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Abstract 21	
  

Inferred rainfall sequences generated by a novel method of inverting a continuous 22	
  

time transfer function show a smoothed profile when compared to the observed 23	
  

rainfall however streamflow generated using the inferred rainfall is almost identical to 24	
  

that generated using the observed rainfall (Rt
2 = 95%). This paper compares the 25	
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inferred effective and observed effective rainfall in both time and frequency domains 26	
  

in order to confirm that, by using the dominant catchment dynamics in the inversion 27	
  

process, the main characteristics of catchment rainfall are being captured by the 28	
  

inferred effective rainfall estimates. Estimates of the resolution of the inferred 29	
  

effective rainfall are found in the time domain by comparison with aggregated 30	
  

sequences of observed effective rainfall, and in the frequency domain 31	
  

by comparing the amplitude spectra of observed and inferred effective rainfall.   The 32	
  

resolution of the rainfall estimates is affected by the slow time constant of the 33	
  

catchment and the rainfall regime, but also by the goodness-of-fit of the model, which 34	
  

incorporates the amount of other disturbances in the data. 35	
  

Keywords 36	
  

Continuous time; data based mechanistic modelling; time resolution; spectral 37	
  

analysis; reverse hydrology; transfer function;  38	
  

Introduction 39	
  

Rainfall is the key driver of catchment processes and is usually the main input to 40	
  

rainfall-streamflow models. If the rainfall and/or streamflow data used to identify or 41	
  

calibrate a model are wrong or disinformative, the model will be wrong and cannot be 42	
  

used to predict the future with any certainty. Bloeschl et al. (2013) state that if the 43	
  

dominant pathways, storage and time-scales of a catchment are well defined then a 44	
  

model should potentially reproduce the catchment dynamics under a range of 45	
  

conditions. It is often the case that hydrological variables, such as rainfall and 46	
  

streamflow, are measured at hourly or sub-hourly intervals then aggregated up to a 47	
  

coarser resolution before being used as input to rainfall-streamflow models 48	
  

resulting in the loss of information about the finer detail of the catchment processes 49	
  

(Littlewood and Croke, 2008; Littlewood et al., 2010; Littlewood and Croke, 2013). 50	
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Kretzschmar et al. (2014) have proposed a method for inferring catchment rainfall 51	
  

using sub-hourly streamflow data. The resulting rainfall record is smoothed to a 52	
  

coarser resolution than the original data but should still retain the most pertinent 53	
  

information.  54	
  

This paper investigates the implications of the reduced resolution and the 55	
  

potential loss of information introduced by the regularisation process in both the time 56	
  

and frequency domains. Both temporal and spatial aggregation are incorporated in the 57	
  

transfer function model however only the temporal aspect is considered here. The 58	
  

effect of spatial rainfall distribution using sub-catchments will be the subject of a 59	
  

future publication. 60	
  

The method developed and tested by Kretzschmar et al. (2014) – termed the 61	
  

RegDer method - inverts a continuous-time transfer function (CT-TF) model using a 62	
  

regularised derivative technique to infer catchment rainfall from streamflow with the 63	
  

aim of improving estimates of catchment rainfall arguing that a model that is well-64	
  

fitting and invertible is likely to be robust in terms of replicating the catchment 65	
  

system.  66	
  

The classical approach to inverse (as opposed to reverse) modelling involves 67	
  

the estimation of non-linearity (rainfall or baseflow separation) and the unit 68	
  

hydrograph (UH), which is an approximation to the impulse response of the 69	
  

catchment. Boorman (1989) and Chapman (1996) use sets of event hydrographs to 70	
  

estimate the catchment UH. Boorman (1989)  superimposed event data before 71	
  

applying a separation technique and concluded that the data required may be more 72	
  

coarsely sampled than might be expected because one rain-gauge is unlikely to be 73	
  

representative of the whole catchment.  Chapman (1996) used an iterative procedure 74	
  

to infer rainfall patterns for individual events before applying baseflow separation. 75	
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The resultant UHs had higher peaks and shorter rise times and durations than those 76	
  

obtained by conventional methods. He viewed the effective rainfall as the output from 77	
  

a non-linear store. Duband et al. (1993) and Olivera and Maidment (1999) used 78	
  

deconvolution to identify mean catchment effective rainfall which was redistributed using 79	
  

relative runoff coefficients whilst Young and Beven (1994) based a method for inferring 80	
  

effective rainfall patterns on the identification of a linear transfer function. A gain 81	
  

parameter, varying with time accounted for the non-linearity in the relationship between 82	
  

rainfall and streamflow.  83	
  

In recent years, a range of different approaches has been used to explore 84	
  

reverse modelling in hydrology, that is, estimating effective rainfall from streamflow. 85	
  

Notable publications include Croke (2006), Kirchner (2009), Andrews and Croke 86	
  

(2010), Young and Sumislawska (2012), Brocca et al. (2013, 2014) and Kretzschmar 87	
  

et al. (2014). Kirchner’s method links rainfall, evapo-transpiration and streamflow 88	
  

through a sensitivity function making assumptions which allow rainfall to be inferred 89	
  

from the catchment streamflow. The method has been applied by Teuling et al. (2010) 90	
  

and Krier et al. (2012) to catchments in Switzerland and Luxembourg and has been 91	
  

found to work for catchments with simple storage-streamflow relationships and 92	
  

limited hysteresis. Brocca et al. (2013) employed a similar method based on the water 93	
  

balance equation but inferred the rainfall series from soil moisture. In a further study, 94	
  

Brocca et al. (2014) used satellite derived soil moisture to infer global rainfall 95	
  

estimates. Croke (2006) derived an event-based unit hydrograph from streamflow 96	
  

alone but his approach was limited to ephemeral quick-flow-dominant catchments 97	
  

whilst Andrews et al. (2010) and Young and Sumislawska (2012) use a discrete 98	
  

model formulation inverted directly or via a feedback model (which could be adapted 99	
  

to CT formulation). The approach proposed by Kretzschmar et al. (2014) combined a 100	
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continuous time transfer function (CT-TF) model with regularized derivative 101	
  

estimates to infer the catchment rainfall from sub-hourly streamflow data.  102	
  

Littlewood (2007) applied the IHACRES model (e.g. Jakeman et al.,1990) to 103	
  

the River Wye gauged at Cefn Brwyn showing that the values for the model 104	
  

parameters for that catchment changed  substantially as the data time step used for 105	
  

model calibration decreased. Littlewood and Croke (2008) extended this work to 106	
  

include a second catchment and found that as the time-step decreased the parameter 107	
  

values approached an asymptotic level (on a semi-log plot) concluding that, at small 108	
  

enough time-steps, parameters become independent of the sampling interval. They 109	
  

suggested further investigation using data-based mechanistic modelling (DBM) 110	
  

methods as described by Young and Romanowicz (2004) and Young and Garnier 111	
  

(2006) for estimating CT models from discrete input data. Such models generate 112	
  

parameter values independent of the input sampling rate – as long as the sampling rate 113	
  

is sufficiently high in comparison to the dominant dynamics of the system. 114	
  

Advantages of using the CT formulation include allowing a much larger range of 115	
  

system dynamics to be modelled e.g. ‘stiff’ systems that have a wide range of time-116	
  

constants (TC), typical of many hydrological systems. The outputs from such a model 117	
  

can be sampled at any time-step, including non-integer, and the parameters have a 118	
  

direct physical interpretation (Young, 2010).  119	
  

Krajewski et al. (1991) compared the results from a semi-distributed model 120	
  

and a lumped model and concluded that catchment response is more sensitive to 121	
  

rainfall resolution in time than space whilst a study by Holman-Dodds et al. (1999) 122	
  

demonstrated that models calibrated using a smoothed rainfall signal (due to coarse 123	
  

sampling) may result in under-estimation of streamflow. Further calibration, required 124	
  

to compensate, leads to the loss of physical meaning of parameters. They also 125	
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concluded that parameters estimated at one sampling interval were not transferable to 126	
  

other intervals; a conclusion echoed by Littlewood (2007) and Littlewood and Croke 127	
  

(2008).  128	
  

Studies by Clark and Kavetski (2010) showed that in some cases, numerical 129	
  

errors due to the time-step are larger than model structural errors and can even 130	
  

balance them out to produce good results. The follow-up study by Kavetski and Clark 131	
  

(2010) looked at its impact on sensitivity analysis, parameter optimisation and Monte 132	
  

Carlo uncertainty analysis. They concluded that use of an inappropriate time step can 133	
  

lead to erroneous and inconsistent estimates of model parameters and obscure the 134	
  

identification of hydrological processes and catchment behaviour. Littlewood and 135	
  

Croke (2013) found that a discrete model using daily data over-estimated time-136	
  

constants for the River Wye gauged at Cefn Brwyn when compared to those estimated 137	
  

from hourly data confirming that parameter values were dependent on the time-step. 138	
  

They discussed the loss of information due to the effect of time-step on time constants 139	
  

and suggested that plots of parameter values against time step could be used as a 140	
  

model assessment tool. In a previous study, Littlewood and Croke (2008), compared 141	
  

the sensitivity of parameters for two catchments with respect of time-step and 142	
  

discussed the role of time-step dependency on the reduction of uncertainty. They also 143	
  

suggested continuous time transfer function modelling using sub-hourly data to derive 144	
  

sampling rate independent parameter values. Littlewood et al. (2010) introduced the 145	
  

concept of the Nyquist-Shannon (N-S) sampling theorem, which defines the upper 146	
  

bound on the size of sampling interval required to identify the CT signal without 147	
  

aliasing, and consequentially its effect on the frequency of sampling required to 148	
  

specify a rainfall-streamflow model. Given a frequent enough sampling rate, the CT 149	
  

model is time independent and can be interpreted at any interval.  150	
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Further understanding may be gained by transforming rainfall and streamflow 151	
  

series from the time domain to the frequency domain and using spectral analysis. 152	
  

Several potential uses of spectral analysis in hydrology have been explored including 153	
  

modelling ungauged catchments, modelling karst systems and seasonal adjustment of 154	
  

hydrological data series. A maximum likelihood method for model calibration based 155	
  

on the spectral density function (SDF) has been suggested by Montanari and Toth 156	
  

(2007). The SDF can be inferred from sparse historic records in the absence of other 157	
  

suitable data making it a potentially useful tool for modelling ungauged catchments. 158	
  

They also suggest that spectral analysis may provide a means of choosing between 159	
  

different apparently behavioural models. Cuchi et al. (2014) used ‘black box’ 160	
  

modelling and frequency analysis to study the behaviour of a karst system (located at 161	
  

Fuenmajor, Huesca, Spain). They concluded that method works well for a linear 162	
  

system and that Fuenmajor has a linear hydrological response to rainfall at all except 163	
  

high frequencies. They suggest that the non-linearity issues might be addressed using 164	
  

appropriate techniques such as wavelets or neural networks. Szolgayova et al. (2014) 165	
  

utilised wavelets to deseasonalise a hydrological time-series and suggested that the 166	
  

technique had potential for modelling series showing long term dependency 167	
  

(interpreted as containing low frequency components).  168	
  

The method introduced by Kretzschmar et al. (2014) showed that given that 169	
  

the rainfall-streamflow model captures the dynamics of the catchment system, the 170	
  

high frequency detail of the rainfall distribution is not necessary for the prediction of 171	
  

streamflow due to the damping (or low-pass filter) effect of the catchment response. 172	
  

The regularisation process introduced is numerically stable at the cost of a loss of 173	
  

some temporal resolution in the inferred rainfall time series. The regularisation level 174	
  

is controlled through the Noise Variance Ratio (NVR), optimised as part of the 175	
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process and is only applied when necessary, i.e. when the analytically inverted 176	
  

catchment transfer function model is improper (has a numerator order higher than the 177	
  

denominator order).  178	
  

Application catchments 179	
  

RegDer has been tested on two headwater catchments with widely differing rainfall 180	
  

and response characteristics – Baru in humid, tropical Borneo and Blind Beck, in 181	
  

humid temperate UK. The 0.44 km2 Baru catchment is situated in the headwaters of 182	
  

the Segama river on the northern tip of Borneo, East Malaysia. The climate is 183	
  

equatorial showing no marked seasonality but tending to fall in short (<15 min) 184	
  

convective events showing high spatial variability and intensities much higher than 185	
  

those of temperate UK (Bidin and Chappell, 2003, 2006). Haplic alisols, typically 1.5 186	
  

m in depth and with a high infiltration capacity (Chappell et al., 1998) are underlain 187	
  

by relatively impermeable mudstone bedrock resulting in the dominance of   188	
  

comparatively shallow sub-surface pathways in this basin (Chappell et al., 2006). As 189	
  

a result of the high rainfall intensity and shallow water pathways the stream response 190	
  

is very flashy. In contrast, the Blind Beck catchment has an area of 8.8 km2 and its 191	
  

response shows evidence of deep hydrological pathways due to the presence of deep 192	
  

limestone and sandstone aquifers resulting in a damped hydrograph response (Mayes 193	
  

et al., 2006; Ockenden and Chappell, 2011; Ockenden et al.,2014). Winter rainfall in 194	
  

this basin is derived from frontal systems with typically lower intensities than the 195	
  

convective systems in Borneo (Reynard and Stewart, 1993).   196	
  

Model formulation and physical interpretation 197	
  

This study investigated the limits of inferred catchment effective rainfall estimation 198	
  

from streamflow. Continuous time transfer function models identified from the 199	
  

observed data using Data Based Mechanistic (DBM) modelling approaches (Young 200	
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and Beven, 1994; Young and Garnier, 2006), are inverted using the RegDer method 201	
  

(Kretzschmar et al., 2014) and used to transform catchment streamflow into estimates 202	
  

of catchment inferred rainfall. 203	
  

DBM modelling makes no prior assumptions about the model structure 204	
  

(though it often uses structures based on transfer functions), which is suggested by the 205	
  

observed data, and must be capable of physical interpretation.  As transfer functions 206	
  

are linear operators, a transform structured as a bilinear power-law (Eq. (1)), also 207	
  

identified from the observed data, was applied to linearise the data before model 208	
  

fitting (Young and Beven, 1994; Beven, 2012, .p91): 209	
  

 210	
  
𝑷𝒆   = 𝑷  𝑸∝           (1) 211	
  

 212	
  
where P is the observed rainfall, Q the observed streamflow and α is a parameter, 213	
  

estimated from the data. Pe is the effective observed rainfall (ER) and Q is used as a 214	
  

surrogate for catchment wetness.  Both catchments used in this study proved to be 215	
  

predominantly linear in their behaviour so transformation Eq. (1) was not used. In the 216	
  

initial study, a wide range of possible models was identified using algorithms from 217	
  

the Captain Toolbox for Matlab (Taylor et al., 2007). The models selected were a 218	
  

good fit to the data and were suitable for inversion. The Nash-Sutcliffe Efficiency 219	
  

(NSE or Rt 
2) is commonly used to compare the performance of hydrological models. 220	
  

Often several models can be identified that fit the data well (the equifinality concept 221	
  

of Beven, 2006). From these, models with few parameters to be estimated that 222	
  

inverted well were selected.  In this study a second order linear model was found to fit 223	
  

both catchments. The output from the RegDer process is an inferred effective rainfall 224	
  

series to which the reverse of the power law is then applied, if necessary, to construct 225	
  

an inferred catchment rainfall sequence. The process is illustrated in Fig. 1.  226	
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 227	
  

 228	
  
Figure 1 - model identification and inversion workflow where P is the observed catchment 229	
  
rainfall, Pe is the effective rainfall, Q is the observed streamflow, Peh is the inferred effective 230	
  
rainfall and Ph the inferred catchment rainfall. Non-linearity is represented by the bilinear 231	
  
power law (Beven, 2012, p91). The continuous time transfer function is given by G(s) where 232	
  
A(s) and B(s) are the denominator and numerator polynomials and the inversion process is 233	
  
represented by G-1(s) where A*(s) and B*(s) are the denominator and numerator polynomials 234	
  
of the inverted transfer function. 235	
  

The transfer function model inversion process has been described in 236	
  

Kretzschmar et al. (2014). It involves transition from the transfer function catchment 237	
  

model: 238	
  

𝑄 = 𝐺 𝑠 𝑅 = !!!!!!!!!!!!⋯!!!
!!!!!!!!!!⋯!!!

𝑒!!"𝑃!                            (2) 239	
  

to the direct inverse (in general non-realisable): 240	
  

 241	
  

  𝑹   = 𝒃𝟎𝒔𝒏!𝒃𝟏𝒔𝒏!𝟏!⋯!𝒃𝒏
𝒔𝒎!𝒂𝟏𝒔𝒎!𝟏!⋯!𝒂𝒎

𝒆𝒔𝝉𝑸                                       (3)  242	
  

which is then implemented using regularised streamflow derivatives in the form of: 243	
  

 244	
  

  𝑹𝒆!𝒔𝝉   =
𝒃𝟎 𝒔𝒏𝑸

∗
!𝒃𝟏 𝒔𝒏!𝟏𝑸

∗
!⋯!𝒃𝒏𝑸

𝒔𝒎!𝒂𝟏𝒔𝒎!𝟏!⋯!𝒂𝒎
                 (4) 245	
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where 𝑠!𝑄 ∗ =   ℒ !!

!"!
𝑄  is the Laplace transform of the optimised regularised 246	
  

estimate of the nth  time derivative of Q:   !
!

!"!
𝑄. The regularised derivative estimates 247	
  

replace the higher order derivatives in Eq. (3), which otherwise make Eq. (3) 248	
  

unrealisable (improper) – this is the core of the method in Kretzschmar et al. (2014). 249	
  

In the implementation, nth derivatives in Eq. (4) are not estimated, but advantage is 250	
  

taken of the filtering with the denominator polynomial, and only (n-m)th derivative 251	
  

estimates are required in combination with a proper transfer function.  252	
  

The inferred effective rainfall (IR) sequences generated by RegDer generally 253	
  

have a much smoother profile (illustrated in Fig. 2) than the observed rainfall inputs, 254	
  

however streamflow sequences generated with the IR used as the model input are 255	
  

almost indistinguishable from the sequence modelled using observed rainfall (Rt
2 = 256	
  

95%). This indicates that the catchment dynamics, as captured by the transfer function 257	
  

model, renders the differences between observed and inferred rainfall immaterial. The 258	
  

reason for this becomes clear when looking at the frequency domain analysis of the 259	
  

inversion process shown in this paper.   260	
  

In order to investigate this, the IR is compared to aggregated effective 261	
  

observed rainfall sequences with increasing levels of aggregation until a good match 262	
  

is found (high value of Rt
2 or R). Two methods of aggregation have been used: 1) 263	
  

averaging over a range of time-series, 2) moving average over varying time scales.  264	
  

Two measures are used to assess the correspondence between the IR and the 265	
  

aggregated effective rain: 1) Rt
2, the coefficient of determination, and 2) R, the 266	
  

instantaneous Pearson correlation coefficient. They are given by: 267	
  

 268	
  

𝑅!!   = 1−    !"!!" !

!"!  !" !        (5a) 269	
  

 270	
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 271	
  

𝑅 =    !"!!" !"!!"
!"!  !" !   !"!  !" !           (5b) 272	
  

 273	
  
where ER indicates a value from the aggregated effective rainfall sequence with mean 274	
  

𝐸𝑅 and IR is the corresponding value from the inferred effective rainfall sequence 275	
  

with mean 𝐼𝑅. Both Rt
2 and R values tend towards a maximum value as aggregation 276	
  

increases. The aggregation level at which the maximum is reached is identified and 277	
  

taken as an estimate of the resolution of the inferred effective series. This value is 278	
  

then compared to the system fast time constant (TCq) and the Nyquist-Shannon (N-S) 279	
  

sampling limit. 280	
  

 281	
  

a)   282	
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b)   283	
  
Figure 2 – observed effective and inferred rainfall profiles generated using the RegDer inversion 284	
  
method for a) Blind Beck and b) Baru  285	
  
 286	
  

Continuous model formulation  287	
  

One of the advantages of using a CT model formulation is that the parameters have a 288	
  

direct physical interpretation independent of the model’s sampling rate (Young, 289	
  

2010). The continuous time model formulation for a 2nd-order model is given by: 290	
  

 291	
  
𝑦 𝑡 =    !!!!  !!

!!!  !!!!  ∝!
  𝑢(𝑡 − 𝛿)       (6) 292	
  

   293	
  
where y is the measured streamflow at time t, 𝛿 is the transport delay and u is the 294	
  

effective rainfall at time t -  𝛿. If the denominator can be factorized and has real roots, 295	
  

Eq. (6) can be rewritten as: 296	
  

 297	
  
𝑦 𝑡 =    !!!!  !!

(!!   !!"!
  )(!!   !!"!

  )
  𝑢(𝑡 − 𝛿)       (7) 298	
  

 299	
  
where TCq and TCs are the system time constants and are often significantly different 300	
  

– a ‘stiff’ system. Decomposing the model into a parallel form gives: 301	
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 302	
  
𝑦 𝑡 = ( !!

!!  !"!!
+    !!

!!  !"!!
)𝑢(𝑡 −   𝛿)        (8) 303	
  

 304	
  
where  gq and TCq are the steady state gain and time constant of the fast response 305	
  

component and gs and TCs are the steady state gain and time constant of the slow 306	
  

response component. The steady state gain of the system as a whole is given by: 307	
  

 308	
  
𝑔 = 𝑔! +   𝑔!           (9) 309	
  
 310	
  
so the fraction of the total streamflow along each pathway can be calculated from: 311	
  
 312	
  
𝑃! =   

!!
!!!  !!

;   𝑃! =   
!!

!!!  !!
             (10) 313	
  

 314	
  
The fraction of streamflow attributed to the slow response component is sometimes 315	
  

termed the Slow Flow Index (SFI) (Littlewood et al., 2010). The example shown here 316	
  

uses a second order model but the general principle can be extended to higher order 317	
  

models. Details of the inversion and regularisation processes can be found in 318	
  

Kretzschmar et al. (2014). 319	
  

Sampling frequency 320	
  

When using CT modelling, the Nyquist-Shannon frequency gives the upper limit on 321	
  

the size of the sampling interval, Δt, that will enable the system dynamics to be 322	
  

represented without distortion (aliasing - Bloomfield, 1976, p21). Aliasing occurs 323	
  

when a system is measured at an insufficient sampling rate to adequately define the 324	
  

signal from the data.  325	
  

The Nyquist-Shannon theorem states that the longest sampling step for a 326	
  

signal with bandwidth Ω  (maximum frequency, where Ω = 2πf in cycles per time 327	
  

unit) to be represented is:   328	
  

 329	
  
Δt   ≤    !

!!
                                                (11) 330	
  

 331	
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in order to completely define the system in absence of observation disturbance 332	
  

(Young, 2010). If the sampling interval is small enough to uniquely define the system, 333	
  

the estimated CT model should be independent of the rate of sampling. Conversely, if 334	
  

the frequency of the inferred output is less than the N-S limit, then the system 335	
  

dynamics should be adequately captured. Other estimates of the sufficient sampling 336	
  

interval, designed to avoid proximity to the Nyquist limit, have been made by Ljung 337	
  

(1999) and Young (2010). In terms of system TCs, these limits are given by: 338	
  

 339	
  
𝑁𝑦𝑞𝑢𝑖𝑠𝑡 =   𝜋𝑇𝐶!   𝑡𝑖𝑚𝑒  𝑢𝑛𝑖𝑡𝑠                   (12a) 340	
  

 341	
  

𝐿𝑗𝑢𝑛𝑔 = !!"!
!
  𝑡𝑖𝑚𝑒  𝑢𝑛𝑖𝑡𝑠          (12b) 342	
  

 343	
  

𝑌𝑜𝑢𝑛𝑔 = !"!
!
  𝑡𝑖𝑚𝑒  𝑢𝑛𝑖𝑡𝑠       (12c) 344	
  

 345	
  

Temporal aggregation of effective rainfall 346	
  

Two methods for aggregating ER were used to estimate the time resolution of the IR. 347	
  

Rainfall is the total volume accumulated over the sampling interval so the ER was 348	
  

aggregated over progressively longer sampling periods of 2 to 24 times the base 349	
  

sampling period and averaged to form a new smoothed sequence that could be 350	
  

compared with the IR. For comparison, aggregation was also performed via a moving 351	
  

average process utilising the convolution method available in Matlab. Both methods 352	
  

may be affected by the aggregation starting point and edge effects. The aggregated 353	
  

ER sequences were compared to the IR using the coefficient of determination (Rt
2) 354	
  

and the correlation (R). Rt
2 and R tend towards a maximum value as aggregation 355	
  

increases. The aggregation time-step at which this value is established is used to 356	
  

estimate the resolution of the IR.  357	
  

Spectral Analysis 358	
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Periodograms of the amplitude spectra of the observed and modelled series were 359	
  

plotted to test whether the ER and IR have the same dynamics in the critical 360	
  

frequency range, despite the loss of time resolution (related to low pass filtering due 361	
  

to regularisation). A periodogram is the frequency domain representation of a signal; 362	
  

transforming the signal into the frequency domain may reveal information that is not 363	
  

visible in the time domain. A transfer function shown in its equivalent frequency 364	
  

domain form describes the mapping between the input and the output signals’ spectra 365	
  

for the linear dynamic systems used here.   Signals may be easily transformed 366	
  

between the time and frequency domains (Wickert, 2013). 367	
  

Periodograms are obtained using the Matlab implementation via the Fast 368	
  

Fourier Transform and smoothed using the Integrated Random Walk (e.g. Young et 369	
  

al., 1999); the same regularisation approach as used in the calculation of the IR, 370	
  

implemented in the Captain Toolbox (Taylor et al., 2007). Periodograms of ER, IR 371	
  

and catchment streamflow are compared on a single plot showing how the spectral 372	
  

properties of the inversion process are used to obtain the IR estimates (see Fig. 6). 373	
  

The streamflow spectrum is the result of mapping the rainfall spectrum by the 374	
  

catchment dynamics. To make a full inversion of that mapping would involve very 375	
  

strong amplification of high frequencies with all the negative consequences discussed 376	
  

by Kretzschmar et al. (2014). The most significant implications of full inversion 377	
  

include the introduction of high amplitude, high frequency noise artefacts into the 378	
  

rainfall estimates. The regularisation of estimated derivatives introduces the effect of 379	
  

low-pass filtering into the inversion process, avoiding the excessive high frequency 380	
  

noise. Regularisation does not introduce any lag into the process, unlike traditional 381	
  

low pass filtering.  382	
  

Results and discussion 383	
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Fig. 2 illustrates the smoothed rainfall distribution of the IR sequence obtained using 384	
  

the RegDer method. Similar streamflow sequences are generated using either the ER 385	
  

or IR sequences as model input (see Kretzschmar et al., 2014). The implication is that 386	
  

the catchment system dynamics are being captured despite the apparent difference in 387	
  

the rainfall distribution and that the detail of the rainfall series in time may not be 388	
  

important when modelling the dominant mode of streamflow dynamics. 389	
  

In order to assess the degree of resolution lost by estimating rainfall using the 390	
  

RegDer method, the ER was aggregated using two methods (i.e. simple aggregation 391	
  

by resampling and a moving average) and the resulting sequences compared to the IR 392	
  

sequence in the time domain. Plots of progressively more aggregated sequences are 393	
  

shown in Fig. 3. It can be seen that as aggregation increases, peaks become lower and 394	
  

more spread out and the sequence is effectively smoothed. The coefficient of 395	
  

determination (Rt
2) and the correlation (R) between the aggregated sequence and the 396	
  

IR tends to a maximum then decreases as aggregation time increases – ultimately the 397	
  

variation in the sequence would be completely smoothed out. The point at which the 398	
  

maximum value is reached is taken as an estimate of the resolution of the IR. Plots of 399	
  

Rt
2 or R values are shown in Fig. 4 (aggregation by resampling) and Fig. 5 (moving 400	
  

average estimate). Time resolution estimates are shown in Table 1 and compared with 401	
  

the fast time constant (TCq) and the Nyquist-Shannon sampling limit.  402	
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a)   403	
  

b)  404	
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Figure 3 – Comparison of aggregated sequence to the Inferred effective rainfall sequence for a)Blind Beck 405	
  
(sampling interval 15 mins) b) Baru (sampling interval 5 mins) at aggregations of 4, 8 12 and 24 time periods 406	
  
illustrating how aggregation lowers the peak and spreads the volume of rainfall over a longer time period. The 407	
  
inferred effective rainfall sequence is plotted for comparison.  408	
  

a)   409	
  

b)  410	
  
 411	
  
Figure 4 – The Rt

2 and R tend to a maximum value as aggregation increases for a) Blind Beck and b) 412	
  
Baru. The resolution of the inferred effective rainfall is taken to be point at which the maximum is 413	
  
reached or very little change is apparent. For Blind Beck, this value is reached at 10 periods for both 414	
  
Rt

2 and R. The result for Baru is not quite as clear but can be estimated to be 10 periods from R and 11 415	
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or 12 from Rt
2 though Rt

2 continues to increase up to 24 time periods perhaps due to higher variability 416	
  
of the rainfall.  417	
  

a)   418	
  

b)  419	
  
Figure 5 – A similar plot to Figure 4 with aggregation by Moving Average for a) Blind Beck and b) 420	
  
Baru. Rather than reaching an asymptotic level, the Rt

2 and R values maximize at 9 time periods for 421	
  
Blind Beck and 12 time periods for Baru (determined graphically in Matlab). These values have been 422	
  
used as the estimates of the resolution of the inferred effective rainfall and agree well with the 423	
  
estimates made by resampling. 424	
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Table 1 – Time resolution of the inferred effective rainfall sequences estimated by both resampling and 425	
  
moving average methods are less than the dominant (fast) mode of the catchments and considerably 426	
  
less than the ‘safe’ Nyquist-Shannon limit. 427	
  

  428	
  
      Time resolution estimates 
Catchment Sampling 

frequency 
(hours) 

TCq 
(hrs) 

TCs 
(hrs) 

SFI Nyquist-
Shannon 
Limit 
(hours) 

Aggregation 
by 
resampling 
 

Aggregation 
by Moving 
Average 
 

Blind 
Beck 

.25 6.3 22.1 47% 19.9 2.5 hours 
(10 time 
periods) 

2.25 hours 
(9 time 
periods) 

Baru .083 1.1 18.7 62% 3.4 0.9 - 1 hours 
(11-12 time 
periods) 

1 hour 
(12 time 
periods) 

 429	
  
Table 1 shows that the estimated resolution of the IR sequence for Blind Beck 430	
  

is around 9-10 time periods (i.e. 2.25-2.5 hours) and for Baru it is 11-12 time periods 431	
  

(i.e. 55 mins – 1hr). Both estimates are within the Nyquist-Shannon safe sampling 432	
  

limit and below the fast time constant for both catchments indicating that even though 433	
  

resolution has been lost – the trade-off for numerical stability – the dominant mode of 434	
  

the rainfall-streamflow dynamics has been captured. Table 2 shows that the estimated 435	
  

resolution of the inferred effective rainfall for both catchments is well within the 436	
  

Nyquist limit and, whilst the Blind Beck resolution is within the safe limits suggested 437	
  

by Ljung (1999) and Young (2010), the estimated resolution for Baru is close to the 438	
  

fast TC and outside the suggested limits. The estimates of resolution of the inferred 439	
  

sequence made from the aggregation plots are not always well-defined and may be 440	
  

dependent on the length of record which will affect the number of aggregation periods 441	
  

that may be meaningfully  calculated given the finite length of the data series. A 442	
  

better means of estimation of resolution may be achieved by examining the frequency 443	
  

spectra of the rainfall and streamflow sequences. 444	
  

 445	
  
Table 2 – The estimated resolution of the inferred effective rainfall for Blind Beck is 446	
  
well within both the Nyquist limit and the safe sampling limits suggested by the 447	
  
Ljung (1999) and Young (2010) whereas the resolution Baru, whilst well within the 448	
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Nyquist limit, is close to the fast TCq and outside the suggested safe sampling limits 449	
  
of Ljung and Young. 450	
  
 451	
  

Catchment TCq (hours) Nyquist 
limit (hours) 

Ljung 
interval 
(hours) 

Young 
interval 
(hours) 

Estimated 
resolution 

(hours) 
Blind Beck 6.3 19.9 3.98 3.32 2.25-2.5 

Baru 1.1 3.4 0.68 0.57 0.91-1.0 
 452	
  
 453	
  
 454	
  

a)   455	
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b)  456	
  
 457	
  
Figure 6 – Periodograms for a) Blind Beck and b) Baru showing the frequency structure of the 458	
  
effective rain, inferred effective rain and streamflow sequences. Both catchments show a similarity in 459	
  
the frequency spectra of effective and inferred effective rainfall within the catchment system. The 460	
  
inferred effective rainfall spectrum is very close to the actual effective rainfall one within a wide range 461	
  
of frequencies mostly covering those corresponding to the catchment’s time constants. There is also a 462	
  
strong low pass filtering effect cutting off high frequencies with low amplitudes instead of boosting 463	
  
this high frequency noise. 464	
  
 465	
  

In Figure 6, the amplitude spectra of inferred effective and observed effective 466	
  

rainfall are very close (overlapping when smoothed) within a broad range of 467	
  

frequencies. The cut-off frequency, where the difference between the smoothed ER 468	
  

and IR spectra is approximately -6Db, provides a frequency domain estimate of the 469	
  

resolution. The cut-off period for Blind Beck is 3.8 hours and for Baru is 1.7 hours. 470	
  

For frequencies above this value, a very strong low pass filtering effect shown is by 471	
  

the rapid decrease in the IR spectrum. The frequency range beyond the cut-off point, 472	
  

shaded in Fig. 6, carries a very small proportion of the power of the signal and can be 473	
  

considered non-significant.  474	
  

The processes and characteristics limiting the inferred effective rainfall 475	
  

accuracy include the slow components of the catchment dynamics and the rainfall 476	
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regime. These can be seen as the ‘usual suspects’ affecting the inversion process. The 477	
  

general goodness of fit of the initial catchment model (rainfall-streamflow) appears to 478	
  

be a factor as well, indicating that the inferred effective rainfall estimation method 479	
  

presented here can be used to assess the quality of available data and the degree to 480	
  

which the data characterise the catchment.  481	
  

Conclusions 482	
  

A combination of time and frequency domain techniques have been used to show that 483	
  

the inferred effective rainfall time-series generated by the RegDer inversion method 484	
  

does indeed approximate the direct inverse of a transfer function to a high degree of 485	
  

accuracy within the frequency range which includes the dominant modes of the 486	
  

rainfall-streamflow dynamics. The direct inverse exaggerates low-amplitude high 487	
  

frequency noise, which is filtered out by the regularisation process involved in the 488	
  

RegDer method. The smoothing of the signal resulting from regularisation is 489	
  

quantified in the time-domain by comparison with aggregated observed input data 490	
  

using standard model fit measures - coefficient of determination, Rt
2, and correlation 491	
  

coefficient, R - and analysed as a low-pass filtering process in the frequency domain.  492	
  

Acknowledgements 493	
  

The   authors   would   like   to   thank   Mary   Ockenden   for   the collection   and   494	
  

quality   assurance   of   the   period   of   rainfall   and streamflow for the Blind Beck 495	
  

catchment (NERC grant number NER/S/A/2006/14326), and also Jamal Mohd 496	
  

Hanapi and Johnny Larenus for the collection of the period of rainfall and streamflow 497	
  

utilised for the Baru catchment and to Paul McKenna for its quality assurance (NERC 498	
  

grant number GR3/9439). This work has been partly supported   by   the   Natural   499	
  

Environment   Research   Council   [Consortium   on   Risk   in   the   Environment:   500	
  



Reversing	
  Hydrology:	
  Temporal	
  aggregation	
  and	
  catchment	
  rainfall	
  estimation	
  
using	
  sub-­‐hourly	
  data	
  
	
  

25	
  
	
  

Diagnostics,   Integration, Benchmarking, Learning and Elicitation (CREDIBLE)] 501	
  

grant number: NE/J017299/1. 502	
  

 503	
  
  504	
  



Reversing	
  Hydrology:	
  Temporal	
  aggregation	
  and	
  catchment	
  rainfall	
  estimation	
  
using	
  sub-­‐hourly	
  data	
  
	
  

26	
  
	
  

References 505	
  

Andrews, F., Croke, B., Jeanes, K., 2010 Robust estimation of the total unit 506	
  

hydrograph. In: 2010 International Congress on Environmental Modelling and 507	
  

Software Modelling for Environment's Sake. Ottawa, Canada. 508	
  

Beven, K.J., 2006  A manifesto for the equifinality thesis. J. Hydrol. 320, 18-36. 509	
  

Beven, K.J., 2012 Rainfall-Runoff Modelling - the Primer, second ed. John Wiley and 510	
  

Sons, Chichester, England. 511	
  

Bidin, K., Chappell, N., 2003 First evidence of a structured and dynamic spatial 512	
  

pattern of rainfall within a small humid tropical catchment. Hydrol. Earth Syst. Sci. 7 513	
  

(2), 245-253. 514	
  

Bidin, K., Chappell, N., 2006 Characteristics of rain events at an inland locality in 515	
  

Northeastern Borneo, Malaysia. Hydrol. Process. 20 (18), 3835-3850. 516	
  

Bloomfield, P. 1976 Fourier Analysis of Time Series: An Introduction, John Wiley & 517	
  

Sons, New York.  518	
  

Blöschl, G. (Editor),  Sivapalan, M. (Editor), Wagener, T. (Editor), Viglione, 519	
  

A. (Editor), Savenije, H. (Editor), 2013 Runoff prediction in ungauged basins: 520	
  

synthesis across processes, places and scales, Cambridge University Press 521	
  

Boorman, D. 1989 A new approach to Unit Hydrograph Modelling. PhD Lancaster 522	
  

Brocca, L., Moramarco, T., Melone, F., & Wagner, W. 2013 A new method for 523	
  

rainfall estimation through soil moisture observations. Geophysical Research 524	
  

Letters, 40(5), 853-858. 525	
  

Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, 526	
  

R., Dorigo, W., Wagner, W., Levizzani, V., 2014 Soil as a natural rain gauge: 527	
  

Estimating global rainfall from satellite soil moisture data. Journal of Geophysical 528	
  

Research: Atmospheres, 119(9), 5128-5141. 529	
  



Reversing	
  Hydrology:	
  Temporal	
  aggregation	
  and	
  catchment	
  rainfall	
  estimation	
  
using	
  sub-­‐hourly	
  data	
  
	
  

27	
  
	
  

Chapman T. G. 1996 Common unitgraphs for sets of runoff events: Part 2. 530	
  

Comparisons and inferences for rainfall loss models. Hydrological 531	
  

Processes, 10:783–792 532	
  

Chappell, N., Franks, S., Larenus, J., 1998 Multi-scale permeability estimation for a 533	
  

tropical catchment. Hydrol. Process. 12 (9), 1507-1523. 534	
  

Chappell,  N.A., Tych, W., Chotai,  A., Bidin, K., Sinun, W.,  Chiew,  T.H., 2006 535	
  

Barumodel: combined data based mechanistic models of  runoff response in a 536	
  

managed rainforest catchment. For. Ecol. Manag. 224 (1), 58-80. 537	
  

Croke, B., 2006 A technique for deriving an average event unit hydrograph from 538	
  

streamflow-only data for ephemeral quick-flow-dominant catchments. Adv. 539	
  

Water Resour. 29 (4), 493-502. 540	
  

Clark, M. P., and D. Kavetski  2010 Ancient numerical daemons of conceptual 541	
  

hydrological modeling: 1. Fidelity and efficiency of time stepping schemes, Water 542	
  

Resour. Res., 46, W10510, doi:10.1029/2009WR008894 543	
  

Cuchi, J., Chinarro, D., Villarroel, J., Antonio Cuchi, D., & Luis Villarroel, J. 544	
  

2014 Linear system techniques applied to the Fuenmayor Karst Spring, Huesca 545	
  

(Spain). Environmental Earth Sciences, 71(3), 1049-1060. 546	
  

Duband, D., Obled, C., Rodriguez, J.-Y., 1993, Unit hydrograph revisited: an alternative 547	
  

approach to UH and effective precipitation identification,  Journal of Hydrology, 150, 548	
  

115-149  549	
  

Holman-Dodds, J. K., Bradley, A. A. and Sturdevant-Rees, P. L., 1999 Effect of 550	
  

temporal sampling of precipitation on hydrologic model calibration, Journal of 551	
  

Geophysical Research, Vol. 104, No. D16, Pages 19,645-19,654 552	
  



Reversing	
  Hydrology:	
  Temporal	
  aggregation	
  and	
  catchment	
  rainfall	
  estimation	
  
using	
  sub-­‐hourly	
  data	
  
	
  

28	
  
	
  

Jakeman, A.J., Littlewood, I.G., Whitehead, P.G., 1990. Computation of the 553	
  

instantaneous unit hydrograph and identifiable component flows with application to 554	
  

two small upland  catchments. Journal of Hydrology 117, 275-300. 555	
  

Kavetski, D., and M. P. Clark 2010 Ancient numerical daemons of conceptual 556	
  

hydrological modelling: 2. Impact of time stepping schemes on model analysis 557	
  

and prediction, Water Resour. Res., 46, W10511, doi:10.1029/2009WR008896 558	
  

Kirchner, J., 2009 Catchments as simple dynamical systems: catchment 559	
  

characterization, rainfall-runoff modelling, and doing hydrology backward. 560	
  

Water Resour. Res. 45. 561	
  

Krajewski, W. F., Lakshmi, V., Georgakakos, K. P., & Jain, S. C. 1991 A Monte 562	
  

Carlo study of rainfall sampling effect on a distributed catchment model. Water 563	
  

Resources Research, 27 (1), 119-128. 564	
  

Kretzschmar, A., Tych, W and Chappell, N. A.  2014 Reversing hydrology: 565	
  

Estimation of sub-hourly rainfall time-series from streamflow. Environmental 566	
  

Modelling & Software 60: 290-301. 567	
  

Krier, R., Matgen, P., Goergen, K., Pfister, L., Hoffmann, L., Kirchner, J.W., 568	
  

Uhlenbrook, S., Savenije, H.H.G., 2012 Inferring catchment precipitation by doing 569	
  

hydrology backward: a test in 24 small and mesoscale catchments in Luxembourg. 570	
  

Water Resour. Res. 48, W10525. 571	
  

Littlewood, I. G. 2007  Rainfall–streamflow models for ungauged basins: 572	
  

uncertainty due to modelling time step. In: Uncertainties in the ‘Monitoring–573	
  

Conceptualisation– Modelling’ Sequence of Catchment Research (Proc. 574	
  

Eleventh Biennial Conference of the Euromediterranean Network of 575	
  

Experimental and Representative Basins) (L. Pfister & L. Hoffmann, eds), 576	
  



Reversing	
  Hydrology:	
  Temporal	
  aggregation	
  and	
  catchment	
  rainfall	
  estimation	
  
using	
  sub-­‐hourly	
  data	
  
	
  

29	
  
	
  

149–155. Paris: UNESCO Tech. Doc. in Hydrology Series 81. 577	
  

Littlewood, I.G. and Croke, B.F.W. 2008 Data time-step dependency of 578	
  

conceptual rainfall—streamflow model parameters: an empirical study with 579	
  

implications for regionalisation, Hydrological Sciences Journal, 53:4, 685-695, 580	
  

DOI: 10.1623/hysj.53.4.685 581	
  

Littlewood, I. G., Young, P. C. and Croke, B. F. W. 2010 Preliminary 582	
  

comparison of two methods for identifying rainfall–streamflow model 583	
  

parameters insensitive to data time-step: the Wye at Cefn Brwyn, Plynlimon, 584	
  

Wales. In: Proceedings of the Third International Symposium (British 585	
  

Hydrological Society, 19–23 July 2010, Newcastle University, UK).  586	
  

Littlewood, I.G. and Croke, B.F.W. 2013 Effects of data time-step on the 587	
  

accuracy of calibrated rainfall-streamflow model parameters: practical aspects 588	
  

of uncertainty reduction, Hydrology Research, 44.3 589	
  

Ljung, L. 1999. System identification. Theory for the user. Prentice Hall, Upper 590	
  

Saddle River, 2nd edition. 591	
  

Mayes, W.M., Walsh, C.L., Bathurst, J.C., Kilsby, C.G., Quinn, R.F., Wilkinson, 592	
  

M.E., Daugherty, A.J., Connell, P.E., 2006   Monitoring a flood event in a densely 593	
  

instrumented catchment, the Upper Eden, Cumbria, UK. Water Environ. J. 20 (4), 594	
  

217-226. 595	
  

Montanari, A., and E. Toth 2007 Calibration of hydrological models in the spectral 596	
  

domain: An opportunity for scarcely gauged basins?, Water Resour. Res., 43, 597	
  

W05434, doi:10.1029/2006WR005184. 598	
  

Ockenden, M.C., Chappell, N.A., 2011 Identification of the dominant runoff 599	
  

pathways  from data-based mechanistic modelling of nested catchments in temperate 600	
  



Reversing	
  Hydrology:	
  Temporal	
  aggregation	
  and	
  catchment	
  rainfall	
  estimation	
  
using	
  sub-­‐hourly	
  data	
  
	
  

30	
  
	
  

UK. J. Hydrol. 402 (1), 71-79. 601	
  

Ockenden, M.C., Chappell, N.A., Neal, C., 2014 Quantifying the differential 602	
  

contributions of deep groundwater to streamflow in nested basins, using both water 603	
  

quality characteristics and water balance. Hydrol. Res. 45, 200-212. 604	
  

Olivera, F., Maidment, D., 1999 Geographical information systems (GIS)- based spatially 605	
  

distributed model for runoff routing, Water Resources Research, 35, 1155-1164  606	
  

Reynard, N.S., Stewart, E.J., 1993 The derivation of design rainfall profiles for 607	
  

upland areas of the UK. Meteorol. Mag. 122, 116-123. 608	
  

Szolgayová, E.,; Arlt, J., Blöschl, G., Szolgay, J. 2014 Wavelet based 609	
  

deseasonalization for modelling and forecasting of daily streamflow series 610	
  

considering long range dependence. Journal of Hydrology and Hydromechanics, 62 611	
  

(1). pp. 24-32. ISSN 0042-790X 612	
  

Taylor, C.J., Pedregal, D.J., Young, P.C., Tych, W., 2007 Environmental time series 613	
  

analysis and forecasting with the Captain toolbox. Environ. Model. Softw. 22 (6), 797-614	
  

814. 615	
  

Teuling, A.J., Lehner, I., Kirchner, J.W., Seneviratne, S.I., 2010 Catchments as 616	
  

simple dynamical systems: experience from a Swiss pre-alpine catchment. Water 617	
  

Resour. Res. 46 (10). 618	
  

Wickert, M., 2013 Signals and Systems for Dummies, 1st Edition, John Wiley & 619	
  

Sons;  620	
  

Young, P.C. 2010  The estimation of continuous-time rainfall–flow models for flood 621	
  

risk management. In: Proceedings of the Third International Symposium (British 622	
  

Hydrological Society, 19–23 July 2010, Newcastle University, UK). 623	
  

Young, P.C. and Beven, K.J., 1994 Data-based mechanistic modelling and the 624	
  

rainfall-flow non-linearity, Environmetrics, 5, 335-363  625	
  



Reversing	
  Hydrology:	
  Temporal	
  aggregation	
  and	
  catchment	
  rainfall	
  estimation	
  
using	
  sub-­‐hourly	
  data	
  
	
  

31	
  
	
  

Young, P.C., Garnier, H., 2006 Identfication and estimation of continuous-time, data-626	
  

based mechanistic (DBM) models for environmental systems. Environ. Model. Softw. 627	
  

21 (8), 1055-1072. 628	
  

Young, P.C., Sumisławska, M.A., 2012. Control systems approach to input estimation 629	
  

with hydrological applications. In: 16th IFAC Symposium on System Identification. 630	
  

July 2012, Brussels, Belgium, pp. 1043-1048. 631	
  

Young, P.C., Pedregal, D.J., Tych, W., 1999 Dynamic harmonic regression. J. 632	
  

Forecast. 18 (6), 369-394. 633	
  

 634	
  


