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Abstract

High power RF deflecting cavities have found a wide range of applications which in-

clude particle separation, emittance exchange, X-ray pulse compression, temporal

beam diagnostics, and crab crossing in colliders. However, conventional deflecting

cavities suffer from beam degrading parasitic modes that are also confined within

these cavities. Several mode damping/coupling schemes have been developed to

solve this problem but they add to the cost, size, and complexity of the resonant

cavities. Photonic Crystal (PC) accelerators and klystrons have benefited from

the high mode selectivity of PCs where a specific EM state are confined to a de-

fect in the PC while all other states are forced to propagate away. This work

presents a systematic approach to designing a PC that confines only the TM110

-like dipole Bloch state and forces the propagation of all other EM states. This

dipole PC resonator was tuned and optimized for crabbing application at 11.9942

GHz (operational frequency of the crab cavity at CLIC).

Also in this thesis, a carefully designed experimental measurement of the trans-

mission spectrum of microwaves in a photonic crystal was used to demonstrate a

well pronounced exhibition of the Dirac point in photonic analogues of graphene.

This work adds to previous literature by studying the sensitivity of the Dirac point

to the incident and receiving angles of waves propagating away from the Γ − K

direction at the input and output boundaries of the PC respectively. In addition,

the challenges associated with the experimental retrieval of the dispersion plot of

a photonic crystal were pointed out.
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Chapter 1

Introduction

The quest for technological advancement has led to a remarkable

mastery of material science and engineering. Naturally occurring ma-

terials have been modified to develop artificial materials (like meta-

materials) with desirable properties. A great deal of success has

been achieved in understanding the mechanical, electrical and op-

tical properties of materials. This is evident from the tremendous

progress made in metallurgy, ceramics, plastics, superconductors,

semiconductors and fiber optics just to mention a few. The ability of

artificial photonic crystal materials to control Electromagnetic (EM)

waves has been likened to the way semiconductors control the flow of

electrons. Therefore, a huge fraction of research into controlling the

flow of EM waves has been channeled toward developing photonic

circuits which might one day replace our state of the art electronic

circuits. The telecommunication industry is already benefiting from

fiber optics technology, which act as an optical transmission line

and offers higher bandwidth to distance ratio than traditional wired
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lines. Other area like antenna design, laser technology, high-speed

computing, and spectroscopy among others are waiting in line to

benefit from similar optical technology.

1.1 Motivation for this work

The usefulness of cavity resonators has been recognized for a long

time [1, 2]. They have been employed in both low and high power

applications. In [3, 4], low power cavities have been used to make

photo transceivers, LEDs, and laser detectors. High power resonat-

ing cavities are used for particle acceleration, RF generation and

amplification [5, 6, 7]. Particle accelerators are, and will be impor-

tant for their application in, but not limited to the following fields

[8, 9]:

• Medicine, for the diagnosis and treatment of cancer [10, 11].

• As an intense source of X-rays for the sterilization of medical

equipment and food products [12].

• For mineral and oil prospecting [13].

• As a source of particle beams for material sciences analysis [14].

• For radioisotope production [15].

• Cargo screening [16].

• Defense applications [17, 18].

• Accelerator driven sub-critical reactors [19, 20].

2



• For processing of semiconductor chips, ceramics, insulators, met-

als and plastics [21, 22].

• For radiocarbon dating [23].

• For probing the ultimate constituents of matter and the origin

of the universe [24, 25].

Cavity resonators are used in particle accelerators to give longitu-

dinal and transverse kicks to particle bunches. In this thesis, Trans-

verse Magnetic (TM) modes have their electric field parallel to the

axis of the particle bunch while the electric field of the Transverse

Electric (TE) modes are perpendicular to the particle bunch axis.

Most cavities used in particle accelerators are designed to utilize the

TM010 monopole mode (shown in figure 1.1) with radially symmet-

rical, nodeless electric field distribution. According to the Lorentz

force equation [26], particles travelling through the resonator will

experience a longitudinal force in the direction of the electric field

which causes the velocity and energy of the particles to increase. On

the other hand, many particle accelerators involve the collision of

two particle bunches. This type of accelerators are called colliders.

During the collision of the particles, head-on collisions are ideally

preferred. However, due to the finite crossing angle (introduced to

simplify the dumping of spent particle bunches) in circular colliders,

the collisions are not head-on and luminosity is reduced. The lumi-

nosity of a collider can be defined as the ratio of the event (collisions)

rate R to the interaction cross-sectional area σint [27]. For a head-on
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collision of two particle bunches with n1 and n2 particles and each

with repetition frequency f , the luminosity L measured in cm−2s−1

is given as:

L =
R

σint
= f

n1n2

4πσxσy
(1.1)

Where the σx and σy are the beam length in the x and y direction

respectively. Luminosity is a key figure of merit that indicates how

well particle bunches collide in the collider facilities. The effect of

the finite crossing angle θc on the luminosity of a circular collider is

expressed by a luminosity reduction factor S which is given as [28]:

S =
1√

1 +
(
σzθc

2σx

)2
(1.2)

Figure 1.1: The electric field distribution of a monopole mode of a pillbox resonator
with radius r = 0.015m and frequency f = 7.65 GHz.

As suggested in [29] and illustrated in figure 1.2, a rotation of

a particle bunch before impact will cause a near-head-on collision

which improves the luminosity of the collider [30, 31]. Most conven-

tional resonating cavities used for rotating particle bunches employ
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Figure 1.2: An illustration of a crab crossing scheme showing the rotation of
bunches before collision at the interaction point.

a time-varying TM110 dipole mode [32]. The head and the bottom

of the particle bunch receive kicks in opposite directions causing the

bunch to rotate by an angle proportional to the mean transverse

voltage. While conventional cavity resonators (pillboxes) are able to

confine the dipole mode of interest, they also sustain parasitic Lower

Order Modes (LOM), Same Order Modes (SOM), and Higher Or-

der Modes (HOM) within the cavity [33]. These parasitic modes are

capable of knocking particle bunches off axis and cause the bunches

to break up. In order to reduce this bunch degrading effect in con-

ventional deflecting cavities, specialized mode damping schemes are

employed [34, 35]. Damping schemes increase the cost, size and com-

plexity of the cavity resonator.

On the other hand, Photonic Crystals (PC) have the ability to for-

bid the propagation of waves with certain wavelengths while allowing

other wavelenghts to propagate. When a defect is introduced into

the crystal, electromagnetic waves of specific frequencies can be con-
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fined within the defect region. This selective mode confining ability

of PCs has found application in PC accelerators [36, 37, 38, 39, 40]

and klystrons [41, 42] where mode damping schemes are not required.

The parasitic modes in this case propagate away from the defect and

through the crystal lattice to the surrounding of the PC. So far,

beam deflecting and bunch rotating (crabbing) cavities have never

been designed using PCs. After a discussion of relevant theories in

chapter 2, chapter 3 discusses the design of a photonic lattice that

confines only the TM110-like dipole EM state while forcing all other

EM states to propagate away. In chapter 4, this lattice has been

used to design an 11.9942 GHz crabbing resonator that can be used

in the Compact Linear Collider (CLIC) facility.

The dispersion properties of photonic crystals have been likened

to those of semiconductors [43]. Periodic potentials within the struc-

tures of semiconductors are capable of preventing the directional

transport of electrons with certain energies [44] due to the presence

of energy gaps in its electronic dispersion relation. Electrons with

energies outside the gap are allowed to travel through the semicon-

ductor material. Photonic crystals are optical analogues of naturally

occurring crystals and have been shown to exhibit similar behaviours

[45]. One naturally occurring crystal lattice that has recently caught

the attention of a lot of researchers is graphene. Graphene is a single

layer two dimensional (2D) honeycomb lattice of carbon atoms. One

of the sources of interest in graphene is its linear electronic dispersion
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that exhibits a conical singularity usually called the Dirac point at

the corners (K-point) of the first order Brillouin zone. As the Dirac

point is approached, the electronic Density of State (DOS) drops lin-

early [46]. This linear dispersion is expected to allow for better con-

trol of electronic transport in graphene. However, due to the atomic

length scale of graphene, experimental observation of theoretically

predicted effects and industrial applicability becomes a challenge as

current engineering technologies are unable to sculpt material at such

small length scales. On the other hand, the dispersion of EM waves

in 2D photonic crystals have been shown theoretically [47] and ex-

perimentally [48, 49] to exhibit similar conically singularity to those

found in graphene. Unlike graphene, photonic crystals can be fabri-

cated at macroscopic (millimeters) length scale using mordern fabri-

cation techniques. This allow for macroscopic scale investigation of

many quantum mechanical phenomenon in artificial photonic crys-

tals. In chapter 5, an improved experimental approach (than those

presented in the two previously published papers [48, 49]) for the in-

vestigation of the Dirac point in photonic crystals is presented, and

the dependency of the Dirac point on variations in the Bloch wave

vectors are also shown.
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1.2 Resonant cavities in Accelerator and Wake-

fields

Standing wave resonant cavities are important parts of modern parti-

cle accelerators for their role in beam-wave energy transfer. A stand-

ing (stationary) wave can result from the interference of two waves

with the same frequency and amplitude but traveling in opposite di-

rection. A standing wave resonant cavity can be created by causing

EM waves to travel in between two reflectors, where the waves are

reflected back and forth and thereby creating an interference pattern.

Waves with wavelengths that are multiple of the distance between

the reflectors will experience constructive interference and form a

standing wave with reinforced amplitudes. These waves are reso-

nant modes of the cavity created by the reflecting walls. Microwave

resonators are hollow metallic structures that are able to confine sta-

tionary waves in the microwave region of the EM spectrum. A good

example is the pillbox cavity shown in figure 1.3.

Figure 1.3: An illustration of a pillbox cavity showing a confined dipole mode.
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The interaction of particle bunches with confined EM waves in a

resonant cavity is governed by the Newton-Lorentz force where for a

particle with charge (q) travelling with velocity (v) in electric (E) and

magnetic (B) fields will experience a force (F) expressed in equation

1.3.

~F = q( ~E + ~v × ~B) (1.3)

Resonant cavities can be used to either give a longitudinal kick

and/or a transverse kick to particle bunches. In order to give longi-

tudinal kick to the particle bunch, the TM010 monopole mode can be

used, where the peak electric field coincides with the axis and points

in the longitudinal direction of the particle bunch. When the electric

field of a monopole mode is at maximum amplitude, the magnetic

field goes to zero and only the first term of the right hand side (RHS)

of equation 1.3 is useful for longitudinal kick.

~Fz = q ~Ez (1.4)

On the other hand, when a transverse kick is required, a TM110

dipole mode can be used, where the peak magnetic field coincides

with the particle bunch trajectory but points in a direction perpen-

dicular to the velocity of the particle bunch. In this case, the electric

field at the node point of the dipole mode is ideally equal to zero

and only the second term of the RHS of the Lorentz force equation

1.3 is used for transverse kick. The transverse force experienced by
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the particle bunch points in a direction perpendicular to both the

longitudinal trajectory of the particle bunch and the direction of the

magnetic field.

~Fy = q(~vz × ~Bx) (1.5)

When an ultra-relativistic particle bunch travels through a sym-

metric cavity, electric current is induced to flow on the walls of the

cavity. This current in turn induces secondary electromagnetic fields

into the cavity. These secondary EM fields are called Wakefields (fur-

ther detail in Appendix B). Wakefields can couple to the allowed res-

onant modes of the cavity and extract energy from trailing particles

travelling at a distance behind the first particle bunch. Wakefields

are capable of knocking the particle bunch off axis and can cause the

bunch to break up [50, 51].

1.3 Advances in high power dipole resonating

cavities

Some of the earliest uses of transverse deflecting cavities were in

particle separators [52, 53, 54]. They can be used to sort a particle

bunch into its constituent species (such as protons and kaons) based

on their different masses. Also particle separators are used to split

a bunch into smaller parts and redirect the bunch parts to different

experiment.
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In [52, 53] , normal conducting dipole deflecting cavities were used

for particle separation at the Stanford Linear Accelerator (SLAC) in

the 1960’s. Emittance exchange is another application of deflecting

cavities where the longitudinal emittance of a particle bunch can be

converted to a transverse emittance and vice versa[55, 56]. Emit-

tance exchange is done by using the time varying dipole mode to

accelerate or decelerate the constituent particles of a bunch based on

their transverse position away from the axis.

In [57, 58, 59], emittance exchange has been shown to improve the

performance of Free Electron Lasers (FEL). A considerable amount

of advanced scientific research now requires X-ray sources with pulses

shorter than 1 ps, which cannot be provided by conventional X-ray

sources that provide pulses up to 100 ps [60]. A pulse compression

scheme was proposed in [55], and have been studied in [61] where two

standing wave deflecting cavities are used to give a longitudinally de-

pendent transverse kick to particle bunches. The resulting vertical

motion of the constituent particles of the bunch causes the bunch

to be chirped and allows for the spatial separation of radiation from

different parts of the bunch. The radiation from the particle bunch

can be either sliced or combined with time-compressing X-ray optics

to obtain a beam with 1 ps pulse duration. Furthermore, the tem-

poral structure of beams with ever shorter pulse duration requires

a beam diagnostic that employs a dipole deflecting cavity [62, 63].

The bunch duration is calculated from the transverse offset of the
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particle bunch due to the rotation caused by the deflecting cavity.

The resolution of the bunch structure is dependent on its width and

the transverse voltage [64]. A beam diagnostics scheme with tempo-

ral resolution in the femtoseconds range has been designed for the

UCLA Neptune Beam Line [65].

Crab crossing of particle bunches have been used in the electron-

positron collider (KEK-B) [30, 31], the International Linear Collider

(ILC) design [66], the Large Hadron Collider (LHC) design [67], and

the Compact Linear Collider (CLIC) design [68, 69] to improve lumi-

nosity. Both normal and superconducting dipole deflecting cavities

have been used to rotate (crabbing) the particle bunch in order to

obtain a near-head-on collision of the bunches. A record luminosity

(a measure of the collision dose administered) of 4.49×1033 cm−2s−1

was achieved by the superconducting crabbing scheme of KEK-B.

Although more work is still in progress to improve the perfor-

mance of conventional deflecting cavities, the complexity introduced

by parasitic mode damping remains a major issue.

1.4 Photonic band gap structures

Photonic band gap (PBG) structures can be described as a periodic

array of varying permittivity ε that is capable of controlling the

propagation of EM waves. PBG structures can be made from metals,

dielectric or both as a 1, 2 or 3 dimensional structure as shown

in figure 1.4. The propagation of EM waves in PBG structures is
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governed by the Bloch-Floquet theorem [70, 71]. This is discussed in

detail in chapter 2.

Figure 1.4: Structural periodicity can be in 1, 2, or 3 dimensions. Picture was
taken from Ref [43].

PBG structures have the ability to forbid the propagation of waves

with certain range of frequencies while allowing the propagation of

waves with other frequencies. These forbidden wavelengths are called

band gaps while the allowed wavelengths form the propagation bands.

A PBG structure can offer a band gap for certain wave vectors k

while allowing the propagation of waves with other k-vectors. When

a band gap exists for all possible k-vectors in the plane of periodicity,

then the PBG structure is said to posses a global photonic band gap.

PBG structure can easily be created by arranging the scatterers into

a square or a triangular lattice as shown in figure 1.5.

Other photonic lattice designs include the honeycomb lattice, and

the kagome lattice. In the honeycomb lattice the hexagons formed

by the positioning of the scatterers are connected along the edges
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Figure 1.5: The unit cell of a 2D (a) square lattice and (b) triangular lattice is
the area within the dashed lines. a and r are the lattice constant and the radius
of the scatterers respectively. Picture was taken fron Ref [72].

while the hexagons in the kagome lattice are connected at the corners

thus creating a triangle at the centre of three hexagons. Due to

the periodic nature of the lattices and the Bloch-Floquet condition

[70, 71], the properties of the entire lattice can be investigated by

analyzing a unit cell of the lattice [43]. The unit cell of the square and

triangular lattice is shown in figure 1.5. When a defect is introduced

into the periodic lattice by removing a single scatterer at the centre

(shown in figure 1.6), EM states with specific frequency within the

band gap can be confined to the defect region of the lattice [73].

The frequency of the trapped Bloch state in figure 1.6 is deter-

mined by the lattice constant a, the radius of the scatterers r and

the permittivity ε of the materials that make up the PBG structure.

These parameters can be tuned to control the propagation of EM

waves in PBG structures.
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Figure 1.6: Schematic diagram of a photonic band gap structure with triangular
lattice. The centre scatterer is removed to create a defect and the eigenmode is
shown on the right.

1.5 Advances in photonic band gap research

Lord Rayleigh studied for the first time in 1892 the propagation of

electromagnetic wave into a 1D periodic structure [74] and for more

than 70 years, quarter-wavelength plates or multiple layered dielec-

tric mirrors such as those used for high-Q-value laser cavities have

been use in optics. However, concerning the control of electromag-

netic waves (light), the above examples are 1D photonic crystals

and are only useful for restricted applications. In contrast, two 2D-

and three 3D- dimensional photonic crystals are better suitable for

the control of electromagnetic waves. This was first pointed out

in two separate papers published about the same time in 1987 by

Yablonovitch [75] and John [76].

Yablonovitch showed by simulation the existence of a PBG, where

all modes were missing in all directions and consequently, the spon-

taneous emission corresponding to the gap energy is inhibited inside

a 3D photonic crystal [77]. The most common lattice designs are the
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square and the triangular lattices. Photonic band gap made of di-

electric [43, 78], metals [36, 72, 79] and both [80] have been studied

in the past. In [81], interesting properties of metallic PBG struc-

tures for microwave applications was shown both numerically and

experimentally by demonstrating the mode confining ability of PBG

structure. At the beginning, most of the metallic PBG structures

investigated were designed with square lattices [82]. The disadvan-

tages of using square lattices were pointed out in [72]. Square lattices

have quadruple symmetry which is less than the sextuple symmetry

offered by triangular lattice. Also, with the analysis presented in

[43], it can be seen that a complete photonic band gap cannot be

obtained from PBG structure possessing a square lattice of isolated

scatterers.

In [72], a comparison between the global band gap structure for

square and triangular metallic lattice was made for both TE and TM

modes. In the TM mode, both square and triangular global band gap

structures show that the width of the band gap increases with the

ratio r/a where r is the rod radius and a is the lattice constant. Both

lattice type also exhibit a zeroth-order band gap which is similar

to the cut-off band of a conventional waveguide. The threshold for

the first-order band gaps in metallic PBG structures with square

and triangular lattices are 0.1 and 0.2 respectively [72]. When the

problem of Higher Order Mode (HOM) confinement is considered for

metallic PBG structures, a metallic square lattice will require rods
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with very small diameters in order to avoid there HOMs. Beyond

the thresholds r/a = 0.1, a square lattice will begin to confine not

just the fundamental modes but also the HOMs. A triangular lattice

offers less constraints with regards to fabrication because it has a

larger threshold of r/a = 0.2 beyond which it will confine HOMs.

A good example of the application of a triangular lattice PBG

structure is the design of a 17.14 GHz linear accelerator in [73]. Al-

though a TM010-like fundamental mode required for acceleration was

obtained from this travelling wave PBG structure, the band gap is

not a complete photonic band gap, because it is polarization depen-

dent. In [43], a study showed that a PBG structure with isolated

scatterers favours a band gap for TM modes while PBG structures

with connected stripe scatterers favours a band gap for TE mode. In

order to obtain a complete band gap, a structure that exhibits the

properties of connected and isolated scatterers is required. A PBG

structure with air holes in a dielectric slab was use to obtain the first

ever 2D complete photonic band gap [43]. However, such a struc-

ture is not suitable for an accelerating cavity as particle bunches will

collide with the background dielectric material.

A new hybrid PBG structure lattice design was presented in [80].

This hybrid structure used a hexagonal lattice of rods connected by

slim rectangular stripes to form a periodic 2D structure. In [82], the

effect of metallic inputs to a dielectric PBG structure was studied.

The width of the complete band gap can be varied by changing the
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diameter of the metallic rod input. The location of the metallic input

was also shown to determine whether the complete band gap closes

or opens up as the diameter of the metallic rod is increased.

In [83], a wide range of parameters affecting the width of photonic

band gaps was investigated. The authors of [83] showed that the un-

certainty in the numerical simulation of photonic crystals reduces

as the number of reciprocal vector is increased. This means that

an 11x11 lattice is better than a 7x7 lattice. PBG structures with

generic unit cells were also shown to yield desirable properties. In

fact, cavities with smaller inclination angles between these primitive

vectors in reciprocal space will yield wider band gaps which are suit-

able for application that require spectral purity. Wider band gaps

can also be obtained from PBG structures with larger refractive in-

dex (n) contrast. When designing high power PBG structures with

an array of metallic scatterers in air (refractive index n = 1), the

choice of a suitable material with high electrical conductivity as well

as high refractive index contrast is important. Copper (n = 2.43)

seems to be the best metal when compared to other conductive met-

als like silver (n = 1.35), aluminium (n = 1.39) and gold (n = 0.47).

This agrees with the findings in [84] where the effect of ellipticity

in the rod scatterers and refractive index contrast within the lattice

was studied. As the filling factor which is a function of r/a increases,

the width of the band gap increases. The filling factor is the fraction

of the lattice volume occupied by the scatterers. The results in [83]
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agrees with the analysis of the global band gap structures in [72].

However, it must be mentioned that there is an optimum value of

filling factor for every case of refractive index contrast and inclination

angle.

In [85], it was shown that metallic PBG structures can be about

seven times smaller and lighter than a dielectric PBG structure. This

characteristic of metallic PBG structure is favourable for reducing the

size of particle accelerators. An interesting concept worth mentioning

is the controllable photonic band gap structure [86]. In this case,

active components (diodes) were used to control the capacitance and

the inductance between the scattering elements thus controlling the

band gap of the periodic structures.

There are several numerical methods for analysing PBG struc-

tures. These methods include the Plane Wave Expansion (PWE)

method [87, 88], Finite Difference Time Domain (FDTD) method

[89, 90], Finite Element Method (FEM) [91] amongst others. This

numerical methods are discussed in chapter 2. The choice of numer-

ical methods depends on the parameters of interest as well as the

geometry of the PBG structures involved. When the parameter of

interest is the dispersion plot of frequency against the k-vector, the

PWE and FDTD are the most popular numerical methods used.
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1.6 Graphene

Graphene is a single layer of carbon atoms arranged in a 2D hon-

eycomb lattice. Graphene can be viewed as a sheet of benzene

ring without the hydrogen atoms. Graphene has been studied since

the middle of the 20th century [92, 93, 94, 95, 96], starting with

the work of P.R. Wallace in 1947. Most of the early studies on

graphene were used as a starting point for the study of graphite

or purely for scientific interest because researchers did not believe

graphene could exist in a free and stable state [97]. Long range order

was shown to be broken due to thermal instabilities in 2D crystals

[100, 101, 102, 103, 104, 105, 106]. In 2004, the ground breaking

and successful fabrication of graphene on a Silicon Oxide (SiO) sub-

strate by a group in Manchester University settled the controversy

over the existence of graphene [98]. Furthermore, they fabricated

suspended graphene where the SiO substrate was etched away leav-

ing behind a stable 2D sheet of graphene with highly mobile charge

carriers [99]. Suspended graphene was found not to be flat but had

ripples with wavelength much larger than the distance between the

carbon atoms. The lattice structure of graphene is a honeycomb lat-

tice with two atoms in the unit cell and two non-equivalent K-points

in its Brillouin zone as shown in figure 1.7. The atoms in the unit

cell of graphene belong to separate sub-lattices A and B that are not

related by the lattice vectors.

The energy dispersion of graphene exhibits a conical singularity
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Figure 1.7: Schematic diagram of: (a) honeycomb lattice showing the two sub-
lattices A and B with the unit cell marked by the dashed line. (b) The first
Brillouin zone of a honeycomb lattice showing the two sets of non-equivalent K-
points.

called the Dirac point at the corners of the first Brillouin zone. As

the Dirac point is approached the energy of electrons depends lin-

early on the momentum vector. This peculiar energy dispersion has

attracted a lot of interest in graphene since it was first fabricated [98].

Graphene exhibits several unusual properties such as mimicking the

quantum electrodynamics of massless Dirac fermions [94, 96] and the

anomalous integer quantum hall effect [107, 108, 109, 110]. Graphene

also exhibits a minimal conductivity [111, 112, 113, 114, 115], the ab-

sence of Anderson localization [116, 117] and Klein tunnelling [118].

Furthermore, quantum gravity [119] and edge effects [114, 120] have

been studied in graphene. Possible applications of graphene include

the detection of single molecules [121], the measurement of the fine

structure constant of materials[122], the storage of hydrogen [123]

and the production of field effect devices [124, 125, 126]. It is widely

accepted that the understanding of the properties of graphene can
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open doors to a new frontier of science and technology.

1.7 Outline of this thesis

This thesis aims to design a dipole photonic resonator for high power

application as well as to investigate the Dirac point in a photonic

analogue of graphene. Following this introductory chapter, a preview

of the remaining chapters is as follows:

• In chapter 2, a review of the background theories that governs

the behaviour of electromagnetic waves in a photonic crystal

lattice is presented. The numerical methods used for dispersion

calculations in photonic crystal are also presented.

• In chapter 3, numerical results are discussed where the dynamics

of the band gap with varying permittivity and filling factors was

studied for a PC made of dielectric rods in air. Furthermore,

the dynamics of the Bloch states confined in single and double

point defects is presented. Also the effect of variation in the

radius of the innermost rods around the double point defect on

the confined states was studied. The effect of the number of

rings of scatterers around the defect region on the quality factor

(Q) of confined states is also presented.

• In chapter 4, results are presented using the lattice design in

chapter 3 to design a dipole photonic resonator that is targeted

for particle bunch crabbing application. The design frequency
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is optimized to match the CLIC crab cavity that operates at

11.9942 GHz. An analytical calculation of parameters of merit

of the dipole PBG cavity is also presented.

• In chapter 5, a review of theoretical studies on the Dirac point in

photonic crystal is presented. Also presented is a discussion of

the results of a experimental study of the Dirac point in photonic

crystals. The sensitivity of the Dirac point to variations in the

wave vector away from the K-point of symmetry in the Brillouin

zone was investigated.

• In the final chapter, the contributions of this work to the knowl-

edge base are pointed out and useful recommendations for future

works are also made.
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Chapter 2

Theory

2.1 Introduction

This chapter focuses on the unique properties of PBG structures that

enhance their ability to generate band gaps. Starting with Maxwell’s

equations, an eigenvalue problem is formulated. Then, the geometry

of PBG structures is described in terms of their symmetries. Further-

more, this chapter discusses the process of generating the dispersion

band plot for PBG structures and explains the origin of the band

gaps in the plot.

2.2 An eigenvalue problem

Named after James Clark Maxwell, a set of partial differential equa-

tions remain the bedrock for the macroscopic analysis of Electro-

magnetic (EM) wave propagation through any media. The set of

equations relates the electric and magnetic fields to one another

and to any source within the medium through which the EM wave
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propagates. For the analysis presented here, the differential form of

Maxwell’s equation can be expressed as follows:

∇ · ~D = ρ (2.1)

∇ · ~B = 0 (2.2)

∇× ~E = −∂
~B

∂t
(2.3)

∇× ~H = ~J +
∂ ~D

∂t
(2.4)

The vector fields ~E, ~H, ~D and ~B are the electric field and the mag-

netic field, the electric displacement and the magnetic flux density

respectively. ~J is the current density while ρ is the charge density.

The relative permeability of non-magnetic materials have µr ≈ 1

and in a source-free region ~J = 0 and ρ = 0. Also, the relation-

ships ~B = µ ~H, ~D = ε ~E, µ = µ0µr and ε = ε0εr are important

for this analysis where µ0, ε0, and εr are the free space permeability,

the free space permittivity, and the relative permittivity respectively.

The fields described by Maxwell’s equation are harmonic functions

of time and space. They can be expressed as follows:

~E(~x, t) = ~E(~x)e−iωt (2.5)
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~H(~x, t) = ~H(~x)e−iωt (2.6)

Where ~E(~x) and ~H(~x) are the spatial distributions of the fields.

ω is the angular frequency and t is the time. The spatial distribution

of the fields in the case of a plane wave can be expressed as follows:

~E(~x) = E0 e
~k·~x (2.7)

~H(~x) = H0 e
~k·~x (2.8)

where ~x = xûx + yûy + zûz and k is the wave vector indicating

the direction of the field. ûx, ûy, and ûz are the unit vectors along

the x, y and z axes respectively. Using Maxwell’s two divergence

equations given in (2.1) and (2.2), the electric and magnetic fields

can be shown to be transverse to each other and to the direction of

propagation. This kind of EM wave is called a plane wave and the

transverse nature of the fields is expressed in the equation 2.9 below.

H0 · ~k = E0 · ~k = 0 (2.9)

Also, the two curl equations show the interdependency between

the electric and the magnetic fields as follows:

~E(~x, t) =
i

ωε
∇× ~H(~x, t) (2.10)
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~H(~x, t) = − i

ωµ
∇× ~E(~x, t) (2.11)

The relationship between the fields can be used to decouple Maxwell’s

equation into independent equations consisting of only one kind of

vector field. This decoupled equations are usually referred to as the

wave equation. For example, writing the wave equation in terms of

the electric field is done by taking the curl of equation (2.3) and then

substituting the curl of ~H from equation (2.4) while using ~B = µ ~H,

~D = ε ~E and assuming free space conditions gives.

∇× 1

µ
∇× ~E(~x, t) = ω2ε ~E(~x, t) (2.12)

Following the same procedure, by taking the curl of equation (2.4)

and then substituting the curl of ~E from equation (2.3) while assum-

ing free space conditions, a purely magnetic field wave equation can

be expressed as follows:

∇× 1

ε
∇× ~H(~x, t) = ω2µ ~H(~x, t) (2.13)

When an operator Ψ acts on a vector field, say ~E and the re-

sult is that same vector field multiplied by a constant, this equation

can be described as an eigenvalue problem. A critical look at equa-

tions (2.12) and (2.13) shows that they are eigenvalue problems with

the eigenoperators ∇ × 1
µ∇× and ∇ × 1

ε∇× acting on eigenvectors

~E(x, t) and ~H(x, t) resulting in the same eigenvectors multiplied by
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the eigenvalues ω2ε and ω2µ respectively.

2.3 Properties of PBG structures

Photonic band gap structures are periodic structures that are gen-

erally made of either dielectrics or metal or both in 1, 2, or 3 di-

mensions. Their ability to create band gaps (a forbidden band of

frequency where EM waves are not allowed to propagate) relates to

their periodicity. This analysis is limited to the 2 dimensional (2D)

type of PBG structure. The square and triangular lattices are the

most widely used 2D lattice designs. 2D lattices usually have con-

tinuous translational symmetry along one axis (say in the direction

of ~kz) and discrete translational symmetry in the plane of period-

icity (~k⊥ = ~kx + ~ky). Along the axis with continuous translational

symmetry, the properties of the PBG structure are invariant to any

translation along that axis. Consider a small translation of distance

d along the z-axis. The continuous translation can be described as:

Ξd,zε(z) = ε(z − d) = ε(z) (2.14)

Ξd,z
~Eze

i~kz·z = ~Eze
−i~k·(z−d) = ei

~k·d ~Eze
i~kz·z (2.15)

The effect of the continuous translational operation result is the

same vector field multiplied by an eigenvalue. On the other hand,

the in-plane translation is discrete. In this case, the properties of the
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PBG structure are invariant only at distances that are multiple of

a fixed lattice constant a. The discrete translation of the dielectric

constant in the periodic plane can be expressed as:

ε(~x⊥ + ~τpq) = ε(~x⊥) (2.16)

Where the periodic vector τpq is dependent on the lattice type

used.

~τpq =


paûx + qaûy, square lattice

(p+ q
2)aûx +

√
3

2 qaûy, triangular lattice

(2.17)

~x⊥ = xûx + yûy is the transverse coordinate, a is the lattice spac-

ing, p and q are integers. A discrete translational operator D~x⊥~τpq

acting upon a vector field ~E⊥e
i~k⊥·~x⊥ in the plane of periodicity can

be expressed as:

D~x⊥~τpq
~E⊥e

i~k⊥·~x⊥ = ~E⊥e
i~k⊥·(~x⊥−~τpq) = e−i

~k⊥·~τpq ~E⊥e
i~k⊥·~x⊥ (2.18)

The expression in equation (2.18) shows that the propagation of

the vector field is invariant as it moves periodically within the trans-

verse plane of the PBG structure. This is the Bloch-Floquet theorem

[70, 71] which is valid for infinitely periodic lattices and a good ap-

proximation for finite physical lattices. As a result of the in-plane
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discrete symmetry, the calculation of the field potential only needs

to be performed within a single unit cell that is repeated throughout

the lattice. The unit cell for the square and triangular lattice are

defined as follows:

|x| ≤ a

2
, |y| ≤ a

2
(square lattice)

|x− y√
3
| ≤ a

2
, |y| ≤

√
3a

2
(triangular lattice)

In order to satisfy the discrete translational symmetry, the EM

fields must have a phase shift ~k⊥ · ~τpq = 2π as it propagates between

two lattice points separated by the periodic vector ~τpq. The set of

vector ~k that satisfy the condition e−i
~k⊥·~τpq are referred to as the

reciprocal vectors ~b = 2π
a . These vectors form a lattice of their

own which is referred to as the reciprocal lattice. The primitive

cell of the reciprocal lattice is called the Brillouin zone. This is

a region in K-space that can be reached from the origin without

crossing any Bragg planes. The Brillouin zone shown in figure 2.1 can

be reduced by several symmetries that make up the point group of

the reciprocal lattice. The symmetries include rotational symmetry,

reflection symmetry and inversion symmetry. The reduced Brillouin

zone is called the irreducible Brillouin zone.

As a result of all the symmetries within the lattice of the PBG

structure, the in-plane wave vector ~k⊥ can be limited to the irre-

ducible Brillouin zone shown in figure 2.1. The three corners of the
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Figure 2.1: The reciprocal of (a) a square and (b) a triangular lattice showing the
first Brillouin zone and the irreducible Brillouin zone.

irreducible Brillouin zone correspond to the values of the reciprocal

wave vector ~k⊥ from the origin as follows:

For square lattice:

Γ : ~k⊥ = 0

M : ~k⊥ = (
π

b
)~ex

X : ~k⊥ = (
π

b
)(~ex + ~ey)

For triangular lattice:

Γ : ~k⊥ = 0

M : ~k⊥ = (
2π√
3b

)~ey

K : ~k⊥ = (
2π

3b
)(~ex +

√
3~ey)

The critical property of PBG structures which makes them at-

tractive for many applications is the presence of the Band gap in

their dispersion diagram (Band plot). This leads to three important
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questions:

• How is the PBG dispersion diagram calculated and plotted?

• What is the origin of the band gap?

• What does the field distribution the Bloch states look like?

2.4 Dispersion calculations in PBG structures

In a 2D analysis of the PBG structure, the propagation of an EM

wave can be separated into Transverse Electric (TE) modes and

Transverse Magnetic (TM) modes. The definition of the TE and

TM are sometimes used interchangeably depending on the perspec-

tive of the author. Here, the adopted definitions are as follows:

• Transverse Electric (TE):- Modes whose electric field is

perpendicular to the scatterer axis of the PBG structure.

• Transverse Magnetic (TM):- Modes whose magnetic field is

perpendicular to the scatterer axis of the PBG structure.

For metallic PBG structure, the above description of TE and TM

imposes the following boundary condition on the surface of the con-

ductors.

~Es = 0 (2.19)

∂ ~Es

∂n
= 0 (2.20)
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Where ∂
∂n is the normal derivative at any point on the surface of

the conductors.

Generally, the numerical methods used to obtain the dispersion

characteristics of PBG structures can be divided into frequency do-

main methods and time domain methods. Although, both methods

make use of EM sources within the domain to calculate the fields,

the difference is in the parameter that is kept constant. In the fre-

quency domain method, the numerical calculations proceed at a fixed

frequency while in the time domain method, several modes with dif-

ferent frequencies can be calculated at any instance of time.

However, there is a numerical method that does not use the cur-

rent source within the domain to calculate the fields. This method

is called the frequency-domain eigenvalue method where the current

function J(~x) = 0 .

In this work, the three numerical techniques used are the Plane

Wave Expansion (PWE) method [127] for dispersion calculations,

the Finite Difference Time Domain (FDTD) method [128] for eigen-

frequency analysis and the Finite Element Method (FEM) [129] to

compute the field distribution with the photonic lattice. This nu-

merical techniques are discussed in the following subsections.
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2.4.1 The 2D Plane Wave Expansion (PWE) method

The decoupled Maxwell’s equation is the starting point for the dis-

persion plot of PBG structures. In the PWE technique, Maxwell’s

equation is solved as an eigenvalue problem using equation 2.12 from

section 2.2. Both the permittivity εr and the field function ~U~k⊥ are

periodic, they can be Fourier expanded into an infinite number of

simple sine and cosine functions.

1

εr
=
∑
p

∑
q

Cεr
p,qe
−i ~Gp,q·~x⊥ (2.21)

~U~k⊥(~x) =
∑
m

∑
n

C
~U~k⊥
m,n e

−i ~Gm,n·~x⊥ (2.22)

Where ~k⊥ = kx + ky is the wave vector of the field and ~x⊥ =

xûx + yûy is the transverse vector. ~Gp,q is the primitive vector of the

reciprocal lattice.

~Gp,q =


2π
a pûx + 2π

a qûy, square lattice

(2π
a ûx −

2π√
3a
ûy)p+ 4π√

3a
ûyq, triangular lattice

(2.23)

Equation 2.21 and 2.22 are substituted into equation 2.12 and

integrated over the area A of the unit cell shown in figure 1.5, we

obtain:
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∑
p

∑
q

Cεr
m−p,n−q

(
~k⊥ + ~Gm,n

)2
C
~U~k⊥
m,n =

ω2

c2
C
~U~k⊥
m,n (2.24)

Cεr
p,q =

1

A

∫
A

1

εr
ei
~Gp,q·~x⊥∂A (2.25)

M =

[∑
p

∑
q C

εr
m−p,n−q(~k⊥ + ~Gm,n)

2

]
(2.26)

M

C ~U~kx
m,n

C
~U~ky
m,n

 =
ω2

c2

C ~U~kx
m,n

C
~U~ky
m,n

 (2.27)

This is a matrix eigenvalue equation and the matrix M can be di-

agonalized using a matrix manipulation software like MATLAB [130]

to calculate the eigenvectors C
~U~k
m,n and the eigenvalues ω. There is

an infinite number of solutions to equation 2.27 due to the infinite

number of terms in the Fourier series. However for computational

implementation, the Fourier series has to be truncated at a reason-

able resolution for a smooth representation of the periodic functions.

This is the plane wave expansion numerical technique.

2.4.2 Finite Difference Time Domain (FDTD) method

The Finite Difference Time Domain (FDTD) technique is a widely

used numerical method where the Finite Difference Method (FDM)

is solved in the time domain. In the FDM [133], differential equa-

tions are converted into difference equations that can be solved using
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simple algebra. A detailed description of the FDTD method can be

found in [128].

In the 2D FDTD numerical computation, the Maxwell’s curl equa-

tion for TM modes can be written as :

∂ ~Hx

∂t
= − 1

µ0

∂ ~Ez

∂y
(2.28)

∂ ~Hy

∂t
=

1

µ0

∂ ~Ez

∂x
(2.29)

εrε0
∂ ~Ez

∂t
=
∂ ~Hy

∂x
− ∂ ~Hx

∂y
− ~Jz (2.30)

Applying the FDM, the derivatives in the above equation can

be approximated by the finite differences in the state of the EM

fields with respect to space and time. In order to explain the FDM,

consider the state of a system f(x) with respect to the position (x)

of observation. For a small finite and constant change (p) in the

position, the derivative f ′(x) can be approximated from the Taylor’s

series using the central finite difference approximation.

D0f(x) =
f(x+ p)− f(x− p)

2p
= f

′
(x) +

p2

6
f
′′′

(ξ) (2.31)

The term of the far right-hand side of equations 2.31 is the lead-

ing order truncation errors from the Taylor’s series. The error in the

central finite difference approximation is proportional to the square
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of the step (p) in space and this makes it a second order approx-

imation. The central finite difference second-order approximation

described above was employed in [134] for the discretization of the

FDTD simulation domain using the Yee lattice (shown in figure 2.2

on page 37) and the Yee algorithm.

Figure 2.2: 2D Yee lattice used in the FDTD TM calculation.

Figure 2.2 shows a single grid block of a 2D Yee mesh where the

distance ∆x between the points (i, j) and (i + 1, j) is the grid size

along the x-axis. Similarly, the distance ∆y between the points (i, j)

and (i, j+1) is the grid size along the y-axis. i and j are integers indi-

cating the number of grid blocks along the x and y axis respectively.

According to the Yee algorithm the electric and magnetic fields com-

ponent calculations are staggered in time and space. As shown in fig-

ure 2.2 (for the TM case), the electric field component is surrounded

by four circulating magnetic fields while the magnetic field compo-

nents are flanked by two electric field components. This means that

the Ez, Hx and Hy field components are calculated and stored at

points ((i+ 1
2)∆x, (j+ 1

2)∆y) , ((i+ 1
2)∆x, j∆y) and (i∆x, (j+ 1

2)∆y)
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respectively. A leap-frog time stepping approach was adopted in the

Yee algorithm where for a time step ∆t the magnetic field at time

t is calculated from the stored value of the magnetic field at time

(t−∆t) and the electric field at time (t− 1
2∆t). In a similar manner,

the electric field at time (t+ 1
2∆t) is calculated from the stored value

of the magnetic field at time t and the electric field at time (t− 1
2∆t).

The central difference second order approximation of equation

2.31 can be applied to the Maxwell’s curl equations 2.28, 2.29, and

2.30 to obtain the finite difference approximation given in equations

2.32, 2.33 and 2.34 below. To do this, a field function φ at a discrete

point (i∆x, j∆y) in the Yee lattice and at a discrete time n∆t is rep-

resented as φ(i∆x, j∆y, n∆t) = φ |ni,j and µ0 = 1.256637×10−6Hm−1

is the free space permeability. n is an integer indicating the number

of time steps.

~Hx |n+1
i,j − ~Hx |ni,j

∆t
= − 1

µ0

~Ez |
n+ 1

2

i,j+ 1
2

− ~Ez |
n+ 1

2

i,j− 1
2

∆y
(2.32)

~Hy |n+1
i,j − ~Hy |ni,j

∆t
=

1

µ0

~Ez |
n+ 1

2

i+ 1
2 ,j
− ~Ez |

n+ 1
2

i− 1
2 ,j

∆x
(2.33)

εrε0

~Ez |
n+ 1

2

i,j − ~Ez |
n− 1

2

i,j

∆t
=

~Hy |ni+ 1
2 ,j
− ~Hy |ni− 1

2 ,j

∆x
−
~Hx |ni,j+ 1

2

− ~Hx |ni,j− 1
2

∆y
−~Jz |ni,j

(2.34)

In equations 2.32 and 2.33, the magnetic field at time (n + 1)∆t

is calculated from the magnetic field at time n∆t and the electric
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field at time (n + 1
2)∆t. Also in equation 2.34 , the electric field at

time (n + 1
2)∆t is calculated from the current source and magnetic

fields at n∆t as well as the electric field at (n− 1
2)∆t . The Maxwell’s

divergence equations are implicitly enforced by the Yee discretization

as shown in [90] where the wave propagation is dissipation free.

2.4.3 Finite Element Method (FEM)

The finite element method [141, 142] is a numerical approach where

approximate solutions to a partial differential equation (PDE) that

describes physical systems are found by discretizing the problem do-

main into a finite number of irregular elements (polygons). The PDE

are solved individually in each element, the solutions are assembled

together to form a global matrix equation which is solved to find the

unknown parameters.

A weak form of the wave equation is obtained by multiplying both

sides by a test function T⊥ and integrating over the domain of the

problem subject to appropriate boundary condition.

∫
A

[T⊥∇2 ~E⊥(x, t)− k2
0εr(x) ~E⊥(x, t)T⊥]∂A = 0 (2.35)

Following the FEM approach the simulation domain is discretized

into large number of small elements that are connected to form a

computational mesh. For a 2D simulation, the elements have a planar

geometry with no variation along the z-axis. Since most polygons

can be divided into a number of triangles, therefore, the simplest
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element geometry is the first-order triangular finite element (first-

order tetrahedral element in 3D case).

Figure 2.3: A first order triangular finite element.

The shapes of the triangular elements shown in figure 2.3, can be

varied to conform to the boundary curvature. Also the size of the el-

ement are chosen so that the material (permittivity) and the electric

fields within each element is uniform (not changing). A variable res-

olution mesh can be implemented so that greater number of smaller

elements are used in regions of the problem domain where large vari-

ations in the fields are expected and fewer and bigger elements are

used in regions with gradual changes in the fields. Once the domain

has been discretized into a fine mesh, equation 2.35 has to be solved

in each individual element. Depending on the type of problem to

be solved, the elementary solutions are found by either the nodal-

based Langrangian interpolation approach [144] or the vector-based

tangential edge elements approach [145, 146] or both.

The nodal-based finite element approach is not suitable for the ap-
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proximation of the vector field in an electromagnetic simulation espe-

cially at the elementary boundary where only the tangential compo-

nent of the vector field is allowed. The nodal-based FEM approach

does not impose Maxwell’s divergence equation which causes it to

return spurious non-physical modes [148, 149]. On the other hand, a

recently developed edge element FEM approach allows only the tan-

gential component of the vector fields at the elementary boundary

and enforces Maxwell’s divergence equation. This allows physical

constraints and natural boundary conditions to be properly imple-

mented. In the edge element approach, the tangential component of

the vector field along a single edge of the triangular element is kept

constant while simultaneously the tangential field component on the

other two edges are set to zero. Therefore, the electric field within

each triangular element is determined by the three functions of the

edge tangential field.

~E⊥ =
3∑
i=1

e⊥mW⊥m (2.36)

Where W⊥m = L⊥m(αi∇⊥αi − αj∇⊥αj). m indicates the three

edges of the triangular element, L⊥m is the length of each edge m

linking nodes i and j. αi and αj are the geometric function associ-

ated with the node points. e⊥m are the coefficient of the edge basis

function W⊥m. In [149], it was shown that ∇ ·W⊥m = 0 hence the

electric field does not diverge across the elementary edge boundaries

(∇ · E = 0). Here the test function is defined as T⊥ = W⊥n and
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n = 1, 2, 3. Equation 2.36 is substituted into the electromagnetic

variational equation given as:

∫
A

1

µr
(∇⊥ × ~T⊥) · (∇⊥ × ~E⊥)∂A = k2

0εr

∫
A

~T⊥ · ~E⊥∂A (2.37)

1

µr

∫
A

3∑
i=1

(∇⊥×W⊥n)·(∇⊥×W⊥m)e⊥m∂A = k2
0εr

∫
A

3∑
i=1

(W⊥n·W⊥m)e⊥m∂A

(2.38)

Equation 2.38 can be written in the general FEM matrix eigen-

equation form as:

[Sel][e⊥] = k2
0[Tel][e⊥] (2.39)

[Sel] =

[
1
µr

∫
A(∇⊥ ×W⊥n) · (∇⊥ ×W⊥m)∂A

]
(2.40)

[Tel] =

[
εr
∫
A(W⊥n ·W⊥m)∂A

]
(2.41)

The element matrices are assembled to obtain a global eigen-

matrix equation.

[S][e⊥] = k2
0[T ][e⊥] (2.42)

At the Perfectly Electric Conducting (PEC) boundaries, FEM

simply set the field E = 0 at the nodes and edges of element that
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coincide with the boundary. FEM techniques have been shown in

[143] to give results that compare excellently with analytical results.

FEM are able to handle problems with complex geometry better than

the FDTD techniques hence their wide use in engineering. On the

down side, the results of the FEM technique is only an approximation

of physical systems as the fields within each element are assumed to

be polynomials which is not physically true.

2.4.4 Particle-In-Cell (PIC) Method

The Particle-In-Cell (PIC) method is a versatile numerical technique

that solves a set of partial differential equations that describes the

trajectory of individual particles within plasmas (ionized particles).

The PIC method also calculates the field associated with the motion

of individual particles as well as the collective effects of particle-

particle interactions.

The PIC method is a well established technique that has started as

far back as 1955 [151] before the computer age. Detailed description

of the PIC method can be found in several books and publications

[152, 153, 154]. The PIC method has found application in a wide

range of scientific research areas which include space and weather

science, accelerator science, RF generation, plasma physics, and re-

search involving complex chemical reactions etc.

The approach used in the PIC method involves a continuous loop

of updates that begins by tracking the position and the velocity of

the particles based on the electric and magnetic fields they experi-
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ence. Based on the new position and velocity of the particles, the

electromagnetic fields generated by the particles are used to calculate

the field seen by the particles in the next loop cycle. This looping

approach is illustrated in figure 2.4. The implementation of the fun-

damental PIC approach varies from one author to another. In this

subsection, the PIC implementation detailed (by J.M. Dawson) in

[152] where the Fast Fourier Transform (FFT) was employed to cal-

culate the field parameter in k-space is presented.

Figure 2.4: An illustration of the particle-in-cell approach.

The number of particle in a natural plasma are of the order of 1012

particles /cm3 [152]. Enormous computer resource will be required

to track the position and velocity of individual particles since the

number of arithmetic operation η is proportional to the square of

the particle population N .

η = 10N 2 (2.43)

In order to minimize the number of arithmetic operations, the
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PIC method uses a single superparticle to represent a user defined

number of natural plasma particles. This reduction in the number of

particles to track in turn leads to a shorter runtime of the PIC code.

In this work, the Vorpal PIC simulation code [155] is used to

perform a Wakefield analysis of a PBG crab cavity, this is discussed

in chapter 4. A Fast Fourier Transform (FFT) of the time signal of

the EM field recorded by a monitor placed at a specific grid point

in the simulation domain gives the frequency domain distribution of

the power spectrum at that grid point.

2.5 The origin of the band gaps

In section 2.4.1, a discussion on how PBG structures are character-

ized using their dispersion diagram (band plots) was presented. The

band plot shows the modes (indicated by their frequency) that are

allowed to propagate in any particular direction (indicated by the

wave vector k) within the PBG structure. As we move along the

points of symmetry of the irreducible Brillouin zone (for a square

lattice; Γ → M → X → Γ), a set of allowed modes can occupy a

frequency range referred to as a band. Most dispersion plots of PBG

structure have several bands of allowed modes. On the other hand,

for each direction of the wave vector k, it is possible to have a fre-

quency range where no propagating mode is allowed. This frequency

range is called a gap. When the lowest frequency of a upper band is

higher than the highest frequency of a lower band, then we have a
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global band gap. In a 2D analysis of PBG structures, the TM and

TE dispersion characteristics can be completely different. When the

band gap of both TM and TE states overlap, we have a complete

global band gap that is independent of both the direction of propa-

gation and the polarization of the incident EM wave.

The origin of the band gap stems from the different locations of EM

energy storage within a photonic crystal [43]. EM states belonging to

the same band tend to concentrate their energy in the same type of

material (i.e the dielectric or the air regions). This can be explained

by looking at the electromagnetic variational theorem that shows the

effect of a small variation in a parameter on the solution of an elec-

tromagnetic problem [156]. This analysis starts with the decoupled

Maxwell’s equations (2.12) and (2.13). If we multiply equation (2.12)

by ~E and equation (2.13) by ~H and then integrate over the volume

V of the PBG structure, we obtain:

∫
V

~E · (∇× 1

µ
∇× ~E) dV =

∫
V

ω2ε ~E · ~E dV (2.44)

∫
V

~H · (∇× 1

ε
∇× ~H) dV =

∫
V

ω2µ ~H · ~H dV (2.45)

From the definition of the inner product, equation (2.44) and

(2.45) can be expressed as follows:

[ ~E,Ξ ~E] = ω2ε[ ~E, ~E] (2.46)
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[ ~H,Ξ ~H] = ω2µ[ ~H, ~H] (2.47)

Where the Hermitian operator Ξ is given as:

Ξ =


∇× 1

µ∇×, Electric field eigenoperator

∇× 1
ε∇×, Magnetic field eigenoperator

and ω2 =
[ ~E,Ξ ~E]

[ ~E, ε ~E]
= RE (2.48)

and ω2 =
[ ~H,Ξ ~H]

[ ~H, µ ~H]
= RH (2.49)

Where RE and RH are Rayleigh quotients. Rearranging equation

(2.44), the Rayleigh quotient of the electric field equation can be

expressed as :

RE = ω2 =

∫
V
~E · (∇× 1

µ∇× ~E) dV∫
V ε ~E · ~E dV

=

∫
V

1
µ(∇× ~E)2 dV∫
V ε ~E2 dV

(2.50)

The eigenmode with the lowest frequency ω0 must minimize the

Rayleigh quotient. This means that errors in the approximation of

the eigenvector ~E do not have a significant effect on the eigenvalue

ω2. Therefore, we can say dω2

d ~E
= 0.

Taking a critical look at equation (2.50), the square of the eigen-

vector ~E2 is present in both the numerator and the denominator.
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This means that the eigenvalue ω2 is independent of the field po-

tential. Also a larger dielectric constant and a lower spatial oscilla-

tion are both required to minimize the eigenvalue in equation (2.50).

Therefore, we can say that the lowest frequency ω0 mode concen-

trates its electric field energy in regions of high dielectric constant

[43]. This means that the energy of the modes belonging to the low-

est band of the dispersion plot are concentrated in the rods (for a

lattice of rods in air). From the previous section, it was shown that

any two harmonic modes with different frequencies must be orthog-

onal to each other. Therefore, the modes of the upper bands must

be orthogonal to those of the lowest band. The second lowest band

consists of the lowest frequency modes amongst the set of orthogonal

modes to those of the lowest band. The orthogonality rule is more

dominant than the storage of energy in regions of high dielectric con-

stant. This means that higher order modes can store their energy in

regions of low dielectric constant in order to maintain orthogonality

with lower order modes. The variation in the storage location of the

field energy, inherently leads to variation in the value of the dielectric

constant ε in equation (2.50) and will result in eigenfrequency vari-

ations. The frequency variations or jumps create a frequency band

where no harmonic mode can propagate. This is the origin of the

band gap. Also, the higher the variation in the dielectric constant

from the rod regions to the air regions, the higher the frequency jump

from equation (2.50), which results in wider band gaps [43].
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Chapter 3

Wave dispersion and dipole Bloch

state confinement in photonic

crystals

3.1 Introduction

Since the pioneering work of Yablonovich [75], and John [76] into

the ability of photonic crystals to control the flow of light, a variety

of passive and active devices have been constructed by introducing

defects into photonic crystals. Utilizing the band-gap of the crystals

these defects act as high Quality-factor, mode selective resonators,

where only EM fields with specific frequencies are confined, predom-

inately by Bragg and internal reflection [43]. This selective con-

finement of EM waves has found applications both in low and high

power applications, and offers a number of advantages over conven-

tional technologies [157, 158, 159, 160, 36, 41]. One such area of

applications that is gaining increased interest, is the application of
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photonic crystals to high power applications in particle accelerators

[36, 37, 38, 39, 40] and EM wave generation [41, 42]. One key issue

for conventional technology used in particle accelerators to confine

EM waves are the parasitic mode effects which limit the performance

of the technology.

A more specific accelerator application which suffers strongly from

the effects of Higher Order Modes (HOM) confinement are Crab Cav-

ities [161]. Conventional crabbing cavities employ the time-varying

magnetic field of a dipole mode to give upward/downward kicks to

the front/back of a particle bunch respectively, thereby causing the

particle bunch to be rotated by an angle proportional to the max-

imum magnetic field in the resonator [29, 68, 162]. In addition to

the dipole mode, conventional crabbing resonators also confines these

parasitic modes which are capable of knocking particle bunches off

axis and break them up [50, 51]. These parasitic modes are usually

suppressed with specialized mode damping schemes which increase

the size, cost and complexity of the resonator [34, 35], and fundamen-

tally limit the operating range of the conventional approach. Pho-

tonic crystals with their high mode selectivity can confine a specific

mode while allowing these other parasitic modes to propagate away

through the lattice. In this chapter, the ability of a PC resonator to

confine just the dipole mode, whilst forcing all other mode to prop-

agate away through the lattice was explored and the lattice for a

dipole photonic resonator was designed.
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To date, research both experimental and theoretical, has mainly

focused on monopole, quadrupole and sextupole photonic resonators

[163, 164]. In contrast little research has considered the dipole mode,

due in part to the comparatively low Quality factor of the dipole

mode. Although the dipole mode does offers several advantages as

pointed out in [165], such as smaller modal volume and novel field

distribution [163]. This chapter focuses on dipole mode confinement

in single and double point defect resonators, studying how varying

the lattice parameters around the defect region defines the states

confined in the defect region, and how the lattice parameters affect

the Quality factor for a specific mode of the resonator. The geometry

considered in this work is a 2-Dimensional (2D) triangular lattice of

dielectric rods with permittivity ε, separation a and radius r, as

shown in figure 3.1. In this work, lattice defects are used to form the

resonators, this is achieved by modifying the radius, the permittivity

and the removal of a scatterer.

Figure 3.1: 2D triangular lattice of dielectric scatterers of radius r and separation
a. Defect regions was created by the (A) removal of a single scatterer; (B) removal
of the two scatterers; (C) removal of the two scatterers and varying the radius of
scatterers around the double defect.
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Due to the complexity of the structures studied we use a combi-

nation of numerical techniques to determine the band structure and

the confined EM field distribution. Dispersion curves are determined

using a Plane Wave Expansion (PWE) technique [127]. The confined

states in the defect are determined using Finite Difference Time Do-

main (FDTD) [128] and the Finite Element Method (FEM) [129]

numerical techniques.

3.2 Dynamic of the global band gap with varying

permittivity and filling factor

Previous research has focused on maximizing the global band gap in

photonic crystals [83], where the effects of refractive index contrast,

filling factor (r/a) and different lattices on the size of the band gap

were considered. The authors of [166] found that changes in the

refractive index contrast and the filling factor of the structure could

create/destroy band gaps. In this thesis, we extend the work of

[83] and [166] by investigate the frequency dependent position of

the global band gaps on the lattice parameters. To determine the

position of the global band gaps, the PWE technique discussed in the

chapter 2 was used to determine ~k of all propagating states. A multi-

parameter scan was performed by varying the relative permittivity

(εr = 3 to 65) of the scatterers of the lattice, whilst sweeping the

filling factor (r/a) from 0.05 to 0.45 in steps of 0.01. Figures 3.2, 3.3,

3.4, 3.5, 3.6, 3.7, and 3.8 show the results of this parameter sweep for
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both Transverse Magnetic (TM) and Transverse Electric (TE) fields.

The shaded region in each graph show the frequency/permittivity

where a band gap exists. For the work presented here, the magnetic

field of the TM states and the electric field of the TE states are

perpendicular to the translational invariant direction of the 2D PBG

structure (i.e the scatterers). We see from figures 3.2, 3.3, 3.4, 3.5,

3.6, 3.7, and 3.8 that the size of any particular band gap increases

with permittivity and decreases with increasing values of the ratio

r/a. As r/a is increased, higher order band gaps are created, and

for a specific r/a the number of band gaps increases with increasing

permittivity.

3.3 Dynamic of confined EM states in single and

double point defects

The second part of the analysis determined the frequency and electric

field distribution of states confined to the defect region using the

FEM. Figures 3.9, 3.10, and 3.11 represent lattices with a single

point defect, of the form shown in figure 3.1(A), for r/a = 0.1, 0.2

and 0.3 respectively. Each figure shows the frequency position of the

bandgap and the frequency of the modes confined. In figure 3.9, only

monopole-like Bloch states are confined in the gap. The higher order

band gaps are small, and extensive eigenfrequency analysis found no

confined states present in these other band-gaps.

From figures 3.10 and 3.11 only monopole-like states are confined
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Figure 3.2: The dynamics of the photonic band gap with varying permittivity (3 to
65) and filling factors [(A) r/a=0.05, (B) r/a=0.06, (C) r/a=0.07, (D) r/a=0.08,
(E) r/a=0.09 and (F) r/a=0.10]. Each plot has permittivity on the x-axis and
normalized frequency on the y-axis. The shaded region indicate regions of global
band gap where blue is for TM gaps, red is for TE gaps and green for both.

54



Figure 3.3: The dynamics of the photonic band gap with varying permittivity (3 to
65) and filling factors [(A) r/a=0.11, (B) r/a=0.12, (C) r/a=0.13, (D) r/a=0.14,
(E) r/a=0.15 and (F) r/a=0.16]. Each plot has permittivity on the x-axis and
normalized frequency on the y-axis. The shaded region indicate regions of global
band gap where blue is for TM gaps, red is for TE gaps and green for both.
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Figure 3.4: The dynamics of the photonic band gap with varying permittivity (3 to
65) and filling factors [(A) r/a=0.17, (B) r/a=0.18, (C) r/a=0.19, (D) r/a=0.20,
(E) r/a=0.21 and (F) r/a=0.22]. Each plot has permittivity on the x-axis and
normalized frequency on the y-axis. The shaded region indicate regions of global
band gap where blue is for TM gaps, red is for TE gaps and green for both.
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Figure 3.5: The dynamics of the photonic band gap with varying permittivity (3 to
65) and filling factors [(A) r/a=0.23, (B) r/a=0.24, (C) r/a=0.25, (D) r/a=0.26,
(E) r/a=0.27 and (F) r/a=0.28]. Each plot has permittivity on the x-axis and
normalized frequency on the y-axis. The shaded region indicate regions of global
band gap where blue is for TM gaps, red is for TE gaps and green for both.
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Figure 3.6: The dynamics of the photonic band gap with varying permittivity (3 to
65) and filling factors [(A) r/a=0.29, (B) r/a=0.30, (C) r/a=0.31, (D) r/a=0.32,
(E) r/a=0.33 and (F) r/a=0.34]. Each plot has permittivity on the x-axis and
normalized frequency on the y-axis. The shaded region indicate regions of global
band gap where blue is for TM gaps, red is for TE gaps and green for both.
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Figure 3.7: The dynamics of the photonic band gap with varying permittivity (3 to
65) and filling factors [(A) r/a=0.35, (B) r/a=0.36, (C) r/a=0.37, (D) r/a=0.38,
(E) r/a=0.39 and (F) r/a=0.40]. Each plot has permittivity on the x-axis and
normalized frequency on the y-axis. The shaded region indicate regions of global
band gap where blue is for TM gaps, red is for TE gaps and green for both.
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Figure 3.8: The dynamics of the photonic band gap with varying permittivity (3 to
65) and filling factors [(A) r/a=0.41, (B) r/a=0.42, (C) r/a=0.43, (D) r/a=0.44,
and (E) r/a=0.45 ]. Each plot has permittivity on the x-axis and normalized
frequency on the y-axis. The shaded region indicate regions of global band gap
where blue is for TM gaps, red is for TE gaps and green for both.
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Figure 3.9: Dynamics of the confined Bloch states within the band gaps with
varying permittivity. The Triangular lattice (r/a = 0.1) was perturbed with a
point defect as shown in figure 3.1-A. The normalization of the frequency was
done by comparing the wavelength of Bloch states to the lattice constant a. The
electric field profile of the monopole-like Bloch states is shown in the inset with
the peak at the centre of the defect.

Figure 3.10: Dynamics of the confined Bloch states within the band gaps with
varying permittivity. Triangular lattice (r/a = 0.2) was perturbed with a point
defect as shown in figure 3.1-A. The normalization of the frequency was done by
comparing the wavelength of Bloch states to the lattice constant a. The electric
field profile of the dipole-like Bloch states is shown in the inset with a node at the
centre of the defect.

61



Figure 3.11: Dynamics of the confined Bloch states within the band gaps with
varying permittivity. Triangular lattice (r/a = 0.3) was perturbed with a point
defect as shown in figure 3.1-A. The normalization of the frequency was done by
comparing the wavelength of Bloch states to the lattice constant a.

in the first band gap, although higher order band gaps confine both

monopole and dipole-like states. In figures 3.10 and 3.11 the frequen-

cies of confined states move towards the upper edge of the gap with

increasing permittivity. Furthermore only at lower values of r/a (≤

0.1) are single gap PC structures obtained. This is in contrast to the

result of [165], where the point defect of a photonic crystal (PC) of

air holes in a dielectric slab was shown to confine only dipole modes.

In [165] the energy of the confined mode is concentrated in the dielec-

tric slab where an air hole was removed. In contrast, this study finds

that a point defect in a PC made from dielectric rods in air will only

confine monopole states. Using FEM and PWE techniques, as in [43]

we found that the states in the first band, concentrate their energy in

the dielectric. In terms of the band diagram, bands where the energy
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of the state is primarily stored in the dielectric (see figure 3.12-C) are

referred to as the dielectric band. EM waves propagating in the top

band (referred to as air band) store their energy primarily in the air-

region of the lattice (see figure 3.12-B). From perturbation theory,

decreasing/increasing the effective refractive index n in a local region

of a photonic lattice result in defect states to be pulled-up/pushed-

down from the dielectric/air band into the bandgap [167]. This is

because for non-magnetic materials the refractive index is n =
√
εr

and the effective n in our structures is a function of the filling factor

of the dielectric material in the local defect region [168]. The depen-

dence of the EM field energy distribution on εr, between dielectric

and air regions explains the drop in the frequency of the band gap

in figures 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8 with increase in εr.

Figure 3.12: Dispersion diagram of triangular lattice (r/a = 0.1) showing the prop-
agation bands (A) from PWE. The shaded region is the bandgap. The electric field
profile (from COMSOL) of the air band (B) with peak field in the air region around
the scatterers and the dielectric band (C) with peak field in the dielectric scatterer
(region inside the black ring) is shown in the inset. The blue/red (black/white)
region of (B) and (C) are the low/high electric field regions. The permittivity of
the scatterers is 9.5.
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This work was then extended by increasing the defect volume, by

the removal of a second scatterer as shown in figure 3.1(B). We fo-

cus on a lattice with r/a = 0.1, as from figure 3.9 we see this value

yields a single band-gap. Compared to the single point defect case,

in the double defect case, shown in figure 3.13, as the permittivity is

increased the band gap appears and a dipole mode is confined. As

the permittivity is increased further, a monopole mode enters into

the band gap and becomes confined to the defect. The frequency of

this confined monopole-like state is closer to the lower edge of the

band gap compared to the single defect case, which is due to the in-

creased volume of the defect. Note that the electric field profile (see

figure 3.12-C) of the dielectric band EM states do not have nodes

in the dielectric scatterers. When a radially symmetric point defect

is created by removing a single dielectric scatterer, the symmetry of

the dielectric band EM state is retained in the defect volume and a

nodeless monopole-like defect state is confined to the defect region

(see figure 3.9 inset). An elongated double defect region confines

both a dipole-like defect state with a central node, and an elongated

monopole-like state, as shown in figure 3.13 (inset). In the double

defect case, the dipole-like mode was pulled into the band gap before

the monopole-like defect state. The frequency of both the monopole

and dipole confined states, and the frequency range of the band gap,

decreases with increasing permittivity. This behaviour can be under-

stand in terms of the Rayleigh quotient (Re) [131], where increasing
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the permittivity decreases the angular frequency of the states in each

band [43].

Figure 3.13: Dynamics of the confined Bloch states introduced into the band gaps
by a double diagonal defect (two diagonal rods removed), at the centre of the
triangular lattice as shown in figure 3.1-B with r/a = 0.1. The normalization of
the frequency was done by comparing the wavelength of Bloch states to the lattice
constant a. The electric field profile of the confined EM states and the lattice is
shown in the inset.

In figures 3.9, 3.10, 3.11 and 3.13 we noticed that the band gap

drops in frequency faster than the frequency of the confined EM

states. This is due to the perturbation in the local region where

the defect states are confined. From perturbation theory, a negative

change −∆n (decrease) in the effective refractive index (n =
√
ε) in

a local region will cause an increase in the frequency of the states

confined in the defect region [43]. The frequency of the states in the

propagation band are less affected by the defect as this perturbation

is small compared to the bulk lattice. Similar to figure 3.9, the two

higher order band gaps in figure 3.13 do not confine EM fields, and at
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lower values of ε (≤ 10) the confined monopole-like states are close

to the lower edge of the first band gap.

3.4 Dynamic of confined EM states with varia-

tion in the radius of innermost rods closest

to the double defect

The authors of [157] and [165] have demonstrated that variations in

the innermost scatterers surrounding a photonic resonator alters the

frequency of EM states confined within the defect region. In this

chapter, this effect was studied and used to shift the monopole mode

of figure 3.13, which is confined within the defect region into the

propagating dielectric band, to leave only the dipole state confined

to the defect region. A triangular lattice with r/a = 0.1 was chosen

as it offers a single band gap. The permittivity of the scattering rods

was chosen to be 9.5 as this corresponds with commercial availabile

Dynallox100. The ratio R/a of the innermost rods was varied by

altering the radius R of scatterers closest to the defect from 0.095 to

0.16 in steps of 0.05. The results of this variation are shown in figure

3.14, where we see that the frequencies of both monopole and dipole

like Bloch states decrease with increased R/a. This can be explained

by perturbation theory where an increase in the effective refractive

index in a local defect region causes a decrease in the frequency of

confined states[43, 167].

At R/a = 0.11, the monopole-like Bloch state slips below the
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Figure 3.14: The effect of varying the radius R of the innermost rods around
the double diagonal defect (two diagonal rods removed) as shown in figure 3.1-C,
on the confined Bloch states. Triangular lattice with bulk ratio r/a = 0.1 and
permittivity = 9.5. The field profile of the modes is shown in the inset. The
region between the vertical dashed lines can be used for the design of a dipole
photonic resonator. The normalization of the frequency was done by comparing
the wavelength of Bloch states to the lattice constant a.
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lower edge of the band gap. As the frequency of the modes continue

to drop, HOMs are introduced into the band gap at R/a = 0.14. The

region between the two dashed lines in figure 3.14 is the operational

region where only the dipole Bloch state is confined within the band

gap and all other EM states are able to propagate away.

3.5 Quality factor improvement for confined Bloch

states

In order to demonstrate the confinement of the dipole-like Bloch

states and the extended state of the monopole mode, the radiative

Q of each state was plotted against R/a. The quality factor of an

EM state is the ratio of its energy stored within the defect region

to the rate at which energy is lost to the bulk lattice. The results

of the Q dependence are shown in figure 3.15, where we see that

the radiative quality factor of the monopole EM state decreases as it

leaves the band gap while the radiative quality factor of the dipole

state increases until HOMs enters the band gap.

For application such as crabbing in particle accelerators, it is criti-

cal that a resonator can support only the dipole mode with a high Q,

and that all other modes have a very lower Q. Although the Q-factor

presented here is only the radiative Q, the point that the dipole Q is

high with respect to the Q of all other modes remains true. In any

real structure using the lattice outlined here, the Q would be limited

by the ohmic losses in the metallic sides (this is shown in chapter
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Figure 3.15: A plot of the radiative quality factor of both monopole and dipole
modes with varying ratio R/a of the innermost rods around the double diagonal
defect as shown in figure 3.1-C. Triangular lattice with bulk ratio r/a = 0.1 and
permittivity = 9.5.
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4). We demonstrate in figure 3.16 that higher Q can be achieved by

increasing the number of scatterers surrounding the defect region of

the structure, a result that was first shown in [163, 169]. From fig-

ure 3.16 we see that increasing the number of scatterers on all sides

of the defect from 4 to 10 rows, the radiative quality factor of the

dipole EM state increased from 1.38× 103 to 4.14× 106, whereas the

quality factor of the monopole mode only increased from 1.47× 102

to 1.00× 103.

Figure 3.16: Quality factor improvement using larger PBG lattice dimensions.
Triangular lattice with bulk ratio r/a = 0.1, permittivity = 9.5, a double diagonal
defect, and innermost ring ratio R/a = 0.13.

In this chapter, we have systematically studied the dependence of

EM modes confined in both single point and double point defects.

We studied the frequency dependence of the confined EM states on

the lattice parameter surrounding the defect region. We found that

the frequency of the bandgaps drops faster than the confined modes
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with increasing permittivity. In a lattice where only monopole-like

states are confined by a point defect, we found that dipole-like states

can be pulled into the bandgap with the creation of a double point

defect. Finally we found that the frequencies of confined modes can

be increased/decreased within the bandgap by varying the radius of

scatterers close to the defect region. A PC lattice that confines only

the dipole-like Bloch state while allowing all other EM states to prop-

agate away has been demonstrated. A similar approach can be em-

ployed to design monomodal structures that confine only monopole,

quadrupole or higher order modes. The confinement of a dipole state

using the PC outlined above could offer advantages in applications

in particle accelerators, such as crabbing. In the following chapter,

the lattice design presented here is used to design a photonic band

gap crab cavity.
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Chapter 4

Dipole PC Crab Cavity

4.1 Introduction

In this chapter, a dipole PC crab cavity is implemented. The lattice

design presented in chapter 3 was used to confine the dipole mode

required for crabbing. The concept of crabbing has been introduced

in chapter 1 along with advances in high power dipole resonating

cavities in section 1.3 of chapter 1. As stated in chapter 1, crab

cavities have never been designed to benefit from the mode selective

capability of photonic crystals. Conventional deflecting cavities are

usually characterized by figures of merit which include the trans-

verse R/Q, peak surface fields and the group velocity [69]. R is the

shunt impedance of the cavity while Q is the unloaded quality factor.

In conventional deflecting cavities, the longitudinal voltage Vz(x, y)

along the cavity length d is given by:-

Vz(x, y) =

∫ d

0
Ez(x, y, z)e

iωz
c dz (4.1)
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The longitudinal R/Q‖ of a mode with angular frequency ω and

stored energy Ucav is given by:-

R

Q‖
(x, y) =

V 2
z (x, y)

2ωUcav
(4.2)

In an ideal deflecting pillbox cavity, the dipole TM110 mode has

no electric field on axis (x = y = 0) as seen by the particle bunch.

The transverse deflecting momentum imparted to the particles is ob-

tained only from the magnetic fields. However for practical reasons,

it is necessary to open up irises which connect to the beam tube to

allow the particle bunch access into the deflecting cavity. The new

boundary condition of the beam tubes and the irises introduces a TE-

like mode which mixes with the TM modes of the cavity and creates

a hybrid of the TM110 and the TE111 modes. In this practical case

where the transverse momentum is supplied by both the magnetic

and the electric fields, the Panosky-Wenzel theorem [170](discussed

in Appendix B) offers a convenient approach to calculating the trans-

verse R/Q. The Panofsky-Wenzel theorem assumes both that (1) the

transverse electric field vanishes at the boundary of the cavity and

(2) the particles are fast and rigid enough so their direction is es-

sentially unchanged as they travel through the cavity. As pointed

out in [171], Panofsky-Wenzel theorem is independent of the polar-

ization of the excited modes within the deflecting cavity as long as

the assumptions stated above are followed. The transverse voltage

V⊥(x, y) relates to the longitudinal voltage Vz(x, y) as follows:-
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V⊥ = −ic∇Vz(x, y) (4.3)

Since the magnitude of the electric field Ez of a TM110 mode is

zero on the Z-axis (the node point), therefore Vz(x = y = 0) = 0. c

is the speed of light in free space and x0 is the offset distance away

from the beam axis. The −i term indicate that the transverse voltage

V⊥(x, y) like the magnetic field has a 900 phase advance relative to

the longitudinal voltage Vz(x, y). However, the transverse voltage

can be calculated from the longitudinal voltage taken at an offset

distance away from the Z-axis as follows:

V⊥ =
−icVz(x0)

ωx0
(4.4)

Also the transverse R/Q is given as:

R

Q⊥
=

V 2
⊥

2ωUcav
(4.5)

The transverse R/Q is an important figure of merit for the robust-

ness of the cavity design as it relates the deflecting force received by

the beam to the stored energy within the cavity. The peak surface

fields of any deflecting cavity depend on the RF power source driving

the cavity and the material used to build the cavity. It is therefore

difficult to directly compare any two different cavity designs. How-

ever, since the transverse gradient E⊥ = V⊥
d is proportional to the

peak fields, the normalized peak electric E⊥
Epeak

and magnetic
Hpeak

E⊥
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fields quantities can be calculated. These normalized quantities de-

pend on the geometric design of the deflecting cavity and provides

a means of comparing different cavity designs. In order to prevent

surface melting and breakdown, the peak surface fields is generally

desired to be lower for any desired transverse gradient [69]. This

means that a higher E⊥
Epeak

and a lower
Hpeak

E⊥
is preferred. The authors

of [69] also found that the peak magnetic field is concentrated around

the iris of the cavity. This can cause heating of the iris, potentially

damaging it. Therefore the geometric parameters of the iris have to

be optimized to minimize
Hpeak

E⊥
. Since the crabbing scheme is only a

part of a bigger collider facility, the beam parameters and the Inter-

action Point (IP) requirement are usually considered in the design of

crab cavities. For a beam energy Ubeam, a transfer matrix R12 of the

focusing system (between the crab cavity and the IP) and a crossing

angle θc at the IP, the required transverse voltage is given by:-

V⊥ =
θcUbeamc

2ωR12
(4.6)

Equation 4.6 suggests that a crab cavity designed to operate at

higher frequency will require lower transverse voltage V⊥ to achieve a

given amount of deflection. The R12 of the final focusing scheme re-

lates the angular deflection angle x
′
at the crab cavity to the vertical

displacement xIP at the IP as shown in equation 4.7 and illustrated

in figure 4.1.
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Figure 4.1: Schematic diagram showing the transverse displacement of the bunch
off axis as it is rotated by the crab cavity.

xIP = R12x
′
= R12

V⊥
Ubeam

(4.7)

In [69] a study to optimize the compact linear collider (CLIC) crab

cavity was done and a conclusion was made that a bigger coupling

iris will lower the shunt impedance, increase the group velocity and

lead to a reduced beam loading and an efficient RF control. In this

chapter the effect of the iris parameters on R/Q and the surface fields

is studied for a PC crab cavity. The PBG cavity is optimized for

the CLIC operational frequency of 11.9942 GHz and a RF coupling

scheme was designed. The result presented here for a single cell PBG

structure compares well with those obtained for a conventional crab

cavity [69] and with the added benefit of Wakefield suppression.

4.2 A PBG crab cavity

The EM state confined in the defect region of any PBG resonator is

determined by the lattice parameter i.e. the radius of the rods r, the

lattice constant a, and the material of the scatterers (permittivity).
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The design of the PBG crab cavity presented here is based on the

lattice design presented in chapter 3 where only a dipole mode is

confined while all other modes propagate away from the defect region.

The study in chapter 3 was done with a 2D numeric calculation and

the results are presented in normalized units. The design process in

this section begins with a direct scaling of the 2D result to useful units

(GHz, meters). This is followed by a 3D HFSS simulation where the

height of the cavity is introduced with realistic boundary condition.

A Wakefield study was performed using Vorpal [155]. The eigenmode

characteristic of the single cell PBG structure was optimized with

respect to the beam tube and iris radius. A RF coupling scheme was

designed for the PBG crab cavity and the final design parameters is

presented. This section concludes with the investigation of dielectric

breakdown in the PBG structure.

4.2.1 Frequency scaling of the 2D lattice design

The result presented in figure 3.14 of chapter 3 is scaled from a

normalized frequency unit to 11.9942 GHz and presented in figure

4.2. This was done by first selecting a central value of R/a = 0.12416

from the operational range of 0.110 to 0.137 marked with the vertical

dashed line in figure 3.14 of chapter 3. The triangular photonic lattice

design from chapter 3 with bulk lattice ratio r/a=0.1, inner ring ratio

R/a=0.12416 and permittivity ε = 9.5 will confine only the dipole

TM110 mode at normalized frequency unit a/λ = 0.4798. The target

frequency of 11.9942 GHz corresponds to a wavelength λ = 0.025m
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which is multiplied by a/λ = 0.4798 to obtain the lattice constant

a = 0.012m. This lattice constant was then used to calculate the

values of the rod radius (r) and the innermost rods radius (R) to be

0.0012 m and 0.00149 m respectively. Also with a lattice constant

a = 0.012m, the frequency of the monopole mode and the first HOM

corresponds to 10.92515 GHz and 14.38361 GHz respectively. The

band gap was calculated to be between 11.1335 GHz to 14.26175

GHz. The electric and magnetic field distributions of the dipole

mode (shown in figure 4.3) were calculated with COMSOL [150].

A strong magnetic field was found to be concentrated around the

innermost rods closest to the defect region. The effect of this field is

discussed in section 4.4 of this chapter.

4.2.2 Finite height scaling of the lattice design

The lattice dimensions calculated in subsection 4.2.1 were used to

implement a π phase advance PBG crab cavity in a 3D HFSS simu-

lation with the top and bottom plates defined as a Perfect Electric

Conductor (PEC). A π cavity has a height that is half the wave-

length of the dipole mode and this corresponds to 0.0125 m for a

target frequency of 11.9942 GHz. In the initial case with no iris and

no beam tube, the change from an infinitely long lattice to one with

a finite height results in a frequency shift of 225 MHz. This shift in

frequency was corrected by changing the lattice constant from 0.012

m to 0.01189 m which in turn yielded new values for r and R as

0.001189 m and 0.0014772 m respectively. Using these new dimen-
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Figure 4.2: A triangular lattice with bulk ratio r/a = 0.1, dielectric constant ε =
9.5, a double diagonal defect, and innermost ring ratio R/a = 0.12416 will confine
only a dipole TM110-like EM state at 11.9942 GHz. The EM states (monopole
and HOM) below and above the band gap (marked by horizontal dashed lines) are
allowed to propagate through the lattice.

Figure 4.3: The field profile of a confined dipole TM110-like EM state at 11.9942
GHz.

79



sions, a Wakefield study (similar to ref [39]) was performed to check

if the finite height PBG structure will confine only the dipole mode

as predicted by the results in chapter 3.

4.2.3 Suppression of long range Wakefields by PBG crab

cavity

Wakefields created by the passage of a particle bunch through the

PBG crab cavity can couple to the eigenmodes (LOM and HOMs)

of the cavity. If these parasitic modes are not properly suppressed

or dampened, they can linger long enough within the double point

defect to adversely affect trailing bunches. In this subsection, the

suppression of long range wakefields within the PC lattice is investi-

gated by exciting the photonic resonator (shown in figure 4.4) with

a Gaussian current bunch of length σ = 3 mm.

Figure 4.4: A PBG structure with triangular lattice of dielectric rods in air and
metal ends. Two rods were removed to create a defect that is only able to confine
a dipole mode. The particle bunch travels down the center of the cavity from one
metal end to another.

Vorpal was set up to launch a ultra-relativistic (β = v
c = 0.999)
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bunch from a particle source on the top plate to an aligned particle

sink on the bottom plate. The time signal of the EM power spectrum

was calculated and recorded by a monitor placed within the resonator

created by the defect. The result of the fast Fourier transform of the

time signal of the power spectrum for frequencies up to 30 GHz

is shown in figure 4.5. A wide spectrum of electromagnetic waves

(Wakefields) was induced as the current bunch travelled through the

defect region of the photonic crystal lattice.

In figure 4.5, the strength of individual EM states contributing to

the power spectrum of the Wakefield tend to decrease depending on

the duration after excitation when the FFT of the time signal was

performed. Figure 4.5 (a), (b), and (c) are the FFT of the time signal

taken after 300, 1000, and 3000 periods of the dipole mode at 12 GHz.

The contributions of the LOM (10.905 GHz) and HOMs (14.95 GHz)

to the power spectrum of the Wakefield in the defect region can be

seen to reduce quickly with time because these EM states are not

confined to the defect region but are allowed to propagate through

the lattice to the surrounding PML boundary. The power of the

confined dipole-like EM state also reduces but at a slower rate than

the other undesirable propagating EM states. Considering that the

losses in the dielectric and the metals were neglected in this case,

the reduction in the strength of the dipole-like EM state was due

to leakages at the boundary between the defect and the bulk lattice

and to the surrounding PML boundaries. The results of figure 4.5
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Figure 4.5: The Fast Fourier Transform of the time signal with (a) 300 periods,
(b) 1000 periods and (c) 3000 periods of the field excited by a relativistic particle
bunch travelling through the defect of the PBG structure in figure 4.4. The dipole
mode at 12GHz is better confined than all other modes.
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demonstrates that the lattice design of chapter 3 still can confine

only the dipole-like EM state in a PBG crab cavity of finite height.

In order to show that the lattice design is scalable and that the

results of figure 4.5 are due to the lattice and are not artifacts of the

software, a 9 GHz dipole cavity was modelled and presented in figure

4.6. The lattice parameters in this case are a=10.17 mm, r=1.017

mm, R=1.217 mm and permittivity ε = 9.5.

Figure 4.6: The Fast Fourier Transform of the time signal after 3000 periods of
the field excited by a relativistic particle bunch travelling through the defect of the
PBG structure in figure 4.4. The dipole mode at 9 GHz is better confined than
all other modes.

4.2.4 Analytical calculation of short range Wakefield in

PBG crab cavity

PBG structures have been shown in section 4.2.3 to suppress long

range Wakefield thereby minimizing particle bunch degrading effects

on trailing bunches. However, when the bunch length is short and

comparable to the wavelengths of the Wakefields, the effect of the

Wakefields of an individual particle on another particle within the
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same bunch but at a small distance s away becomes significant [172].

These type of Wakefields are called short range Wakefields and they

are capable of increasing the energy spread and emittance of single

bunch traveling through a RF cavity [173]. Although PBG struc-

tures do not offer any significant advantage towards limiting the

effects of short range Wakefields, the dependence of short range

Wakefields on the geometrical parameters of the cavity [173] sug-

gest a parametric study of short range Wakes is useful for the design

and optimization of the PBG crab cavity. Parametric studies have

been performed for short range longitudinal [174, 175] and transverse

[173, 176] Wakefields in conventional accelerating structures. The re-

sults of the analytical approach of calculating short range Wakefields

presented in [173] for cylindrically symmetric structures was found

to agree very well with numerical results for the parameter range

0.35 ≤ abt/L ≤ 0.70 where abt is the radius of the beam tube and L

is the entire axial length of the single cell cavity. In this subsection,

the analytical approach presented in [173] is adopted to parameter-

ize the short range Wakefield in terms of the iris radius of the PBG

structure. The analysis of the short range Wakefields of the PBG

crab cavity is kept within the parameter range of validity stated in

[173]. The expression of the high frequency longitudinal impedance

of a perfectly conducting accelerating structure (in figure 4.7) is given

in [173, 177, 178] as :-
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Figure 4.7: An illustration of the single cell cavity analysed in ref [173]

ZL(k) =
iZ0

πka2
bt

[
1 + (1 + i)

Lα(γ)

abt

√
π

kg

]−1

(for large k) (4.8)

α(γ) ≈ 1− α1
√
γ − (1− 2α1)γ (4.9)

Where Z0 = 377Ω and k = ω
c are the free space impedance and

wave number respectively. α1 = 0.4648 is a fitted parameter from

[173] and γ = g
L . The inverse Fourier transform of the longitudinal

impedance ZL of the cavity gives the longitudinal short range Wake

function WL as:-

WL(s) ≈ Z0c

πa2
bt

φ(s)exp

(
−
√

s

s00

)
(for small s) (4.10)

s00 =
g

8

(
abt

Lα(γ)

)2

(4.11)

Where φ(s) is a step function that satisfies the condition φ(s) = 1
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for s > 0, and φ(s) = 0 for s < 0. The longitudinal Wakefield

is dominated by monopole fields while the transverse Wakefield is

dominated by the dipole fields [173]. The expression for the trans-

verse Wake function is given in [173] as :-

Wx(s) =
4Z0cs00

πa4
bt

φ(s)

[
1−

(
1 +

√
s

s00

)
exp

(
−
√

s

s00

)]
(4.12)

Equations 4.10 and 4.12 were used to calculate the longitudinal

and transverse short range Wake functions for PBG crab cavity re-

spectively where L = 12.5mm, g = 9.5mm and the value of the beam

tube radius abt ranges from 0.4 mm to 0.6 mm. The plot of the Wake

function against the axial separation distance s is shown in figure 4.8

and 4.9 below.

Figure 4.8: Plot of the analytically calculated short range longitudinal wake func-
tion for a 3mm long bunch traveling through a cavity with abt = 4mm, 5mm and
6mm.

Figure 4.8 shows that the value of the longitudinal wake function
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Figure 4.9: Plot of the analytically calculated short range transverse wake function
for a 3mm long bunch traveling through a cavity with abt = 4mm, 5mm and 6mm.

decreases as the axial separation distance s increases between the

constituent particles of a bunch. On the other hand in figure 4.9,

the transverse wake function increases with larger values of s. The

value of both longitudinal and transverse wake functions decreases

with higher values of the beam tube radius. This study suggests that

a PBG crab cavity with wider irises and beam tubes is preferred in

order to minimized short range wakefields within the cavity.

4.2.5 Convergence analysis of the HFSS simulation of a

PBG crab cavity

Using the HFSS, realistic PC cavities with beam tubes (radius = 4

mm) and vacuum surroundings were modelled with different mesh

resolutions to perform a convergence test. These PC cavities were

modeled with lossy dielectric rods (ε = 9.5, loss tangent = 0.0002),
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copper plates and copper beam tubes. Convergence test are neces-

sary in order to strike a balance between the accuracy of results and

the computational resources and time required for a simulation. The

adaptive meshing feature of HFSS was used where for any starting

number mesh points, HFSS refines the mesh size after each run of the

code until a set convergence condition is met. In this case a maxi-

mum tolerance of 2% variation in the eigenfrequency was set. Figure

4.10 shows that the frequency of the dipole mode oscillates about

an average value of 11.9956 GHz as the mesh points were increased

from 1000 to 400000. The standard deviation of the eigenfrequency

was found to be 42.6 kHz (0.004%). The Q of the dipole mode was

found to increase before oscillating about a stable value of ≈19500

as the number of mesh point is increased. This implies that the im-

provement in the accuracy of the results is small compared to the

computational resources used as the starting mesh point is increased.

Also, the variation in the magnetic and electric field with increase

in the mesh density is presented in figure 4.11. The peak magnetic

field and electric fields can be seen to converge about 4.0 µA/m and

0.752 V/m respectively. Furthermore, Figure 4.11 also indicates that

the number of mesh points required for good approximation of the

EM fields should be above 100000.

4.2.6 Optimization of the PBG crab cavity

As shown in [69] for conventional cavities, the iris and the beam tube

dimensions have a strong effect on the figures of merits (frequency,
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Figure 4.10: Convergence test result for HFSS simulation of a PBG crab cavity
with beamtube radius (btr)= 4 mm, beamtube length (btl) = 10 mm, bulk lattice
rod radius (r) = 1.189 mm and innermost rod radius (R) = 1.4885 mm. The
variation in the dipole mode frequency and quality factor with increase in the
number of mesh point solved is presented. Note that the HFSS adaptive mesh
feature was used.

Figure 4.11: The effect of variation in the mesh density on (a) Peak electric field
and (b) Peak magnetic field of the dipole mode at 11.9942 GHz.
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R/Q, E⊥/Epeak , Hpeak/E⊥) of a crab cavity. Following the approach

of [69], the effect of the beam tube dimensions on the figures of merit

of a PC crab cavity was investigated. In the case of a PBG structure,

the introduction of the irises and the beam tubes can be considered

as an extension of the defect region as they alter the local effective

permittivity of the defect region. The presence of the beam tube

causes the EM field of the confined mode to be redistributed and as

a result altering the frequency and the parameters of merit of the

confined EM state in the PBG structure. The introduction of two

beam tubes (shown in figure 4.12) of radius 4 mm to either side of

the crab cavity cause a frequency shift of -144.2 MHz (11.9942 GHz

to 11.850 GHz).

Figure 4.12: PBG crab cavity with the beam tube (radius = 4mm) introduced.
The dipole mode has most of its field confined to the defect region of the PBG
structure.

The extent of the frequency shift varies with the dimensions of

the beam tube. The PC lattice needs to be optimized to correct this
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frequency shift. This is important because the quality factor (Q) of

an EM states depend on the frequency of that state as follows [179]:-

Q =
2πf0Umode

P
(4.13)

Where Umode is the stored energy of the mode, P is the power

lost/dissipated and f0 is the resonant frequency. Figures 4.13, 4.14,

4.15 and Table 4.1 shows the frequency sensitivity of the dipole mode

to the beam tube radius (btr), the beam tube length (btl), and the

iris curvature radius (cc) respectively. A 1 mm increase in the radius

and length of the beam tube caused a 48 MHz drop and 13.5 MHz

increase in the frequency of the dipole mode respectively. Also an

increase in the radius of the iris curvature by 1 mm gives a drop

of 11.8 MHz in the frequency of the dipole mode. Compared to

the conventional crab cavity in [69], the PBG crab cavity is less

sensitive to variation in the cavity dimensions. This offers a less

tight fabrication tolerance for the PBG crab cavity.

Table 4.1: Frequency sensitivity of the dipole photonic resonator.
Dimensions Frequency sensitivity

(mm) (MHz/mm)
btr -48.2
btl 13.5
cc -11.8

However, computer numeric control (CNC) machining can meet

these fabrication tolerance requirements with accuracy up to a hun-

dredth of a millimeter. For a beam tube length (btl=10 mm), the

effect of varying the beam tube radius (btr) on the figures of merit
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Figure 4.13: Frequency sensitivity of the dipole photonic resonator to variation in
the beam tube radius.

Figure 4.14: Frequency sensitivity of the dipole photonic resonator to variation in
the beam tube length.
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Figure 4.15: Frequency sensitivity of the dipole photonic resonator to variation in
the iris curvature radius.

was investigated and the result are presented in figures 4.16, 4.17,

and 4.18. The frequency shift caused by the variation in the beam

tube radius was corrected in each case by optimizing the radius of the

innermost rods so as to bring the frequency of the dipole mode back

to 11.9942 GHz. The result of figures 4.16, 4.17, and 4.18 follow a

similar pattern as those obtained in [69] with a decrease in R/Q and

E⊥/Epeak with increase in the beam tube radius. A wider beam tube

increases the exposure of the electric field (which is totally internally

reflected by the top and bottom plates) to the air region within the

beam tube. This causes the longitudinal component of the electric

field (Ez) to decrease which in turn reduces the value of R/Q and

E⊥/Epeak. The values of R/Q in figure 4.16 are smaller than those

published in figure 2 of [69] because the geometry studied is a sin-

gle cell PC cavity with a long beam tube instead of the infinitely

periodic travelling wave structure in [69]. As shown in [69] longer

irises length causes a decrease in R/Q and E⊥/Epeak of conventional
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crab cavities. Also the quality factor of the dipole EM state in the

dielectric PC resonators are higher than the Q values obtained for

metallic pillbox cavities. This higher Q values in dielectric PC res-

onators results in a decrease in the R/Q values. On the other hand,

the electric field ratio E⊥/Epeak in figure 4.17 is comparable to those

obtain in [69] for a cavity cell separation (iris length) of 7 mm. Fig-

ure 4.18 shows the effect of the beam tube radius on Hpeak/E⊥. The

values of Hpeak/E⊥ are comparable to those obtained in [69], however

Hpeak/E⊥ decreases with increase in the beam tube radius (btr) as

both Hpeak concentrated around the iris and E⊥ drop with increased

beam tube radius.

Figure 4.16: The effect of the beam tube radius (btr) on R/Q of the dipole mode
at 11.9942 GHz.

In order to minimize the concentration of the magnetic field around

the iris, a curvature of radius cc = 1mm was introduced to the iris.

This resulted in a frequency shift of -389MHz for a beam tube radius

of 5 mm. Again, the frequency shift was corrected by tuning the
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Figure 4.17: The effect of the beam tube radius (btr) on E⊥/Epeak of the dipole
mode at 11.9942 GHz.

Figure 4.18: The effect of the beam tube radius (btr) on Hpeak/E⊥ of the dipole
mode at 11.9942 GHz.
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radius (1.401mm) of the innermost rods closest to the defect. Also,

the iris curvature caused a small increase of 1% in the quality factor

of the dipole mode.

4.2.7 Final single-cell Design Parameters

In this section the final design parameter of the single cell PC crab

cavity is presented. Table 4.2 shows the dimensions of the final cav-

ity design while table 4.3 gives the parameters of merit of the cavity.

Also, figures 4.19 and 4.20 compare the Ez component of the electric

field along the z-axis and x-axis respectively of a PBG crab cavity to

those obtained from a pillbox cavity. Since the electric field strength

depends on the power of the EM source driving the structure, the

electric field of both the pillbox and the PBG crab cavities was nor-

malized to 1W. The field seen by a particle bunch travelling through

the PBG crab cavity compares very well with those obtained in the

pillbox designs. However, the PBG design offers the additional bene-

fit of wakefield supression which is not intrinsic in the pillbox design.

Table 4.2: The dimensions of the PBG crab cavity.
Cavity length 12.5 mm

Lattice constant (a) 11.89 mm
Bulk rod radius (r) 1.189 mm

Innermost rod radius (R) 1.4 mm
Beam tube radius (btr) 5 mm

Iris curvature radius (cc) 1 mm
Beam tube length (btl) 10 mm

Phase Advance 180 Degrees

96



Table 4.3: The parameters of merit of the PBG crab cavity.
Frequency 11.9942 GHz

R/Q 16.7 Ω
Q0 18925

Deflecting gradient (E⊥) 63.6 KV/m
Transverse Voltage (V⊥) 795 V

Input power 1 Watt
E⊥/Epeak 0.187
Hpeak/E⊥ 0.007 A/V

Figure 4.19: The Z-component of the electric field along the transverse X-axis for
PBG crab cavity is compared to the equivalent values obtained for the pillbox crab
cavity. The values of Ez in the two cavities was normalized to 1Watt input power.
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Figure 4.20: The Z-component of the electric field along a parallel longitudinal
line which is 2 mm away from the Z-axis of the PBG crab cavity is compared to
the equivalent values obtained for the pillbox crab cavity. The values of Ez in the
two cavities was normalized to 1W input power.

4.3 Coupling of EM power into a PC crab cavity

This section discusses the transfer (coupling) of EM power into the

PC resonator from an external RF source. The aim is to couple

as much of the EM power as possible from the RF source to the

dipole mode with very little power coupled to other modes and with

minimum reflection back to the external RF source. This section

presents two different methods of coupling EM power into the cavity

resonator. The first method explored the coupling of EM power from

a coaxial wire, via a stub antenna, into the PC resonant cavity. This

coupling approach is suitable for the cold testing of the PBG crab

cavity in the laboratory. However the high power associated with

the hot testing and regular operation of the PBG crab cavity de-

mands an alternative coupling approach because the high power will
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damage the stub antenna. In the second coupling method, the coax-

ial line is replaced by a rectangular waveguide where the door-knob

transition (discussed in [179]) was adopted to couple EM power from

the waveguide into the PC resonant cavity. Detailed description of

the two EM coupling scheme are presented in subsections 4.3.1 and

4.3.2 below.

4.3.1 Coupling of EM power from a coaxial wire

This coupling scheme was implemented by inserting a dipole antenna

into the top plate of the PC resonator at the position shown in figure

4.21. The dipole antenna is connected to an EM wave port via a

coaxial line. The EM power from the RF source travels through the

coaxial line and is then radiated by the antenna within the PBG crab

cavity. The position of the antenna was chosen to be close enough to

the point of the peak electric field of the dipole mode in order to allow

for a good coupling. On the other hand, the antenna was kept away

from the peak field position in order to minimize any perturbation

of the electric field of the dipole mode.

The presence of the antenna in the PBG structure has a capac-

itive effect and the length of the antenna controls the strength of

the coupling. By varying the length of the antenna with the PC lat-

tice, an optimum impedance matching can be achieved between the

coaxial line and the double point defect of the PBG structure. Using

the HFSS setup in figure 4.21, the depth of the antenna within the

PC resonator was set to 7 mm and the reflection coefficient S11 was
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Figure 4.21: The image of the PBG resonator with an antenna positioned to couple
EM power into the structure.

calculated at the port defined outside the cavity. The introduction of

the antenna (radius=1.2 mm) caused a frequency shift of -517 MHz

which was corrected by optimizing the lattice dimension (radius of

innermost rods). Figure 4.22 shows the scattering parameter S11 for

a PC dipole resonator with beam tube radius of 5 mm and iris cur-

vature of 1 mm. A near critical coupling was achieved with S11 =

0.045 at 11.99425 GHz.

Figure 4.22: The reflection coefficient S11 of the dipole mode at 11.99425 GHz.
95.5% of the power from the antenna is stored in the PBG structure.
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4.3.2 Coupling of EM power from a waveguide

This coupling scheme involves two transitional stages. In the first

stage, EM power is coupled from a waveguide, via a coupling iris, into

a single point defect in the PC lattice. The second stage involves the

coupling of the EM power from the single point defect to the double

point defect. This coupling scheme is shown in figure 4.23.

Figure 4.23: The image of the PBG resonator with a waveguide coupling scheme.

The EM wave propagation through the waveguide (shorted at one

end) sees a discontinuity presented by the iris which alters both the

electric and magnetic field line of its TE010 mode. The electric field of

the waveguide’s TE010 mode is perpendicular to the plane of the cou-

pling iris while the magnetic field, rotating around the electric field,

is parallel to the plane of the coupling iris. Although the height of

the iris is small, it can be considered as a cylindrical waveguide. The
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magnetic field of the TM010 mode of the cylindrical waveguide ro-

tates in a plane parallel to the magnetic field of the TE010 mode of

the waveguide. These indicate that the magnetic fields of these two

modes are well matched. On the other hand, the electric fields of both

modes are not well matched and will be redistributed at the discon-

tinuity presented by the iris [179]. Furthermore, the magnetic field

of the TM010 mode in the iris is well matched to the magnetic field of

the fundamental TM010-like EM state in the point defect. However,

the electric field of the TM010-like EM state is perturbed by bound-

ary condition presented by the removal of part of the top metallic

plate. As shown in [179], this type of iris coupling is both capaci-

tive (displacement current) and inductive (conduction current). The

strength of the coupling of the EM power between the waveguide and

the point defect can be controlled by varying the dimensions (radius

and/or height) of the iris. The second stage of this coupling scheme

involves the matching of the impedance of the single point defect to

the impedance of the double point defect. This was done by placing a

capacitive tuning screw at the centre of the single point defect in or-

der to vary its impedance until it is matched to the impedance of the

double point defect. The strength of the coupling between the single

and double point defects can be controlled by varying the height of

the tuning screw. The tuning screw also perturbs the TM010-like

EM state of the single point defect and does not allow the sharing of

the EM power from the RF source between the TM010-like mode in
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the single point defect and the TM110-like dipole mode in the double

point defect. A careful selection of an optimized combination of the

iris radius and the length of the screw can minimize the impedance

mismatch in the entire system. This will allow most of the EM power

to be coupled to the dipole-like EM state in the double point defect.

This coupling scheme was implemented numerically by setting

up a HFSS simulation as shown in figure 4.23 and the scattering

parameter S11 was calculated at the RF source. The introduction

of the waveguide, the coupling iris, and the single point defect to

the previous HFSS setup (in table 4.2) caused a frequency shift of

-19.8MHz (11.9942 GHz to 11.9744 GHz). This result was obtained

when the coupling iris radius and the tuning screw length was set to

4 mm and 3 mm respectively. This shift in frequency was corrected

by changing the lattice constant from 11.89 mm to 11.52 mm as

the impedance matching method described above is not suitable for

broadband impedance matching [179]. The r/a and R/a ratios of the

lattice were kept the same at 0.1 and 0.125 respectively. This brings

the resonant frequency of the dipole mode to 11.993 GHz which is

closer to the target frequency of 11.9942 GHz. An increase in the

radius of the coupling iris causes the frequency of the dipole mode in

the double defect to decrease. Also a reduction in the length of the

tuning screw causes an increase in the frequency of the dipole mode.

These two effects can be explained by looking at the relationship

ω0 = 1√
LC

between the eigenfrequency ω0 and the capacitance C and
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inductance L in the equivalent RLC circuit in figure 4.24 where Zw,

ZP and ZD are the impedance of the waveguide, the point defect and

the double-point defect respectively. The iris and the tuning screw

are indicated by i and s while C and L are the associated capacitance

and inductance respectively.

Figure 4.24: The equivalent circuit of the coupling scheme to transfer microwave
power from a waveguide to the double point defect. Zw, ZP and ZD are the
impedance of the waveguide, the point defect and the double-point defect respec-
tively. The iris and the tuning screw are indicated by i and s while C and L are
the associated capacitance and inductance respectively.

The increase in the radius of the coupling iris and the reduction

in the length of the tuning screw both have the effect of reducing the

capacitance which results in a reduction in the value of the eigen-

frequency. An extensive optimization of the combined effect of cou-

pling iris and tuning screw found that a near critical coupling can

be achieved when the radius of the coupling iris is 3.69 mm and

the tuning screw is 0.9 mm. All other parameters were kept the

same with lattice constant a = 11.52mm, bulk lattice rod radius

r = 1.152mm, innermost rod radius R = 1.33mm and the cavity

height d = 12.5mm. The resulting scattering parameter S11 calcu-
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lated using HFSS is shown in figure 4.25.

Figure 4.25: The reflection coefficient S11 of the dipole mode at 11.9942GHz.
97.21% of the EM power from the waveguide is coupled to the dipole mode in the
double point defect of the PBG structure.

In figure 4.25, the S11 value at 11.9942 GHz is 0.0279. This indi-

cates that more than 97% of the EM power sent from the RF source

is coupled to the TM110-like dipole mode confined to the double point

defect. The strength of the coupling is shown in figure 4.26 where

the S11 plot is very close to the centre point of the Smith chart that

indicate critical coupling. The loaded quality factor QL was esti-

mated from the ratio of the resonant frequency f0 to the bandwidth

(f2− f1) at the −3dB point indicated by markers m2 and m3 on the

polar plot in figure 4.26.

QL =
f0

f2 − f1
=

11.9942GHz

11.9952GHz − 11.9930GHz
= 5452 (4.14)

105



The field profile of the excited dipole EM state at 11.9942 GHz is

shown in figure 4.27.

Figure 4.26: Smith chart and polar plot of the reflection coefficient S11 for the
waveguide coupling of EM power to the dipole mode at 11.9942 GHz (marker:
m1). A near critical coupling was achieved with markers m2 and m3 indicating
the -3dB points on the polar polar plot on the right.

Figure 4.27: The distribution of the electric field of the dipole mode at 11.9942
GHz when EM power is coupled from a waveguide.
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4.4 High Power application of Final Design Pa-

rameters

So far in this work, the benefit of using a PBG structure for crabbing

applications has been demonstrated with the selective confinement

of the dipole mode. On the other hand, this design like other reso-

nant cavities used in high energy particle accelerators is susceptible

to breakdown in the dielectric rods as well as the metallic plates

[180]. Breakdown is the sudden drop in the electrical resistance of

a material when it is exposed to an electric field with intensity be-

yond a critical value referred to here as the breakdown value. When

this critical value is exceeded, a conduction path with high current

density is formed in the material. The Joule heating generated by

the sudden increase in the current density can lead to destructive

effects such as melting or cracking of the material [181]. This section

investigates how the performance of a single-cell PBG crab cavity

is limited by breakdown. Also in this section, the performance of a

multi-cell PBG crab cavity is calculated with consideration given to

the breakdown value of the dielectric scatterers.

4.4.1 A single-cell PBG crab cavity for CLIC

The alumina rods closest to the defect region are exposed to higher

magnitudes of electric field than those that make up the bulk lattice.

This can be seen from the electric field distribution Ez along the

X-axis given in figure 4.28 for the single-cell PBG crab cavity.
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Figure 4.28: The Z-component of the electric field along the transverse X-axis of a
single-cell PBG crab cavity. The position of the innermost rods along the X-axis
are shown.

Considering that the DC breakdown value for alumina (ε = 9.5)

is 13.4 MV/m [182], it is important to keep the electric field Einner on

the innermost alumina rod lower than this value. As stated in [69],

the CLIC facility requires a crab cavity with a maximum transverse

kick voltage V⊥ of 2.4 MV to give a beam with energy Ubeam =

1.5TeV a crossing angle of θc = 20mrad. This was calculated from

equation 4.6 as follows:

V⊥ =
θcUbeamc

2ωR12
=

(20× 10−3)× (1.5× 1012)× (2.9979245× 108)

2× (2× π × 11.9942× 109)× 25
= 2.4MV

(4.15)

In order to deliver the 2.4 MV of kick required by CLIC from a

single cell PBG crab cavity of length d = 0.0325m , the cavity must

have a transverse gradient E⊥ given as :-
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E⊥ =
V⊥
d

=
2.4× 106

0.0325
= 73.84MV/m (4.16)

The parameter of merit E⊥/Epeak depends on the the cavity de-

sign and remains constant for any given design. For the single-cell

PBG crab cavity with E⊥/Epeak = 0.149, the peak electric field is

calculated as:

Epeak =
73.84

0.149
= 495.6MV/m (4.17)

Considering the electric field distribution Ez along the X-axis

given in figure 4.28 for the single-cell PBG crab cavity, the ratio

of electric field Einner in the innermost rods to the peak electric field

Epeak is also constant and given as Einner/Epeak = 0.386. Therefore

Einner is calculated as:

Einner = Epeak × 0.386 = 495.6× 0.386 = 191.3MV/m (4.18)

Although the value of Einner (191.3MV/m) is higher than the DC

breakdown value (13.4MV/m) for alumina, the field Einner in the

PBG crab cavity oscillate with time and the dielectric rods are ex-

posed to the high value of Einner only once in every 0.0834ns (period

of the dipole mode). However, based on the DC breakdown value

for alumina, the single cell PBG crab cavity designed in this chapter

cannot be used to deliver the 2.4 MV transverse kick required by
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CLIC. On the other hand, the single-cell PBG crab cavity can serve

as a starting platform on which a multi-cell crabbing solution can be

developed. Also, the single-cell dipole PBG cavity can used in high

power applications where the transverse kick requirement is much

lower than that of CLIC.

In order to determine the limit of the transverse kick voltage that

can be delivered by this single-cell design of PBG crab cavity, the DC

breakdown value of 13.4 MV/m is assigned to Einner and the trans-

verse gradient as well as the maximum transverse kick is calculated

as :-

Epeak =
Einner

0.386
=

13.4× 106

0.386
= 34.7MV/m (4.19)

E⊥ = Epeak × 0.149 = 34.7× 106 × 0.149 = 5.17MV/m (4.20)

The maximum transverse kick that can be delivered is calculated

as:

V⊥ = E⊥ × d = 5.17× 106 × 0.0325 = 168KV (4.21)

This single-cell crab cavity can be safely used for applications that

requires a transverse kick that is less than 168 KV. In order to meet

the transverse kick requirement for CLIC, a different design of PBG

crab cavity is needed. One of the design options is a multi-cell PBG
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crab cavity with higher longitudinal drift distance d which reduces

the transverse gradient of the structure. This multi-cell approach is

considered in the next subsection.

4.4.2 A multi-cell PBG crab cavity for CLIC

The multi-cell PBG crab cavity is investigated by considering two

design scenarios. In the first scenario, the design is based on the

assumption that when several single-cell PBG crab cavities are cas-

caded together (iris to iris), the performance of each single-cell is

retained in a multi-cell design. This assumption allows for the ex-

trapolation of the performance of a multi-cell PBG crab cavity from

those of a single-cell crab cavity. In the second scenario, the perfor-

mance of a finite size multi-cell PBG crab cavity is extrapolated from

an infinitely long multi-cell PBG crab cavity. In this case the cell-

to-cell coupling and the π phase advance between the cells are con-

sidered in the HFSS simulation. The two design scenarios outlined

above are necessitated by the unavailability of huge computational

resources required to directly simulate large geometrical structures

using HFSS.

Scenario 1: The cascading of single-cell PBG crab cavities

In this scenario, an assumption is made that a multi-cell PBG crab

cavity can be made by cascading several single-cell PBG crab cavities

where the parameters of merit of the single-cell structure is retained

in the multi-cell cavity design.
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For the purpose of calculating the maximum transverse gradient

E⊥ that can delivered by this multi-cell PBG crab cavity design

without damaging the alumina rods, 90% of the DC breakdown value

(13.4 MV/m) for alumina is assigned to Einner(i.e 12.06 MV/m).

From the electric field distribution Ez along the X-axis in figure 4.28,

the ratio of electric field Einner in the innermost rods to the peak

electric field Epeak is constant and given as Einner/Epeak = 0.386.

Therefore the Epeak is calculates as:

Epeak =
Einner

0.386
=

12.06× 106

0.386
= 31.24MV/m (4.22)

The parameter of merit E⊥/Epeak depends on the the cavity de-

sign and remains constant for any given design. For the single-cell

PBG crab cavity with E⊥/Epeak = 0.149 (shown in table 4.3), the

maximum transverse gradient E⊥ that can be delivered is calculated

as:

E⊥ = Epeak × 0.149 = 31.24× 106 × 0.149 = 4.66MV/m (4.23)

In order to deliver the 2.4 MV of transverse kick required by CLIC

from a crab cavity with transverse gradient E⊥ of 4.66 MV/m, the

cavity must have a longitudinal length d given as :-

d =
V⊥
E⊥

=
2.4

4.66
= 0.515m (4.24)
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In order to meet the requirement of a longitudinal length of 0.515

m, a multicell PBG crab cavity design is needed. Based on the

assumption stated above and using only the active (distance between

the copper plates) longitudinal length d
′
of 0.0125 m, the number of

cells N required for the multicell design is calculated as:

N =
d

d′
=

0.515

0.0125
= 41cells (4.25)

Scenario 1 suggest that a 51.5 cm long, 41 cell PBG crab cav-

ity will deliver the 2.4 MV transverse kick required by CLIC while

avoiding breakdown in the dielectric rods.

Scenario 2: An infinitely long multi-cell PBG crab cavity

In this scenario, an infinitely long periodic multi-cell PBG dipole

cavity is investigated in order to extrapolate the performance of a

long multi-cell PBG crab cavity. In this case, the dielectric rods are

sandwiched in-between two copper disk plates. Each disk plate of a

cell has an iris that allows it to couple to adjacent cells. The infinitely

periodic PBG crab cavity was implemented by applying the HFSS

periodic boundary condition on both irises of the single-cell structure

shown in figure 4.29.

In figure 4.29, Rc is the outer radius of each cell, rb is the radius of

the iris, cc is the radius of the iris curvature and d
′
is the cavity length

(cavity+iris) which is determined by the phase advance per cell φc =

kRF

d = π . kRF is the free space phase constant in radians/meter. The
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Figure 4.29: An infinitely periodic PBG resonating cavity. cc is the radius of the
iris curvature while d

′
is the cavity length (cavity + iris).

approach used in [69], where the iris is curved to avoid surface field

enhancement and field emissions was adopted in this scenario. The

radius of the iris curvature was optimized by investigating the effect

of variations in the iris curvature cc on the parameters of merit (R/Q,

E⊥/Epeak, Hpeak/E⊥). For each case of iris curvature cc, rb = 5mm,

d
′

= 12.5mm and Rc = 68mm. The lattice dimension (radius of

the innermost rods) was varied to keep the frequency of the dipole-

like EM state fixed at 11.9942 GHz. Figures 4.30, 4.31 and 4.32

shows the effect of variations in cc on R/Q, E⊥/Epeak, and Hpeak/E⊥

respectively.

As pointed out in [69], it is desirable for a crab cavity design to

have a higher value of E⊥/Epeak while keeping Hpeak/E⊥ as low as

possible. This is important in order to minimize the surface fields of
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Figure 4.30: The effect of variation in the radius of the iris curvature cc on the
R/Q of the dipole-like EM state. This result is for an infinitely periodic PBG crab
cavity.

Figure 4.31: The effect of variation in the radius of the iris curvature cc on the
E⊥/Epeak of the dipole-like EM state. This result is for an infinitely periodic PBG
crab cavity.
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Figure 4.32: The effect of variation in the radius of the iris curvature cc on the
Hpeak/E⊥ of the dipole-like EM state. This result is for an infinitely periodic PBG
crab cavity.

the resonant cavity. High surface fields can lead to X-ray emmisions,

surface melting and breakdown in a resonant cavity [183, 184]. Figure

4.30 suggest that the highest R/Q of this PBG crab cavity can be ob-

tained when the iris curvature cc = 1.25mm. In figure 4.31, the value

of E⊥/Epeak was found to increase with increasing value of cc. The

value of E⊥/Epeak for this multicell PBG crab cavity is comparable

to those obtained in [69] for a conventional travelling wave crab cav-

ity. Also in figure 4.32, the lowest value of Hpeak/E⊥ was found when

cc = 2mm. From figures 4.30, 4.31 and 4.32 and based on the desire

to minimize the surface fields as well as input RF power requirement,

a PBG crab cavity with iris curvature cc = 1.5mm could be a pre-

ferred choice. The approach used in scenario 1 above to calculate the

number of cells required to deliver the necessary 2.4MV transverse

kick is adopted here in scenario 2. In order to avoid breakdown in
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the alumina rods, 90% of the DC breakdown value (13.4 MV/m) for

alumina is assigned to Einner(i.e 12.06 MV/m).

From the electric field distribution of the dipole mode for cc = 1.5

mm in the periodic cavity, the ratio of electric field Einner in the

innermost rods to the peak electric field Epeak is constant and given

as Einner/Epeak = 0.285. Therefore Epeak is calculated as:

Epeak =
Einner

0.285
=

12.06× 106

0.285
= 42.37MV/m (4.26)

The parameter of merit E⊥/Epeak depends on the the cavity design

and remains constant for any given design. For the inifinitely periodic

PBG crab cavity with E⊥/Epeak = 0.28, the maximum transverse

gradient E⊥ that can be delivered is calculated as:

E⊥ = Epeak × 0.28 = 42.37× 106 × 0.28 = 11.86MV/m (4.27)

In order to deliver the 2.4 MV of transverse kick required by CLIC

from a crab cavity with transverse gradient E⊥ of 11.86 MV/m, the

cavity must have a longitudinal length d given as :-

d =
V⊥
E⊥

=
2.4

11.86
= 0.202m (4.28)

In order to meet the requirement of a longitudinal length of 0.202

m for a π phase advance multicell structure where the active longi-

tudinal length per cell d
′
= 0.0125 m, the number of cells N required
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for the multicell design is calculated as:

N =
d

d′
=

0.202

0.0125
= 16.18 ≈ 16cells (4.29)

Scenario 2 suggest that a 20.2 cm long, 16 cells PBG crab cavity

will deliver the 2.4MV transverse kick required by CLIC while avoid-

ing breakdown in the dielectric rods. While bearing in mind that

practical crab cavities are of finite longitudinal length and may have

small variation in their parameters of merit, the periodic crab cavity

is a good approximation for a long cavity [69]. The results scenario 2

is more believeable because the cell-to-cell coupling is accounted for

and the π phase advance between the periodic boundaries is enforced.

The eigenfrequency simulation of the entire 16 cell PBG crab cavity

requires more computational resources (computer memory) than was

available for this work. However, at lower mesh density and taking

advantage of the geometrical symmetries, the eigenfrequency simu-

lation of a 4 cell PBG structure was performed and a plot of the

electric field distribution of the dipole-like EM state is presented in

figure 4.33.

4.4.3 Power requirement for the PBG crab cavity design

The transverse voltage V⊥ scales with the amount of energy Ucav

stored in the multi-cell PC cavity (N = 16 cells) as follows:
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Figure 4.33: The electric field distribution of the dipole-like EM state confined by
the lattice of a 4-cell PBG crab cavity. Note that only one quarter of the PBG
structure is simulated with symmetric boundaries conditions set along the XZ and
YZ planes.

Ucav =
V 2
⊥

ωR
QN

=
(2.4× 106)2

(2× π × 11.9942× 109)× 14.05× 16
= 0.34Joules

(4.30)

Since the quality factor of the dipole mode was calculated to be

Q0 = 12956, the power dissipation Pcav required to achieve a stored

energy of 0.34 Joules can be calculated as:

Pcav =
ωUcav
Q

=
(2× π × 11.9942× 109)× 0.34

12956
= 1.98MW (4.31)

In practical accelerator application, the beams are not always on

the Z-axis where the Ez of the dipole mode is zero but at an offset

distance away from it. The beam sees the longitudinal component of

the electric field Ez of the dipole mode which (depending on its phase
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and the position of the beam) can give energy to or take energy away

from the bunch. This energy exchange can accelerate or decelerate

the bunch and can cause the amplitude and the phase of the cavity

fields to change [68]. This is the beam loading effect which requires

that the power deposited into or extracted from the cavity by the

current train of particle bunches is taken into consideration when

calculating the total input power for the PBG crab cavity. A bunch

train of current Ib traveling through a cavity at a phase ωt will deposit

or extract power Pb which is given as :-

Pb = IbVz(x, t) =
iqfbωx0V⊥e

ωt

c
(4.32)

Where q is the bunch charge, fb is the bunch repetition frequency,

x0 is the maximum bunch offset away from the Z-axis, c is the free

space speed of light, ω is the angular frequency of the dipole mode, t

is time of travel, V⊥ is the transverse voltage and i =
√
−1 indicate

that the transverse kick is 900 out of phase with the beam loading.

For q = 0.6nC, fb = 2GHz, x0 = 0.0004m, phase ωt = 0, V⊥ =

2.4MV and with a cavity frequency of 11.9942 GHz, the beam loading

can be calculated as:-

Pb =
0.6× 10−9 × 2× 109 × 2× π × 11.9942× 109 × 4× 10−4 × 2.4× 106

2.99792458× 108

= 0.29MW (4.33)

Therefore the total power required to be delivered to the PBG
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crab cavity is given as:-

Ptotal = Pcav + Pb = 1.98 + 0.29 = 2.27MW (4.34)

The power requirement of the RF source for the entire multicell

PBG crab cavity is estimated with consideration for the RF coupling

scheme discussed in subsection 4.3.2 where only 97.21% of the input

power couples into PC crab cavity (figure 4.25). In order to couple

2.27MW of power into the multicell crab cavity, an input power of

2.34MW is required from the RF source. Therefore each individual

cavity of the 16 cell PBG structure will receive approximately 146KW

of power.

4.4.4 Damping the power of the parasitic modes

In previous sections, the selective confining ability of PBG structure

have been demonstrated where a carefully designed PC lattice con-

fined only the dipole-like EM state while forcing the LOM and the

HOMs to propagate to the surroundings of the PBG crab cavity.

Considering the amount of EM power (8.46 MW) that is needed to

deliver the required 2.4 MV transverse kick and that part of this

power will couple to the LOM and HOMs, it is important to find

a way of dissipating/damping of the energy of these parasitic EM

states. Silicon Carbide (SiC) blocks have been shown to be good mi-

crowave absorbers in [185] where they have been placed in the beam

ducts of a 500 MHz cavity to dissipate the energy of HOMs. A sim-
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ilar approach can be adopted for the PBG crab cavity to dissipate

the power of the parasitic modes as they reach the outer boundaries

of the PC lattice. In this case, tapered blocks of SiC (εr = 6.25; loss

tangent = 0.6) can be placed around the outer edges of the PBG

structure as show in figure 4.34.

Figure 4.34: Schematic diagram showing the position of the silicon carbide RF
absorber at the outer boundary of the PC lattice.

The microwave damping ability of SiC blocks was investigated by

calculating the scattering parameter S11 of an incident wave on the

tapered SiC block in a waveguide. For a tapered angle of 14o, the

S11 calculated for a frequency range of 6 GHz to 30 GHz is shown in

figure 4.35 while the distribution of the electromagnetic field inside

the SiC block is shown in the inset.

The average value of S11 in figure 4.35 are of the order of 0.007

(< 1%) which indicate that the reflected energy is negligible. The

EM field can be seen in figure 4.35 to penetrate the SiC block just
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Figure 4.35: The reflection coefficient S11 of an EM wave (6 GHz to 30 GHz)
incident on a tapered block of silicon carbide RF absorber. The distribution of the
electric field within the SiC block is shown in the inset.

slightly without reaching the other side of the block. This setup

ensures that the energy of the parasitic modes are not allowed to

bounce around in the vacuum chamber in which the PBG crab cavity

will be operated.

4.5 A cooling system for the PBG crab cavity

This section discusses a possible cooling approach for the PBG crab

cavity. First of all, it is important to determine the parts of the PBG

structure that is most likely to become very hot and damaged by the

heat. The heat in the system is caused by losses in both the dielectric

rod as well as the metallic plates. A numerical calculation of the

volumetric losses Pv in the dielectric rods (from equation 4.35) and

the surface losses Ps in the metallic plates (from equation 4.36) was

performed using HFSS and the results were found for the infinitely
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periodic PBG structure to be 6.14 × 10−31 J and 5.42 × 10−12 J

respectively.

Pv =
1

2
Re(E · J∗ + (∇× E) ·H∗) (4.35)

Ps = Re(S · n̂) (4.36)

Where S is the poynting vector on the boundary and n̂ is the

outward unit vector that is normal to the boundary. J∗ and H∗ are

the conjugate of the volumetric current density and the magnetic

field respectively. This indicates that the entire losses in the PBG

structure are dominated by the Ohmic losses in the metallic plates.

The tangential magnetic field on the surface of the metallic plate

induces an eddy current which causes that surface to heats up [187].

When the high power RF source is pulsed, the heating as well as the

resulting thermal stress on the surface of the metal will occur faster

than the material has time to expand. This thermal stress can cause

thermal fatigue in the form of micro-cracks and surface roughness in

the metal over many RF cycles [187]. This is generally referred to as

pulsed heating. The concentration of the peak magnetic field (shown

in figure 4.36) around the iris suggest that this region of the metallic

plate is most likely to become hot and will require cooling.

The temperature rise threshold beyond which degradation be-

gins to occur in Oxygen Free Electronic (OFE) copper is given in

[186, 187] to be 40 K. A temperature rise of ≈ 50 − 60oC per pulse
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Figure 4.36: Peak magnetic field is concentrated around the iris of the PBG crab
cavity.

was calculated for the accelerating structures at CLIC [188]. This

temperature rise is above the threshold for damage in the copper

structures and remains a major concern for researchers working on

the project. The increase in temperature ∆T of the PBG structure

as a result of pulse heating was calculated using the approach of

[36, 186, 189] and applying the following formula:-

∆T = RsH
2
peak

√
tpulse
π%cvk

′ (4.37)

Where Hpeak is the peak magnetic field found anywhere within

the PBG structure, Rs = 0.1Ω is the surface resistance of Oxygen

Free Highly Conductive (OFHC) copper at room temperature [190],

tpulse = 100ns is the pulse duration of the RF source , % = 8900kg/m3

is the density of copper, cv = 384J/Kg/oC is the specific heat per unit

mass of copper and k
′
= 380W/oC/m is the thermal conductivity of

copper. From the HFSS simulation result for the multi-cell PBG

crab cavity in figure 4.32, the parameter of merit Hpeak/E⊥ is given

as 0.0094A/V for an iris with curvature radius of cc = 1.5mm. Using
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the value of transverse gradient E⊥ = 11.86MV/m calculated in

equation 4.27 for a transverse kick of 2.4 MV, the magnitude of the

magnetic field in the PBG structure is calculated as :-

Hpeak =

(
Hpeak

E⊥

)
× E⊥ = 0.0094× (11.86× 106) = 111.484kA/m

(4.38)

When the parameters given above are applied to equation 4.37,

the maximum rise in temperature ∆T is calculated to be ∼ 6oc.

This indicates that the iris being the hottest point in the PBG crab

cavity will have a temperature rise of 6oc. This temperature rise

is comparable to those obtained for metallic PBG structure in [36]

and is below the threshold for damage in the copper plate. For an

ambient temperature of 25oc, the temperature at the iris will be

31oc. Furthermore, the temperature distribution on the surface of

the metallic plate was simulated with COMSOL in figure 4.37 and

the effect of water cooling is shown in figures 4.38 and 4.39. In the

absence of any cooling, figure 4.37 shows how the peak temperature

of 31oC at the iris drops exponentially to the ambient temperature

of 25oC with distance away from the iris. The conduction of the heat

away from the iris results in a temperature rise in the entire plate

over a period of time.

Since the iris is close to the centre of the PBG structure, it is not

accessible to be cooled directly. However, the heat energy concen-

trated at the iris will be transferred to the edges of the metallic plate
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Figure 4.37: (A) The temperature distribution across the copper plate over a
period of time when there is no cooling. (B) The maximum temperature on the
iris decreases with distance towards the edges.

by conduction as copper is a very good conductor of heat [191]. The

PBG structure can then be water cooled by allowing a fast moving

water current to flow through a hollow copper tube attached to the

edges of the copper plates as shown in figure 4.38. The water current

carries away the heat as it is generated by the RF power.

Figure 4.38: Schematic diagram showing the hollow water cooling tube attached
to the outer edges of the metallic plate.
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In figure 4.39, the water cooling of the copper plate caused a

significant drop in the temperature of the plate and the relative tem-

perature drop becomes greater with time. Water cooling is an easy

and popular way to control the temperature of normal conducting

cavities [36, 187].

Figure 4.39: The effect of cooling on the temperature distribution across the copper
plate over a period of time. The temperatures across the copper are lower when
water cooling is used than in the case when there is no cooling.

4.6 A fabrication approach for the PBG crab

cavity

This section describes a possible fabrication approach for the 16 cells

PBG crab cavity. Based on the final design parameter in table 4.2 , a

description of the individual component parts as well as the method

of assemblage is detailed below.
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4.6.1 The dielectric rods

The PBG crab cavity is made of dielectric rods (ε = 9.5; loss tangent

= 0.0002) of four different sizes. The innermost rods closest to the

double point defect of the coupling cavities have a radius of 1.327

mm while the bulk lattice rods of the coupling cavities have a radius

of 1.152 mm. For non-coupling cavities, the innermost rods closest

to the defect have a radius of 1.401 mm while the bulk lattice rods

have a radius of 1.189 mm. All the dielectric rods are 10.5 mm long

with 0.5 mm on either end tapered for easy fit into small hole in the

top and bottom plates as shown in figure 4.40.

Figure 4.40: Schematic diagram showing how the dielectric rod can fit into the
metallic plates.

Sapphire is a low loss dielectric material which, depending on its

purity, has a permittivity range between 9 and 12 and loss tangent

of 0.0001 [192]. Sapphire rods can be machined to an accuracy of

0.001 mm. This makes off-the-shelf sapphire rods a good candidate

for the fabrication of the PBG crab cavity.

129



4.6.2 The metallic plates

The function of the metallic top and bottom plates is to present a

total-internal-reflection boundary to the EM waves in the direction

that is perpendicular to the dielectric rods of the 2D PBG structure.

The metallic plates also offer structural support to the dielectric rods

and provide an iris through which the particle bunches can travel.

Furthermore, the metallic plates must provide space for the installa-

tion of the Silicon Carbide microwave absorber on the outer bound-

aries of the PC lattice along the plane of periodicity. The design

of the metallic plates must also take into consideration a means of

connecting the multiple cells of the PBG crab cavity. Figure 4.41

shows a design of a metallic plate that take into consideration all the

issues mentioned above.

Figure 4.41: Schematic diagram showing the design of the metallic plates. The
flanges are attached to allow several plates to be attached using bolts and nuts.
Note that the diagram is not to scale.

The metallic plate should be made of OFHC copper to minimize
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Ohmic losses. The plates should be electropolished to achieve a very

smooth surface finish and prevent the concentration of high electric

fields on rough edges. The centre bears an iris through which the

particle bunches will travel. The iris should be rounded with an iris

curvature radius of 1.5 mm. The positions of the dielectric rods are

marked on the surface of the metallic plates by small holes drilled by

a CNC machine to an accuracy of 0.01 mm. This design incorporates

a small groove where the SiC microwave absorbers will be positioned

at the outer edges of the lattice. Beyond the small grooves of the

metallic plates is a ring hollow tube which allow the flow of water

to cool the plates. Furthermore, the attached flanges on two sides of

the plate provide structural support for the multicell PBG structure.

The flanges bear holes to allow several metallic plates to be attached

using nuts and bolts.

4.6.3 The assemblage of the PBG crab cavity

This subsection discusses how individual component parts of the de-

signed 16 cell PBG crab cavity are coupled together into a complete

particle deflecting cavity. For ease of tuning and optimization after

fabrication, the 16 cell design of the PBG crab cavity can be divided

into four sets of 4-cell PBG structure. An illustration of a set of

4-cell PBG structure is shown in figure 4.42.

Figure 4.42 presents the assembly of a 4 cell module of the 16

cell PBG design. The beam tube and the iris of each cell must be

properly aligned to create a clear path in-which the particle bunches
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Figure 4.42: Cross-sectional schematic diagram showing the assemblage of a 4-cell
PBG crab cavity. The two cells at the ends of the setup are coupling PBG cavity
cells with waveguides attachments to couple EM power from an RF source. Note
that the diagram is not to scale.

can travel. The dielectric rods are arranged according to the trian-

gular lattice of holes drilled into both sides of the metallic plates.

The dielectric rods are sandwiched between the metallic plates with

0.5 mm on either side of each rod buried within the plates. Each

rod must be aligned to be as perpendicular as possible to the metal-

lic plate. In this assembly, the two outer cells provide RF coupling

with waveguides attached to them. As discussed in section 4.3.2,

the lattice dimension of the coupling cells is different from those of

the two inner PBG cavities. By counting the metallic plates from

left to right in figure 4.42, the 2nd and 4th plates incorporate small

metallic tuning rods at the point opposite the coupling iris of the

waveguide. The flanges on all the metallic plates can be attached
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together using a set of bolts and nuts as shown in figure 4.42. A long

bolt is passed through the round hole in each metallic plate where

the plates is fastened to the bolt by two nuts on either side of each

flange of the metallic plate. The nuts should be fastened carefully to

ensure that the required cavity height of 9.5 mm is achieved. This

assembly approach allow for easy dismantling of the PBG structure

in order to make minor alterations which are usually required to

compensate for unavoidable fabrication errors. When the entire 16

cell PBG structure is put together as shown in figure 4.43, the size of

the complete PBG crabbing system can be calculated by summing up

the dimensions of individual PBG cavity cells and other components.

The dimensions of the metallic plate shown in figure 4.41 gives the

total transverse length of 24.1 cm for the complete multicell PBG

crab cavity. Also by adding up the single cell length of 1.25 cm for

the 16 cells structure and the X-band waveguide height of 1 cm for

8 waveguides gives a total longitudinal length of 28 cm. Therefore

a standard 12” × 18” horizontal industrial vacuum chamber is ideal

to contain the PBG crab cavity. An illustration of how the complete

PBG crabbing system might look is given in figure 4.43 below.

This chapter has presented the use of a PBG structure for crab-

bing application. The lattice design presented in chapter 3 was

rescaled and optimized to confine only the TM110-like dipole EM

state at 11.9942 GHz while forcing all other EM state to propagate

away from the defect region. The suppression of long range Wake-
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Figure 4.43: Cross-sectional schematic diagram showing how the complete 16-cell
PBG crabbing system might fit into a vacuum chamber. Note that the diagram is
not to scale.

fields in the PBG crab cavity was demonstrated without the use of

any external mode damping scheme. This work found that the 2.4

MV transverse kick required by CLIC can be delivered by a 16-cell

PBG crab cavity. Operational issues such as the damping of the

parasitic modes on the boundary of the lattice, the cooling of the

metallic plates, and the eventual fabrication of the PBG structure

have been addressed in this chapter. Overall, this PBG crab cav-

ity design improves on the conventional pillbox-type crab cavities by

minimizing the effect of long range wakes without any major addition

to the complexity of the crab cavity.
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Chapter 5

Dirac Point in Photonic

Analogues of Graphene

5.1 Introduction

As discussed in chapter 1, photonic crystals are best known for the

presence of band gaps in their dispersion diagram. This is analogous

to the presence of electronic band gaps in semiconductors. In semi-

conductors and photonic crystals, perturbations are used to control

the flow of electrons and photons respectively. Other effects whose

analogs have been investigated in photonic crystals include nega-

tive refraction [193, 194, 195, 196], localization in disordered PCs

[197, 198], the Zitterbewegung effect [199], the Hofstadter butterfly

effect [200], quantum hall effects [201] etc. Since the successful fab-

rication of graphene in 2004 [98, 107], the interest in graphene has

increased due to its fascinating electronic properties [107]. Graphene

is a single layer of carbon atoms arranged in a 2D honeycomb lat-

tice. The electronic energy dispersion of graphene has, at the corners
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of the Brillouin zone, points where the conduction and the valence

band touch to create a conical singularity which is usually called the

Dirac point [92]. As the Dirac point is approached, the energy of

the electron travelling through the graphene sheet depends linearly

on their quasi-momentum [94] as illustrated in section 5.2. Recently,

the exhibition of a Dirac point in the dispersion plot of photonic

crystals has been investigated both theoretically [202, 203, 204] and

experimentally [48, 49]. This is analogous to the conical singularity

found in the electronic band structure of graphene [107, 97].

Since photonic crystals can be fabricated at a macroscopic length

scale, they offer an easier means of investigating many nanoscale ef-

fects which are usually challenging to study in natural crystals like a

single sheet of graphene. For example, the pseudo-diffusive transmis-

sion extremal found near the Dirac point of photonic crystals [206] is

difficult to observe in the electronic case due to the challenge of main-

taining a homogeneous electron density in the whole system [207].

In this chapter, a carefully designed experimental measurement of

the transmission spectrum of microwaves in a photonic crystal was

used to demonstrate a well pronounce appearance of the Dirac point

similar to those obtained in [48, 49]. This work adds to the two afore-

mentioned articles by studying the sensitivity of the Dirac point to

the incident and receiving angles of waves propagating away from

the Γ−K direction at the input and output boundaries respectively.
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5.2 Theoretical background of Dirac point in Pho-

tonic crystals

In a similar way to the energy dispersion of graphene, the electro-

magnetic dispersion plot of photonic crystals has bands of modes

touching at the corner of the Brillouin zone (K-point of symmetry).

There are two sets of equivalent K-points (Kn and Kn
′
) at the cor-

ners of the Brillouin zone of PCs, where (n = 1, 2, 3) as shown in

figure 5.1.

Figure 5.1: (A) The Brillouin zone of a hexagonal PC showing the two sets of
equivalent corners at Kn and Kn

′
where n = 1, 2, and 3. (B) The dispersion plot

of the doublet mode at the corners of the Brillouin zone. The frequency of the
doublets separates linearly as the k-direction shift away from the corner of the
Brillouin zone

Due to the periodicity of the dielectric PC medium, normally de-

generate modes in homogeneous dielectric medium are split into a

pair of doublets and a pair of singlets at the K-point of the Brillouin

zone [201, 208, 209]. Each of the two equivalent sets of K-point have

a doublet at the Dirac frequency (ωD) and a singlet at a different

frequency [206]. As the wave vector is shifted away from the K-point

of the Brillouin zone by (dk) each doublet mixes and separates lin-

early to create a Dirac point. The theoretical background presented
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in this section is based on the analysis presented in [206] where the

photonic crystal is considered as a system with input and output sig-

nals as well as transfer matrices for individual subsystems that make

up the photonic crystal. For a planewave propagating in free space,

Maxwell’s equation is reduced to the Helmholtz equation given as :-

∇2
⊥
~E(x, y) +

(
ω

c

)2
~E(x, y) = 0 (5.1)

Where ∇2
⊥ is the Laplacian, ω is the angular frequency and c

is the speed of light in free space. On the other hand, for a wave

propagating inside a photonic crystal, Maxwell’s equation reduces to

the Dirac equation [201, 208] given as :-

(
0 ∂x− i∂y

∂x+ i∂y 0

)(
ψ1

ψ2

)
=
i(ω − ωD)

VD

(
ψ1

ψ2

)
(5.2)

Where VD is the group velocity of the wave inside the photonic

crystal, while ψ1 and ψ2 are the amplitude of the doublet of two

degenerate states at a given K-point of the Brillouin zone. In order

to excite the doublet states within the photonic crystal, the wave

vector k = (kx, ky) of the incident wave must be matched to at least

one of the K-points K=(Kx, Ky). If the y-component of the wave

vector k of the incident wave is assumed to be conserved at the

input boundary of the PC because the planewave is propagating in

the direction of kx, then the matched incident wave can be written

as :-
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~Ein(x, y) = ~E+(x, y)ei(k0x+Kyy) (5.3)

k0 =

√(
ωD
c

)2

−K2
y (5.4)

Where ~E+ is a slowly varying function in the forward direction.

ky = Ky and kx = k0 for a matched incident wave. The type of

boundary seen by the incident wave determines the type of mode

excited within the photonic crystal. For an arm-chair boundary,

only one of the inequivalent doublet modes is excited while a mixture

of the two inequivalent doublets is excited in the case of a zig-zag

boundary [206]. In order to determine the amplitude of the excited

modes, the solution of the Helmholtz equation in free space must

be matched to the solution of the Dirac equation inside the photonic

crystal. This matching is done assuming that the photon number flux

(J = photon power/photon energy: unit is s−1) across the boundaries

is conserved. The photon number flux JH for the Helmholtz equation

is given in [210] as :-

JH =
ε0c

2

4ihω2

(
~E∗
∂ ~E

∂x
− ~E

∂ ~E∗

∂x

)
= VHξ

∗σxξ (5.5)

Where VH =
ε0c

2k0

4hω2 and ξ =

( ~E+ + ~E−
~E+ − ~E−

)
(5.6)

~E− is a slowly varying function in the reverse direction away from
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the input boundary. Also the photon number flux JD for the Dirac

equation is given as :-

JD = VD(ψ∗1ψ2 + ψ∗2ψ1) = VDψ
∗σxψ (5.7)

At the input boundary for the planewave, the conservation of the

photon number flux requires that JH = JD.

VHξ
∗σxξ = VDψ

∗σxψ (5.8)

Therefore, the amplitude of the doublet mode at the input bound-

ary is given as:-

ψ =

(
VH
VD

) 1
2

Mξ (5.9)

Where M, which must satisfy the unitary condition, is the transfer

matrix for the input boundary and its value depends on the detail

of the boundary at the scale of the lattice constant [206].

M−1 = M † (5.10)

Where M † is the conjugate transpose of M . Also at the exiting

boundary, the amplitude of the doublet is given as:-

ψ =

(
VH
VD

) 1
2

M
′
ξ (5.11)

Where M
′

is the transfer matrix for the exiting boundary and

it must also satisfy the unitary condition. The amplitude of any
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particular nth mode φx at the input boundary (x = 0) is related to

the amplitude at the exiting boundary (x = L) by the transfer matrix

Mn(L, y) which can be calculated by solving the Dirac equation inside

the photonic crystal.

φn(L) = Mn(L, y)φn(0) (5.12)

The total transfer matrix η of the entire photonic crystal system

can be written as [206]:-

η = M
′
MnM (5.13)

η

(
1 + rn
1− rn

)
=

(
tn
tn

)
(5.14)

Where rn and tn are the reflection and the transmission amplitude

and the transmission probability is Tn = |tn|2. For an incident photon

current I0 of a mode at frequency dω, the transmitted time averaged

photon current through the photonic crystal is given as:-

I(dω) = I0

∞∑
n=∞

Tn(dω) (5.15)

As shown in [48, 49], the transmitted photon current drops linearly

towards zero as the Dirac point is approached.
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5.3 The Experimental Setup

In this work, a photonic analog of graphene was studied using a PC

made from a hexagonal lattice of sapphire (ε = 11) cylindrical rods

embedded in air with r/a = 0.2 and length L = 10mm. Sapphire is

a good non-absorbing dielectric material that can be machined to a

precision of 0.001 mm. This eliminates the losses in the EM fields

due to absorption by the dielectric material and minimizes disorder

usually introduced to the PC by variations in the radius of the cylin-

drical rods along their length. The hexagonal lattice of sapphire rods

was sandwiched between top and bottom aluminum plates. The sep-

aration (L) between the plates only allows the propagation of EM

states with Transverse Magnetic (TM) polarization with electric field

perpendicular to the metallic plates. Each sapphire rod is carefully

positioned to sits in holes forming a hexagonal lattice in the bottom

plate. The position of each point is accurate to 0.01 mm.

As shown in figures 5.2 and 5.3, the experimental setup used in

this study was driven by a dipole antenna. The entire boundary

of the setup was covered with an off-the-shelf EM absorbers called

Eccosorb. First, to chop off the curvature of the radial wave emitted

by the antenna in order to form a planewave and secondly to prevent

the effects of wave reflections from side walls or surrounding objects

in the laboratory. On the other end of the lattice, another dipole

antenna was used to measure the transmitted power of EM states.

Both antennas were connected to the ports of a network analyzer
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Figure 5.2: A schematic diagram of the experimental setup to measured the
transmission plot S21 for a planewave through a hexagonal lattice of sapphire
rods(ε = 11) and r/a = 0.2.

which calculated the scattering matrix of waves sent between the

ports. At the input boundary of the PC, EM absorbers are used to

shield off components of the incident wave propagating in directions

that are away from the Γ −K direction. The EM absorbers at the

input boundary of the lattice also ensure that the incident wave has

the flat wave front expected from a planewave. Once the planewave

enters the PC, multiple scattering occurs and the emanating waves at

the other end of the lattice propagate in various direction depending

on their wave vector k. In order to isolate and measure only EM

states in the Γ−K direction, additional absorbers were placed around

the receiving antenna to shield off and prevent the measurement of

wave propagation at arbitrary angles. A photograph of the physical

experimental setup is show in figure 5.3.

143



Figure 5.3: Experimental setup to measured the transmission plot S21 for a
planewave through a hexagonal lattice of sapphire rods(ε = 11) and r/a = 0.2.

5.4 Experimental results for a hexagonal lattice

of cylindrical rods

The dispersion diagram for a 2D infinite hexagonal lattice with r/a =

0.2 and ε = 11 was calculated using the Plane Wave Expansion

(PWE) method. As shown in the figure 5.4, the second and third

bands of eigenstates are touching at the corner of the Brillouin zone

due to doubly degenerate states that create the conical singularity

called the Dirac point. The local bandgap for the Γ − K direction

can be seen between a/λ = 0.29 and a/λ = 0.47. The Dirac point

was found at a/λ = 0.504. Although the 2D PWE simulation code

was for an infinite lattice of cylindrical rod, in reality, and in our

experimental implementation a finite lattice had to be used.
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Figure 5.4: The dispersion plot for a 2D hexagonal lattice of dielectric cylinders
(ε = 11) with r/a = 0.2. The Dirac point seen at a/λ = 0.504 at the corner of the
Brillouin zone (K-point) matches the linear drop in the transmission shown in the
experimental measurement on the right.

A reference measurement(shown in figure 5.5) was taken without

the lattice of sapphire rods and used to normalize the subsequent

measurements taken with the lattice. This ensures that the observed

effects and phenomena are due to the presence of the hexagonal lat-

tice of sapphire rods.

Figure 5.5: Measured transmission plot S21 for a planewave propagating through
a hexagonal lattice of sapphire rods (ε = 11) with r/a = 0.2.The Dirac point seen
at a/λ = 0.504 is as a result of the lattice
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Figure 5.6: Normalized transmission plot S21 for a planewave propagating through
through a hexagonal lattice of sapphire rods (ε = 11) with r/a = 0.2. The Dirac
point can be seen at a/λ = 0.504

In the experimental result shown in figure 5.6, the band gap can

be seen between a/λ = 0.325 and a/λ = 0.475 and a sharp linear

drop in transmitted EM states with a minimum at the Dirac point

was found at a/λ = 0.504. The small variations between the PWE

numerical values and the experimental values are due to the finite

size of the lattice used in the experiment as compared to the infinitely

periodic lattice of the PWE code. Since the Dirac point in a PC is

determined by the dielectric constant of the scatterers and the filling

factor of the lattice, small experimental errors between the numerical

and experimental values of the lattice parameters will cause a shift

in the position of the bandgap and the Dirac point. Nevertheless,

the linear drop in the Density of states (DOS) at the Dirac point is

unmistakeable.
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In order to investigate the repeatability and the experimental error

in the setup, 10 different ensembles of the metallic top plate positions

were used and the measurements was repeated for each case. The

average transmission measurement and the error limits calculated

from the standard deviation is presented in figures 5.7.

Figure 5.7: Measured transmission plot S21 for 10 ensembles of top plate configura-
tions. The mean value of the 10 measurements and error limits from the standard
deviation are shown for a hexagonal lattice of sapphire rods.

In this experimental study, the fixed hole that holds a receiving

antenna in the top metallic plate was also replaced with a slot (figure

5.8) that allowed the antenna to slide to arbitrary angle away from

the centre of the setup. This new setup was used to investigate the

effect of measuring the transmitted waves at arbitrary angles away

from the Γ−K direction. In figure 5.9, the transmission at the Dirac

point is shown to increase with increasing deviation of the receiving

antenna away from the Γ−K direction.
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Figure 5.8: A Slot in the top plate to allow measurement of transmission at arbi-
trary angles.

Figure 5.9: The effect of varying the measuring angle of the receiving antenna at
the output boundary of a hexagonal lattice of sapphire rods on the Dirac point.
The angles is taken from the Γ−K direction (0 degree).
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The effect of varying the angle of incidence of the planewave on

the photonic lattice was also studied. In this case, the transmitting

and receiving antenna were fixed while the lattice was rotated. As

shown in figure 5.10, the transmission at the Dirac point increased

with wider angles of incidence. Considering the small (1o) steps in

the variation of both incident and receiving angles, the Dirac point

can be said to be sensitive to the quasi-momentum component of the

EM states.

Figure 5.10: The effect of variation in the incident angle of the waves at the input
boundary of a hexagonal lattice of sapphire rods on the Dirac point. The angles
is taken from the Γ−K direction (0 degree).
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5.5 Experimental results for a hexagonal lattice

of spheres

Since atoms found in nature are usually depicted as spheres in their

macroscopic geometry, a hexagonal lattice of sapphire spheres was

also investigated to check if it also exhibits a Dirac point. In this case

the hexagonal lattice of sapphire spheres (r/a = 0.2) was sandwiched

between top and bottom aluminum plates. The separation (2r = 4

mm) between the plates allows only the propagation of EM states

with Transverse Magnetic (TM) polarization with electric field per-

pendicular to the metallic plates. Each sapphire sphere sits on tiny

(0.3 mm deep) indentations in the bottom plate. These dents pre-

vent the spheres from rolling away from their lattice position. The

position of each dent is accurate to 0.01 mm.

Again a reference measurement(shown in figure 5.11) was taken

without the lattice of sapphire spheres and used to normalize the

subsequent measurements taken with the lattice present. This en-

sures that the observed effects and phenomena are due to the lattice

of sapphire spheres.

In the case of the hexagonal lattice of sapphire spheres, the posi-

tion of the band gap can be seen between a/λ = 0.45 and a/λ = 0.54

and a sharp linear drop in transmitted EM states with a minimum

at the Dirac point was found at a/λ = 0.575. The repeatability and

the experimental error in the setup was investigated by considering

10 different ensembles of absorbers and the metallic plate positions
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Figure 5.11: Measured transmission plot S21 for a planewave through a hexagonal
lattice of sapphire spheres (ε = 11) with r/a = 0.2. The Dirac point seen at
a/λ = 0.575 is as a result of the lattice

Figure 5.12: Normalized transmission plot S21 for a planewave through a hexagonal
lattice of sapphire spheres (ε = 11) with r/a = 0.2. The Dirac point can be seen
at a/λ = 0.575
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respectively. The average transmission measurement and the error

limits calculated from the standard deviation is presented in figures

5.13 for absorbers and 5.14 for metallic plates.

Figure 5.13: Measured transmission plot S12 for 10 ensembles of absorber config-
urations. The average and error limits are shown.

Figure 5.14: Measured transmission plot S12 for 10 ensembles of top plate configu-
rations. The average and error limits are shown for a hexagonal lattice of sapphire
spheres.
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Also for the hexagonal lattice of sapphire spheres, the effect of

variations in the incident and receiving angles of the waves at the in-

put and output boundary of the lattice was investigated respectively.

Similar to the case of the cylindrical rods, the transmitted power or

the DOS at the Dirac point was found to increase as the incident

and receiving angles deviates away from the Γ −K direction. This

is shown in figures 5.15 and 5.16

Figure 5.15: The effect of varying the measuring angle of the receiving antenna at
the output boundary of a hexagonal lattice of sapphire spheres on the Dirac point.
The angles is taken from the Γ−K direction (0 degree).

This work demonstrates, in a more pronounced way than in pre-

vious publications [48, 49], the analogy of graphene with a photonic

crystal. The experimental setup used in this work is different to those

of earlier [48, 49] experimental studies with particular attention paid

to ensuring that the incident wave is actually a planewave and also

that the EM waves seen by the receiving antenna are as close as
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Figure 5.16: The effect of variation in the incident angle of the waves at the input
boundary of a hexagonal lattice of sapphire spheres on the Dirac point. The angles
is taken from the Γ−K direction (0 degree).

possible to the Γ−K direction. These are requirement theorized in

[206] for the observation of the Dirac point. Also, the sensitivity of

the Dirac point to incident and receiving angles away from the Γ−K

direction was studied. As expected at the Dirac frequency, the DOS

was lowest (approaching zero) in the Γ−K direction.
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Chapter 6

Conclusion and looking forward

This thesis has documented how Photonic Band Gap (PBG) struc-

tures can be engineered to confine only a dipole mode while all other

EM states are allowed to propagate away. This PBG structure was

tuned and optimized for crabbing application at 11.9942 GHz. Also

documented in this thesis is the experimental observation of the Dirac

point in a 2D photonic crystal. The design of the PBG crab cavity

was done numerically by using a combination of PWE, FDTD, FEM

and PIC numerical methods. The PWE method was used to cal-

culate to dispersion of several photonic crystal lattices. The eigen-

frequency calculated were performed with the FDTD and the FEM

methods. The FEM method was also used to calculate the scatter-

ing parameter S11 of the EM waves coupled into the PBG structure.

A study to demonstrate the suppression of Wakefields in a PBG

structure was performed with the PIC numerical method. The ex-

perimental study of the Dirac point in photonic analogue of graphene

was carried out by measuring the transmission coefficient of the EM
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wave propagating through a photonic crystal. Electromagnetic ab-

sorbers were used to isolate and allow only waves with wave vectors

close to the Γ−K direction to enter into the photonic crystal. The

receiving antenna in the experimental setup was also shielded by EM

absorbers to ensure it sees only waves with a k-vector near K-points

of symmetry in the Brillouin zone. Also the effect of variation in

the experimental setup was studied by measuring the transmission

plot S12 of 10 ensembles each for the absorber and the top plate con-

figuration respectively. Furthermore, the effect of variations in the

incident angle at the input boundary and the receiving angle at the

output boundary of the PC was investigated by designing the exper-

imental setup to allow the rotation of both the photonic crystal and

the receiving antenna away from Γ−K direction.

In chapter 3, the work of Y. Kalra et al 2006 and R. Diana et al

2007 was extended by calculating the frequency dependent position

of the global band gap with varying lattice parameters (r/a and per-

mittivity) for dielectric photonic crystals as E. Smirnova et al 2003

did for metallic PBG structures. This study found that the size of the

band gap increases with permittivity and decreases with increasing

filling factor. As the filling factor of the lattice is increased, higher or-

der band gaps are created and for a specific filling factor, the number

of band gaps increases with increasing permittivity. Also in chapter

3, a study to investigate the effect of single and double point defect in

a photonic crystal of dielectric rods in air found that both monopole-
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like and dipole-like modes are confined in both cases. However, by

varying the size of the innermost rods closest to the double point

defect, the confined mode shifted up or down in frequency within

the band gap. This allowed for the determination of lattice parame-

ter (i.e. radius of innermost rods) where only the dipole is confined.

Furthermore, the selective confinement of the dipole-like mode was

demonstrated by increasing the number of scatterers around the de-

fect from 4 to 10 rows. This caused the radiative quality factor of

the dipole-like mode to increase by a factor of 103 while the radiative

quality factor of the monopole-like mode also increased, but only by

a factor of 10. This work has demonstrated a systematic approach

to mode engineering within the band gap of a photonic lattice. We

have designed a monomodal structure that confines only the TM011-

like dipole mode while allow all other modes to propagate away. A

similar approach can be employed to design monomodal structures

that confines only monopole, quadrupole or higher order modes.

In chapter 4, the infinite height photonic lattice designed in chap-

ter 3 was shown to retain its selective confinement of the dipole-like

mode even in the case of a finite height PBG structure. This was

established by exciting a finite height PBG structure with a relativis-

tic particle bunch and taking the fast Fourier transform of the time

signal of the induced Wakefields. The contribution of the LOMs and

the HOMs to the power spectrum of the Wakefields was found to

drop quickly with time while the contribution from the dipole mode
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drops at a much slower rate. In another study documented in chap-

ter 4, the frequency sensitivity of the dipole mode confined by a PBG

crab cavity to variations in the beam-tube radius (btr), beam-tube

length (btl), and iris curvature (cc) was found to be -48 MHz/mm,

13.5 MHz/mm and -11.8 MHz/mm respectively. This shows that the

PBG crab cavity design presented in chapter 4 is more robust than

the conventional crab cavity presented in P. K. Ambattu et al 2005

as it offers a less tight fabrication tolerance. Also in chapter 4, the

figures of merit R
Q , E⊥

Epeak
, and

Hpeak

E⊥
were found to drop in value with

an increase in the beam-tube radius. However, the
Hpeak

E⊥
value was

found to oscillate as the beam-tube radius is increased. The oscilla-

tion is caused by the variation in the mesh density used for each case

of beam tube radius. The mesh size changes as the lattice dimen-

sions (innermost rod radius) was varied while keeping the frequency

of the dipole mode at 11.9942 GHz. Overall, the parameters of merit

of the single-cell PBG crab cavity designed in this work compares

well with those presented for multi-celled travelling wave crab cavity

in P. K. Ambattu et al 2005.

Using an antenna that is 7 mm deep inside the PBG crab cavity,

electromagnetic energy was coupled into the structure with S11 =

0.05 for the dipole mode. Also a waveguide coupling scheme was

presented where EM power was transfered to the dipole mode with

S11 = 0.0279. A final single cell design with lattice constant (a=11.89

mm), bulk lattice rod radius (r=1.189 mm), innermost rod radius
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(R= 1.471 mm), beam-tube radius (btr=5 mm), beam-tube length

(btl=10 mm), iris curvature (cc=1 mm) and cavity height of 12.5

mm was chosen and analyzed. The calculated parameters of merit

of the PBG crab cavity design include R
Q = 13.1Ω, Q0 = 18046,

E⊥
Epeak

= 0.149, and
Hpeak

E⊥
= 0.006A/V . For an input power of 1 Watt,

the transverse voltage and deflecting gradient was calculated to be

485.6 V and 15 kV/m respectively. This PBG crab cavity design

was considered for application in the CLIC facility that requires a

maximum transverse kick voltage of 2.4 MV to rotate a 1.5 TeV

beam by 20 mrad. However, the use of the PBG crab cavity (made

of alumina rods in air) for crabbing application in the CLIC facility

is limited by breakdown in the dielectric material. The field distri-

bution of the dipole mode shows that the innermost rod closest to

the double point defect is exposed to much higher electric field than

the rods that make up the bulk lattice. In order to ensure that the

electric field experienced by the innermost rods does not exceed the

DC breakdown value (13.4 MV/m) for alumina, a multi-cell PBG

crab cavity design was considered. In the first scenario considered,

the multi-cell design assumes that each constituent cell has the same

parameters of merit as the optimized single-cell PBG crab cavity. A

0.515 m long PBG structure with 41 cells will be required to deliver

the 2.4 MV transverse kick needed by the CLIC facility. The second

scenario considered the case of an infinitely perodic PBG crab cavity

with π phase advance and cell-to-cell coupling. In this second case, a
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0.202 m long PBG structure with 16 cells will be required to deliver

the 2.4 MV transverse kick needed by the CLIC facility. The result

of the second scenario is more believable as it accounts for the phase

advance between the cavity cell and the inter-cavity coupling. When

the EM wave coupling and the beam loading effect are considered,

a calculated total input power of 8.46MW is required for the 16 cell

PBG crab cavity to deliver a transverse kick of 2.4MV. This mean

that each cavity cell requires only 528 kW of power. Operational

issues such as the damping of the parasitic modes on the boundary

of the lattice, the cooling of the metallic plates, and the eventual fab-

rication of the PBG structure have been addressed in this chapter.

The PBG crab cavity design employed a tapered block of silicon car-

bide (SiC) to dissipate the EM power of parasitic LOM and HOMs.

The pulse heating on the iris of the metallic plates where the peak

magnetic field is concentrated was calculated to cause a maximum in-

crease in temperature of 6oC. The PBG crab cavity design adopted

the water cooling approach to transfer heat energy away from the

metallic plates. Finally, chapter 4 presents a fabrication approach

where the dielectric rods are pressed into small holes in the metallic

plates. The dimensions of individual component parts as well as the

assemblage of the complete crabbing system are presented.

In chapter 5, the exhibition of the Dirac point in the dispersion

plot of photonic crystals was experimentally investigated. This study

was based on the theoretical approach presented in R. A. Sepkhanov
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et al 2006 where the photonic crystal is considered as a system with

the input and output EM wave signal related by a total systemic

transfer matrix. As suggested by Sepkhanov et al, the experimental

setup was designed to improve the matching of the wave vectors at

the boundaries of the photonic crystal. This was done by shielding off

EM waves with k-vector that are away from the Γ−K direction. The

experiment was performed by sending a planewave into the photonic

crystal and then measuring on a network analyzer, the scattering

parameter S21 of the EM wave seen by the receiving antenna. Close

to the Dirac point on the PWE numerically calculated dispersion

plot, the experimentally measured transmission coefficient S21 drops

linearly toward zero. This indicates a linear drop in the DOS as the

Dirac point is approached. This phenomenon was found for both

hexagonal lattices of sapphire rods and spheres. The observed Dirac

point is more pronounced than those presented in Zandbergen and de

Dood 2010 and S. Bittner et al 2010. Furthermore, the Dirac point

was found to be sensitive to variations in both the incident and the

receiving angle at which the EM waves enter and exit the photonic

crystal respectively. The transmission coefficient at the Dirac point

increased considerably for a small (1o) deviation in the incident and

receiving angle away from the Γ−K direction of the photonic in real

space. Overall, the findings of this study supports and reinforces

the idea that quantum mechanical effects, which are usually found

in natural crystals, can easily be investigated in a man-made pho-
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tonic crystal and at a macroscopic length scale. Also in chapter 5,

a theoretical method of retrieving the propagation constant of EM

waves propagating through a PC lattice is presented. However, the

difficulties associated with the calibration of the experimental setup

inhibit the application of this transmission line theory based parame-

ter retrieval method to obtaining experimentally the dispersion plot

of a photonic crystal. The calibration method used is quite sensi-

tive to tiny experimental errors and this causes the retrieval of the

impedance z and the propagation constant to fail. This work can

serve as a guide to future attempts at obtaining the dispersion of

photonic crystal structures experimentally.

For future work on the PBG crab cavity, I recommend the fabri-

cation and cold testing of the single-cell PBG crab cavity presented

in this thesis. Also in the long term, I recommend the fabrication

and hot testing of a multi-cell PBG crab cavity made from sapphire

or other dielectric materials with higher breakdown values. Future

studies planned for the photonic analogue of graphene include an

investigation of edge effects for both zig-zag and armchair interfaces

and a study of the Local Density Of States (LDOS) within the pho-

tonic lattice. Also, the effect of disorder on the transmission of EM

waves at the Dirac point can be studied.
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Appendix A

Hermitian operators and their

properties

The operators in the wave equations (2.12) and (2.13), also presented

in this appendix as equations (A.1) and (A.2), are linear hermitian

operators [43].

∇× 1

µ
∇× ~E(~x, t) = ω2ε ~E(~x, t) (A.1)

∇× 1

ε
∇× ~H(~x, t) = ω2µ ~H(~x, t) (A.2)

An operator is hermitian if it satisfies the symmetry that allows

the inner product of two vector fields ~A and ~B to meet the following

condition:

[ ~A,Ψ ~B] = [Ψ ~A, ~B] (A.3)

Where Ψ is the Hermitian operator. The result of the inner prod-

uct is independent of the vector field initially operated upon by the
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symmetric hermitian operator. Hermitian operators always have real

eigenvalues and orthogonal eigenvectors. For clarity, the inner prod-

uct is a way of multiplying two vectors to obtain a scalar. It is a

generalization of the dot product and can be defined as follows:

[ ~A(x), ~B(x)] =

∫∫∫
~A(x)∗ · ~B(x)d3x (A.4)

Where ∗ denotes the complex conjugate of a vector. The hermi-

tian nature of the eigenoperator in equation (A.1) can be proved as

follows:

[ ~A,Ψ ~B] =

∫∫∫
~A(~x)∗ · ∇ × 1

µ
∇× ~B(~x) d3~x (A.5)

=

∫∫∫
(∇× ~A(~x))∗ · 1

µ
∇× ~B(~x) d3~x (A.6)

=

∫∫∫
[∇× (

1

µ
∇× ~A(~x))]∗ · ~B(~x) d3~x (A.7)

= [Ψ ~A, ~B] (A.8)

The surface terms of the integration by parts were neglected be-

cause the vector fields are periodic in the region of integration or de-

cay to zero with large distance [43]. From the proof of equation (A.8),

the eigenvectors of equation (A.1) are orthogonal and the eigenval-

ues are real and non-negative. Equation (A.1) can be re-written as

follows:

Ψ ~E = ω2ε ~E (A.9)
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Consider the inner product of two vector field ~E1 and ~E2 with

frequencies ω1 and ω2 respectively.

[ ~E1,Ψ ~E2] = [Ψ ~E1, ~E2] (A.10)

The conjugate symmetrical identity of the inner product can be

written as:

[ ~E1,Ψ ~E2] = [Ψ ~E1, ~E2]
∗ (A.11)

Therefore

[Ψ ~E1, ~E1] = (ω1
2ε)[ ~E1, ~E1] = (ω1

2ε)∗[ ~E1, ~E1] = [Ψ ~E1, ~E1]
∗ (A.12)

If ω1
2 = ω1

2∗, then ω1
2 is real. Also, the following equation shows

orthogonality and degeneracy.

[Ψ ~E1, ~E2] = (ω1
2ε)[ ~E1, ~E2] = (ω2

2ε)[ ~E1, ~E2] = [ ~E1,Ψ ~E2] (A.13)

(ω1
2 − ω2

2)[ ~E1, ~E2] = 0 (A.14)

In order to satisfy equation (A.14), a case when ω1 6= ω2 will

require [ ~E1, ~E2] = 0. In this case, the vector fields ~E1 and ~E2 are

said to be orthogonal. On the other hand, when ω1 = ω2 , the vector

fields are said to be degenerate.
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Appendix B

Wakefields and the

Panofsky-Wenzel theorem

B.1 Introduction

The understanding of how particle beams interact with the surround-

ings (beam tube and RF cavity) and the effect of the associated

electromagnetic fields are important for the optimization of the ac-

celerator performance in terms of stored current [217]. This ap-

pendix gives a basic introduction to the subject of Wakefield and

the Panofsky-Wenzel theorem. A more detailed discussion can be

found in [217, 218]. The electromagnetic field distribution of a ultra-

relativistic (vc = β ≈ 1) point charge in free space is isotropic and

squeezed in the longitudinal direction. In this case, there is zero

power transfer in the transverse direction but there exist a poynting

flux that is attached to the point charge and flow along a paral-

lel path. A test charge travelling at a distance behind an excitation

charge does not experience any wakefield in free space [220]. The EM
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field associated with a ultra-relativistic point charge travelling in a

hollow cylindrical beam tube which has perfectly conducting walls is

similar to those obtained in free space [220] and a trailing test charge

does not experience any wakefield. In this case, an image charge is

induced on the wall of the beam tube and they have trajectories that

are parallel to that of the point charge. However, when the beam

tube is lossy and/or has discontinuities (e.g. RF cavities), the image

charges begins to lag behind the point charge. The field excited by

these image charges are called Wakefield and can adversely affect the

trajectory of charged particles within the same bunch (short range

Wake) and those from later bunches (long range Wake).

B.2 Longitudinal wake function and loss factor

In this section, the expressions for the wake function and loss factor

were initially published in Palumbo et al [217]. Let’s consider an ex-

citation point charge travelling through a RF cavity in the direction

the Z-axis (at position z1) with a constant velocity (v = βc) and a

transverse offset r1 away from the axis. As illustrated in figure C.1,

the excitation charge is followed at a distance s by a test charge in

the longitudinal and transverse positions z and r respectively. The

Lorentz force imparted on q by the EM fields excited by q1 is given

as:
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F (r, z, r1, z1; t) = q[E(r, z, r1, z1; t) + v ×B(r, z, r1, z1; t)] (B.1)

Figure B.1: The excitation q1 and test q charges travelling in a spherical RF cavity.

The work done by the longitudinal component of the electromag-

netic force Fz = qEz can be used to calculate the energy lost by q1

as follows:

U11(r1) = −
∫ ∞
−∞

F (r1, z1, r1, z1; t =
z1

v
) · dz (B.2)

The energy change of the test change of the test charge as a result

of the field excited by q1 is given as:

U21(r, r1, τ) = −
∫ ∞
−∞

F (r, z, r1, z1; t =
z1

v
+ τ) · dz (B.3)

τ is the time delay between the excitation and the test charges.

Unlike the case in equations B.2 and B.3 where the integral is over

an infinite length, physical accelerating structures and crab cavities
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are finite in length. Therefore, the integrals of equations B.2 and

B.3 can be truncated to give a good approximation of the energy as

long as the EM fields are confined to a given region and evanescent

everywhere else. The longitudinal wake function wz(r, r1, τ) can be

expressed as the energy lost by the test charge q per unit of both

charges q and q1 [220, 221, 222].

wz(r, r1, τ) =
U21(r, r1, τ)

q1q
[V/C] (B.4)

Often the practical quantity of interest (especially in periodic

structure) is the wake per unit length which is measured in unit

of V/C/m and given as:

d

dz
wz(r, r1, τ) = − 1

q1q
Fz(r, z, r1, z1; t); z = z1 − vτ [V/C/m]

(B.5)

The loss factor k is the energy lost by q1 per unit charge squared

and is given as:

k(r1) =
U11(r1)

q2
1

[V/C] (B.6)

Equations B.4, B.5, and B.6 have considered the wake excited by

point charge. The point charge wake is a green’s function and its

convolution over the charge distribution ib of a bunch gives the wake

function of the bunch as:
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Wz(r, τ) =
U(r, τ)

q1q
=

1

q1

∫ ∞
−∞

ib(τ
′
)wz(r, τ − τ

′
)dτ

′
(B.7)

The convolution integral is obtained by applying the superposition

principle where the wake functions of infinite number of infinitesimal

slices are added up. τ
′

is the time delay between each slice and the

test charge. Also the loss factor of the charge distribution is given

as :

K(r) =
U(r)

q2
1

=
1

q1

∫ ∞
−∞

ib(τ)Wz(r, τ)dτ (B.8)

B.3 Transverse wake function and loss factor

The transverse momentum kick experience by the test charge q can

be calculated from the transverse component of the Lorentz force as

follows:

M21(r, r1; τ) =

∫ ∞
−∞

F⊥(r, z, r1, z1; t =
z1

v
+ τ) · dz (B.9)

The unit of M21 is in Nm and it depends on the transverse position

of the charges and the geometry of the beam tube or cavity. The

transverse wake function is the transverse kick imparted on charge q

per unit charge of both q and q1.
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w⊥(r, r1, τ) =
M21(r, r1, τ)

q1q
[V/C] (B.10)

In the case of ultra relativistic charges, the dipole component

of the transverse kick is the dominant term and depends on the

transverse displacement of the excitation charge q1. The wake per

unit of the transverse displacement is given as:

w
′

⊥(r, r1, τ) =
w⊥(r, r1, τ)

r1
[V/C/m] (B.11)

The dipole transverse loss factor can be defined as the amplitude

of the transverse momentum kick experienced by the charge q1 by its

own wake per unit charge.

k⊥(r1) =
M11(r1)

q2
1

[V/C] (B.12)

The loss factor per unit displacement is given as:

k
′

⊥(r1) =
M11(r1)

q2
1r1

[V/C] (B.13)

In a similar way to the longitudinal wake of a bunch, the transverse

wake function of the bunch is given as:

W⊥(r; τ) =
1

q1

∫ ∞
−∞

ib(τ
′
)w⊥(r; τ − τ ′)dτ ′ (B.14)

The loss factor of the bunch in V/C is given as:
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K⊥(r) =
1

q1

∫ ∞
−∞

ib(τ)W⊥(r, τ)dτ (B.15)

As in the case of the point charges, the transverse wake function

and the loss factor per unit displacement is given as:

W
′

⊥(r; τ) =
W⊥(r; τ)

r
[V/C/m] (B.16)

K
′

⊥(r) =
K⊥(r)

r
[V/C/m] (B.17)

B.4 The Panofsky-Wenzel theorem

In this section, a relationship between the longitudinal and transverse

wake function is presented. The detailed derivations presented in

[170] concludes that the longitudinal derivates of the transverse wake

functions is equal to the transverse gradient of the longitudinal wake

function. This is the Panofsky-Wenzel theorem and it is given as:

∂ ~W⊥
∂s

= ~∇⊥Wz (B.18)
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Appendix C

Experimental measurement of the

dispersion of a PC lattice

In many publications the dispersion of PC lattices are calculated

either analytically [211] or numerically [43, 72]. The results of this

dispersion calculation are usually verified experimentally by compar-

ing them to the amplitude of the transmission and reflection scat-

tering parameters obtained from Vector Network Analyzers (VNA).

While the experimental scattering parameters indicate the density of

states at any particular frequency, they do not suggest the direction

of the wave vector of an individual EM state propagating through

the PC lattice. To my best knowledge, the dispersion of photonic

crystals has not been retrieved directly from experimentally obtained

scattering parameters. The aim of this section is to obtain the pho-

tonic band diagram of a PC lattice experimentally by employing the

parameter retrieval approach presented in [212] for calculating the

effective refractive index n, the impedance z, the permeability µ and

permittivity ε. The aim of this work is to compare the experimen-

173



tally obtained dispersion to the numerical dispersion calculated with

the PWE approach. The difficulties that inhibit the realization of

the above stated aims are also discussed in the section.

C.1 Theoretical retrieval of the propagation con-

stant

In section 5.1, the transmission of EM waves through a PC lattice

was analyzed by considering it as a system with input and output

signals. Here in this section, the propagation of EM waves through

a PC lattice will be analyzed by considering the PC lattice as a load

on a transmission line as shown in figure C.1.

Figure C.1: A transmission line with a load having an impedance zL. The char-
acteristic impedance of the transmission line is z0. VINC , V−, and V+ are incident,
reflected and transmitted EM fields with respect to the load respectively.

A transmission line is any medium through which an electromag-

netic (EM) field is allowed to propagate. The fields can be considered

as a voltage V that causes a current I to flow through the transmis-

sion line. When a load (in this case a PC lattice) is placed along

a transmission line, the current I sees a load impedance zL which

is different from the characteristic impedance z0 of the transmission

line. At the interface between the transmission line and the load,
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part of the incident voltage Vinc is reflected back as V− while the rest

is transmitted as V+ through the interface. The reflection coefficient

Γ which is the ratio of V− to Vinc at the interface A in figure C.1 is

related to the impedances on the transmission line as [213] :-

Γ =
V−
Vinc

=
zL − z0

zL + z0
(C.1)

Also for a finite d, the transmission coefficient T which is the ratio

of V + to Vinc between the interfaces A and B in figure C.1 is given

as [213]:-

T =
V+

Vinc
= eiγd (C.2)

γ = α + iβ is the complex propagation constant that indicates

the variation in the amplitude of the incident wave as it travels in

a given direction. α and β are the attenuation constant and the

phase constant respectively. In [212, 213], a relationship between the

scattering parameters S11 and S21 and the transmission and reflection

coefficient Γ and T was derived by considering the transfer function

at interfaces A and B in figure C.1. These relationships are given

as:-

S11 =
Γ(1− T 2)

1− Γ2T 2 =

zL−1
zL+1

(
1− ei2γd

)
1−

(
zL−1
zL+1

)2

ei2γd
(C.3)
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S21 =
(1− Γ2)T

1− Γ2T 2 =

[
1−

(
zL−1
zL+1

)2
]
eiγd

1−
(
zL−1
zL+1

)2

ei2γd
(C.4)

As shown in [214, 215], equation C.3 and C.4 can be inverted to

obtain zL and γ as follows:-

ZL = ±

√
(1 + S11)

2 − S2
21

(1− S11)
2 − S2

21

(C.5)

eiγd =
S21

1− S11

(
zL−1
zL+1

) (C.6)

γ =
1

d
ln

 S21

1− S11

(
zL−1
zL+1

)
 (C.7)

γ(ω) = α(ω) + iβ(ω) (C.8)

Once the propagation constant γ is determined from equation C.7,

the attenuation constant α of the PC lattice and the phase constant

β = 2π
λ = k can be determined from the real and imaginary part of

the complex propagation constant [216]. k is the wave number of

the EM waves propagating through the medium. When the medium

being investigated is not homogenous (i.e. photonic crystals), it is

important to determine the boundaries of the medium and to ensure

that the experimental scattering parameter is noise free [212]. The

parameter retrieval method fails when the two conditions mentioned
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above are not satisfied. The reason for these conditions is because

of the dependence of Γ and T on the position of the boundaries and

the thickness of the medium respectively. In [212], an optimized

method of effective boundary determination was presented and the

boundaries of many periodic media were found to coincide with the

boundary of the first and the last unit cells at the beginning and

the end of the periodic media. However, the optimization method

presented in [212] depends on the accurate retrieval of the impedance

of the effective medium at different thickness. This approach requires

the accurate measurement of the amplitude and the phase of the

scattering parameter with minimal noise. In order to obtain accurate

measurement of the scattering parameters, the experimental setup

needs to be properly calibrated to take into account all the losses

(in the EM wave absorbers and the metallic plates) in the setup

so that S11 = 0 and S21 = 1 when the PC lattice is not present

in the experimental setup. The calibration is important because it

ensures that the retrieved attenuation α and the wave vector k from

the experimental data are as a result of the photonic crystal. The

calibration procedure is outlined in appendix D.

C.2 The calibration result

The calibration result for the magnitude and the phase of the scatter-

ing parameters are presented in figures C.2 and C.3 where the mag-

nitude of the S11 and S21 are close to 0 and 1 respectively. However,
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the spikes in the S11 and S21 measurement plots are points where the

calibration has failed. Some of the spikes are about hundred times

the expected value of S21 = 1.

Figure C.2: The magnitude of the scattering parameter S11 and S21 measured after
the calibration of the experimental setup.

Figure C.3: The phase (in degrees) of the scattering parameter S11 and S21 mea-
sured after the calibration of the experimental setup.

There are two main problems with the calibration result presented
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in figure C.2. The first problem is the discrepancies between the

measured S11 and S21 and the expected values of S11 = 0 and S21 =

1. For most of the frequencies considered in figure C.2, the S21

values oscillate about 0.8 while the S11 values are about 0.08. This

type of error is expected although it is desirable to minimize these

discrepancies in the S11 and S21 values. These amplitude related

errors are caused by the losses in the experimental setup which are

not properly normalized out by the calibration process. During the

line measurement in the calibration procedure, the impedance of the

EM wave absorber may be matched to the characteristic impedance

of the transmission line and therefore the load reflection coefficient

Γ 6= 0. Also during the reflection measurement in the calibration

procedure, the load impedance of the metal block is not zero (i.e

zL 6= 0) hence the reflection coefficient Γ 6= −1 as expected in the

case of a short circuit. These impedance mismatches are possible

points of amplitude related errors in the calibration.

The second case of discrepancies are the spikes found at some fre-

quencies in the S11 and S21 plots. This spikes occurs when the Γ2T 2

term in the determination of equation C.3 and C.4 tends towards

unity. This causes the denominators in the expression for S11 and

S21 to approach zero hence causing S11 and S21 hence causing the

S11 and S21 values to be much higher than unity. The amplitude of

these spikes changes with small variation in the top metallic plate.

This suggests that the calibration method used is quite sensitive to

179



tiny experimental errors in the positioning of the top plate during

the reflection, line and thru measurement in the calibration process.

As mentioned in [212], discrepancies in the S11 and S21 measurement

will cause the retrieval of the impedance z and the propagation con-

stant to fail. These discrepancies can be minimized in future work

by ensuring that the experimental setup has very few moving parts

which can contribute to the impedance mismatch at each stage in

the calibration process.

In this section, a theoretical method of retrieving the propagation

constant of EM waves propagating through a PC lattice was pre-

sented. However, the difficulties associated with the calibration of

the experimental setup inhibit the application of this transmission

line theory based parameter retrieval method to obtaining experi-

mentally the dispersion plot of a photonic crystal. This work dis-

cusses these difficulties and can serve as a guide to future attempt

at obtaining the dispersion of photonic crystal experimentally.
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Appendix D

The calibration procedure

The experimental set up used in this study is similar to the one shown

in figure 5.2 of chapter 5 where a plane wave, created by using EM

waves absorbing side boundaries, is allowed to propagate through

a periodic medium. In this case the dipole antennas are replaced

with two X-band SMA to waveguide couplers that are connected to

a Vector Network Analyzer (VNA) as illustrated in figure 5.18.

Figure D.1: An illustration of the experimental setup to be calibrated. Not shown
in this illustration are 2 aluminium plates placed on the top and at the bottom of
the space between the EM wave absorbers.

The calibration tools used include a block of metal that is exactly

the height of the EM wave absorbers (10mm) which was used to

181



create a short circuit and a block of EM waves absorber that covers

the space between the reference points A and B shown in figure 5.18.

The EM absorber was used as a matched load with no reflection

(Γ = 0). Once the experimental setup is connected as shown in

figure 5.18 with the top and bottom aluminum plates in place, the

calibration process proceeded as follows:-

• On the VNA, the frequency range (8GHz - 13GHz) of interest

was selected.

• A calibration kit was created, named and saved on the VNA.

The calibration kit stores the frequency range for the short (Γ =

1), matched load (Γ = 0) and thru (T = 1) measurements as

well as the time delay t1 in picoseconds for the thru measurement

between the reference points A and B in figure 5.18. The time

delay was calculated by normalizing phase delay θ = β0L and

then relate it to the period Tc of the center frequency (f =

10.5GHz, λ = 0.0286m). For a distance of L = 0.07m between

the reference points A and B, the time delay t1 as follows:-

β0 =
2π

λ
=

2π

0.0286
= 219.9rad/m (D.1)

θ = β0L = 219.9× 0.07 = 15.39rad (D.2)

Tc =
1

f
=

1

10.5× 109 = 95.24ps (D.3)
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θ

2π
=
t1
Tc

(D.4)

t1 =
θTc
2π

=
15.39× 95.24× 1012

2π
= 233.28ps (D.5)

• Launch the calibration wizard on the VNA and specify the class

of calibration to be TRL between port 1 and 2. Select the

reflection standard and the system impedance. The calibration

wizard will give the option to perform the reflection (Γ = 1) and

line (Γ = 0) measurements from port 1, a thru (zL = 0) between

ports 1 and 2 and then the reflection measurement from port 2

as illustrated in figure 5.19.

Figure D.2: An illustration of the calibration wizard interface during the calibra-
tion process. The Reflection, Line and Thru options are for the short, matched
and open measurements required for the calibration.

• For the reflection measurement from port 1, the block of metal

was placed on the reference plane A closest to port 1 (i.e. short

circuit) and the rest of the experimental setup was kept exactly

the same. reflection on port 1 was selected on the calibration

wizard interface.

• For the line measurement from port 1, the block of EM wave
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absorber was placed between the two reference planes A and B.

The rest of the setup was kept the same and the line option on

port 1 was selected on the calibration wizard interface.

• The thru measurement between ports 1 and 2 was performed by

leaving the experimental setup empty without the metal block,

the EM absorbers or the PC lattice. The rest of the setup

was kept the same and the thru option was selected on the

calibration wizard interface.

• The reflection measurement was also performed for port 2 by

placing the block of metal was placed on the reference plane B

• The calibration setup was named and saved

• The magnitude of the scattering parameter S11 and S21 are

checked to see if the are 0 and 1 respectively for the frequency

range of interest.
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