-subject variability, a face dataset with  large variation among the images, of 

different subjects, yields smaller NCC values which in turn result in smaller mean and 

variance values and hence  in a small ∅̌  value.  

Since it is believed that a face dataset with large inter-class variation (i.e. small value of inter-

SC ∅̌) and small intra-class variation (i.e. large value of intra-SC ∅̂) always yields better 

classification performance, thus, it is expected that a face dataset which fulfils the following 

condition: 

∅̌ ≪ ∅̂, (4.6) 

will produce relatively high classification results.  Consider for example, the proposed VM-

interSCs for two subsets used in first of the two experiments given above are ∅̌1 =

0.0068  and ∅̌2 = 0.0071, respectively and hence the first subset with ∅̌1 < ∅̂1 can yield 

better recognition performance for any FR system as compared to second subset where ∅̌2 >

∅̂2. 

4.1.2 Variability Measure (VM) 

Both VM-intraSC and VM-interSC, defined in the previous section, are combined to form a 

single image dataset variability measure (VM). That is: 

∅ = ∅̂ × √∅̂2 − ∅̌2,         for    ∅̂ > ∅̌ (4.7) 

∅ ̌and ∅̂ are the previously defined inter- and intra-subject measures, respectively. The 

purpose of this scaling factor is to distinguish between the two datasets for which difference 
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term i.e. √∅̂2 − ∅̌2 yields same output for different values of VM-intraSC. Consequently, the 

dataset with higher value of VM-intraSC yields a larger value of VM ∅ as compared to the 

dataset with a lower value of VM-intraSC.  

Moreover, the above equation will produce the VM value ∅ to rank only those datasets for 

which ∅̂ > ∅̌, and all the datasets with ∅̂ < ∅ ̌will be rejected straight away to be used in any 

classification system, as they violate the primary condition i.e. inter-class variation must be 

greater than intra-class variation.     

4.2 Experimentation & Discussion  

In order to investigate the effectiveness and validity of our proposed variability measure VM 

in representing facial data variation, we have performed a number of experiments. These are 

based on eleven different publically available face datasets and four different face recognition 

(FR) systems. In this section, firstly these datasets and FR systems are briefly introduced and 

then a discussion on experimental setup and results is given. 

4.2.1 Face datasets 

Face datasets used in experiments are as follow: 

1) AT&T Face dataset [60]: 

Dataset contains a total of 400 grayscale images; ten images of each of 40 different subjects. 

Images of each subject differ from each other with respect to the lighting, facial expressions 

and facial details. Size of each image is 112 × 92 pixels. 
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2) IMM Face Dataset [51]: 

IMM consists of 240 annotated images (6  images per person). Each image is 640 ×

480 pixels in size and comes with 58 hand labeled shape points which outline face contours. 

Images of each subject vary in lighting, pose and facial expression. Out of all  40 subjects, 

37 consist of RGB images whereas remaining three subjects have grayscale images. 

3) The Extended Yale Cropped Face Dataset [61]: 

The original extended Yale Face Dataset B [61] contains 16128  images of 28  human 

subjects under 9 poses and 64 illumination conditions. In these experiments we have used a 

cropped version of this dataset reported in [77]. This dataset contains grayscale images that 

are manually aligned, cropped and then resized to 168 × 192 pixels. For this dataset, we 

have used 2242 images of 38 subjects.  

4) Georgia Tech. Face Dataset [62]: 

Dataset contains images of 50 different human subjects with 15 RGB images for each of the 

subject. These face images vary in size, facial expression, illumination and rotation. The 

average size of the faces in these images is 150 × 150  pixels.  

Figure 4.3: Examples of manually cropped images and their corresponding original images. 
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5) Stirling Face Dataset [63]:  

Stirling face dataset is comprised of  312  images of  35 subjects (18 female, 17 male). These 

monochrome images with a spatial resolution of 269 × 369 vary in pose and facial 

expression.  

6) Indian Face Dataset [64]: 

This database contains images of  55 distinct subjects (22 female, 33 male) with eleven 

different poses for each individual. In addition to the variation in pose, images with four 

emotions - neutral, smile, laughter, sad/disgust - are also included for every individual. As 

this dataset separate sets for female and male subjects, so in our experimentation we have 

used them as separate datasets. The size of each image is 640 × 480  pixels, with 256  grey 

levels per pixel. 

7) FEI Face Dataset [16]: 

FEI face dataset comes in four different parts. Each part contains 50 subjects with 14 RGB 

images per subject. 10 out of these 14 images smoothly cover a profile rotation of upto 180°, 

whereas remaining 4  images contain illumination and expression variation. Size of each 

image is 640 × 480  pixels. Again, as these images are provided in four different parts, so 

each part is used in our experimentation as a separate dataset. 

Before performing actual experimentation, face information is extracted form a given image. 

For this purpose, images of all the datasets are manually cropped to remove the background 

information as shown in figure 4.3. 
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4.2.2 Face Recognition (FR) Systems  

Four different face recognition (FR) systems are used in our experimentation to verify the 

effectiveness of our proposed VM. As the purpose of this work is not to provide a 

comparison between different face recognition system and we are also not proposing any 

state-of-the-art face recognition system, therefore to prove our point, we have chosen four 

such appearance based face recognition approaches that can easily be implemented and are 

relatively simple. A brief description of these approaches is given below: 

1) Eigenfaces: 

The “Eigenfaces”, introduced by Turk and Pentland [54], is one of the most thoroughly 

investigated approaches to face recognition [78-80]. Eigenfaces are the eigenvectors that 

characterize the variation across different face images of training dataset. Each 𝑁-

dimensional face image is a linear combination of these eigenvectors and can be best 

approximated using only a few 𝑀 (𝑀 ≪ 𝑁) ‘the best’ eigenvectors or principal components 

(PCs) having the largest corresponding eigenvalues and together containing 𝑃 percent of 

overall training data variance. Normally, the value of 𝑃 is kept in the range of 90 − 95 here 

𝑃 = 95. Face images from both training and testing datasets are projected on a subspace, also 

called as facespace, spanned by these 𝑀 Eigenfaces. Then recognition is performed in the 

facespace by calculating the distance between known points (i.e. training data) and unknown 

points (i.e. testing data).  

2) Fisherfaces: 

The second face recognition technique, we used in our experiments, is the well-known 

“Fisherfaces”. The Fisherfaces approach [80], is based on a two-stage strategy. In first stage, 

principal component analysis (PCA) is performed, the same way as discussed in Eigenfaces 

approach, to reduce the face image dimension, and then linear discrimination analysis (LDA) 
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is used to extract discriminative information out of these reduced dimensional features. The 

major aim of LDA is to provide such basis vectors that best describe the variation among 

different classes by maximizing the between-class variation and minimizing the within-class 

variation. Fisherfaces have been heavily investigated and modified to yield a number of 

different face recognition systems [81-84].  

3) PCA + Multi-Class SVM: 

In the third face recognition technique, PCA is used as a preprocessing step for 

dimensionality reduction and then the well-known Support Vector Machine (SVM) is used in 

multi-class mode to classify these reduced dimensional feature vectors.  

SVM, originally introduced for binary classification by Vapnik and Cortes [56], is normally 

extended for a multi-class problem by using two basic strategies, that are i) One-versus-One 

and ii) One-versus-All [85]. The basic difference in both strategies is the number of 

classifiers trained. In One-versus-One strategy, one classifier for each pair of classes is 

trained so for 𝑁 classes, 
𝑁(𝑁−1)

2
  classifiers are needed to be trained. During classification 

process, for every test sample, each classifier votes for one of the two classes and the class 

with maximum votes is selected for that test sample. In case of One-versus-All, one classifier 

per class is built and trained to classify between each class and rest of the classes, in this way 

for N classes we get N classifiers. We have used One-versus-All approach as it is 

computationally less expensive due to the use of a smaller number of classifiers. 

SVM works on the principle of finding an optimal linear hyperplane that separates two 

classes from each other. In most real-world applications, with face recognition being one of 

them, linear separation is not a feasible solution for classifying data. Thus SVM is modified 

to act as a non-linear classifier using kernel technique. The purpose of such kernels is to 

transform data to a higher dimensional space where it can be linearly classified. 
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In our experimentation, the radial basis function (RBF) kernel is used. RBF kernel is based 

on a Gaussian kernel and is dependent on two parameters, one is called kernel parameter 

𝜎 and the other is known as penalty factor 𝐶.  For each dataset, a number of experiments with 

different pairs of these parameters have been performed and the best pair was selected on 

basis of maximum system classification performance.  

4) Normalized Cross-Correlation:  

In the last face recognition technique, face image classification is done on the basis of 

maximum Normalized Cross-Correlation (NCC) between input test face image and the 

training images. Before calculating NCC, both test and training images are first normalized to 

zero mean and unit variance. 

4.2.3 Results and Discussion 

The effectiveness of the VM computed over a certain face image dataset, to be used as a 

means in predicting the performance of FR systems operating on the same image dataset is 

considered in this section, see figure 4.4 test architecture. Experimentation is done in two 

phases; the first phase involves computation of VM and actual recognition performance for 

all the datasets using the above four listed FR systems. Furthermore and for all datasets, FR 

systems are separately designed for delivering maximum performance.  

Performance of each FR system is evaluated using the k-fold approach; k is equal to the 

number of images per subject in a particular face image dataset, and each fold contains one 

image per subject. For a k-fold cross validation test, k experiments are performed and in each 

experimental run, (k-1)-folds are used to train the classifier whereas the remaining fold is 

used for testing. 
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Figure 4.4: Experimental framework for evaluating the ability of VM to predict FR 

performance. 

Figure 4.5: Recognition Rate Vs VM curves corresponding to different FR systems: A 

general increasing trend can be noticed. 
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At the end, an average recognition rate across all folds is calculated. Recognition 

performance versus VM curves for all FR systems are shown in figure 4.5.  Curve points are 

obtained from different face image datasets. A general increasing trend in all curves shows 

that system classification performance improves with increasing variability measure (VM) 

values. Note however that this relationship is not monotonic. 

The second phase of experimentation involved the polynomial modeling/approximation of 

these system performance-v-VM curves and was performed in two stages. In first stage, a 

polynomial model, that can best fit this relationship, is selected on basis of two ‘goodness of 

fit’ parameters: i) R-squared (R2) and ii) adjusted R-squared (R2̅̅ ̅). R2 , generally known as 

coefficient of determination, is defined as the ratio of the sum of squares of the regression 

and the total sum of squares. R2̅̅ ̅ is the modified version of R2 that has been adjusted for the 

number of terms (variables). 

The value of R2 always increases with an increase in number of terms, even if new terms 

have no significance in improving the model. Note that R2̅̅ ̅ , even being positively biased, is 

more consistent and only increases if the new term improves the model. Therefore, it is 

believed that a model would be preferred if and only if  values for both R2 and R2 ̅̅ ̅̅  are higher 

and the difference between the two is minimum [86]. Mathematically, both R2 and R2 ̅̅ ̅̅  are, 

respectively, defined as: 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

, 

where 

�̅� = ∑ 𝑦𝑖
𝑛
𝑖=1 , 

and 

𝑅2̅̅̅̅ = 1 − (1 − 𝑅2)
𝑛−1

𝑛−𝑝−1
, 

(4.8) 
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where 𝑛 and 𝑝 are the number of sample points and number of variables (without constant 

term) and �̂�𝑖are the predicted by the model values. 

The curves in figure 4.6 show 𝑅2 and  𝑅2̅̅ ̅̅   values against different polynomial degrees for all 

recognition schemes. It can be noticed that as the polynomial degree (𝑑) is increased more 

than 𝑑 = 2 , the rate of increase of 𝑅2̅̅̅̅   values gets smaller than that of 𝑅2 , and in some cases 

it is negative, which shows that for the available sample data  polynomial degrees greater 

than 2  cause over-fitting. Therefore and in order to avoid over-fitting 𝑑 = 2 is chosen for all 

the recognition schemes. The resulting approximation models for all classifiers are shown in  
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Figure 4.6: 𝑅2and 𝑅2̅̅̅̅  Vs degrees of Polynomial; a) Fisherfaces, b) PCA+SVM, c) 

Eigenfaces, and d) NCC. Degree 𝑑 = 2, in all cases, is the maximum value for which the 

difference between 𝑅2and 𝑅2̅̅̅̅  is minimum. 
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Table 4.4: Parameters for 2nd-degree Polynomial Model  

FR Systems 𝑹𝟐 𝑹𝟐̅̅̅̅  
Avg. AE 

(%age) 

Error Range 

(%age) 

Fisherfaces 0.827 0.783 3.27 0.13-8.5 

PCA+SVM 0.837 0.796 3.63 0.41-8.7 

Eigenfaces 0.889 0.860 4.40 1.08-8.1 

NCC 0.8510 0.814 5.47 2.08-11.1 
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Figure 4.7: Recognition Rate Vs VM a) Fisherfaces, b) PCA+SVM, c) Eigenfaces, and d) 

NCC. 2nd degree polynomial shown as dotted line is following the trend of original data. 
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figure 4.7 along with their corresponding original data curves, whereas their corresponding 

values of 𝑅2, 𝑅2̅̅̅̅ , the average Absolute Error (Avg. AE), and Error Range are given in table 

4.4.The Avg. AE between actual 𝑅𝐴𝑐 and predicted recognition rate 𝑅𝑃𝑟 is calculated as: 

𝐴𝑣𝑔. 𝐴𝐸 =
1

𝑁
∑ |𝑅𝐴𝑐

𝑖 − 𝑅𝑃𝑟
𝑖 |𝑁

𝑖=1 , (4.9) 

where N is the total number of face image datasets. The graphs in figure 4.7 and the data in 

table 4.4 are showing that the 2
nd

-degree polynomial provides a quite good fit to the available 

data and suggests a useful relationship between data variability and recognition performance.  

The mathematical equations of the models for all four FR systems are given as:  

Fisherfaces:- 

𝑦 = 𝑝1𝑥
2 + 𝑝2𝑥 + 𝑝3 

𝑥 is normalized by mean 0.000878  and std 0.0003201. 

Coefficients (with 95% confidence bounds). 

𝑝1 = −5.188 (−9.211,−1.165) 

𝑝2 = 10.38 (6.5,14.25) 

𝑝3 = 89.53 (84.6,94.46) 

(4.10) 
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PCA+SVM:- 

𝑦 = 𝑝1𝑥
2 + 𝑝2𝑥 + 𝑝3 

𝑥 is normalized by mean 0.000878  and std 0.0003201. 

Coefficients (with 95% confidence bounds). 

𝑝1 = −6.926 (−11.54,−2.31) 

𝑝2 = 12.28 (7.827,16.72) 

𝑝3 = 91.69 (86.04,97.35) 

(4.11) 

Eigenfaces:- 

𝑦 = 𝑝1𝑥
2 + 𝑝2𝑥 + 𝑝3 

𝑥 is normalized by mean 0.000878  and std 0.0003201. 

Coefficients (with 95% confidence bounds). 

𝑝1 = −6.919 (−11.9, −1.933) 

(4.12) 
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Figure 4.8: Experimental framework for evaluating proposed VM using noisy data. 
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𝑝2 = 16.58 (11.78,21.39) 

𝑝3 = 79.08 (72.97,85.18) 

NCC:- 

𝑦 = 𝑝1𝑥
2 + 𝑝2𝑥 + 𝑝3 

𝑥 is normalized by mean 0.000878  and std 0.0003201. 

Coefficients (with 95% confidence bounds). 

𝑝1 = −6.632 (−12.69,−0.5738) 

𝑝2 = 17.05 (11.21, 22.89) 

𝑝3 = 80.23 (72.81, 87.65) 

(4.13) 

Note:- These models have been created using MATLAB R20011b simulations. 

Next and given the VM value of an “unseen” image face dataset, the effectiveness of this FR 

system performance approximation approach is of course of interest. For the assessment of 

our proposed VM and the model, we have used same face datasets with noise of different 

PSNR levels. Furthermore and since in real life FR applications some type of compression 

coding is used prior to FR, which results in images of lower that the original image quality,  

experimentation was also performed using JPEG coded face image datasets. This introduces a 

block type of noise/distortion, and is reflected in the experimental set up of figure 4.8 by the 

inclusion of a “noise” box. This introduction of noise in input sample images can answer an 

important questions i.e. How does the above system performance models which have been 

trained using noise-free image data, react to noisy input data and thus does the relationship 
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defined between VM and system recognition performance also holds for noisy images? To 

answer this question, further experimentation was performed involving one of the four 

recognition schemes (i.e. Fisherfaces) and JPEG coding noise at four the four average PSNR 

values of 55.57, 33.48, 26.86, 23.98.  

In these experiments VMs and Recognition Rates were computed for all eleven face datasets 

corresponding to each average PSNR value as shown in figure 4.9. The increasing trend 

shown in case of noise-free datasets can also be noticed here even for the low average PSNR 

values. Moreover, a shift of curve to bottom-left corner with an increase in noise level is also 

an evidence for the robustness of our proposed VM/FR modeling. The downward shift 

indicates that coding noise has suppressed the facial variation across different subjects, which 

in turn caused a decrease in recognition performance for same facial datasets, and a left shift 

shows that a simultaneous decrease in VM has successfully kept the relationship intact. In 

addition, models derived from clean/un-coded data were employed to predict the recognition 

performance of systems operating on JPEG coded image data. 

The histograms of absolute prediction error (%age) for all the datasets and Average Absolute 

Error (𝐴𝑣𝑔. 𝐴𝐸) values corresponding to each average PSNR level are shown in figure 4.10 

and table 4.5, respectively. It is obvious from these values that in spite of introducing 

moderate image quality coding degradation in the input face images, model error ranges are 

approximately the same with those derived from noise-free data. This is indicative of the 

relative robustness of the proposed VM/ FR system performance relationship with respect to 

coding distortion.  
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Table 4.5: Avg. Absolute Error (Avg. AE) at different Avg. PSNR values. 

Avg. PSNR Avg. AE (%age) Error Range (%age) 

55.57 3.54 0.17-9.59 

33.48 3.82 0.13-9.85 

26.86 4.16 0.86-8.01 

23.98 3.95 0.001-10.9 
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Figure 4.9: Recognition Rate Vs VM curves corresponding to Fisherfaces FR system: same 

overall increasing trend as seen in figure 4.5 can also be noticed in case of noise with all 

PSNR values. 
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4.3 Conclusion 

The classification performance of face image based automatic age estimation (FI-AAE) 

systems is heavily dependent on the variation among the images of input dataset. Now, if 

somehow this dependence/relationship could be modeled, classification system performance 

could be predicted. With this as motivation work reported in this chapter investigated the 

issue of face image data variability and came up with a measure that can be used to 

represent/rank a dataset according to the amount of variation it contains. However, due to 
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Figure 4.10: Histograms of Absolute Errors for the datasets with noise at four different PSNR 

values: a) 55.57, b) 33.48, c) 26.86, and d) 23.98.  
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lack of availability of many age-based face image datasets, the work presented in this chapter 

is applied on face recognition (FR) systems. Thus a new variability measure (VM) that 

characterizes overall image face data variability has been proposed and applied in FR 

systems.  In addition, relationships between such VM values and the performance of four FR 

systems have been determined experimentally and also modeled using second order 

polynomials. Note that the proposed VM takes into account both the inter- and intra-class 

correlation characteristics of a given image dataset, i.e. VM-interSC and VM-intraSC.  

Thus computer simulation results involving 11 publically available face image datasets show 

VM/FR performance prediction errors of less than 10%, for all four FR systems, with 

minimum Avg. AE of 3.27% for Fisherfaces and maximum Avg. AE 5.47% in case of NCC.  

Note that currently models are trained using eleven face image datasets.  An increase in the 

number of training datasets should yield further improvement in modeling accuracy.  

Furthermore, the prediction accuracy of the above VM/FR performance models is also 

assessed using noisy i.e. JPEG coded, image data at different PSNR values. Prediction errors 

(i.e. Avg. AE) corresponding to face image data for each PSNR value were obtained and 

show that  models kept their error range approximately the same with those produced by of 

noise-free input data. Moreover and in case of noisy data, the VM/FR performance curves  

show the same increasing trend as it was in case of noise-free data. The robustness of our 

proposed VM/FR performance models is also evident from the left-downward shift of 

VM/FR performance curves of noisy data, which indicates that if recognition performance 

decreases due to noise the proposed VM also decreases and keeps the general relationship 

intact.  

At the end, as the proposed formulation of VM is originally based on inter-class and intra-

class similarities/correlation characteristics of a face dataset, we expect that in the future and 
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depending on the availability of large face image datasets, the above proposed variability 

assessment framework can be easily adapted to FI-AAE applications. 



 

89 
 

Chapter 5  

Face Image based Automatic Age Estimation 

Automatic age estimation (AAE), or more precisely, face image based automatic age 

estimation (FI-AAE) that aims to determine the specific age year or age range of a person 

based on a given facial image, is a challenging yet attractive topic due to its roots in 

numerous real-life applications. These application areas include surveillance and security 

control (for example, an accurate age estimation system can, prevent minors from entering 

bars or wine shops, stop underage smokers from purchasing cigarettes from vending 

machines, refuse elderly people to try a roller coaster in an amusement park, and deny 

children access to adult websites or restricted movies, etc.), law enforcement (for example, a 

good automatic age estimation module can be helpful in filtering out the potential suspects 

more efficiently and accurately from a  database), health care (for example, a personalized 

Avatar can be selected automatically from the custom-built Avatar database to interact with 

patients from different age groups with particular preferences). Moreover AAE can be used to 

develop age-specific human-computer interaction (HCI) systems, etc. [87] 

An FI-AAE system based on facial images is generally composed of two major components 

(see figure 1.1); i) feature extraction and ii) age estimation. Feature extraction is a process of 

extracting facial features that are affected by aging process. In general, these features are 

categorised as shape-based and texture-based features. Shape-based features represent the
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information related to facial geometry, whereas texture-based features keep track of skin 

aging that includes skin and facial hair colour, wrinkles, age spots, etc. As discussed earlier in 

Chapter-1, the human aging process affects face geometry (shape) and facial texture 

differently during different periods of life (i.e. birth-to-adulthood and adulthood-to-old age) 

and hence an FI-AAE system cannot depend upon only on one of these features for accurate 

age estimation. This makes the feature extraction process very important, as the extracted 

features can significantly affect the age classification. Due to this very reason, a great amount 

of effort has been directed towards the extraction of such discriminating aging features that 

represent both shape and texture information, simultaneously. Examples of such research 

work include Gabor wavelet transform (GWT) [5, 6], subspace features using image intensity 

[7, 8], Active Appearance Models (AAM) and Image Frequency [9]. Among these, the 

Active Appearance Model (AAM) [15] is considered as the most popular among researchers 

[10-14] due to its ability to represent both facial shape and texture information with a small 

set of parameters that can be subsequently used to recreate the face image.  

AAM involves a two-stage Principal Component Analysis (PCA) process to generate a low 

dimensional hybrid set of parameters that represents both face shape and texture. However as 

suggested in [2], this dimensionality reduction process, while retaining the individual identity 

characteristics, becomes a major cause of losing some important aging information such as 

wrinkles and skin texture (see figure 1.5) that affects the overall age estimation process. Even 

though some techniques [2, 16, 17] have been proposed to overcome this problem by 

introducing separate models for missing features, their performance gains are negligible in 

comparison to the overhead complexity introduced to the overall system. 

In order to overcome the above mentioned problem, the research work presented in this 

chapter adopts a simpler strategy. Shape and texture information are used separately and the 
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outcomes from both processing streams are later fused to reach a final decision. Note here 

that shape is represented by a set of landmark coordinate points of different facial 

components boundaries, whereas the texture corresponds to the set of intensity values 

enclosed by these landmark points. Furthermore and  since we are not performing fusion at 

feature level,  the possibility of losing discriminative information related to each feature, is 

reduced.  

Given a feature, the next step is age estimation. As discussed earlier in Chapter-1, the existing 

age estimation techniques, generally, operate in one of the two types of system architectures; 

i) Single-level age estimation [7, 11, 13, 14, 16] and ii) Hierarchical age estimation [2, 11, 

20-23]. Among these, the hierarchical age estimation methods, despite being prone to error 

propagation, perform better as they have ability to effectively exploit group-specific 

characteristics in order to reach the final decision. Moreover training of classifiers, using 

relatively smaller groups, helps in reducing overall computational complexity.  

In extant hierarchical age estimation techniques [11, 21, 22], a major cause of classification 

error is the hard boundaries between the images of two adjacent age groups. Since aging is a 

slow process, some images at the boundaries of two adjacent groups are often quite similar 

which makes it very hard for a classifier to correctly classify them. This classification error 

propagates within the hierarchy and adversely affects overall age estimation performance. To 

overcome this problem, authors in [2, 20] have proposed solutions using age groups with soft 

overlapping boundaries. These solutions reduce errors at the coarse levels of hierarchy; 

however, errors at finer levels are still quite large, which makes the resulting overall 

improvement in age estimation rather insignificant. There is, therefore need for a hierarchical 

age estimation framework that mitigates classification errors while operating on age 

partitions with larger inter-group variation. 



Chapter-5: Face Image based Automatic Age Estimation 92 

 
 

This chapter presents such a novel Multi-Level Age Estimation (ML-AE) framework that 

minimizes age classification errors significantly by overcoming performance limitations 

introduced by the smooth variation of images belonging to adjacent age groups. This is 

achieved by a novel method used in the selection of training data so that large inter-class 

variations are generated and used during training operations. 

The proposed ML-AE approach operates in an unbalanced ternary tree structure that produces 

three children nodes for each parent at a specific tree level. Like any other classification 

system, the ML-AE is also composed of two phases; i) System Training and ii) System 

Testing.  

During the training process, a given dataset that contains facial features (shape/texture), is 

first partitioned into four age groups at a particular level of hierarchy, then sets of facial 

features (shape/texture) corresponding to alternative age groups are used to train four binary 

classifiers, two per feature type i.e. shape or texture. Afterwards, these four age groups are 

used to form three parent datasets for the next level by merging first age group with second, 

second with third and third with fourth age group. Note: the use of alternative age groups 

which are employed in binary classification, instead of adjacent groups, provides two major 

advantages; i) the adjacent groups suffer with low inter-group variation, whereas alternative 

groups contain large inter-group variation that can facilitate the classification process, ii) a 

multi-class classification problem is broken into two simpler binary classification problems.      

During testing phase, facial features of a given input face image are classified using binary 

classifiers that were trained as discussed earlier. The four decision outcomes of the classifiers 

are fused in a way (which is explained in detail in a subsequent section) to decide which path 

to traverse next in the decision tree.  
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Computer simulation based experiments cover different aspects of proposed ML-AE 

performance. An initial experiment studied the impact that the fusion of shape and texture 

decisions has on overall system performance. Results showed that shape or texture alone, as a 

facial feature, is not sufficient for the representation of facial aging. A second investigation 

compared ML-AE system performance using two different classifiers i.e. Support Vector 

Machines (SVMs) with Radial Basis Function (RBF) and Linear Discriminant Analysis 

(LDA). Although the overall performance of SVM based ML-AE-SVM is better than that of 

LDA based systems, ML-AE-LDA produced smaller mean absolute errors (MAE) over some 

age ranges. These results are indicative of further research work to be directed towards 

systems with multiple classifiers and the use of an overall fusion of decisions at the very end.  

Finally, a third study was performed which compared ML-AE system performance with that 

obtained from some existing age estimation systems. Experimental results showed the 

effectiveness and potential of the proposed Age Estimation system.    

This chapter is organized as follows: Section 5.1 presents, in detail, the design/structure of 

the proposed Multi-level Age Estimation (ML-AE) framework, it also covers the algorithmic 

implementation of the proposed framework. Section 5.2 explains the experimental setup used 

to produce computer simulation results and provides an in depth discussion on the 

experimental results. Finally, concluding remarks are given in Section 5.3. 

5.1 Multi-Level Age Estimation (ML-AE) Framework  

The proposed Multi-Level Age Estimation (ML-AE) framework is comprised of two major 

modules; i) System Training and ii) System Testing, as depicted in the high level system 

diagram shown in figure 5.1. The system training module is based on an offline process and 

runs in an unbalanced ternary tree structure in which each parent node gives birth to three  
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children. On each tree level, four binary classifiers are trained; two for shape and two for 

texture image data. 

System testing is performed in an online setting in which an input face image (both shape and 

texture) is traversed through the ternary tree structure to obtain a final estimate of the age 
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Figure 5.1: High-level system block diagram of our proposed ML-AE framework. 

Figure 5.2: Sample face images with their superimposed shape coordinates (red dots) and 

extracted facial texture.   
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year. At each tree level during system testing, decisions from all four classifiers are fused to 

decide for the next path to traverse. A detailed description of the two modules is provided in 

subsequent sub-sections.     

5.1.1 System Training 

The overall ML-AE system training is based on the following two major components (see 

figure 5.1).  

1) Age-based Face Image Dataset 

The training module of ML-AE contains an original age-based face image dataset 𝑭 =

{𝑺|𝑮} whose data is presented to the Classifier modeling module; here 𝑺  is a set that contains 

shape information of all the training images in the form of the coordinates of landmarks 

points, whereas set 𝑮 contains face texture, i.e. all the pixels (intensity values) enclosed by 

shape coordinates, (see Chapter 3, Eqs. 3.1 and 3.2). Some example face images with their 

superimposed shape coordinates and extracted texture profiles are shown in the figure 5.2. 

Note: as the extracted face textures of different images vary in sizes, therefore they are, first, 

made equal in size by using bicubic interpolation before doing further processing. 

2) Training Operations  

The multi-level training of ML-AE operates in an off-line mode. On each level, it takes an 

age-based face image dataset as input in the form described in previous section. This dataset, 

which satisfies a pre-defined criteria (see below for details), is passed through the, Classifier 

Modeling process, which in turn returns three subsets of the input dataset. These serve as 

parent sets for next level, see figure 5.3. Classifier Modeling is comprised of two sub-

processes, i) Split and ii) Merge, as shown in figure 5.4. The ‘Split’ process partitions a 

parent dataset into four subsets on basis of four equal partitions of the age-range associated 
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with the parent dataset. Note here that age-range means all the age years from minimum to 

maximum for which face images are available in the dataset. These four subsets are then used 

to train four binary classifiers at that level to produce two models one for shape and another 

for texture data. On the other hand, the ‘Merge’ process combines these four output datasets 

produced from the ‘Split’ process, in a particular way, and thus forms three new datasets that 

are the outputs of the Classifier Modeling and serve as the parent sets for next level of a tree 

type hierarchical architecture. The whole process for one level can be elaborated using the 

following example.  

Consider that at some particular tree level, face images in a training dataset cover an age-

range from year 𝐴 to year 𝐵. This dataset goes through following steps:  

 In the first step, a parent dataset is checked against two criteria, i) number of images 𝐿 in 

the dataset must be greater than a pre-specified minimum number of images 𝐿𝑇ℎ, so that 

for subsequent classifier training, each class contains enough number of image samples, ii) 

the age-range corresponding to parent dataset must contain a number of age years 𝑅 which 

are greater than 𝑅𝑇ℎ i.e. a lower bound for this age-range. If a parent dataset satisfies both 

of these criteria then we proceed to the next step otherwise this tree branch is terminated at 

this point. 

 In the second step, the ‘Split’ process makes four equal partitions of the age-range 

as 𝑝1 = 𝐴 →
𝐵

4
, 𝑝2 =

𝐵

4
+ 1 →

𝐵

2
, 𝑝3 =

𝐵

2
+ 1 →

3×𝐵

4
, and 𝑝4 =

3×𝐵

4
+ 1 → 𝐵 and thus four 

dataset 𝑫1, 𝑫2, 𝑫3, and 𝑫4 out of initial input face dataset are formed that contain face 

images (both shape and texture) for their corresponding age-ranges 𝑝1, 𝑝2, 𝑝3, and 𝑝4, 

respectively.  
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Figure 5.3: Flow diagram of ML-AE system training. Here 𝑳 and 𝑹 are the lower bounds for 

number of images and number of age years covered by the age-range of corresponding parent 

dataset.  𝑳𝑻𝒉 and 𝑹𝑻𝒉 are two pre-specified thresholds. Internal structure of Classifier 

Modelling block is explained in figure 5.4.   

Figure 5.4: Internal structure of Classifier Modelling block shown in figure 5.3. 
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 Thirdly, shapes and textures of the images, from two datasets 𝑫1 and 𝑫3, are passed 

separately to a ‘Trainer’. In this ‘Trainer’ block,  Principal Component Analysis (PCA) 

[54] is separately applied to shape and texture of all the training images available to 

produce corresponding reduced dimensional feature sets. These feature sets are, 

separately, used to train two binary classifiers (e.g. in our case SVM [56] or LDA) that 

produce classification models 𝑺𝑴1 and 𝑮𝑴1for shape and texture, respectively. Similarly, 

we get two models 𝑺𝑴2 and 𝑮𝑴2 for datasets 𝑫2 and 𝑫4. As discussed earlier, the 

purpose of using alternative data partitions ( 𝑫1 with 𝑫3 and 𝑫2 with 𝑫4 ), instead of 

adjacent partitions, to train binary classifiers is the relatively large inter-class variation 

which  facilitates the classification training process to correctly distinguish between 

images belonging to  two age clusters.  

 In the last step, the ‘Merge’ is used to form three subsets 𝑭1, 𝑭2 and 𝑭3 of parent face 

dataset by combining  𝑫1 with 𝑫2,  𝑫2 with 𝑫3 and 𝑫3 with 𝑫4 . Each of these three 

subsets becomes the parent node for the next level.  

The purpose of creating these subsets with overlapping boundaries is to further reduce the 

possibility of miss-classification that is caused due to hard boundaries.  

The last component of the training system, shown in figure 5.1, is a storage device where 

classification models obtained at each training level, are stored to be used later during System 

Testing.  
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Algorithm 5.1: Classifier Modeling 
recursive function: ClfModeling(Data, RTh, LTh) 
Input: Data             A data structure with three elements 
           Data.F          Face images dataset containing both shape and texture  
           Data.L          Number of images in the dataset 
          Data.R           Age-range i.e. minimum year and maximum year 
          LTh                Lower bound on number of images in the dataset 
          RTh                Lower bound on number of years in the age-range 
 
Output: Models     a data structure containing all the classification models 
 
If 
     𝐷𝑎𝑡𝑎. 𝐿 < 𝐿𝑇ℎ  OR 𝐷𝑎𝑡𝑎. 𝑅 < 𝑅𝑇ℎ 
     retrun Null 
Else 
    [𝐷1, 𝐷2, 𝐷3, 𝐷4] =Split(Data) 
//Call Split function, see Algorithm-2 
    [𝑀𝑜𝑑𝑒𝑙𝑠. 𝑆𝑀1,𝑀𝑜𝑑𝑒𝑙𝑠. 𝐺𝑀1] =Trainer(merge(𝐷1, 𝐷3)) 
    [𝑀𝑜𝑑𝑒𝑙𝑠. 𝑆𝑀2, 𝑀𝑜𝑑𝑒𝑙𝑠. 𝐺𝑀2] =Trainer(merge(𝐷2, 𝐷4)) 
//Call merge and Trainer function, see Algorithm-3 for merge 
    𝑀𝑜𝑑𝑒𝑙𝑠. 𝑃𝑎𝑡ℎ1 =ClfModelling(merge(𝐷1, 𝐷2), RTh,LTh) 
    𝑀𝑜𝑑𝑒𝑙𝑠. 𝑃𝑎𝑡ℎ2 =ClfModelling(merge(𝐷2, 𝐷3), RTh,LTh) 
    𝑀𝑜𝑑𝑒𝑙𝑠. 𝑃𝑎𝑡ℎ3 =ClfModelling(merge(𝐷3, 𝐷4), RTh,LTh) 
    retrun Models 
End 
 

A more detailed description of the algorithmic Classifier Modeling implementation is given 

below. 

Classifier Modeling Algorithmic Implementation  

The multi-level system training is implemented using a recursive function ‘ClfModeling’, see 

Algorithm 5.1. The function, on each call, takes three parameters i.e. 𝐷𝑎𝑡𝑎, 𝑅𝑇ℎ and 𝐿𝑇ℎ, as 

input. Here, the parameter 𝐷𝑎𝑡𝑎 represents a data-structure with three elements 𝐷𝑎𝑡𝑎. 𝐹 i.e. 

face image dataset containing both shape and texture information for all the images, 𝐷𝑎𝑡𝑎. 𝐿 

i.e. number of images in the dataset and 𝐷𝑎𝑡𝑎. 𝑅 i.e. age-range in years covered by all the 

images. The second input parameter 𝑅𝑇ℎ is the minimum number of years an age-range can 

have. Third and final input parameter 𝐿𝑇ℎ is the lower bound for the number of images in a 

dataset. The later two input parameters serve as the stopping criteria for the recursion.  
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Algorithm 5.2: Splitting Dataset into Subsets 
function: Split(Data) 
Input: Data              A data structure with three elements 
          Data.F           Face images dataset containing both shape and texture  
           Data.L           Number of images in the dataset 
         Data.R           Age-range i.e. minimum year and maximum year 
 
Output: 𝐷1, 𝐷2, 𝐷3, 𝐷4     Four subsets of input dataset  
𝐷1. 𝑅 ←  min(Data.R)      To       (max(Data.R)/4) 
𝐷1. 𝐹 ←  All the image data corresponding to age-range 𝐷1 . 𝑅 
𝐷1. 𝐿 ←   number of images in 𝐷1. 𝐹 
 
𝐷2. 𝑅 ←   (max(Data.R)/4)+1     To      (max(Data.R)/2) 
𝐷2. 𝐹 ←   All the image data corresponding to age-range 𝐷2. 𝑅 
𝐷2. 𝐿 ←    number of images in 𝐷2. 𝐹 
 
𝐷3. 𝑅 ←   (max(Data.R)/2)+1     To       (3×max(Data.R)/4) 
𝐷3. 𝐹 ←   All the image data corresponding to age-range 𝐷3. 𝑅 
𝐷3. 𝐿 ←    number of images in 𝐷3. 𝐹 
 
𝐷4. 𝑅 ←   (3×max(Data.R)/4)+1     To       max(Data.R) 
𝐷4. 𝐹 ←   All the image data corresponding to age-range 4. 𝑅 
𝐷4. 𝐿 ←    number of images in 𝐷4. 𝐹 
 
return 𝐷1 , 𝐷2, 𝐷3, 𝐷4 

The recursive function ‘ClfModeling’ returns a data structure 𝑀𝑜𝑑𝑒𝑙𝑠 that contains, for all 

levels of tree structure, classification models for both shape and texture.  

During the process, Algorithm 5.1 calls three more functions ‘Split’, ‘Merge’ and ‘Trainer’. 

‘Split’ function, see Algorithm 5.2, partitions the input data into four subsets as described 

before. Here each subset is a data structure that contains face images (both shape and 

Texture), corresponding age-range and number of images in appropriate data structure fields. 

In Algorithm 5.2, the functions min() and max() are used to find minimum and maximum 

value of the age-range in a dataset, respectively. The ‘Merge’ function, see Algorithm 5.3, 

combines two subsets to form one dataset. The ‘Trainer’ function represents training phase of 

a binary classifier (e.g. SVM or LDA) that takes datasets with labels to generate training 

classification models. The block diagram, shown in figure 5.3, explains the recursive calls to 

function ‘ClfModeling’, whereas block diagram shown in figure 5.4 illustrates the internal 

working of ‘ClfModeling’ and calls to other functions.  
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Algorithm 5.3: Merging of Two Datasets 
function: Merge(𝐷1, 𝐷2) 
Input: 𝐷1, 𝐷2           Two data structures with three elements 
 
Output: 𝐷                Combined dataset   
𝐷. 𝑅 ←  min(𝐷1.R)      To       max(𝐷2.R) 
𝐷. 𝐹 ←  All the image data corresponding to age-range 𝐷. 𝑅 from both sets 
𝐷. 𝐿 ←   number of images in 𝐷. 𝐹 
 
Return 𝐷 

Table 5.1: Look-up Table used for Decision Fusion 

Decision Fusion Strategy Next branch to Traverse 

(Decision) 

If at least 3 out of 4 classifiers return label ′0′ 𝐹1 

If 𝑻𝑪𝒍𝒇𝟏and 𝑺𝑪𝒍𝒇1return label ′1′and 𝑻𝑪𝒍𝒇𝟐and 

𝑺𝑪𝒍𝒇2return label ′0′ 

𝐹2 

If at least 3 out of 4 classifiers return label ′1′ 𝐹3 

Otherwise Fail! Return age-range of 

parent dataset 

5.1.2 System Testing 

Once all the classifier models are obtained using offline training process, they are used in an 

online evaluation system testing phase. In fact, ML-AE system testing is a tree-traversal 

process for a given face image 𝑓𝑡 = {𝑠𝑡|𝑔𝑡} using the best possible path. This is determined 

by fusion of the four classification decisions at each tree-level.  

System testing involves one major component, Age Estimation, as shown in figure 5.1. The 

working of the Age Estimation component is described in the following steps: 

Step-1: Read input face image 𝑓𝑡 = {𝑠𝑡|𝑔𝑡}. 

Step-2: Project the shape information 𝑠𝑡 on Eigen space, generated by PCA using the shape 

information of corresponding training data, to get appropriate reduced dimensionality shape 

feature set. This feature set is passed through two classifiers 𝑺𝑪𝒍𝒇1 and 𝑺𝑪𝒍𝒇2 that were 

trained earlier using training models 𝑺𝑴1 and 𝑺𝑴2, respectively. 𝑺𝑪𝒍𝒇1 results in one class 
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label 𝑅𝑆1 = 0 𝑂𝑟 1 that represent  classes 𝑫1 and 𝑫3, respectively. 𝑺𝑪𝒍𝒇2 results in class 

label 𝑅𝑆2 = 0 𝑂𝑟 1 that corresponds to classes 𝑫2 and 𝑫4, respectively.  

Step-3: Similarly, project the texture information 𝑔𝑡 on its corresponding Eigen space to 

produce a new texture feature set, which is then passed through two classifiers 𝑻𝑪𝒍𝒇1 and 

𝑻𝑪𝒍𝒇2, that were trained earlier using training models 𝑻𝑴1 and 𝑻𝑴2, respectively. 𝑻𝑪𝒍𝒇1 

results in one class label 𝑅𝑇1 = 0 𝑂𝑟 1 that represents two classes 𝑫1 and 𝑫3, respectively. 

𝑻𝑪𝒍𝒇2 results in class label 𝑅𝑇2 = 0 𝑂𝑟 1 that corresponds to classes 𝑫2 and 𝑫4, 

respectively.   

Step-4:  Fuse four classifiers decisions, obtained in Step-3 and Step-4, using the look-up of 

table 5.1. 

Step-5: Proceed to the next level with 𝑭1 or 𝑭2 or 𝑭3 as new parent datasets and repeat Step-

1 to Step-5 till the last level, or stop here and return the mean age year of the parent dataset 

as final estimated age.  

The decision fusion strategy, given in table 5.1, is mainly based on the majority rule; 

therefore an output label ′0′ from at least three out of the four classifiers means that the given 

input face image should be a possible member of first two adjacent data partitions. Similarly 

a label ′1′ declares the input face image as the member of last two adjacent partitions. 

However, the exception is when both classifiers of first pair return label ′1′ and both 

classifiers of second pair return  ′0′ as the output class label. In this case, the input face image 

is declared as the possible member of second and third partition. 
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5.2 Experiments 

5.2.1 Input Dataset 

Experimentation was performed using computer simulation of the ML-AE framework and 

involved the FG-NET dataset [24]. As explained earlier, FG-NET dataset contains 1002 

colour or grey-scale face images of 82 persons (12 images per person on average) with an 

age range from infant to 69 years. The data distribution of FG-NET dataset according to age 

is shown in figure 5.5. Furthermore each image comes with 68 hand labeled shape points. 

Some FG-Net sample images are shown in figure 5.6. 

Thus the shape information of training face images consists of 68 landmark points see figure 

5.2. For the test data, these 68 landmark points, which are available with the FG-NET dataset, 

can be used as they are or they can be automatically obtained by an MM-AAM fitting process 

[28]. In order to concentrate on age estimation performance without having to account for the 

effects of an MM-AAM fitting process errors, all the landmark points used in the 

experimental part of this work, are those made available by FG-NET.  

5.2.2 Experimental Setup 

Experimentation was performed on the basis of the Leave-One-Person-Out (LOPO) strategy.  

LOPO is used mainly to prevent the same person from being included in both the training and 

the test dataset [2, 7, 12, 88]. Thus in each fold, the images of one person were used as the 

test set and those of the others were used as the training set. After 82 folds, each subject had 

been used as test set once, and the final average performance results were calculated from all 

estimates. 
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As most of the images in FG-NET represent younger ages and the number of images 

corresponding to older age years is quite small (see figure 5.5), training of ML-AE started 

with four non-uniform data partitions based on age years with an aim to have enough number 

of images per partition. The four non-uniform age-based partitions are 𝑝1 = 0 → 10, 𝑝2 =

10 → 20, 𝑝3 = 20 → 35 and 𝑝4 = 35 → 69. This non-uniform partitioning is just to start the 

training process of ML-AE and actual age is estimated, during the testing process, after a 

complete tree traversal. After the first tree level, data is uniformly partitioned in to four 

classes. 𝑅𝑇ℎ and 𝐿𝑇ℎ, the two threshold values to terminate the training process, are set as 2 

years and 5 images, respectively. During the training of classifiers at each level of ML-AE, 

reduced dimensional feature sets for both shape and texture are obtained using only those 

Eigen vectors of PCA that correspond to the largest Eigen values while 95% of cumulative 

signal energy is captured. 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
0

5

10

15

20

25

30

35

40

45

50

Age (year)

N
u

m
b

er
 o

f 
Im

ag
es

Figure 5.5:   Image distribution of FG-Net face dataset according to age. 
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Furthermore, ML-AE performance is evaluated by mean absolute errors (MAE) and 

cumulative scores (CS) [2, 7, 12, 88]. MAE is defined as the mean of the absolute difference 

between the estimated age and the ground-truth age i.e.  

𝑀𝐴𝐸 =
1

𝑁
∑|�̂�𝑖 − 𝐴𝑖|

𝑁

𝑖=1

, (5.1) 

where 𝑁 is the total number of test images, �̂�𝑖 is the estimated age of 𝑖th test image and 𝐴𝑖 is 

the ground-truth age of the test image 𝑖. The cumulative score (CS) of an age difference 𝑡 is 

defined as the percentage of estimations that have an estimation error of less than or equal to 

𝑡 years, mathematically it can be given as 

𝐶𝑆(𝑡) =
𝑛|�̂�−𝐴|≤𝑡

𝑁
× 100, (5.2) 

where 𝑛|�̂�−𝐴|≤𝑡 is the number of images whose estimation error (|�̂� − 𝐴|) is less than or equal 

to 𝑡 years and 𝑁 is the total number of test images. 

5.2.3 Experimental Results 

This subsection provides ML-AE system performance evaluation results in terms of the MAE 

and CS using the FG-Net aging database. 

 

Figure 5.6: Sample images of a person taken from the FG-Net aging database. 
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Table 5.2: MAE and standard deviation of error comparison of ML-AE using fusion of 

shape and texture classifications with ML-AE schemes using shape or texture 

classifications.  

Method 
Mean Absolute Error 

(years) 

Standard Deviation of 

Error (years) 

ML-AE (Shape) 5.1437 5.7794 

ML-AE (Texture) 4.2825 5.5737 

ML-AE (Shape + Texture) 4.0406 4.9559 

1) Performance Evaluation of Shape- and Texture-based Decision Fusion 

The aim of this experiment was to investigate the impact of decision fusion of two features 

i.e. Shape and Texture. Therefore, here the performance of ML-AE system which employ 

feature (i.e. Shape and Texture) decision fusion was compared with that of ML-AE systems 

without decision fusion. Note: in these experiments binary SVMs with RBF kernel are used 

for classification purpose. The overall MAE for ML-AE with fusion of shape and texture 

decisions is 4.0406. This represents an improvement of 21.45% and 5.65% over ML-AE 

systems using only shape or texture, respectively (see table 5.2). 

Figure 5.7 shows Mean Absolute Errors (MAEs) at different age years for the above three 

ML-AE systems. It is obvious from these curves that the fusion of classification decisions 

made with respect to shape and texture (blue curve) offers better overall performance than 

that of the other two systems see green curve and red curves. These curves also explain the 

algorithms’ dependency on the number of images per year available for training; since the 

number of images for senior ages (40 − 60) is relatively small, classification results 

deteriorate significantly as compared to MAE values achieved for younger ages. It could be 

argued that, given the availability of properly populated input training datasets, most of ML-

AE absolute errors should be less than 5 and not more than 10 years. Also cumulative scores 

(see figure 5.8) moved up on an average of 0.5389 and 5.7916 with respect to texture and 

shape, respectively, by the proposed fusion of these two features.  
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Figure 5.7: Mean Absolute Errors at different age years for FG-NET dataset; blue curve is 

representing MAEs for ML-AE based on both shape and texture, whereas green and red 

curves are for ML-AE schemes based on shape or texture, respectively. 

Figure 5.8: Cumulative scores comparing the proposed Multi-level Age Estimation with SVM 

classifier (ML-AE-SVM) framework, based on fusion of both shape and texture classifications, 

and ML-AE-SVMs based on shape or texture on their own. 
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Figure 5.9: Mean Absolute Errors at different age years for FG-NET dataset. 

Figure 5.10: Cumulative scores comparing the proposed Multi-level Age Estimation 

framework with SVM (ML-AE-SVM) and with LDA (ML-AE-LDA). 
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2) Impact of Classifier 

In this experiment the impact of the type of classifier used in ML-AE is highlighted. For this 

purpose, the performance of ML-AE, using Support Vector Machine (SVM) type 

classification is compared to that of ML-AE using Linear Discriminant Analysis (LDA) 

classification. 

Computer simulation results show that ML-AE-SVM yields 𝟒. 𝟏𝟔% less MAE than that ML-

AE-LDA (see table 5.3). Note that these are average values and in fact ML-AE-LDA gives 

slightly better performance over certain age years, see figure 5.9. Therefore and due to the 

lack of sufficient training data for older persons, a definite judgement in favour of one of the 

two systems cannot be secured, see also figure 5.10.    

Table 5.3: Comparison of ML-AE-SVM with ML-AE-LDA in terms of the MAE and 

standard deviation of error  

Method 
Mean Absolute Error 

(years) 

Standard Deviation of 

Error (years) 

ML-AE-LDA 4.2161 5.2722 

ML-AE-SVM 4.0406 4.9559 

 

3) Comparison of ML-AE with Existing AE Systems.  

Here ML-AE performance is compared against that of some state-of-the-art methods. 

Furthermore and for this purpose, only those schemes, which have evaluated (and their 

performance reported) using the FG-NET face dataset are included. 

Mean Absolute Errors (MAEs) and the Cumulative Scores (CSs), for different Age 

Estimation methods, are presented in table 5.4. The cumulative scores, given in table, reflect 

correct age estimations within a 5-year absolute error.  
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Table 5.4 shows that even the best known method for FG-NET dataset with 4.1 years MAE 

and 73% cumulative score, reported in [89], is outperformed by ML-AE with 

1.4390% improvement in terms of MAE and 4.11% improvement in terms of CS. These 

results are indicative of ML-AE’s   effectiveness and potential.   

Table 5.4: Comparison of AE methods with respect to Mean Absolute Error and 

Cumulative Score (MAE / CS). 

Method Feature Extraction MAE / CS (%age) 

Thukral et al. [23] 
Landmark based hierarchical 

approach 
6.2 / NA 

Han et al. [20] 
Component and holistic 

biologically inspired features (BIF) 
4.6 / 74.8% 

Geng et al. [12] 
Holistic appearance, principal 

component analysis (PCA) 
6.8 / 65% 

Suo et al. [17] 
Holistic and local topology, 2D 

shape, colour, and gradient 
6.0 / 55% Approx. 

Guo et al. [44] Holistic BIF 4.8 / 47% 

Choi et al. [2] Holistic appearance, Gabor, LBP 4.7 / 73% 

Chao et al. [40] 
Label-sensitive relevant component 

analysis 
4.4 / NA 

Han et al. [90] BIF 4.5 / NA 

Khryashchev et al. [91]  Local Binary Patterns (LBP) 7.47 / 37% Approx. 

Chang et al. [92] Ordinal hyper-plane ranking 4.5 / 74.7% 

Wu et al. [93] 
Grassmann manifold of Facial 

shape 
5.9 / 62% 

Luu et al. [89] 
Holistic contourlet appearance 

mode 
4.1 / 73% Approx. 

ML-AE-SVM  
Shape and Texture features 

Decision Fusion 
4.041 / 77.11% 
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5.3 Conclusion 

The proposed Multi-level Age Estimation (ML-AE) framework aims at the automatic and 

accurate estimation of human age on the basis of a given input face image. ML-AE operates 

in an unbalanced ternary tree structure to reach a final age estimation decision and yields 

better performance compared to different existing age estimation systems.  

At each level of the tree ML-AE partitions a given face dataset, containing both shape and 

texture-based features for all the images, into four age-groups. Afterwards and for each 

feature type, two binary classifiers are trained on the basis of two different pairs of age-

groups. During the testing phase, the best path to traverse such a tree is selected on the basis 

decision fusion of four classifiers i.e. two per type of features.  

The novelty of the proposed framework stems from the notion that age classification errors 

can be reduced, if a given classifier is trained using age-groups with large inter-class 

variation. For this purpose, classifiers at each level of hierarchy are trained on alternative age-

groups instead of adjacent groups, an action that is beneficial to the subsequent age 

classification process.  

In conclusion computer simulation based experiments, performed to evaluate the proposed 

ML-AE approach, highlight the following points: 

 ML-AE, based on the decision fusion of the two types of features i.e. shape and texture, 

has outperformed the ML-AE systems based on shape and texture alone, by yielding 

21.45% and 5.65% less MAE respectively. Similarly, ML-AE with decision fusion has 

increased cumulative scores by an average of 0.5389% and 5.7916% with respect to 

texture and shape. These results suggest that neither shape nor texture when used alone as 

a discriminating feature can provide adequate age estimation performance.  
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 Secondly, the proposed ML-AE-SVM has shown signs of superiority over ML-AE-LDA 

but unfortunately this cannot be supported with certainty due to lack of training image data 

for older subjects.  

 Finally, the performance gains, obtained using the proposed Multi-level Age Estimation 

framework, over a range of existing systems operating on the same input dataset, are 

indicative of ML-AE’s potential. 
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Chapter 6  

Concluding Remarks and Future Work 

This chapter outlines some of the important conclusions derived from the research work 

undertaken as part of this thesis. Some possible extensions of proposed methodologies and 

their incorporations in various real life applications are also discussed. 

6.1 Conclusions 

This thesis explored the problem of face image based automatic age estimation (FI-AAE), an 

important process in many real life applications requiring age estimates  (or age ranges) given 

the facial image of a person. Thus we proposed and applied a novel Multi-Level Age 

Estimation (ML-AE) framework; a hierarchical classification scheme which maximizes and 

then exploits inter-class variation among different age groups at each level of the hierarchy. 

Furthermore, the proposed scheme exploits  age based discriminating information taken from 

two different cues (i.e. facial shape and texture) at the decision level which improves age 

estimation results. 

During the process of achieving our main objective of age estimation, we have contributed to 

image analysis knowledge   in general and to the following three face image processing areas 

in particular: i) Face image modeling and synthesis; a process of representing face image data 

with a low dimensional set of parameters. It is considered as the precursor to every face 

image based age estimation system, ii) Face image data variability and iii) Face image based 
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age estimation. Some key observations associated with each of these three studies are as 

follows: 

6.1.1 Face Image Modeling and Synthesis 

 The conventional Active Appearance Model (AAM) scheme for face image modeling and 

synthesis is not generic in nature and hence is not capable for representing unseen face 

images due to large variation of pose, expression and illumination. Moreover, during the 

process of dimensionality reduction, AAM tends to lose important discriminating age 

related information that adversely affects the overall age estimation system performance. 

The MM-AAM and MC/MM-AAM schemes for face image modeling and synthesis, 

proposed in Chapter-3, strive to cope with the above mentioned challenges associated with 

AAM. MM-AAM operates on the whole face image whereas MC/MM-AAM exploits 

local information by using each face component separately. The idea of the proposed work 

is based on the fact that face data variability (due to pose, expression, illumination etc.) 

can be reduced by splitting data into smaller groups of similar characteristics. For this 

purpose, both MM-AAM and MC/MM-AAM cluster face image data into small groups on 

the basis of shape similarities and yield multiple models, out of which the best one is 

selected for the synthesis of the unknown test face image. Similar AAM based existing 

techniques that operate on small groups of face data only cater for the pose variations, 

whereas the clustering method employed in our proposed schemes cope with all types of 

variation and hence yield better face  representation/synthesis performance gains in terms 

of both seen and unseen data.  

 MC/MM-AAM that operates on local facial information by using each face component 

(i.e. eyes, nose, mouth, etc.) separately has performed better in terms of synthesizing facial 

shape and texture, in comparison with  MM-AAM. However, decomposing a given face 
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image into its components and then applying separate AAM operations for each 

component is computationally quite expensive job that made the MC/MM-AAM 

performance improvement over MM-AAM an undesirable option for applications such as 

face recognition and face image based age estimation. 

 In Chapter-3, we also examined the applicability of MM-AAM under the application of 

face recognition and proposed a FR-MM-AAM framework. This proposed FR framework 

effectively outperformed the face recognition system based on conventional AAM. 

Although, MM-AAM has performed significantly better in synthesizing shape and texture 

of unseen face images and outperformed AAM, texture synthesis errors are still quite large 

as compared to shape synthesis errors. Furthermore since face recognition operates on 

texture information and large texture synthesis errors can affect recognition performance, 

we have utilized the synthesized shape to extract the original texture from the face image 

which is then used for the recognition purposes. Computer simulation experimental results 

have shown the effectiveness and considerable potential of this new FR framework. 

6.1.2 Face image data variability 

 The second contribution of this research work is quantifying face image data variability 

and proposes a single image variability measure VM that represents the overall variation 

of a face dataset. In this work and due to a lack of availability of age based face datasets, 

we have used face image datasets that are available for the purpose of face recognition. 

Furthermore, the relationship between the proposed VM and system recognition 

performance is also modeled using a 2
nd

 degree polynomial. This can be useful in 

predicting the recognition performance of a given classifier, given a particular face image 

dataset. The polynomial model is selected on the basis of two ‘goodness of fit’ parameters: 

R-squared (R2) and adjusted R-squared (R2̅̅ ̅).  
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 The proposed formulation of VM benefits from the correlation among images to, 

separately, form inter- and intra-subject variability measures, i.e. VM-interSC and VM-

intraSC, which are then combined to produce a single measure VM to represent overall 

variability. 

 Computer simulation experiments based on both noise-free and noisy (coded) data showed 

the effectiveness of this variability measure VM to characterize equally well FR system 

performance while operating on noise free face image or noisy/coded data.   

6.1.3 Face image based Automatic Age Estimation (FI-AAE) 

 In general, existing hierarchical face image based age estimation systems with hard 

boundaries between adjacent age groups suffer inaccuracies due to smooth age variation 

among images located on boundaries of age groups. The multi-level age estimation ML-

AE framework, proposed in Chapter-5, operates on a novel method of age based data 

partitioning that maximizes inter-group variation to effectively overcome the challenge of 

this smooth variation and as a result outperforms existing age estimation systems. The 

proposed ML-AE, at each level of it hierarchy, splits  face image clusters into four age-

based partitions and then performs classification using alternative age groups with larger 

inter-group variation.  

 Secondly, the proposed ML-AE operates separately on facial shape and texture and at each 

level fusion of decisions takes place from both streams in order to decide the next path to 

traverse. This proposed method of using shape and texture separately helps in avoiding the 

loss of the important discriminating features that is a major limitation in the case of 

conventional AAM based systems with hybrid feature sets.  

 Computer simulation based experiments highlight different aspects of the proposed ML-

AE framework by i) showing the positive impact  of  decision fusion of the two features, 
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ii) comparing the performance of the systems based on two different classification 

techniques i.e. LDA and SVM and finally iii) comparison with other existing techniques 

further shows the effectiveness of this proposed ML-AE framework. 

6.2 Future Work  

Although this research work offers a number of novel contributions, it deals only with face 

image based age estimation and therefore can be extended to face based age synthesis, a 

process of generating a face image for a given age year. Face image based age synthesis has 

become an interesting topic these days because of emerging new applications. For example in 

forensics, age synthesis is used to modify and enhance photographs for the purpose of 

identifying suspects, victim and lost persons. In real life applications such as passport 

renewal and border security, a face recognition system equipped with an age synthesis 

module can recognize faces after a gap of several years by dynamically tuning facial shape 

and texture model parameters. By enhancing the face image modeling and synthesizing 

capability of our proposed MM-AAM, a face image based age synthesis system can be built 

and effectively used in the many real life applications. One way to achieve this is to obtain 

model parameter sets for each cluster during a MM-AAM modeling phase. Thus an n-degree 

polynomial model can be generated for each of the parameter to provide the evolution over 

time of that parameter. Therefore, consider if we have 𝑢 parameters in one vector it means we 

will have 𝑢 number of models. During synthesis, once we get the best model parameters for 

the input face image using MM-AAM, a closest parameter is found out of all training model 

parameters for each of these input parameters. Then polynomial model created for each of 

these closest parameters will be used to obtain the estimated parameter for the target age. 

Once all the estimated parameters for the target age are obtained, they will be used to 

synthesis the face image corresponding to the target age. However, for this purpose we need a 
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quite large age-based face dataset so that we can have enough number of images, 

corresponding to different age years, in each cluster, that can be obtained either by combining 

different age-based face datasets or creating a new dataset using images available on internet.  

Furthermore, one more useful application of this research work can be low bandwidth data 

transmission. For example, sometimes it is required to transmit human facial images for 

further processing using bandwidth restricted links, in this case the proposed MM-AAM or 

MC/MM-AAM can be used to represent face image with a small set of parameters that can be 

efficiently transmitted and used on receiver side to regenerate the face image. 

Finally, some suggestions to improve, in the future, the performance of proposed age 

estimation system ML-AE are listed below: 

 Since age progression affects faces of male and female persons differently, making ML-

AE gender aware, should further improve age estimation performance. This means, the 

ML-AE system is trained using only male face images to estimate the age of a male 

person, whereas for female faces ML-AE is trained using only female faces. Other types 

of subdivision of input data use for training can also be exploited, e.g. ethnicity.   

 ML-AE framework is currently based on only one classifier i.e. SVM or LDA, this work 

can be extended and enhanced to accommodate operate on a bank of state-of-the-art 

classifiers with a following fusion of decisions process and can yield final results based on 

fusion of decisions from all the streams. 
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