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Abstract

Existing approaches for diffusion on graphs, e.g., for label
propagation, are mainly focused on isotropic diffusion, which
is induced by the commonly-used graph Laplacian regularizer. In-
spired by the success of diffusivity tensors for anisotropic diffusion
in image processing, we presents anisotropic diffusion on graphs
and the corresponding label propagation algorithm. We develop
positive definite diffusivity operators on the vector bundles
of Riemannian manifolds, and discretize them to diffusivity
operators on graphs. This enables us to easily define new robust
diffusivity operators which significantly improve semi-supervised
learning performance over existing diffusion algorithms.

1. Introduction
Physical diffusion describes how energy, mass, or substances

spread over time — how their densities smoothen out in a medium.
Simulating physical diffusion on a Euclidean space, a manifold, or
their discrete approximations, e.g., grids or graphs, has application
in image processing, computer vision, and machine learning.
For instance, diffusion is now a standard tool for removing noise
or to highlight salient structures [32]. The graph Laplacian,
as a discrete approximation of the generator of the diffusion
process on manifolds, i.e., the Laplace-Beltrami operator, is
commonly used in spectral clustering and semi-supervised
learning, which finds applications in object recognition [7, 33],
image retrieval [10], and segmentation and matting [3, 25].
Similarly, stochastic diffusion process on graphs find application
in multi-label classification [30] and image retrieval [12].

In these applications, typically we are given a set of objects
X = {x1,...,xn} and corresponding assignments of variables
Y t = {yt1,...,ytn} at time t = 0. Then, (simulated) diffusion
models how Y smooths overX. For instance, whenX denotes
vertices of a mesh, Y is the coordinate representations ofX in an
embedding space X , leading to mesh fairing. More generally, if
X denotes noisy observations of data points lying on a manifold,
diffusion leads to manifold denoising. If Y represents class labels
of data points in X, diffusion leads to label propagation and
facilitates semi-supervised learning. In this case, Y is assumed
to be a sample from an underlying classification function f on
X (i.e., Y ={y1,...,yn}={f(x1),...,f(xn)}).

Diffusion is determined by the initial condition Y 0 and the
diffusivity defined onX or X . Roughly, the diffusivity describes

the direction and strength of f (and equivalently Y ) being
smoothed at each time instance t. In general, the diffusivity
is inhomogeneous as it varies over X, and is anisotropic as its
strength varies over different directions at each point x ∈ X.
For instance, in image processing, diffusivity is strong in flat
regions but weaker on edges. Further, on an edge, diffusivity is
stronger along the direction of edges than across it. This leads to
edge-preserving image smoothing as pioneered by Weickert [32].

For graph data, diffusion can be seen as label propagation in
semi-supervised learning. Thus far, label propagation has mainly
focused on isotropic diffusion (i.e., the diffusivity is fixed on the
entire data space and all directions at each point therein), and
only recently has anisotropic diffusion been explored: Coifman
and Lafon [5] apply anisotropic diffusion to the graph-based
dimensionality reduction problem. They control diffusivity by
normalizing the (originally isotropic) pair-wise similarity with the
evaluations of diffused coordinate values. Szlam et al. [29] gener-
alizes and extends this framework to semi-supervised learning by
controlling diffusivity via evaluations of class labels f : If f(xi)
and f(xj) are similar, i.e., if the class labels of xi and xj are
likely to be the same, then diffusivity along the edge joining them
is high. Otherwise, diffusivity becomes low, which prevents label
propagation across class boundaries. This leads to significant per-
formance improvement over classical isotropic diffusion. Kim et
al. [21] proposed adapting diffusivity on Riemannian manifolds
based on local curvature estimates: Diffusivity is strong in flat
regions and weak along the direction of the curvature operator,
which leads to an awareness of intersections between manifolds
and so improves performance over isotropic equivalents. However,
this requires the dataX to be embedded in an ambient Euclidean
space, and so does not apply to inference on general graphs.

We propose two contributions for anisotropic diffusion on
graphs. First, we analyze continuous anisotropic diffusion
processes on smooth manifolds, and show that anisotropic
diffusion is nothing more than isotropic diffusion on a manifold
with a new metric. Based on this analysis, we arrive at a new
anisotropic graph Laplacian approach which is similar to the
stochastic kernel smoothing approach of Szlam et al. [29], but
with a new geometric intuition. This provides explicit criteria
to define valid diffusivities on graphs and manifolds, and it
facilitates non-linear diffusion on graphs. Second, we explore two
possible operators which control diffusivity of each edge based on
local neighborhood contexts and not just their end vertices. This
context-guided diffusion extends to graphs the robust diffusion
algorithm originally developed for image enhancement [32], and
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we demonstrate on 11 different classification problems that this
improves semi-supervised learning performance over isotropic
diffusion, the stochastic anisotropic diffusion of Szlam et al. [29],
and three existing label propagation algorithms [37, 11, 31].

To assist readers and subsequent development, we make our
code available on the web.

2. Anisotropic diffusion on graphs
We develop anisotropic analogs to the existing isotropic

diffusion process and to the corresponding graph Laplacian.
We also introduce context-guided diffusion for semi-supervised
learning. These contributions are based on the analysis of the
continuous positive definite diffusivity operators on Riemannian
manifolds, which we leave for Sec. 3.

Existing works [35, 17] establish the (isotropic) graph
Laplacian as a discrete approximation of the Laplace-Beltrami
operator on a data manifold. We build upon these works to
develop isotropic and anisotropic graph Laplacians by combining
local diffusivity operators defined on sub-graphs centered at each
data point. As such, first, we explain existing approaches.

Discrete isotropic diffusion. A weighted graph (X,E,W)
consists of sets of nodes X of size n, edges E⊂X×X, and
non-negative similarities wij := w(eij) ∈ W for each edge
eij∈E, with wij=0 if eij /∈E.

For subsequent definition of diffusivity operators based on
local gradients and divergences, we need spaces with defined
inner products (i.e., Hilbert spaces), and so we introduce spaces
H(X) andH(E) of functions onX andE, with inner products
defined as [35, 17]:

〈f,h〉H(X) =

n∑
i=1

f(i)h(i)di,∀f,g∈H(X), (1)

〈S,T〉H(E) =

n∑
i,j=1

S(i,j)T(i,j),∀S,T ∈H(E), (2)

where f(i)=f(xi) and di is the degree of node xi∈X:

di=
n∑
j=1

wij. (3)

For each nodexi, a subgraphGi=(Xi,Ei,Wi) centered atxi
is defined as the set of nodes that are connected to xi and the cor-
responding edges, i.e., Xi={xj|eij∈E}, Ei={eij|xj∈Xi},
andWi are obtained by evaluatingW atEi. The inner-product
structures on Xi and Ei are induced as restrictions of the cor-
responding structures on the entire graphG to the sub-graphGi,
which we denote byH(Xi) andH(Ei), respectively. Given these
structures, we define discrete gradient and divergence operators
at Gi. First, the graph gradient operator∇i :H(Xi)→H(Ei)
is defined as the collection of f differences along the edges:

[∇if](eij)=
√
wij(f(j)−f(i)), (4)

for eij ∈ Ei and f ∈H(Xi). The graph divergence operator
∇∗i :H(Ei)→H(Xi) is defined as the formal adjoint of∇i: for
all f∈H(Xi),S∈H(Ei):

〈∇if,S〉H(Ei)
=〈f,∇∗iS〉H(Xi)

. (5)

By substituting Eq. 4 into Eq. 5,∇∗i is explicitly given as

[∇∗iS](i)=
1

2di

n∑
j=1

√
wji(S(j,i)−S(i,j)). (6)

By combining the local gradient and divergence operators,
we can construct the global normalized graph Laplacian
L :H(X)→H(X):

[Lf](i)=∇∗i∇if, ∀f∈H(X),i=1,...,n. (7)

Our definition of the graph Laplacian is consistent with [35, 17].
In particular, at the i-th node, it is explicitly given as:

[Lf](i)=f(i)− 1

di

n∑
j=1

wjif(j). (8)

If the nodes X of G are sampled from an underlying data
generating manifoldM , i.e., the probability distribution P(x) is
supported inM , the graph Laplacian L converges to the Laplace-
Beltrami operator ∆ on M as n→∞ [17, 1]. This is often
regarded as the reason for using graph Laplacian as a regularizer
in many applications: The semi-norm ‖f‖∆ induced by ∆ is
equivalent to the norm of the gradient∇f of a function f onM
(see Sec. 3). Then, Lf is obtained as a discrete approximation of
the first-order regularizer on graphs. Further, ∆ is the generator
of isotropic diffusion process onM and accordingly, L is also a
discrete approximation of the isotropic diffusion generator onG.

Anisotropic diffusion on graphs. Next, we extend isotropic
graph Laplacian L to be anisotropic. Our derivation is based on
Weickert’s definition on positive definite (PD) diffusivity opera-
tors on R2 [32]. In Section 3, we introduce an extension of these
operators to general Riemannian manifolds and, based on that,
establish a rigorous connection between our anisotropic diffusion
process onG and that of the data generating manifoldM .

First, we formally introduce the local diffusivity operator
Di :H(Ei)→H(Ei):

Di :=
∑

j 6=i,xj∈Xi

qijbij⊗bij

⇔ [DiS](eij)=qijbij〈bij,S〉,∀S∈H(Ei), (9)

where⊗ is the tensor product and the basis functionbij is defined
as the indicator of eij, i.e., bij=1ij. Similar to the construction
of diffusivity operators on R2 [32], our diffusivity operators are
constructed based on its spectral decomposition: qij is an eigen-
value of the operatorDi corresponding to the eigenfunction bij.
This enables us to straightforwardly define a globally PD diffusiv-
ity operator onG: Our global diffusivity operatorD :H(E)→



H(E) is obtained by identifying Di as the restriction of D on
H(Ei). In this case, D is positive definite if and only if {qij}
is symmetric and positive, i.e., qjk=qkj,qjk>0,∀j,k=1,...,n.
Furthermore, D is uniformly PD if all eigenvalues {qij} are
lower-bounded by a positive constant ν.

Now we are ready to define an anisotropic diffusion process
onG. We construct an anisotropic graph Laplacian:

[LDf](i):=[∇∗iDi∇if](i),

=

 1

di

n∑
j=1

wijqij

f(i)− 1

di

n∑
j=1

wijqijf(j), (10)

where the equality in the second line is obtained by substituting
Eqs. 4, 5, and 9 into the first line.

Except for the normalization term in f(i), the construction
of LD is identical to the isotropic graph Laplacian L case: The
original weights {wij} are replaced by new weights {wDij}:

wDij =wijqij. (11)

Given the anisotropic graph Laplacian LD, we can define the
corresponding anisotropic diffusion process onG. For instance,
for label propagation applications, we propose using the explicit
Euler approximation (cf. Eq. 20 for the continuous counterpart):

ft+1−ft

δ
=−LDft

⇔ft+1 =ft−δLDft, (12)

where ft denotes the value of f at time t and δ is the time
discretization interval. The uniform positive definiteness of
the diffusivity operators is crucial to the well-posedness of the
corresponding diffusion process in R2 [32]. The same applies
to the positive definiteness of our discrete diffusivity operator
D: This is the only way that LD is a conditionally PD matrix
and therefore it can be a valid regularizer onG:

RLD(f):=f>LDf=
∑

i,j=1,...,n

wDij/di(f(i)−f(j))
2
, (13)

where f=[f(1),...,f(n)]>: For simplicity, we assume that f(i) is
a scalar. When f(i) is a vector, e.g., for multi-class classification,
RLD(f) is summed over the output dimensions. If D is fixed
throughout diffusion, the difference equation (12) is linear and the
corresponding analytical solution ft exists for any δ>0 and t>0
given f0. However, in general, D depends on ft (e.g., Eq. 15)
and so Eq. 12 becomes nonlinear, where the solution ft can be
obtained by iterating updating ft with the right side of Eq. 12.

Anisotropic diffusion for semi-supervised learning. With
proper choices of {qij}, our diffusion equation (Eq. 12) can be
used in various applications including label propagation for semi-
supervised learning. Assume we are given a set of data pointsX=
{x1,...,xn}∈Rd where only the first l-data points are provided
with the ground-truth class labels Y ={y1,...,yl}. Our goal is

Algorithm 1: Build anisotropic graph Laplacian LD.

Input: Set of data pointsX={x1,...,xn}⊂Rd
with function values: F={f(x1),...,f(xn)}⊂Rc.
Output: LD.

for i=1,...,n do
Find nearest neighborsNK(xi);
Calculate isotropic weights
wij (for xj∈NK(xi) and xi∈NK(xj); Eq. 14);
Calculate the node degree di (Eq. 3);
Calculate the diffusivity
eigenvalues qij using one of Eqs. 15, 16, and 17;

end
Rearrange {wDij} (Eq. 11) to a matrix LD based on Eq. 10.

to propagate these labels to the entire dataset X. We approach
this problem by first building a graphG=(X,E,W) with:

wjk=


exp
(
−‖xj−xk‖2

σx

)
if xj∈NK(xk)

or xk∈NK(xj)
0 otherwise,

(14)

whereNK(xj) is theK-nearest neighborhood of xj and σx>0
is a hyper-parameter. Then, we diffuse the labels Y onG. Specif-
ically, our label propagation algorithm adopts the approach of
Zhou et al. [34]: For a c-class classification problem, each label
yk∈Y is given as a c-dimensional row vector. When the ground-
truth class of xj is k, the elements of yj are all zero except for
the k-th element that is assigned with one: yj = [0,...,1,...,0].
The label propagation is then performed by building the initial
f0∈Rn×c where i-th row isyi ifxi is labeled (i≤l) and 0, other-
wise, and running the difference equation (explicit Euler scheme;
Eq. 12) until the stopping criteria is met: As suggested by the form
of regularizerRLD , similarly to the isotropic graph Laplacian, the
only null-space of anisotropic graph Laplacian is the space of con-
stant functions. This implies that the difference equation (Eq. 12)
converges to a constant function as t→∞. Accordingly, for
practical applications, we stop diffusion at a finite time step T and
obtain the resulting function fT as the output. The final class label
for data point xi is obtained as argmaxfT (i)∈Rc for each i.

The best choice for the eigenvalues {qij} of the diffusivity
operatorD depends on the application. Intuitively, the diffusivity
qij should be high when the corresponding function evaluations
f(i) and f(j) are similar, i.e., |∇if(eij)| is small. One way to
define such diffusivity is to use a Gaussian weight function as
is common in image enhancement:

qij=exp

(
−|∇if(eij)|2

σ2
f

)
, (15)

where σ2
f is the scale hyper-parameter. Algorithm 1 shows

pseudocode to construct the corresponding anisotropic graph
Laplacian onG.

The resulting anisotropic graph Laplacian LD can be
immediately applied to any label-propagation problems. However,



for semi-supervised learning algorithm, naı̈vely applying LD to
the difference equation (12) may require many iterations before
it actually starts propagating labels. The progress of diffusion can
be very slow in the early stage (t is small) at the vicinity of labeled
points: If a point xi is labeled andNK(xi)\xi are all unlabeled
(this is typically the case for semi-supervised learning), the
corresponding eigenvalues (Eq. 15) are all small, and accordingly,
the weights {wDij} are also small for all xj∈NK(xi). To speed
up the process, we run the isotropic diffusion (with the isotropic
graph Laplacian L) and smooth out the initial distribution of f0.
For all experiments, the initial diffusion runs for 20 time steps
while the length T of the anisotropic diffusion is regarded as a
hyper-parameter.

Discussion. Our derivation of anisotropic graph Laplacian is
strongly connected to the kernel-based anisotropic diffusion ap-
proach of Szlam et al. [29], yet the motivating ideas are different:
their anisotropic kernel is based on stochastic Markov diffusion
processes on graphs, while our anisotropic graph Laplacian is ob-
tained based on a formulation of geometric diffusion on manifolds:
LD is obtained by extending Weickert’s diffusivity operators in
R2 [32] toM and then discretizing it onto a graphG (see Sec. 3).

Since the kernel smoothing corresponds to calculating analytic
solution at each time step of diffusion, and our anisotropic weights
{wDij} used in constructing LD can be regarded as an instance
of such kernels, the final diffusion algorithms of Szlam et al. [29]
and ours are very similar when applied to linear diffusion: Kernel
smoothing is given by first obtaining the continuous Gaussian
smoothing as an analytical solution of the linear diffusion
equation, and then discretizing it, while our explicit Euler scheme
is obtained by directly discretizing both the manifold and the
Laplace-Beltrami operator. In preliminary linear diffusion exper-
iments, minor differences in weights normalization1 led to only
negligible differences in semi-supervised learning performances.

The major differences between the two diffusion algorithms
are that 1) our algorithm is nonlinear, i.e. LD depends on ft at
each time t, while the anisotropic kernel of [29] is obtained as
an analytic solution of linear diffusion equation and therefore is
fixed a priori to the entire diffusion process. In our experiments,
we demonstrate that extending the approach of Szlam et
al. [29] to non-linear diffusion already significantly improves
semi-supervised learning performance. Furthermore, unlike
Szlam, 2) our construction explicitly states sufficient conditions
({qij} are symmetric and positive) for the well-posedness of
the resulting diffusion onG as a discretization of the underlying
manifold. This enables exploring various possibilities of inducing
new diffusion onG.

2.1. Context-guided diffusion.

We have seen how defining positive eigenvalues {qij} leads to
a PD diffusivity operatorD and to the corresponding anisotropic
graph Laplacian LD. This can be regarded as updating the sim-
ilarity measure between data points in X ⊂Rd: The isotropic

1In LD, the normalization coefficients {di} are constructed from {wij}
(see Eq. 10), while the diffusion kernel in Szlam et al. [29] is normalized so that
it leads to a stochastic matrix.

graph Laplacian matrixL is constructed from the positive weights
{wij} which are the pair-wise similarities of data points mea-
sured by the original Euclidean metric of Rd (see Eq. 14). By
construction, the information in L is precisely the same as the
pair-wise similarities and, therefore, defining a graph Laplacian L
corresponds to defining a similarity measure. Now, defining the
anisotropic diffusivity operatorLD, which is constructed based on
the original similarity measure plus the eigenvalues {qij}, can be
interpreted as introducing a new similarity measure {wDij} onG.2

In particular, we have seen how the Gaussian function (Eq. 15)
measures the deviation between the two function evaluations
f(i) and f(j) as each edge eij. This is only an example and
there are various possibilities given the positivity constraint.
Furthermore, qij does not have to defend only based on f(i) and
f(j) and it can take into account the neighborhood context as
well. For instance, spatially smoothing the diffusivity operator,
e.g., by convolving it with a Gaussian kernel, leads to much more
stable image enhancement than using the original diffusivity
operators (which is commonly constructed based on gradient
vectors): Theoretically, the smoothing operation guarantees the
well-posedness of the resulting diffusion equation even when
the corresponding original version is not. From a practical
perspective, this operation offers robustness against noise in the
image f since the gross effect of smoothing the diffusivity is
to take the spatial averaging of the gradients of f [32].

The spatial smoothing of the diffusivity operator can be
regarded as an instance of controlling the diffusivity based on
local context. We investigate two possibilities of exploiting this
local context. The first case is to adapt the idea of Gaussian
smoothing on images to graphs: For a given edge eij and the
corresponding local neighborhoods at each end node, NK(xi)
and NK(xj), the smooth diffusivity wDij is obtained based on
weighted averages of the diffusivities in the mutual neighborhood
NM(xi,xj):=NK(xi)∩NK(xj).

wDij =
∑

xk∈NM(xi,xj)

wij(qij+qikqkj)/(s
q
i+s

q
j), (16)

where sqi =
∑
xk∈NK(xi)

qik and sqj =
∑
xk∈NK(xj)qkj. The

interpretation of our smooth diffusivity is straightforwardly
transferred from the smooth diffusivity operators in the image
domain: The resulting diffusion process is robust against noise
in edge weights.

Another example of exploiting the context is to adopt the
intuitive notion of matching between the two entities in context: If
a pair of objects xi and xj matches, then often spatial neighbors
of xi, xl∈NK(xi) have the corresponding matching elements
in their neighborhoodsNK(xj) of xj, i.e., the match of (xi,xj)
is supported if the neighborhoods ofNK(xi) andNK(xj) find
matches in each pair of elements. Our local match diffusivity

2This intuition holds rigorously on the Laplace-Beltrami operator ∆ on a
Riemannian manifold M: 1) Indeed, ∆ uniquely defines a Riemannian metric
g on M [27] and 2) Section 3 shows that defining a diffusivity operator D on
M corresponds to defining the corresponding new metric g.



is defined as a smooth version of considering this match context:

wDij =wijqij
∑

xk∈NK(xi)

(1+q∗ik)/(k+1), (17)

where q∗ik = maxxl∈NK(xj)qkl. The max in the definition of
q∗ik implies that if there’s any entity inNK(xj) that matches xk,
the corresponding diffusivity between xi and xj is supported.
The normalization factor k+1 is actually obtained as k+1 times
the maximum possible value of qij (which corresponds to the
match case) which is 1 (Eq. 15).

3. Connection to continuous operators
As we have seen in Sec. 2.1, our anisotropic diffusion process

on G= (X,E,W) is nothing more than isotropic diffusion on
a new graph (X,E,WD) (regularization-form definition of LD
in Eq. 13, and corresponding diffusion process in Eq. 12) — our
(discrete) diffusivity operator D (Eq. 9) changes the notion of
similarity. In this section, first, we show that this intuition applies
to the continuous limit case of Laplace-Beltrami operator ∆ on
a data generating manifoldM , i.e., anisotropic diffusion onM
is isotropic diffusion with a new metric. Then, we discuss the
convergence properties of our anisotropic graph Laplacian to the
continuous anisotropic Laplace-Beltrami operator.

Anisotropic diffusion on Riemannian manifolds. On a
Riemannian manifold (M,g) with g being a Riemannian metric
onM , the isotropic diffusion of a smooth function f∈C∞(M)
is described as a partial differential equation:

∂f

∂t
=∇g∗∇gf=−∆gf, (18)

where ∇gf is the gradient of f , ∇g∗ is the formal adjoint
of ∇g, and ∆g is the Laplace-Beltrami operator defined by
∆g=−∇g∗∇g.

If we extend Weickert’s diffusivity operator originally definied
on R2 [32] to a manifoldM , then we introduce a smooth positive
definite operator D : T (M)→ T (M) with T (M) being the
tangent bundle of M , i.e., D is a smooth field of symmetric
positive definite operators each defined on a tangent space
Tx(M) ∈ T (M) at x ∈ M . The corresponding anisotropic
diffusion process is given as:

∂f

∂t
=∇g∗D∇gf, (19)

Defining an anisotropic Laplacian operator ∆g
D=∇g∗D∇g,

we restate Eq. 19 similarly to the isotropic case:

∂f

∂t
=−∆Df. (20)

We show that our anisotropic diffusion (Eq. 20) boils down to
isotropic diffusion onM with a new metric g:

Proposition 1 (The equivalence of ∆D and ∆g). The
anisotropic Laplacian operator ∆D on a compact Riemannian

manifold (M,g) is equivalent to the Laplace-Beltrami operator
∆g on (M,g) with a new metric g depending onD. Specifically,
when the diffusivity operatorD is uniformly positive definite, g
is explicitly obtained as c(x)g(x)=g(x)D−1(x), where g(x),
g(x), and D(x) are the coordinate representations (matrices)

of g, g, and D at each point x, and c(x) =

√
detg(x)√
detg(x)

which is

a smooth function onM .

Proof. The proof is obtained by applying the techniques
developed for analyzing maps between general weighted
manifolds [14]. For any function f,h∈C∞(M), we have:∫

f∆DhdV =

∫
f∇g∗D∇ghdV

=−
∫
〈∇gf,D∇gh〉gdV

=−
∫
df(D∇gh)dV, (21)

where dV is the natural volume element [23] corresponding to g
(dV =

√
detgdx) and the second equality is obtained by applying

the divergence theorem on (M,g). The third equality corresponds
to the definition of gradient∇g based on the differential operator
d [23]. Applying Green’s theorem to (M,g), we obtain:∫

f∆ghdV =−
∫ 〈
∇gf,∇gh

〉
g
dV

=−
∫ 〈
∇gf,

√
detg√
detg
∇gh

〉
g

dV

=−
∫
df

(√
detg√
detg
∇gh

)
dV. (22)

Now, identifying the two integrals, and using∇gh=g−1dh
and∇gh=g−1dh, we obtain√

detg(x)√
detg(x)

g−1(x)=D(x)g−1(x) (23)

∴ c(x)g(x)=g(x)D−1(x). (24)

�

It is always possible to find a coordinate representation of the
Riemannian metric g at each point x∈M such that it becomes
Euclidean (up to second order) [19]. This implies that, up to
scale,3 the metric g(x) in Eq. 24 boils down to well-established
Mahalanobis distance, with D(x) being the corresponding
covariance matrix in Tx(M). This greatly helps to understand of
the anisotropic diffusion process. For any PD diffusivity operator
D, there is a corresponding isotropic Laplace-Beltrami operator
∆g on (M,g). If we discretize in time the differential equation
of the isotropic diffusion process (Eq. 18) on (M,g) (see [18]
for derivation):

ft+δ−ft

δ
=−∆gf

t+δ, (25)

3Note that the ratio
√
detg√
detg

is coordinate independent.



then the solution ft+δ at time t+δ, is obtained as the minimizer
of the following regularization energy:4

E(f)=‖f−ft‖2+δ

∫
‖∇gf‖gdV , (26)

which is now equivalent to:

E(f)=‖f−ft‖2+δ

∫
c
〈
∇gf,D−1∇gf

〉
g
dV. (27)

Accordingly, the anisotropic diffusion process (Eq. 19) can be
regarded as continuously solving a regularized regression problem
where the regularizer penalizes at each point x, the first-order
deviation heavily along the direction where the covariance matrix
D(x) is less spread, i.e. the corresponding diffusivity is weak
along that direction.

This perspective provides a connection to the problem of
inducing anisotropic diffusion as a special instance of metric
learning on Riemannian manifolds and, as the corresponding
discretization, learning a graph structure from data. See [2] for
an example of data-driven graph construction which relies on
the known dimensionality of the underlying manifold.

On the convergence of LD to ∆D. It is well known that
when data pointsX are generated from an underlying Riemannian
manifold M embedded in an ambient Euclidean space, the
isotropic graph Laplacian L on G = (X,E,W) converges to
the Laplace-Beltrami operator ∆ on M as n→∞, with the
neighborhood size K → ∞ controlled accordingly [1, 17].
However, despite its strong connection to the (continuous)
anisotropic Laplacian ∆D onM , our discrete anisotropic graph
Laplacian LD is not by itself, consistent, i.e. it does not converge
to ∆D as n→∞. This is because, by design, our diffusivity
operator is agnostic to the dimensionalitym of the manifoldM .
To elaborate this further, note that given fixed n-data pointsX and
the corresponding local neighborhood sizeK, our local diffusivity
operatorDi at xi (Eq. 9) defines a (new) inner-product inH(Ei):

Di :H(Ei)→H(Ei)

⇒〈·,Di·〉H(Ei)
:H(Ei)×H(Ei)→R. (28)

The convergence of LD to ∆D requires a certain form5 of
convergence of Di to D(xi) at each xi. In particular, the
continuum limit D∞i (as n → ∞) of Di should induce an
inner-product on Txi

. However, in general,D∞i cannot induce
any inner product sinceD∞i has infinite degrees of freedom (i.e.,
D∞i has infinitely many parameters): Di hasK(n)-eigenvalues
and K(n)→∞ as n→∞. Actually, for a given fixed n with
corresponding Gi, Di can be defined as the restriction of D∞i
on Ei. On the other hand, the continuous diffusivity operator
D on Txi has only up to m(m+1)

2 -degrees of freedom with m
being the dimensionality of M . This implies that D∞i cannot

4This applies even when Eq. 25 is nonlinear, i.e. D depends on f .
5Although X→M and L→∆, the convergence of H(E) to T (M) cannot

be uniquely defined (see [16] for details) and therefore the convergence of LD

(which depends on D :H(E)→H(E)) to ∆D is also not uniquely defined.

be a bi-linear operator on Txi . Actually, this is the only property
that preventsD∞i being an inner-product: By construction, the
limit ofDi is non-negative and positive definite.

The relation between D(xi) and Di is exactly the same as
the relationship between the inner-product in the Euclidean space
Rm and a nonlinear positive definite kernel k :Rm×Rm→R as
commonly used in kernel machines: k induces a similarity mea-
sure on Rm. However, in general, it is not bi-linear and therefore
it does not corresponds to an inner-product. Instead, k induces
an inner-product in a (potentially infinite-dimensional) feature
spaceK which is mapped by a nonlinear function φ :Rm→K.

This insight leads to an algorithm to build consistent local
graph diffusivity operators {DCi } (and the corresponding global
operator DC) by reducing the degree of freedom of each Di
from K(n) to m(m+1)

2 . In the accompanying supplemental
material, we show how {DCi } can be explicitly constructed and
it converges toD.

Discussion. While the consistent diffusivity operators might
be of theoretical interest and may deserve further analysis, in
this paper we focus on using the inconsistent diffusivity operator
D (Eq. 9). This design choice is made based on two facts: 1)
In general, estimating the dimensionality m of a manifold M
and the corresponding tangent bundle T (M) based on a finite
sampleX⊂M are difficult problems [20]. Therefore, existing
approaches that involve estimatingmmake it a hyper-parameter.
Optimizing many hyper-parameters is a difficult problem in
semi-supervised learning due to the limited number of labeled
points. 2) More importantly, some semi-supervised learning
problems are inherently formulated as an inference on a graphG
that may not have any explicit connection to a manifoldM or the
corresponding ambient space. For instance, if each node xi∈X
represents an image, and if each edge eij∈E and corresponding
weight wij ∈W represents the possibility of match and match
score between xi and xj, respectively, then there is no natural
manifold or ambient space structure defined onX. Accordingly,
our algorithm is obtained as a design choice that favors general
applicability over theoretical consistency.

Lastly, we would like to add that it is tempting to build a
consistency argument based on the fact that any graph with
positive weights can be embedded into a manifold M with a
sufficiently high-dimensionality m, and therefore any data X
and the corresponding PD graph diffusivity operator D can be
regarded as a sample from such a manifoldM and the operators
on T (M), respectively. Unfortunately, this does not lead to a
useful interpretation.

4. Experiments
We evaluate our anisotropic diffusion algorithm in

classification on seven standard semi-supervised learning
datasets [15, 36, 4] and four object recognition datasets for which
semi-supervised learning has been successful in the literature in re-
trieval contexts. We report performance for isotropic diffusion and
the original kernel smoothing-type anisotropic diffusion approach
of Szlam et al. [29]. We also report the performances of three ex-
isting semi-supervised learning algorithms including Zhu et al.’s



Algorithm USPS BCI MNIST COIL1 COIL2 RealSim Pcmac MPEG7 SWDLEAF ETH-80 C-PASCAL Avg. %

I 8.76 41.60 10.65 7.32 4.37 23.61 11.77 3.36 2.39 11.49 54.54 148.1
Alin [29] 5.55 41.80 8.47 7.36 4.11 25.02 12.58 3.01 2.54 11.30 54.47 137.0
Anlin 4.48 39.53 7.62 6.85 2.98 23.46 11.88 2.63 2.47 9.91 52.22 120.8
ALM 4.31 42.00 7.55 6.48 2.22 19.55 11.47 2.54 2.17 10.05 51.19 111.7
AS 3.93 42.13 7.18 6.21 2.13 20.08 11.34 2.59 2.33 10.01 51.30 110.5

GRF [37] 6.13 42.68 10.96 4.93 1.65 28.09 11.78 2.96 2.76 12.16 61.91 127.6
FLAP [11] 5.66 44.63 10.99 6.97 2.73 20.08 14.49 2.16 2.84 12.59 57.97 131.0
LNP [31] 7.27 44.33 13.25 5.53 3.12 16.02 14.39 N/A N/A 11.94 62.36 139.1

Table 1. Performance of different diffusion algorithms for semi-supervised learning: The three best results for each dataset are marked with boldface
blue, plain green, and plain orange fonts, respectively. LNP [31] requires explicitly calculating the Euclidean distances between data points, and
so it cannot be directly applied to MPEG7 and SWDLEAF data sets. The final Avg. % column shows the mean percentage difference from the best
result across all datasets, where 100% would indicate that particular technique was best across all datasets.

Gaussian random fields (GRFs)-based algorithm [37], Gong and
Tao’s label propagation algorithm (FLAP: Fick’s Law Assisted
Propagation, [11]) inspired by Fick’s first law which describes the
diffusion process at a steady state, and Wang and Zhang’s [31]
linear neighborhood propagation (LNP) algorithm which automat-
ically determines the edge weights {wij} by representing each
input point based on a convex combination of its neighbors [31].

Datasets. The MPEG7 shape dataset [22] consists of 1,400
images which show silhouettes of objects from 70 different cat-
egories. Adopting the experimental setting for data retrieval
experiments [6], with 280 labels, we use shape matching [12] to
infer pairwise distances from which the (isotropic) weight matrix
W is constructed. In this dataset, each data point x inX is not
explicitly presented and so the data generating manifold is not ex-
plicitly considered. Our algorithm is applicable even in this case,
which justifies the use of the inconsistent diffusivity operator.6

The ETH-80 dataset consists of 3,280 photographs of objects
from 8 different classes [24]. The C-PASCAL dataset (as a subset
of the PASCAL VOC challenge 2008 data, where single objects
are extracted based on bounding box annotations) contains 4,450
images of 20 classes [9]. For both ETH-80 and C-PASCAL
datasets, each data point is represented based on the HOG
(histogram of oriented gradients) descriptors and the number
of labels are set to 50 [8]. The SWDLEAF (Swedish leaf)
datasets contains 15 different tree species with 75 leaves per
species [28]. For this dataset, we use 50 labels per class, with
Fourier descriptors to represent each entry [26].

Results. In Table 4, I refers to isotropic diffusion,Alin is the
algorithm of Szlam et al. [29]. Anlin is an extension of [29] to
nonlinear diffusion based on our diffusion approach (see Sec. 2)
while ALM and AS are local match and smooth anisotropic
diffusion, respectively.

Overall, all four anisotropic diffusion algorithms significantly
improve classification accuracies over isotropic diffusion (I).
However, for some datasets (SWDLEAF, RealSim, Pcmac), the
performance of linear anisotropic diffusion (Alin) [29] is equal
to or even worse than I. In contrast, all three nonlinear diffusion
algorithms outperformed both I andAlin, while the local match

6For consistent diffusivity operators, we would have to explicitly estimate
the dimensionality of the data manifold; see Sec. 3.

(ALM ) and smooth (AS) versions of the context-guided diffusion
led to further improvement overAnlin in all but the ETH and BCI
datasets. These results are in accordance with the superior perfor-
mance of the smooth diffusivity operators (which is an example of
exploiting context) in image processing and demonstrate the effec-
tiveness of exploiting context information in anisotropic diffusion
on graphs. For the BCI dataset,Anlin andAS showed the best
and the worst performances, while essentially all four anisotropic
diffusion algorithms did not show any noticeable improvement
from the isotropic case. This is because the initial labeling based
on isotropic diffusion is almost random (around 40% error rate
for binary classification), and so this is a poor initialization for an
anisotropic diffusion and does not lead to better label propagation.
Similar observation were reported in [29]. The anisotropic diffu-
sion algorithms also demonstrated their competence in comparison
with state-of-the-art label-propagation algorithms [37, 11, 31]:
GRF is best on COIL1 and COIL2, and FLAP and LNP are the
best for MPEG7 and RealSim. However, except for few cases,
the results ofAnlin andAS are included in the three best results
for each dataset demonstrating the overall steady performance im-
provements over existing algorithms. Lastly, all three algorithms
are designed for data graphs constructed based on input features
rather than from function evaluations. Therefore, they can poten-
tially benefit from our proposed anisotropic diffusion approaches.

Parameters. Isotropic diffusion has three parameters: the
weight σx (Eq. 14), the size of local neighborhood NK , and
the number of diffusion steps T . We automatically determine σx
based on the average Euclidean distance of xj to NK(xj) [29,
18]. We determine the two other parameters with a separate
validation label set which is the same size as the training label set.

For all anisotropic diffusion algorithms, an additional
hyper-parameter σ2

f (Eq. 15) is determined in the same way. The
step size δ of the explicit Euler approximation in our algorithms
(Eq. 12) is fixed at 1. In general, δ can also be tuned per dataset
to improve performance. GRF, FLAP, and LNP hyper-parameters
are all determined in the same way based on the validation set.

Computational complexity. This depends upon the number
n of data points, the sizeNK of the local neighborhood, and the
number of diffusion process iterations (Eq. 12). Each diffusion
iteration requires multiplying the matrix LD of size n × n



with a vector f of size n×c, where c is the number of classes.
Accordingly, in theory, the complexity of each step is O(n2c).
However, typically NK � n, which leads to a sparse matrix
LD: in practice, the computational complexity of each step is
sub-quadratic. For USPS datasets with 1,500 data points, running
100 iterations of the local match diffusion process ALM takes
≈0.3 seconds on an Intel Xeon 3.4GHz CPU in MATLAB.

5. Discussion and conclusion
We show two ways to exploit local contexts: smooth and local

match. These can be extended to consider the full topological
features of f evaluated at Ei and Ej. For instance, one could
perform spectral analysis on WD

i and WD
j and measure the

similarity of the corresponding Eigenspectra to define a new
diffusivity operator D′. This is different from pre-calculating
topological features, as is commonly used in graph matching,
since features are extracted from the input X rather than from
function evaluations f , and therefore the former stay constant
during the diffusion process. We briefly explored this possibility
in preliminary experiments, which indicate that full topological
analysis is promising. However, due to the significantly increased
computational complexity, we focus on smooth and local match
operators and leave this extension for future work.

We adopted an explicit Euler scheme (Eq. 12) to discretize the
continuous diffusion equation (Eq. 20). This scheme can be ob-
tained as a gradient descent step of the convex regularization func-
tional E (Eq. 27). An alternative implicit Euler scheme (Eq. 25)
can be obtained as the analytic solution of E. Since our diffusion
equation (Eq. 20) is non-linear, both approaches eventually lead
to iterative algorithms. A major advantage of an implicit Euler
scheme is that it is uniformly stable with respect to δ, while our ex-
plicit Euler scheme is stable only at sufficiently small values of δ,
which we regard as a hyper-parameter. On the other hand, implicit
Euler approximation is computationally less favorable as it re-
quires, at each iteration, explicitly solving a (sparse) linear system
of size n×n. Our explicit counterpart is computed by a matrix-
vector multiplication. We choose the explicit scheme due to its
fast convergence in experiments and its applicability to large-scale
problems. Future work should carefully analyze the trade-off be-
tween these two approaches, especially on smaller-scale problems.

For simplicity of exposition, in Sec. 3, we assumed that
the underlying probability distribution P on M is uniform.
However, our interpretation applies to more general cases where
P is non-uniform. If the sampling distribution P on M is
non-uniform, the isotropic Laplace-Beltrami operator is locally
weighted by the corresponding probability density p, rendering
the weighted Laplacian. In particular, if p is differentiable, the
weighted Laplacian is explicitly given as [17, 14]:

∆p=
1

p
∇g∗(p∇g). (29)

The weighted Laplacian satisfies Green’s theorem, and the
divergence theorem holds similarly [13]. Accordingly, the
corresponding weighted anisotropic Laplacian based on the
diffusivity operatorD is obtained as in Proposition 1.

Conclusion. We have presented an approach for anisotropic
diffusion on graphs, by first extending well-established geometric
diffusion on images to Riemannian manifolds and then
discretizing it onto graphs. The resulting positive definite
diffusivity operators on graphs leads to new diffusion possibilities
that take local neighborhood structures into account, and thereby
lead to robust diffusion. Applied to semi-supervised learning, our
algorithms demonstrate improved accuracy over existing isotropic
diffusion- and anisotropic diffusion-based algorithms.
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