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Abstract 21	  

Inferred rainfall sequences generated by a novel method of inverting a continuous 22	  

time transfer function show a smoothed profile when compared to the observed 23	  

rainfall however streamflow generated using the inferred rainfall is almost identical to 24	  

that generated using the observed rainfall (Rt
2 = 95%). This paper compares the 25	  
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inferred effective and observed effective rainfall in both time and frequency domains 26	  

in order to confirm that, by using the dominant catchment dynamics in the inversion 27	  

process, the main characteristics of catchment rainfall are being captured by the 28	  

inferred effective rainfall estimates. Estimates of the resolution of the inferred 29	  

effective rainfall are found in the time domain by comparison with aggregated 30	  

sequences of observed effective rainfall, and in the frequency domain 31	  

by comparing the amplitude spectra of observed and inferred effective rainfall.   The 32	  

resolution of the rainfall estimates is affected by the slow time constant of the 33	  

catchment and the rainfall regime, but also by the goodness-of-fit of the model, which 34	  

incorporates the amount of other disturbances in the data. 35	  

Keywords 36	  

Continuous time; data based mechanistic modelling; time resolution; spectral 37	  

analysis; reverse hydrology; transfer function;  38	  

Introduction 39	  

Rainfall is the key driver of catchment processes and is usually the main input to 40	  

rainfall-streamflow models. If the rainfall and/or streamflow data used to identify or 41	  

calibrate a model are wrong or disinformative, the model will be wrong and cannot be 42	  

used to predict the future with any certainty. Bloeschl et al. (2013) state that if the 43	  

dominant pathways, storage and time-scales of a catchment are well defined then a 44	  

model should potentially reproduce the catchment dynamics under a range of 45	  

conditions. It is often the case that hydrological variables, such as rainfall and 46	  

streamflow, are measured at hourly or sub-hourly intervals then aggregated up to a 47	  

coarser resolution before being used as input to rainfall-streamflow models 48	  

resulting in the loss of information about the finer detail of the catchment processes 49	  

(Littlewood and Croke, 2008; Littlewood et al., 2010; Littlewood and Croke, 2013). 50	  
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Kretzschmar et al. (2014) have proposed a method for inferring catchment rainfall 51	  

using sub-hourly streamflow data. The resulting rainfall record is smoothed to a 52	  

coarser resolution than the original data but should still retain the most pertinent 53	  

information.  54	  

This paper investigates the implications of the reduced resolution and the 55	  

potential loss of information introduced by the regularisation process in both the time 56	  

and frequency domains. Both temporal and spatial aggregation are incorporated in the 57	  

transfer function model however only the temporal aspect is considered here. The 58	  

effect of spatial rainfall distribution using sub-catchments will be the subject of a 59	  

future publication. 60	  

The method developed and tested by Kretzschmar et al. (2014) – termed the 61	  

RegDer method - inverts a continuous-time transfer function (CT-TF) model using a 62	  

regularised derivative technique to infer catchment rainfall from streamflow with the 63	  

aim of improving estimates of catchment rainfall arguing that a model that is well-64	  

fitting and invertible is likely to be robust in terms of replicating the catchment 65	  

system.  66	  

The classical approach to inverse (as opposed to reverse) modelling involves 67	  

the estimation of non-linearity (rainfall or baseflow separation) and the unit 68	  

hydrograph (UH), which is an approximation to the impulse response of the 69	  

catchment. Boorman (1989) and Chapman (1996) use sets of event hydrographs to 70	  

estimate the catchment UH. Boorman (1989)  superimposed event data before 71	  

applying a separation technique and concluded that the data required may be more 72	  

coarsely sampled than might be expected because one rain-gauge is unlikely to be 73	  

representative of the whole catchment.  Chapman (1996) used an iterative procedure 74	  

to infer rainfall patterns for individual events before applying baseflow separation. 75	  
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The resultant UHs had higher peaks and shorter rise times and durations than those 76	  

obtained by conventional methods. He viewed the effective rainfall as the output from 77	  

a non-linear store. Duband et al. (1993) and Olivera and Maidment (1999) used 78	  

deconvolution to identify mean catchment effective rainfall which was redistributed using 79	  

relative runoff coefficients whilst Young and Beven (1994) based a method for inferring 80	  

effective rainfall patterns on the identification of a linear transfer function. A gain 81	  

parameter, varying with time accounted for the non-linearity in the relationship between 82	  

rainfall and streamflow.  83	  

In recent years, a range of different approaches has been used to explore 84	  

reverse modelling in hydrology, that is, estimating effective rainfall from streamflow. 85	  

Notable publications include Croke (2006), Kirchner (2009), Andrews and Croke 86	  

(2010), Young and Sumislawska (2012), Brocca et al. (2013, 2014) and Kretzschmar 87	  

et al. (2014). Kirchner’s method links rainfall, evapo-transpiration and streamflow 88	  

through a sensitivity function making assumptions which allow rainfall to be inferred 89	  

from the catchment streamflow. The method has been applied by Teuling et al. (2010) 90	  

and Krier et al. (2012) to catchments in Switzerland and Luxembourg and has been 91	  

found to work for catchments with simple storage-streamflow relationships and 92	  

limited hysteresis. Brocca et al. (2013) employed a similar method based on the water 93	  

balance equation but inferred the rainfall series from soil moisture. In a further study, 94	  

Brocca et al. (2014) used satellite derived soil moisture to infer global rainfall 95	  

estimates. Croke (2006) derived an event-based unit hydrograph from streamflow 96	  

alone but his approach was limited to ephemeral quick-flow-dominant catchments 97	  

whilst Andrews et al. (2010) and Young and Sumislawska (2012) use a discrete 98	  

model formulation inverted directly or via a feedback model (which could be adapted 99	  

to CT formulation). The approach proposed by Kretzschmar et al. (2014) combined a 100	  
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continuous time transfer function (CT-TF) model with regularized derivative 101	  

estimates to infer the catchment rainfall from sub-hourly streamflow data.  102	  

Littlewood (2007) applied the IHACRES model (e.g. Jakeman et al.,1990) to 103	  

the River Wye gauged at Cefn Brwyn showing that the values for the model 104	  

parameters for that catchment changed  substantially as the data time step used for 105	  

model calibration decreased. Littlewood and Croke (2008) extended this work to 106	  

include a second catchment and found that as the time-step decreased the parameter 107	  

values approached an asymptotic level (on a semi-log plot) concluding that, at small 108	  

enough time-steps, parameters become independent of the sampling interval. They 109	  

suggested further investigation using data-based mechanistic modelling (DBM) 110	  

methods as described by Young and Romanowicz (2004) and Young and Garnier 111	  

(2006) for estimating CT models from discrete input data. Such models generate 112	  

parameter values independent of the input sampling rate – as long as the sampling rate 113	  

is sufficiently high in comparison to the dominant dynamics of the system. 114	  

Advantages of using the CT formulation include allowing a much larger range of 115	  

system dynamics to be modelled e.g. ‘stiff’ systems that have a wide range of time-116	  

constants (TC), typical of many hydrological systems. The outputs from such a model 117	  

can be sampled at any time-step, including non-integer, and the parameters have a 118	  

direct physical interpretation (Young, 2010).  119	  

Krajewski et al. (1991) compared the results from a semi-distributed model 120	  

and a lumped model and concluded that catchment response is more sensitive to 121	  

rainfall resolution in time than space whilst a study by Holman-Dodds et al. (1999) 122	  

demonstrated that models calibrated using a smoothed rainfall signal (due to coarse 123	  

sampling) may result in under-estimation of streamflow. Further calibration, required 124	  

to compensate, leads to the loss of physical meaning of parameters. They also 125	  
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concluded that parameters estimated at one sampling interval were not transferable to 126	  

other intervals; a conclusion echoed by Littlewood (2007) and Littlewood and Croke 127	  

(2008).  128	  

Studies by Clark and Kavetski (2010) showed that in some cases, numerical 129	  

errors due to the time-step are larger than model structural errors and can even 130	  

balance them out to produce good results. The follow-up study by Kavetski and Clark 131	  

(2010) looked at its impact on sensitivity analysis, parameter optimisation and Monte 132	  

Carlo uncertainty analysis. They concluded that use of an inappropriate time step can 133	  

lead to erroneous and inconsistent estimates of model parameters and obscure the 134	  

identification of hydrological processes and catchment behaviour. Littlewood and 135	  

Croke (2013) found that a discrete model using daily data over-estimated time-136	  

constants for the River Wye gauged at Cefn Brwyn when compared to those estimated 137	  

from hourly data confirming that parameter values were dependent on the time-step. 138	  

They discussed the loss of information due to the effect of time-step on time constants 139	  

and suggested that plots of parameter values against time step could be used as a 140	  

model assessment tool. In a previous study, Littlewood and Croke (2008), compared 141	  

the sensitivity of parameters for two catchments with respect of time-step and 142	  

discussed the role of time-step dependency on the reduction of uncertainty. They also 143	  

suggested continuous time transfer function modelling using sub-hourly data to derive 144	  

sampling rate independent parameter values. Littlewood et al. (2010) introduced the 145	  

concept of the Nyquist-Shannon (N-S) sampling theorem, which defines the upper 146	  

bound on the size of sampling interval required to identify the CT signal without 147	  

aliasing, and consequentially its effect on the frequency of sampling required to 148	  

specify a rainfall-streamflow model. Given a frequent enough sampling rate, the CT 149	  

model is time independent and can be interpreted at any interval.  150	  
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Further understanding may be gained by transforming rainfall and streamflow 151	  

series from the time domain to the frequency domain and using spectral analysis. 152	  

Several potential uses of spectral analysis in hydrology have been explored including 153	  

modelling ungauged catchments, modelling karst systems and seasonal adjustment of 154	  

hydrological data series. A maximum likelihood method for model calibration based 155	  

on the spectral density function (SDF) has been suggested by Montanari and Toth 156	  

(2007). The SDF can be inferred from sparse historic records in the absence of other 157	  

suitable data making it a potentially useful tool for modelling ungauged catchments. 158	  

They also suggest that spectral analysis may provide a means of choosing between 159	  

different apparently behavioural models. Cuchi et al. (2014) used ‘black box’ 160	  

modelling and frequency analysis to study the behaviour of a karst system (located at 161	  

Fuenmajor, Huesca, Spain). They concluded that method works well for a linear 162	  

system and that Fuenmajor has a linear hydrological response to rainfall at all except 163	  

high frequencies. They suggest that the non-linearity issues might be addressed using 164	  

appropriate techniques such as wavelets or neural networks. Szolgayova et al. (2014) 165	  

utilised wavelets to deseasonalise a hydrological time-series and suggested that the 166	  

technique had potential for modelling series showing long term dependency 167	  

(interpreted as containing low frequency components).  168	  

The method introduced by Kretzschmar et al. (2014) showed that given that 169	  

the rainfall-streamflow model captures the dynamics of the catchment system, the 170	  

high frequency detail of the rainfall distribution is not necessary for the prediction of 171	  

streamflow due to the damping (or low-pass filter) effect of the catchment response. 172	  

The regularisation process introduced is numerically stable at the cost of a loss of 173	  

some temporal resolution in the inferred rainfall time series. The regularisation level 174	  

is controlled through the Noise Variance Ratio (NVR), optimised as part of the 175	  
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process and is only applied when necessary, i.e. when the analytically inverted 176	  

catchment transfer function model is improper (has a numerator order higher than the 177	  

denominator order).  178	  

Application catchments 179	  

RegDer has been tested on two headwater catchments with widely differing rainfall 180	  

and response characteristics – Baru in humid, tropical Borneo and Blind Beck, in 181	  

humid temperate UK. The 0.44 km2 Baru catchment is situated in the headwaters of 182	  

the Segama river on the northern tip of Borneo, East Malaysia. The climate is 183	  

equatorial showing no marked seasonality but tending to fall in short (<15 min) 184	  

convective events showing high spatial variability and intensities much higher than 185	  

those of temperate UK (Bidin and Chappell, 2003, 2006). Haplic alisols, typically 1.5 186	  

m in depth and with a high infiltration capacity (Chappell et al., 1998) are underlain 187	  

by relatively impermeable mudstone bedrock resulting in the dominance of   188	  

comparatively shallow sub-surface pathways in this basin (Chappell et al., 2006). As 189	  

a result of the high rainfall intensity and shallow water pathways the stream response 190	  

is very flashy. In contrast, the Blind Beck catchment has an area of 8.8 km2 and its 191	  

response shows evidence of deep hydrological pathways due to the presence of deep 192	  

limestone and sandstone aquifers resulting in a damped hydrograph response (Mayes 193	  

et al., 2006; Ockenden and Chappell, 2011; Ockenden et al.,2014). Winter rainfall in 194	  

this basin is derived from frontal systems with typically lower intensities than the 195	  

convective systems in Borneo (Reynard and Stewart, 1993).   196	  

Model formulation and physical interpretation 197	  

This study investigated the limits of inferred catchment effective rainfall estimation 198	  

from streamflow. Continuous time transfer function models identified from the 199	  

observed data using Data Based Mechanistic (DBM) modelling approaches (Young 200	  
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and Beven, 1994; Young and Garnier, 2006), are inverted using the RegDer method 201	  

(Kretzschmar et al., 2014) and used to transform catchment streamflow into estimates 202	  

of catchment inferred rainfall. 203	  

DBM modelling makes no prior assumptions about the model structure 204	  

(though it often uses structures based on transfer functions), which is suggested by the 205	  

observed data, and must be capable of physical interpretation.  As transfer functions 206	  

are linear operators, a transform structured as a bilinear power-law (Eq. (1)), also 207	  

identified from the observed data, was applied to linearise the data before model 208	  

fitting (Young and Beven, 1994; Beven, 2012, .p91): 209	  

 210	  
𝑷𝒆   = 𝑷  𝑸∝           (1) 211	  

 212	  
where P is the observed rainfall, Q the observed streamflow and α is a parameter, 213	  

estimated from the data. Pe is the effective observed rainfall (ER) and Q is used as a 214	  

surrogate for catchment wetness.  Both catchments used in this study proved to be 215	  

predominantly linear in their behaviour so transformation Eq. (1) was not used. In the 216	  

initial study, a wide range of possible models was identified using algorithms from 217	  

the Captain Toolbox for Matlab (Taylor et al., 2007). The models selected were a 218	  

good fit to the data and were suitable for inversion. The Nash-Sutcliffe Efficiency 219	  

(NSE or Rt 
2) is commonly used to compare the performance of hydrological models. 220	  

Often several models can be identified that fit the data well (the equifinality concept 221	  

of Beven, 2006). From these, models with few parameters to be estimated that 222	  

inverted well were selected.  In this study a second order linear model was found to fit 223	  

both catchments. The output from the RegDer process is an inferred effective rainfall 224	  

series to which the reverse of the power law is then applied, if necessary, to construct 225	  

an inferred catchment rainfall sequence. The process is illustrated in Fig. 1.  226	  



Reversing	  Hydrology:	  Temporal	  aggregation	  and	  catchment	  rainfall	  estimation	  
using	  sub-‐hourly	  data	  
	  

10	  
	  

 227	  

 228	  
Figure 1 - model identification and inversion workflow where P is the observed catchment 229	  
rainfall, Pe is the effective rainfall, Q is the observed streamflow, Peh is the inferred effective 230	  
rainfall and Ph the inferred catchment rainfall. Non-linearity is represented by the bilinear 231	  
power law (Beven, 2012, p91). The continuous time transfer function is given by G(s) where 232	  
A(s) and B(s) are the denominator and numerator polynomials and the inversion process is 233	  
represented by G-1(s) where A*(s) and B*(s) are the denominator and numerator polynomials 234	  
of the inverted transfer function. 235	  

The transfer function model inversion process has been described in 236	  

Kretzschmar et al. (2014). It involves transition from the transfer function catchment 237	  

model: 238	  

𝑄 = 𝐺 𝑠 𝑅 = !!!!!!!!!!!!⋯!!!
!!!!!!!!!!⋯!!!

𝑒!!"𝑃!                            (2) 239	  

to the direct inverse (in general non-realisable): 240	  

 241	  

  𝑹   = 𝒃𝟎𝒔𝒏!𝒃𝟏𝒔𝒏!𝟏!⋯!𝒃𝒏
𝒔𝒎!𝒂𝟏𝒔𝒎!𝟏!⋯!𝒂𝒎

𝒆𝒔𝝉𝑸                                       (3)  242	  

which is then implemented using regularised streamflow derivatives in the form of: 243	  

 244	  

  𝑹𝒆!𝒔𝝉   =
𝒃𝟎 𝒔𝒏𝑸

∗
!𝒃𝟏 𝒔𝒏!𝟏𝑸

∗
!⋯!𝒃𝒏𝑸

𝒔𝒎!𝒂𝟏𝒔𝒎!𝟏!⋯!𝒂𝒎
                 (4) 245	  
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Pe 
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TF 	  
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streamflow 

Q 
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streamflow 

Q 
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Inferred	  
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Reverse	  non-‐
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α 
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where 𝑠!𝑄 ∗ =   ℒ !!

!"!
𝑄  is the Laplace transform of the optimised regularised 246	  

estimate of the nth  time derivative of Q:   !
!

!"!
𝑄. The regularised derivative estimates 247	  

replace the higher order derivatives in Eq. (3), which otherwise make Eq. (3) 248	  

unrealisable (improper) – this is the core of the method in Kretzschmar et al. (2014). 249	  

In the implementation, nth derivatives in Eq. (4) are not estimated, but advantage is 250	  

taken of the filtering with the denominator polynomial, and only (n-m)th derivative 251	  

estimates are required in combination with a proper transfer function.  252	  

The inferred effective rainfall (IR) sequences generated by RegDer generally 253	  

have a much smoother profile (illustrated in Fig. 2) than the observed rainfall inputs, 254	  

however streamflow sequences generated with the IR used as the model input are 255	  

almost indistinguishable from the sequence modelled using observed rainfall (Rt
2 = 256	  

95%). This indicates that the catchment dynamics, as captured by the transfer function 257	  

model, renders the differences between observed and inferred rainfall immaterial. The 258	  

reason for this becomes clear when looking at the frequency domain analysis of the 259	  

inversion process shown in this paper.   260	  

In order to investigate this, the IR is compared to aggregated effective 261	  

observed rainfall sequences with increasing levels of aggregation until a good match 262	  

is found (high value of Rt
2 or R). Two methods of aggregation have been used: 1) 263	  

averaging over a range of time-series, 2) moving average over varying time scales.  264	  

Two measures are used to assess the correspondence between the IR and the 265	  

aggregated effective rain: 1) Rt
2, the coefficient of determination, and 2) R, the 266	  

instantaneous Pearson correlation coefficient. They are given by: 267	  

 268	  

𝑅!!   = 1−    !"!!" !

!"!  !" !        (5a) 269	  

 270	  
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 271	  

𝑅 =    !"!!" !"!!"
!"!  !" !   !"!  !" !           (5b) 272	  

 273	  
where ER indicates a value from the aggregated effective rainfall sequence with mean 274	  

𝐸𝑅 and IR is the corresponding value from the inferred effective rainfall sequence 275	  

with mean 𝐼𝑅. Both Rt
2 and R values tend towards a maximum value as aggregation 276	  

increases. The aggregation level at which the maximum is reached is identified and 277	  

taken as an estimate of the resolution of the inferred effective series. This value is 278	  

then compared to the system fast time constant (TCq) and the Nyquist-Shannon (N-S) 279	  

sampling limit. 280	  

 281	  

a)   282	  
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b)   283	  
Figure 2 – observed effective and inferred rainfall profiles generated using the RegDer inversion 284	  
method for a) Blind Beck and b) Baru  285	  
 286	  

Continuous model formulation  287	  

One of the advantages of using a CT model formulation is that the parameters have a 288	  

direct physical interpretation independent of the model’s sampling rate (Young, 289	  

2010). The continuous time model formulation for a 2nd-order model is given by: 290	  

 291	  
𝑦 𝑡 =    !!!!  !!

!!!  !!!!  ∝!
  𝑢(𝑡 − 𝛿)       (6) 292	  

   293	  
where y is the measured streamflow at time t, 𝛿 is the transport delay and u is the 294	  

effective rainfall at time t -  𝛿. If the denominator can be factorized and has real roots, 295	  

Eq. (6) can be rewritten as: 296	  

 297	  
𝑦 𝑡 =    !!!!  !!

(!!   !!"!
  )(!!   !!"!

  )
  𝑢(𝑡 − 𝛿)       (7) 298	  

 299	  
where TCq and TCs are the system time constants and are often significantly different 300	  

– a ‘stiff’ system. Decomposing the model into a parallel form gives: 301	  

15.0 16.0 17.0 18.0 19.0 20.0
−1

0

1

2

3

4

5

6

7
Baru effective and inferred rainfall profiles

Time (hours)

R
ai

nf
al

l (
m

m
)

 

 
Effective rainfall
Inferred rainfall



Reversing	  Hydrology:	  Temporal	  aggregation	  and	  catchment	  rainfall	  estimation	  
using	  sub-‐hourly	  data	  
	  

14	  
	  

 302	  
𝑦 𝑡 = ( !!

!!  !"!!
+    !!

!!  !"!!
)𝑢(𝑡 −   𝛿)        (8) 303	  

 304	  
where  gq and TCq are the steady state gain and time constant of the fast response 305	  

component and gs and TCs are the steady state gain and time constant of the slow 306	  

response component. The steady state gain of the system as a whole is given by: 307	  

 308	  
𝑔 = 𝑔! +   𝑔!           (9) 309	  
 310	  
so the fraction of the total streamflow along each pathway can be calculated from: 311	  
 312	  
𝑃! =   

!!
!!!  !!

;   𝑃! =   
!!

!!!  !!
             (10) 313	  

 314	  
The fraction of streamflow attributed to the slow response component is sometimes 315	  

termed the Slow Flow Index (SFI) (Littlewood et al., 2010). The example shown here 316	  

uses a second order model but the general principle can be extended to higher order 317	  

models. Details of the inversion and regularisation processes can be found in 318	  

Kretzschmar et al. (2014). 319	  

Sampling frequency 320	  

When using CT modelling, the Nyquist-Shannon frequency gives the upper limit on 321	  

the size of the sampling interval, Δt, that will enable the system dynamics to be 322	  

represented without distortion (aliasing - Bloomfield, 1976, p21). Aliasing occurs 323	  

when a system is measured at an insufficient sampling rate to adequately define the 324	  

signal from the data.  325	  

The Nyquist-Shannon theorem states that the longest sampling step for a 326	  

signal with bandwidth Ω  (maximum frequency, where Ω = 2πf in cycles per time 327	  

unit) to be represented is:   328	  

 329	  
Δt   ≤    !

!!
                                                (11) 330	  

 331	  
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in order to completely define the system in absence of observation disturbance 332	  

(Young, 2010). If the sampling interval is small enough to uniquely define the system, 333	  

the estimated CT model should be independent of the rate of sampling. Conversely, if 334	  

the frequency of the inferred output is less than the N-S limit, then the system 335	  

dynamics should be adequately captured. Other estimates of the sufficient sampling 336	  

interval, designed to avoid proximity to the Nyquist limit, have been made by Ljung 337	  

(1999) and Young (2010). In terms of system TCs, these limits are given by: 338	  

 339	  
𝑁𝑦𝑞𝑢𝑖𝑠𝑡 =   𝜋𝑇𝐶!   𝑡𝑖𝑚𝑒  𝑢𝑛𝑖𝑡𝑠                   (12a) 340	  

 341	  

𝐿𝑗𝑢𝑛𝑔 = !!"!
!
  𝑡𝑖𝑚𝑒  𝑢𝑛𝑖𝑡𝑠          (12b) 342	  

 343	  

𝑌𝑜𝑢𝑛𝑔 = !"!
!
  𝑡𝑖𝑚𝑒  𝑢𝑛𝑖𝑡𝑠       (12c) 344	  

 345	  

Temporal aggregation of effective rainfall 346	  

Two methods for aggregating ER were used to estimate the time resolution of the IR. 347	  

Rainfall is the total volume accumulated over the sampling interval so the ER was 348	  

aggregated over progressively longer sampling periods of 2 to 24 times the base 349	  

sampling period and averaged to form a new smoothed sequence that could be 350	  

compared with the IR. For comparison, aggregation was also performed via a moving 351	  

average process utilising the convolution method available in Matlab. Both methods 352	  

may be affected by the aggregation starting point and edge effects. The aggregated 353	  

ER sequences were compared to the IR using the coefficient of determination (Rt
2) 354	  

and the correlation (R). Rt
2 and R tend towards a maximum value as aggregation 355	  

increases. The aggregation time-step at which this value is established is used to 356	  

estimate the resolution of the IR.  357	  

Spectral Analysis 358	  
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Periodograms of the amplitude spectra of the observed and modelled series were 359	  

plotted to test whether the ER and IR have the same dynamics in the critical 360	  

frequency range, despite the loss of time resolution (related to low pass filtering due 361	  

to regularisation). A periodogram is the frequency domain representation of a signal; 362	  

transforming the signal into the frequency domain may reveal information that is not 363	  

visible in the time domain. A transfer function shown in its equivalent frequency 364	  

domain form describes the mapping between the input and the output signals’ spectra 365	  

for the linear dynamic systems used here.   Signals may be easily transformed 366	  

between the time and frequency domains (Wickert, 2013). 367	  

Periodograms are obtained using the Matlab implementation via the Fast 368	  

Fourier Transform and smoothed using the Integrated Random Walk (e.g. Young et 369	  

al., 1999); the same regularisation approach as used in the calculation of the IR, 370	  

implemented in the Captain Toolbox (Taylor et al., 2007). Periodograms of ER, IR 371	  

and catchment streamflow are compared on a single plot showing how the spectral 372	  

properties of the inversion process are used to obtain the IR estimates (see Fig. 6). 373	  

The streamflow spectrum is the result of mapping the rainfall spectrum by the 374	  

catchment dynamics. To make a full inversion of that mapping would involve very 375	  

strong amplification of high frequencies with all the negative consequences discussed 376	  

by Kretzschmar et al. (2014). The most significant implications of full inversion 377	  

include the introduction of high amplitude, high frequency noise artefacts into the 378	  

rainfall estimates. The regularisation of estimated derivatives introduces the effect of 379	  

low-pass filtering into the inversion process, avoiding the excessive high frequency 380	  

noise. Regularisation does not introduce any lag into the process, unlike traditional 381	  

low pass filtering.  382	  

Results and discussion 383	  
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Fig. 2 illustrates the smoothed rainfall distribution of the IR sequence obtained using 384	  

the RegDer method. Similar streamflow sequences are generated using either the ER 385	  

or IR sequences as model input (see Kretzschmar et al., 2014). The implication is that 386	  

the catchment system dynamics are being captured despite the apparent difference in 387	  

the rainfall distribution and that the detail of the rainfall series in time may not be 388	  

important when modelling the dominant mode of streamflow dynamics. 389	  

In order to assess the degree of resolution lost by estimating rainfall using the 390	  

RegDer method, the ER was aggregated using two methods (i.e. simple aggregation 391	  

by resampling and a moving average) and the resulting sequences compared to the IR 392	  

sequence in the time domain. Plots of progressively more aggregated sequences are 393	  

shown in Fig. 3. It can be seen that as aggregation increases, peaks become lower and 394	  

more spread out and the sequence is effectively smoothed. The coefficient of 395	  

determination (Rt
2) and the correlation (R) between the aggregated sequence and the 396	  

IR tends to a maximum then decreases as aggregation time increases – ultimately the 397	  

variation in the sequence would be completely smoothed out. The point at which the 398	  

maximum value is reached is taken as an estimate of the resolution of the IR. Plots of 399	  

Rt
2 or R values are shown in Fig. 4 (aggregation by resampling) and Fig. 5 (moving 400	  

average estimate). Time resolution estimates are shown in Table 1 and compared with 401	  

the fast time constant (TCq) and the Nyquist-Shannon sampling limit.  402	  
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a)   403	  

b)  404	  
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Figure 3 – Comparison of aggregated sequence to the Inferred effective rainfall sequence for a)Blind Beck 405	  
(sampling interval 15 mins) b) Baru (sampling interval 5 mins) at aggregations of 4, 8 12 and 24 time periods 406	  
illustrating how aggregation lowers the peak and spreads the volume of rainfall over a longer time period. The 407	  
inferred effective rainfall sequence is plotted for comparison.  408	  

a)   409	  

b)  410	  
 411	  
Figure 4 – The Rt

2 and R tend to a maximum value as aggregation increases for a) Blind Beck and b) 412	  
Baru. The resolution of the inferred effective rainfall is taken to be point at which the maximum is 413	  
reached or very little change is apparent. For Blind Beck, this value is reached at 10 periods for both 414	  
Rt

2 and R. The result for Baru is not quite as clear but can be estimated to be 10 periods from R and 11 415	  
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or 12 from Rt
2 though Rt

2 continues to increase up to 24 time periods perhaps due to higher variability 416	  
of the rainfall.  417	  

a)   418	  

b)  419	  
Figure 5 – A similar plot to Figure 4 with aggregation by Moving Average for a) Blind Beck and b) 420	  
Baru. Rather than reaching an asymptotic level, the Rt

2 and R values maximize at 9 time periods for 421	  
Blind Beck and 12 time periods for Baru (determined graphically in Matlab). These values have been 422	  
used as the estimates of the resolution of the inferred effective rainfall and agree well with the 423	  
estimates made by resampling. 424	  
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Table 1 – Time resolution of the inferred effective rainfall sequences estimated by both resampling and 425	  
moving average methods are less than the dominant (fast) mode of the catchments and considerably 426	  
less than the ‘safe’ Nyquist-Shannon limit. 427	  

  428	  
      Time resolution estimates 
Catchment Sampling 

frequency 
(hours) 

TCq 
(hrs) 

TCs 
(hrs) 

SFI Nyquist-
Shannon 
Limit 
(hours) 

Aggregation 
by 
resampling 
 

Aggregation 
by Moving 
Average 
 

Blind 
Beck 

.25 6.3 22.1 47% 19.9 2.5 hours 
(10 time 
periods) 

2.25 hours 
(9 time 
periods) 

Baru .083 1.1 18.7 62% 3.4 0.9 - 1 hours 
(11-12 time 
periods) 

1 hour 
(12 time 
periods) 

 429	  
Table 1 shows that the estimated resolution of the IR sequence for Blind Beck 430	  

is around 9-10 time periods (i.e. 2.25-2.5 hours) and for Baru it is 11-12 time periods 431	  

(i.e. 55 mins – 1hr). Both estimates are within the Nyquist-Shannon safe sampling 432	  

limit and below the fast time constant for both catchments indicating that even though 433	  

resolution has been lost – the trade-off for numerical stability – the dominant mode of 434	  

the rainfall-streamflow dynamics has been captured. Table 2 shows that the estimated 435	  

resolution of the inferred effective rainfall for both catchments is well within the 436	  

Nyquist limit and, whilst the Blind Beck resolution is within the safe limits suggested 437	  

by Ljung (1999) and Young (2010), the estimated resolution for Baru is close to the 438	  

fast TC and outside the suggested limits. The estimates of resolution of the inferred 439	  

sequence made from the aggregation plots are not always well-defined and may be 440	  

dependent on the length of record which will affect the number of aggregation periods 441	  

that may be meaningfully  calculated given the finite length of the data series. A 442	  

better means of estimation of resolution may be achieved by examining the frequency 443	  

spectra of the rainfall and streamflow sequences. 444	  

 445	  
Table 2 – The estimated resolution of the inferred effective rainfall for Blind Beck is 446	  
well within both the Nyquist limit and the safe sampling limits suggested by the 447	  
Ljung (1999) and Young (2010) whereas the resolution Baru, whilst well within the 448	  
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Nyquist limit, is close to the fast TCq and outside the suggested safe sampling limits 449	  
of Ljung and Young. 450	  
 451	  

Catchment TCq (hours) Nyquist 
limit (hours) 

Ljung 
interval 
(hours) 

Young 
interval 
(hours) 

Estimated 
resolution 

(hours) 
Blind Beck 6.3 19.9 3.98 3.32 2.25-2.5 

Baru 1.1 3.4 0.68 0.57 0.91-1.0 
 452	  
 453	  
 454	  

a)   455	  
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b)  456	  
 457	  
Figure 6 – Periodograms for a) Blind Beck and b) Baru showing the frequency structure of the 458	  
effective rain, inferred effective rain and streamflow sequences. Both catchments show a similarity in 459	  
the frequency spectra of effective and inferred effective rainfall within the catchment system. The 460	  
inferred effective rainfall spectrum is very close to the actual effective rainfall one within a wide range 461	  
of frequencies mostly covering those corresponding to the catchment’s time constants. There is also a 462	  
strong low pass filtering effect cutting off high frequencies with low amplitudes instead of boosting 463	  
this high frequency noise. 464	  
 465	  

In Figure 6, the amplitude spectra of inferred effective and observed effective 466	  

rainfall are very close (overlapping when smoothed) within a broad range of 467	  

frequencies. The cut-off frequency, where the difference between the smoothed ER 468	  

and IR spectra is approximately -6Db, provides a frequency domain estimate of the 469	  

resolution. The cut-off period for Blind Beck is 3.8 hours and for Baru is 1.7 hours. 470	  

For frequencies above this value, a very strong low pass filtering effect shown is by 471	  

the rapid decrease in the IR spectrum. The frequency range beyond the cut-off point, 472	  

shaded in Fig. 6, carries a very small proportion of the power of the signal and can be 473	  

considered non-significant.  474	  

The processes and characteristics limiting the inferred effective rainfall 475	  

accuracy include the slow components of the catchment dynamics and the rainfall 476	  
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regime. These can be seen as the ‘usual suspects’ affecting the inversion process. The 477	  

general goodness of fit of the initial catchment model (rainfall-streamflow) appears to 478	  

be a factor as well, indicating that the inferred effective rainfall estimation method 479	  

presented here can be used to assess the quality of available data and the degree to 480	  

which the data characterise the catchment.  481	  

Conclusions 482	  

A combination of time and frequency domain techniques have been used to show that 483	  

the inferred effective rainfall time-series generated by the RegDer inversion method 484	  

does indeed approximate the direct inverse of a transfer function to a high degree of 485	  

accuracy within the frequency range which includes the dominant modes of the 486	  

rainfall-streamflow dynamics. The direct inverse exaggerates low-amplitude high 487	  

frequency noise, which is filtered out by the regularisation process involved in the 488	  

RegDer method. The smoothing of the signal resulting from regularisation is 489	  

quantified in the time-domain by comparison with aggregated observed input data 490	  

using standard model fit measures - coefficient of determination, Rt
2, and correlation 491	  

coefficient, R - and analysed as a low-pass filtering process in the frequency domain.  492	  
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