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Abstract

The Fate of Inflaton Fluctuations in Multi-field Scenarios During

Inflation

Frederic Mouton

October 2015

In this thesis, we give an introductory account of inflationary cosmology.

We explain how a period of accelerated expansion in the Universe’s early

stages can explain some paradoxes encountered in cosmology. Furthermore,

we study the quantum fluctuations of a generic scalar field during inflation

while putting the emphasis on the different behaviour of the fluctuations in

or out of the horizon. Finally, we consider an inflationary potential composed

of two coupled scalar fields: one flat direction and a non-flat one. We solve

the Langevin equations numerically for these two fields and contrast our re-

sults and approach with two previous studies. We find that the fluctuations

of the flat direction does not saturate in the range of e-folds considered.
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Chapter 1

Introduction

The precise measurement of the Cosmic Microwave Background has trans-

formed research in cosmology and it is claimed that it started a “Golden

Age of Cosmology”. While the origin of the Universe is a question as old as

mankind, the recent cosmological surveys have brought a large quantity of

data which is now studied to obtain this ultimate answer. The Cosmic Mi-

crowave Background is, for now, the only clue to study inflation: a period of

exponential expansion of the Universe supposed to have begun when it was

around 10−42 seconds old [1].

It is now accepted that a Hot Big Bang produced a plasma of particles cool-

ing down due to the expansion of the Universe. The decoupling of these

particles, in particular photons and electrons, has made the Universe trans-

parent and has allowed these photons to travel to us freely. The Cosmic Mi-

crowave Background is therefore an imprint of the early Universe in which

it is believed that many clues are hidden, such as gravitational waves and

traces of an inflationary period [1].

During inflation, the small quantum perturbations are stretched by the ex-

pansion and amplified into the classical density perturbations which are
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believed to be the origin of the large scale structure in the Universe [1]. Un-

derstanding them is an important aspect of early Universe cosmology. Flat

directions are directions in field space where the potential is constant. In

this situation, the field can vary at no cost in energy and may acquire a large

vacuum expectation value. Since the inflaton field is a flat direction of the

inflationary potential it is interesting to see the evolution of flat directions

in multi-field scenarios. This thesis considers the inflationary trajectory and

studies its evolution to find whether it may indeed have large fluctuations.

Chapter 2 recalls the inflationary paradigm. It exposes some of the problems

in cosmology and briefly shows how inflation can solve them.

Chapter 3 describes the quantum perturbations in the inflationary epoch

while focusing on the difference between infrared and ultraviolet modes.

Chapter 4, finally, describes eternal inflation and reviews the stochastic

equations used in our computer simulations to study the time evolution of a

flat direction in a multi-field case during inflation. The results obtained are

compared with two previous similar studies.
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Chapter 2

Cosmological Inflation

2.1 The Hot Big Bang Model

The Hot Big Bang Model is overall a successful model. It is capable of ex-

plaining most of the key features observed in the Universe. This model is

based on the observations by Hubble in 1924 [2] that the redshift of galaxies

is proportional to their distances. This result, known as Hubble’s Law, com-

bined with the Cosmological Principle (the assumption that the Universe is

homogeneous and isotropic), implies that the Universe must have previously

been smaller and denser. This deduction is reinforced by the observation of

the Cosmic Microwave Background (CMB) which proves that the Universe

was previously hot. The facts that the CMB is blackbody radiation and that

the temperature anisotropies are small ∆T/T ∼ 10−5 [8] also support the

Cosmological Principle.

Another strength of the Hot Big Bang model is the account it gives of the

formation of the light elements and its ability to predict their correct abun-

dances. Nucleosynthesis was believed to happen when the Universe was

around one second old at a temperature of T ≈ 1010K [6]. At this time, the

temperature has cooled enough to allow the nuclear fusion of protons and
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neutrons into Hydrogen and Helium nuclei. As the Universe continued to

expand, the temperature cooled down below the required level and the fu-

sion process is frozen out. At this point, the density of the light elements is

fixed.

The following era is called the radiation era. Since the binding energy be-

tween a nucleus and its electrons is less than the strong force between the

nuclei themselves, electrons remain free in the original opaque plasma. At

around T ≈ 1eV, recombination happens [6]. Electrons become bound to the

nuclei to form atoms. At this point, photons can travel freely from the sur-

face of last scattering and the Universe becomes transparent. These photons

are cooled to 2.7K and redshifted to the microwave scale due to the expan-

sion of the Universe to become the Cosmic Microwave Background that we

observe today [6]. This marks the beginning of the matter dominated era.

2.2 The Shortcomings of the Hot Big Bang Model

Despite its success, the Hot Big Bang model also has its limitations. Dark

matter, dark energy and inflation have become widely accepted additions

to the model. Inflation, in particular, was proposed as a solution to the

horizon, flatness and monopole problems, which are described below. This

small review is mainly based on [3, 6].

2.2.1 The Flatness Problem

The flatness problem refers to the fact that the density of the Universe

is close to its critical density. The critical density ρcrit is the density for

which the Universe has just enough energy to prevent contraction into a
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Big Crunch due to its own gravitational attraction. This is known as the

Einstein - deSitter model. Using the Friedmann Equation:

H2 =

(
ȧ

a

)2

=
8πGρ

3
− kc2

a2
, (2.1)

it is possible to define the critical density for which the Universe is flat (i.e.

k = 0):

ρcrit =
3H2

8πG
, (2.2)

where H = ȧ/a is the Hubble parameter and G is the gravitational constant.

The density parameter Ωtot = ρ
ρcrit

is therefore 1 when the Universe is flat.

The subscript “tot” denotes the fact that the density parameter can be sepa-

rated into its different constituents (Ωmatter,Ωradiation...etc). The current den-

sity parameter Ωtot = 0.9995±0.0034 can be measured experimentally from

the observation of the CMB [4, 5]. Using Friedmann’s equation (2.1), it can

be related to the curvature index k :

|Ωtot − 1| = |k| c
2

a2H2
. (2.3)

The flatness problem lies in the fact that in order for the density parameter

to be close to 1 today, it must have been even closer to 1 before. This is

because for radiation a ∼ t1/2 and a ∼ t2/3 for matter, so |Ωtot − 1| increases as

the Universe gets older. It is estimated that at the electro-weak symmetry

breaking scale (t w 10−12s), we need |Ωtot − 1| ≤ 10−30 [6]. This level of fine

tuning is considered unphysical.
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2.2.2 The Horizon Problem

The key idea behind the horizon problem is that both the speed of light and

the age of the Universe are finite, so a photon can only have traveled a finite

distance during the lifespan of the Universe. This distance is known as the

particle horizon. Consequently, two particles separated by a distance larger

than their particle horizons cannot have been in contact with each other and

there shouldn’t be any correlation between their physical properties.

The distance to the particle horizon RH can be derived from the FLRW met-

ric and is given by [7]:

RH(t) = a(t)

t∫
0

dt′

a(t′)
= a

a∫
0

da

a

(
1

aH

)
= a

∫ a

0

dlna
(

1

aH

)
, (2.4)

where 1/aH is the Hubble radius.

As previously described, the temperature anisotropies of the CMB are small

(4T/T ≈ 10−5). This suggests that all parts of the sky must have been in

causal contact to reach thermal equilibrium. The issue is, however, that

our Hubble horizon today (defined as the distance which light has traveled

since the Big Bang) corresponds to roughly a million causally disconnected

regions. This is known as the horizon problem.

2.2.3 The Monopole Problem

Magnetic monopoles are topological defects predicted to arise due to phase

transitions around the GUT scale T ≈ 1016GeV [8]. As the temperature

drops below the GUT scale energy, the Higgs field acquires a non-zero vac-

uum expectation value and the symmetry is spontaneously broken. An anal-

ogy can be made with the cooling of a ferromagnet: when the metal cools be-

low the Curie temperature, thermal excitations lose strength and magnetic
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dipoles will start aligning with their neighbours. While any direction is ini-

tially equi-probable, once a few dipoles have randomly chosen a direction,

their neighbours will align themselves accordingly. If the distance between

two regions is larger than the particle horizon, then there is no reason to

expect that the Higgs field would take the same vacuum expectation value

in these regions. The boundary between these two regions is referred to as

a topological defect. Again an analogy can be made with dislocations in a

ferromagnetic crystal.

Magnetic monopoles are predicted to be stable and it is expected that they

were created with a number density comparable with photons [8]. However,

for radiations ργ ∼ 1/a4 , while magnetic monopoles are non-relativistic due

to their heavy mass so they follow ρmon ∼ 1/a3. This means that the density

of photons decreases quicker than the density of monopoles. At some point,

it would therefore be expected that monopoles dominate over photons. This

is clearly incompatible with the current observations as there is currently

no observational evidences for magnetic monopoles except a controversial

experiment by Cabrera in 1982 [9].

To illustrate the principle of spontaneously broken symmetries and symme-

try restoration, we follow the example in [10]. Let us consider two real scalar

fields φ and ψ with a potential :

V (φ, ψ) = V0 −
1

2
m2φ2 +

1

4
λ1φ

4 +
1

2
λ2φ

2ψ2. (2.5)

In the case when ψ = 0, the fourth term of the potential becomes null and

V (φ) has two minima at φ = ±
(
m/
√
λ1

)
. The minima represent the vacuum

expectation values of the field φ and the symmetry φ→ −φ is spontaneously

broken.

On the other hand, if ψ2 is homogeneous and time independent, and we as-
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sume the effective mass squared of φ (the second derivative of the potential

with respect to φ at the origin) to be positive, then the symmetry is restored

since there is a unique minimum at the φ = 0 as shown on the figure below.

Figure 2.1: The solid line illustrates the potential when ψ = 0, while the
dashed line shows the potential with ψ2 > m2/λ2. From [10].

In the case of topological defects, we can form a similar argument where

the field ψ depends on the temperature and the symmetry is restored above

a critical temperature (this is the Curie Temperature in our analogy with

ferromagnets). As the Universe expands, the temperature decreases and

at some point becomes smaller than the critical temperature. Right before

symmetry breaking, the spatial average of the field φ is 0. Yet, because of

thermal or quantum fluctuations, different locations in space will have ei-

ther small positive or negative fluctuations. When the symmetry is broken,

and ψ = 0, φ will roll towards the nearest vacua φ = ±
(
m/
√
λ1

)
with a

topological defect separating regions with different vacua.

14



2.3 Cosmological Inflation

Cosmological inflation can be defined as a period of accelerated expansion:

ä > 0. (2.6)

Inflation is capable of providing a solution to the issues described above.

For example, the condition (2.6) is equivalent to d
dt

1
aH

< 0, which means

that, given sufficient expansion, inflation will drive Ω towards 1 according

to equation (2.3) regardless of the initial curvature index. Moreover, since

1
aH

is the co-moving Hubble’s length, inflation reduces the size of the ob-

servable Universe as shown in figure 2.2 . The idea that the Universe we

observe today originated from one small smooth patch solves both the hori-

zon and monopole problems. Indeed, it implies that all parts of the observ-

able sky have been in thermal equilibrium previously, hence explaining the

small temperature anisotropies in the Cosmic Microwave Background. Fur-

thermore, since the observable Universe originated as one small patch, the

number density of the topological defects has been diluted.

The figure below summarises the main features of inflation and illustrates

how inflation can solve the problems we described previously. The acceler-

ated expansion of the Universe during inflation reduces the Hubble horizon

as we mentioned that an accelerated expansion is equivalent to d
dt

1
aH

< 0

, where 1
aH

is the Hubble length. After a sufficient number of e-folds, the

horizon is fully contained into an initial smooth patch. This is how inflation

solves the different problems we described previously. The horizon problem,

for example, is resolved since the Universe we observe today originates from

a single smooth Hubble patch. After inflation, the condition d
dt

1
aH

< 0 is no

longer satisfied and the Hubble horizon starts to expand. The evolution of

the Hubble horizon is shown by the blue arrow in the figure below.
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Figure 2.2: Schematic of the inflationary solution to the horizon problem.
From [1].

The different parts of the figure are described above.

2.4 Scalar Field Inflation

We reviewed some cosmological problems which can be solved by a period of

accelerated expansion at early times. The issue is now to find a new kind of

matter whose equation of state satisfies the condition ä > 0.

Since the Universe is isotropic, its stress-energy-momentum tensor is given

by the perfect fluid approximation:

T µν = (p+ ρ)uµuν − pηµν , (2.7)
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where p is the pressure, ρ the density of the Universe, uµ is the four-velocity

vector (with u0 = 1 and ui = 0) and ηµν = η−1
µν is the inverse of the Minkowski

metric with signature (+,−,−,−).

The stress-energy tensor obeys the conservation law : T µν;µ = 0 which gives

the continuity equation:

ρ̇ = −3H (ρ+ p) . (2.8)

The derivation of this equation is detailed in Appendix 1.

The density and pressure ρ and p are linked through the equation of state:

p = ωρ, where ω is a dimensionless number[11].

Using Friedmann equation (2.1) and (2.8), the condition for inflation (2.6)

can be re-expressed as: ρ+ 3p < 0.

An example of a type of matter with a broken energy dominance (ρ+ 3p < 0)

is a positive cosmological constant for which: pΛ = −ρΛ. The solution of

Einstein’s equation with this equation of state is a deSitter Universe with

a ∝ eHΛt for t� H−1
Λ .

The most common particle candidate to drive inflation is a scalar field known

as the inflaton φ. Its energy density and pressure are given as : ρ = 1
2
φ̇2 +

V (φ) and p = 1
2
φ̇2−V (φ). Spatial derivatives can be neglected as they would

be “smoothed” by inflation. Scalar fields are successful candidates if φ̇2 �

V (φ). In order to determine if a given potential would lead to an inflationary

period, it is necessary to study the behavior of the homogeneous classical

scalar field in an expanding Universe using the Klein-Gordon equation (2.9)

and the Friedmann equation for a homogeneous scalar field (2.10) :

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 and (2.9)
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H2 =
8πG

3

(
1

2
φ̇2 + V (φ)

)
. (2.10)

For the inflaton, it is possible to neglect the term which contains the spatial

derivatives in the Klein-Gordon equation and hence only consider homoge-

neous scalar fields. This is due to the fact that any gradient will rapidly tend

to zero due the rapid expansion of the Universe during inflation. This can be

seen mathematically in the next chapter, where the Klein-Gordon equation

is derived.
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Chapter 3

Field Fluctuations in a Time

Dependent Background

3.1 Inhomogeneous Universe

In the current understanding, the Universe was made nearly flat and homo-

geneous by an early period of rapid expansion known as inflation. During

this period the physical Universe expanded super-luminally thus resulting

in a reduction in distance to the horizon. This exponential expansion is the

reason why the Universe appears to be uniform and flat today.

Perfect homogeneity, however, is never achieved, at least not on the quan-

tum scale. Quantum fluctuations in an inflationary patch are stretched to

classical size. These seed perturbations are believed to have caused inhomo-

geneities in the early photons, baryons and dark matter fluids which later

collapsed into the large-scale structures we observe today and left their im-

prints on the Cosmic Microwave Background.
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3.2 The Klein-Gordon Equation

3.2.1 The Klein-Gordon Equation in Flat Space-Time

Let us consider a scalar field φ (~x, t). The action for this scalar field is given

by the following equation:

S =

∫
M

d4xL (φ, ∂µφ) , (3.1)

where L is the Lagrangian density and M is a 4-dimensional domain. We

use Hamilton’s principle by requesting that δS = 0 when the variations of

the field and its derivative are given by:

φ→ φ+ δφ , ∂µφ→ ∂µφ+ δ∂µφ and δ∂µφ→ ∂µδφ. (3.2)

This gives at first order:

δS =

∫
M

d4x

{
∂L
∂φ

δφ+
∂L

∂ (∂µφ)
δ (∂µφ)

}

=

∫
∂M

d3σnµ
δL

δ (∂µφ)
δφ+

∫
M

d4x

{
δL
δφ
− ∂µ

δL
δ (∂µφ)

}
δφ, (3.3)

where nµ is a unit vector oriented normally to the boundary ∂M of M , and

d3σ is a 3-dimensional volume element on ∂M . We choose to consider only

variations that vanish on ∂M and therefore the first term vanishes. Then,

the integrand in the second term must vanish for δS = 0 to hold for an

arbitrary variation of the field δφ.

This result gives the Euler-Lagrange equation:
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∂µ
∂L

∂ (∂µφ)
− ∂L
∂φ

= 0. (3.4)

Let us now consider the Lagrangian for a real scalar field:

L =
1

2
∂µφ∂µφ− V (φ) . (3.5)

In this case, the Euler-Lagrange equation gives :

�φ+
∂V

∂φ
= 0. (3.6)

This is the Klein-Gordon equation, where � is the d’Alembert operator � =

∂µ∂µ.

The Klein-Gordon equation is derived in more detail in Appendix 2.

3.2.2 The Klein-Gordon Equation in Curved Space-Time

In curved space time, the action is of the form [1]:

S =

∫
d4x
√
−gL, (3.7)

where g is the determinant of the metric gµν and for the conformally flat

FLRW metric:

gµν = a2ηµν , (3.8)

where ηµν is the Minkowski metric for which
√
−η = 1.

Hence,
√
−g = a3. The result of using Hamilton’s principle on this new

action also gives the Euler-Lagrange equation but this time with L → a3L.
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The Euler-Lagrange equation is :

∂µ
(
a3∂µφ

)
+ a3∂V

∂φ
= 0, (3.9)

with ∂µ = gµν∂ν , where gµν is the inverse of the metric. This gives the

Klein-Gordon equation in curved space-time:

φ̈− a−2∇2φ+ 3Hφ̇+
∂V

∂φ
= 0. (3.10)

This form of the Klein-Gordon equation is also derived in more details in

Appendix 2.

3.3 Quantum Fluctuations of a Massless Scalar

Field

If we consider a massless scalar field χ (~x, t) with its small quantum per-

turbations δχ (~x, t), we can separate the classical background χ from the

perturbation and write the field as:

χ (~x, t)→ χ (t) + δχ (~x, t) . (3.11)

In this way, both the field and its perturbation follow the Klein-Gordon equa-

tion. In momentum space, let us consider the Fourier transform δχk of the

perturbation δχ.

The standard formula for a Fourier transform is:

δχk (t) =

∫
d3~x

(2π)
3/2
e−i

~k.~xδχ (~x, t) . (3.12)

22



In momentum space, using V (χ) = 0, the Klein-Gordon equation (3.10) be-

comes:

δχ̈k + 3Hδχ̇k +
k2

a2
δχk = 0. (3.13)

Using equation (3.13), we will show that the perturbations have a different

behaviour depending on the wavelength λ of the perturbation. Two cases

must be defined : the infrared case: k � aH , where the wavelength λ is

outside the horizon: λ � (aH)−1, and the ultraviolet: k � aH, where the

wavelength is within the horizon λ� (aH)−1.

In the ultraviolet regime, the friction term 3Hδχ̇k can be neglected and equa-

tion (3.13) reduces to the harmonic oscillator equation with frequency k2/a2:

δχ̈k +
k2

a2
δχk = 0. (3.14)

The frequency is time dependent since the scale factor is a function of time,

but qualitatively one can expect the fluctuations to oscillate while the wave-

length is within the horizon.

In the infrared regime, k � aH and the k2/a2 term can be neglected. Then

equation (3.13) becomes:

δχ̈k + 3Hδχ̇k = 0, (3.15)

which, since H is effectively constant, has a solution δχk = Ae−3Ht+B, where

A and B are constants of integration. We notice here that the oscillations of

the perturbation stop after crossing the horizon.

If we consider the special case where k = aH, then all terms must be consid-

ered and equation (3.13) may be written as:
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¨δχk + 3H ˙δχ+H2δχk = 0, (3.16)

and, using the fact that H is constant, we found that the solution is of the

form δχk = Ae
H
2 (−3+

√
5)t + Be

H
2 (−3−

√
5)t, where A and B are constants of inte-

gration.

The general picture is that given a perturbation with an initial wavelength

λ ∼ a/k inside the horizon, the fluctuations oscillate until the wavelengths

become of the order of the horizon at which point, the oscillations stop and

the perturbation gets frozen.

We can convert the Klein-Gordon equation into an harmonic oscillator equa-

tion, to do this we move to conformal time dη = dt/a and use the transfor-

mation :

δχk =
δσk
a
. (3.17)

The Klein-Gordon equation becomes:

δσ′′k +

(
k2 − a′′

a

)
δσk = 0, (3.18)

where ′ means ∂/∂η. We also use a pure deSitter background: a ∼ eHt so

a (η) = − 1
Hη

and H = ȧ/a is constant. Equation (3.18) is known as the

Mukhanov-Sasaki equation.

On the sub-horizon scale, the k2 term is dominant
(
k2 � a′′

a
= aH

)
. The

solution is a plane wave:

δσk = Aeikη +Be−ikη for k � aH. (3.19)
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In the ultraviolet regime, the fluctuations oscillate as in flat space-time. The

reason is, when the wavelength is much shorter than the horizon scale, the

space-time can be approximated as flat.[7]

On super-horizon scale k2 � a′′

a
, the k2 term can be dropped and a solu-

tion may be found by comparing the expression of (δσ′ka)
′

and (a′δσk)
′

. The

solution is :

δσk = B (k) a for k � aH, (3.20)

where B (k) is a constant of integration. This result shows the freezing of

the perturbations once past the horizon.
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Chapter 4

Inflaton fluctuations in

multi-field scenarios

4.1 Motivations

During inflation, all light scalar fields undergo stochastic fluctuations. Some

perturbations are stretched beyond the Hubble length due to the expansion

of the Universe and are believed to be the seeds for the formation of large

scale structures. Their effects can also be seen in the temperature inhomo-

geneities in the Cosmic Microwave Background Radiation. In the case of

multi-field inflation, the dynamics of the coupled fields can be complicated

as the fluctuations of one scalar field may influence the fluctuations of the

others [13].

Two articles [14, 15] have recently discussed the dynamics of the fluctu-

ations of flat directions using the stochastic approach. This formalism is

described in the following section. These two articles deal with flat and

non-flat directions. A flat direction is defined as a direction in field space

in which the potential is zero (or constant if there is a zero point constant).
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This means that the field can vary at no cost in energy. A similar definition

is proposed in [14], where flat directions are configurations where some of

the field values are related to each other while the rest are set at zero. A

more detailed example is provided in section 4.4.3.

The two articles arrived at different conclusions. In [14], the variance of

the fluctuations of the inflaton saturates due to the effect of the non-flat

direction unless the coupling between the flat and the non-flat direction is

taken to be very small. Conversely, in [15], it is claimed that a non-flat

direction cannot block the fluctuations of a coupled flat one since the non-

flat direction cannot have large fluctuations itself due to its large mass.

However, it is important to note that these two articles have considered dif-

ferent approaches. In [14], all fields are massless, while in [15] all possi-

ble masses are allowed and the authors calculate a zero-point contribution

which is subtracted from the correlators. This zero-point contribution ac-

counts for the fact that the noise correlation functions have a non-zero vac-

uum expectation value. Similarity may be drawn from the idea of vacuum

energy, the zero-point contribution represents the stochastic noise which is

not due to the small wavelength modes.

In classical slow-roll inflation as described in Chapter 2, it is assumed that

the classical fluctuations dominate over the quantum ones. If instead, it is

assumed that the quantum fluctuations dominate, one has what is called

eternal inflation [1]. Eternal inflationary models suppose that once infla-

tion starts, it carries on forever and creates an indefinitely large volume

in which we would be living. However, in the case of eternal inflation, the

inflaton quantum fluctuations are the drivers behind the expansion of the

Universe, and eternal inflation depends on the ability of the inflaton to have

large fluctuations. Since the inflaton is a flat direction of the inflationary

potential, it is interesting to see the evolution of its fluctuations in multi-
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field scenarios. If the variance of the flat direction saturates as claimed in

[14], this result would impair the viability of multi-field eternal inflationary

models.

In this chapter, we revisit the stochastic approach introducing what we be-

lieve to be the correct mathematical treatment and we compare the results

obtained with the previous articles.

4.2 Field Equations and the Stochastic Approach

A process is called stochastic if it is non-deterministic (i.e. if the result of the

experiment cannot be used to predict the result which would be obtained if

the experiment would be repeated). A popular example could be the flipping

of a coin. Obtaining the result “head” does not predict whether the next

result will be “head” or “tail”. Since the flipping of a coin is a time-discrete

experiment that can only take two values, it is called a Bernoulli process.

In our case, the effect of the momentum modes with a short wavelength

(compared to the Hubble horizon) on the modes with long wavelengths is

a non-deterministic time-dependent effect which we model as a stochastic

process. This is described in more details below.

We consider a potential V with a series of fields φi and their conjugate mo-

menta πi. These fields follow the Klein-Gordon equation. In the Hamiltonian

picture :

φ̇i = πi , π̇i + 3Hπi −
∇2φi
a2

+
∂V

∂φi
= 0. (4.1)

As shown in the previous chapter, the fluctuations of the fields φi behave
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differently depending on whether their wavelengths are smaller or larger

than the Hubble horizon . Hence, the fields φi are separated into two parts

: the infrared (IR) Φi which represents the fluctuations which have already

crossed the horizon: λ < (aH)−1, and the ultraviolet (UV) ϕi part which

represents the fluctuations inside the horizon: λ > (aH)−1:

φi (t, ~x) = Φi (t, ~x) + ϕi (t, ~x) , πi (t, ~x) = Πi (t, ~x) + δπi (t, ~x) , (4.2)

such that:

Φi (t, ~x) =

∫
d3k

(2π)3φi

(
t,~k
)
W
(
t,~k
)
ei
~k.~x ,

ϕi (t, ~x) =

∫
d3k

(2π)3φi

(
t,~k
) [

1−W
(
t,~k
)]
ei
~k.~x, (4.3)

and the analogous equations for the conjugate variables. The functionW
(
t,~k
)

is the window function that marks the transition between the infrared Φi

and the ultraviolet ϕi parts. The choice of a relevant window function will

be the subject of the next section.

The infrared parts obey the following equations ( see Appendix 3):

Φ̇i = Πi + sφi , Π̇i = −3HΠi −
∂V (Φi)

∂Φi

+ sπi , (4.4)

where the gradient term have been neglected due to the rapid expansion of

the Universe, and where :
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sφi (t, ~x) ≡
∫

d3k

(2π)3φi

(
t,~k
)
Ẇ
(
t,~k
)
ei
~k.~x ,

sπi (t, ~x) ≡
∫

d3k

(2π)3πi

(
t,~k
)
Ẇ
(
t,~k
)
ei
~k.~x, (4.5)

are the noise terms. As we show in the previous chapter, the UV modes are

described by harmonic oscillators while the oscillations are frozen in the IR

when the perturbations cross the horizon. The noise terms correspond to the

effect of the UV modes on the IR ones. Since the UV modes evolve rapidly

compared to the IR, we can model them as stochastic noise while treating

the IR as a classical field.[1, 14].

Equations (4.4) are the Langevin equations for the infrared part. The terms

sφi/πi are the noise terms accounting for the random “kicks” of the ultraviolet

modes onto the infrared ones. Because of its random nature, the stochastic

noise follows a Gaussian distribution with mean zero [14]. The variance of

noise distribution is defined similarly to [14, 15] as the correlation function

of sφi/πi :

σ2
φi/πi

= 〈0| sφi/πi (t, ~x) sφi/πi (t′, ~x) |0〉 . (4.6)

In the numerical calculation, the relevant quantity is the correlation func-

tions between the noise terms integrated over a short interval [t, t+ dt]. This

is due to the discretisation of the equation for the numerical simulations

which will be discussed later. The integrated correlations functions are :

Sφi/πi =

t+dt∫
t

dt′′
t′+dt′∫
t′

dt′′′σ2
φi/πi

(t′′, t′′′) . (4.7)

As explained in [14], equations (4.4) and (4.5) are operator equations and the

30



terms φkei
~k.~x may be written in terms of creation and annihilation operators

âk, â
†
k as seen in the derivation in Appendix 4 for the case of article [15].

However, with a careful choice of window function, one can ensure that the

IR/UV split occurs right after the modes have crossed the horizon. In this

condition, sφ and sπ commute with each other. They are treated as classical

stochastic forces which we model as random gaussian fields with variance

given by equation (4.7).

The physical picture described in [16] relating to the noise terms is that

quantum modes leaving the horizon become classical, but their quantum

phase freezes as well and its value is random. After the UV modes leave

the Hubble scale, they start to contribute to Φ but for an observer inside a

Hubble patch, it is not possible to make the distinction between the effect of

the UV modes and the random fluctuations of the background.

4.3 The Window Function and the Noise Cor-

relators

The window function is used to decompose the field between its infrared

and ultraviolet parts after horizon exit. In both articles [15, 14] , the win-

dow function compares the inverse Hubble length to the physical momen-

tum of the modes. The window function is written as: θ (εa (t)H − k). The

parameter ε is a constant chosen to be less than 1. In order to keep the

calculations and the simulations easier, θ is a Heaviside step function. Be-

cause a sharp transition between infrared and ultraviolet is unphysical, the

parameter ε = 0.1 is chosen to be less than 1 to ensure that the transition

to infrared occurs well after horizon crossing. This approximation is valid

since we are not interested in the exact spatial correlation of Φi.
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However, in the case where there are tree-level mass terms: m2
ΦiΦj
≡ ∂2V

∂Φi∂Φj
,

the relevant quantities for the window function are not only the Hubble

length and the momentum but also the masses of the fields. Therefore, the

relevant quantity signaling the exit out of the horizon is the physical adia-

batic frequency:

ω
(phys)
i =

ωi (k)

a
=

1

a

√
~k2 +m2

i a
2, (4.8)

and the window function becomes:

W
(
t,~k
)

= θ (εHa− ωi (k)) . (4.9)

Using this window function, the integrated noise correlators were imposed

as :

Sφi =

(
H

2π

)2

dNjo

(
a
√
ε2H2 −m2

i r

)
π

2

(
ε2 − m2

i

H2

) 3
2

(4.10)

× θ

(
ε2 − m2

i

H2

) ∣∣∣∣∣H1
ν

(√
ε2 − m2

i

H2

)∣∣∣∣∣
2

,

Sπi =

(
H

2π

)2

dNjo

(
a
√
ε2H2 −m2

i r

)
π

2

(
ε2 − m2

i

H2

) 3
2

θ

(
ε2 − m2

i

H2

)
(4.11)

×

∣∣∣∣∣
(

3

2
− ν
)
H1
ν

(√
ε2 − m2

i

H2

)
+

√
ε2 − m2

i

H2
H1
ν−1

(√
ε2 − m2

i

H2

)∣∣∣∣∣
2

,

where : H1
ν (x) is the Hankel function of the first kind , j0 (x) is the zeroth

order spherical Bessel function, r = | ~x1 − ~x2| and ν =

√
9
4
− m2

i

H2 . dN = Hdt is
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the increment of number of e-folds.1

Since we are only interested in the dynamics of the infrared fields in their

domains of size ∼ H−3 and not in different uncorrelated domains, we take

r = 0 and therefore drop the Bessel function since j0 (0) = 1. Furthermore,

since we imposed the condition : m2
i

H2 < ε2 < 1 when we defined the window

function in equation (4.9), ν is always a real number while the authors in

[15] also consider the case when ν is complex.

In [15], the authors argue that little is known on whether the zero-point

fluctuation should be subtracted in the calculation of Sφi/πi. They show that

the zero-point fluctuation is negligible as long as the masses considered are

small. However, in the case where mi � H, they find that the zero-point

fluctuation dominates the noise terms. This problem is solved when the cor-

rect window function is used as large masses are not allowed. The physical

argument is: if a field has a heavy mass, larger than the Hubble rate, it will

never be able to exit the horizon, since the crossing of the horizon happens

when the adiabatic frequency (4.8) becomes less than the Hubble rate.

4.4 Numerical Analysis

In this section, the field equations are written in a suitable form to be in-

putted into the numerical simulations. We present the potential considered

and discuss the results of the numerical simulations.

4.4.1 Setup

Following the example of [14, 15], the variables are rescaled to form dimen-

sionless quantities. The fields, the potential and the noise terms (4.10) and
1Equations (4.10) and (4.11) were derived by Dr Anupam Mazumdar. For a similar cal-

culation in the case of [15], see Appendix 4.
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(4.11) become:

Φi → Φ̃i =
Φi

H
,

Πi → Π̃i =
Πi

H2
,

Sφ → S̃φ =
Sφ
H2

, (4.12)

Sπ → S̃π =
Sπ
H2

,

V (Φi) → Ṽ
(

Φ̃i

)
=
V (Φi)

H4
.

For example, in natural units, the field Φ has dimension of energy , while H

has dimension 1/time, which in natural units, is expressed as energy. The

ratio Φ̃i = Φi
H

, is therefore dimensionless.

The Langevin equations can now be expressed in terms of dimensionless

variables :

Φ̃′i (N) = Π̃i (N) + s̃φi , (4.13)

Π̃′i (N) = −3HΠ̃i (N)− ∂Ṽ (Φi)

∂Φi

+ s̃πi .

where ′ stands for d
dN

derivative with respect to the number of e-folds : N =∫
Hdt.

In order to solve these equations numerically, the fields must be discretised

by choosing a small “time” step: dN � 1. For clarity of notation we will also

drop the tildes in these equations. The discretised iterative dimensionless

Langevin equations are :
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Φi (N + dN) = Φi (N) + Πi (N) dN + Sφi , (4.14)

Πi (N + dN) = Πi (N)− 3Πi (N) dN − ∂V

∂Φi

dN + Sπi .

4.4.2 Numerical Simulations

The goal of this project is to design a computer program capable of solving

the coupled Langevin equations in order to determine the evolution of the

inflationary flat direction. The program created uses C++ and is based on

LATTICEEASY [18]. LATTICEEASY is a lattice simulation capable of cal-

culating the evolution of interacting scalar fields in an expanding Universe.

Since our equations have no space dependence, a lattice simulation is not re-

quired. Besides, such a simulation in deSitter space would require too much

computing power. Instead, our program uses the lattice as an array where it

can independently solve the equations of motion at each grid points in order

to quickly obtain good statistics. This method requires all variables to be

defined as arrays but we found that it was to most efficient way to carry out

the simulation as it minimises the necessary CPU time. All results are then

averaged over the grid.

While the program developed has only kept the basic structure of LAT-

TICEEASY, its “code-skeleton” includes the possibility to run in parallel.

This is an attractive feature from LATTICEEASY which means the program

can be used in a computing cluster to get even higher statistics if required.

In order to compute the Hankel functions in the noise correlators (4.10) and

(4.11), we use the same approximation as [15]:

∣∣H1
ν (ε)

∣∣2 ' 22νΓ (ν)2

π2
ε−2ν . (4.15)
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This approximation allows us to restrain from using the third-parties Boost

libraries since Hankel functions are not defined as standard functions in

C++11.

4.4.3 Numerical Analysis

For our purpose, we have chosen a simpler potential than [14, 15]. This

potential is :

V =
1

2
λ2φ2χ2 +

1

2
g2χ4 +

φ6

M2
pl

, (4.16)

where λ and g are coupling constants, Mpl ' 2.4 × 1018GeV is the reduced

Planck mass, φ is the flat direction and χ is the non-flat one. We found

that reducing the number of non-flat directions in the potential compared

to [14, 15] has no impact on the dynamics. As previously mentioned, we

have also reproduced the results presented in both articles when using their

respective treatments for the noise terms and their potential. These results

will be shown in the next section.

It is important to note, however, that when the variables are rescaled to di-

mensionless quantities as shown in (4.12), the term of the form φ6

M2
pl

becomes

H2

M2
pl
φ̃6. The ratio H2

M2
pl

can be chosen by setting the tensor to scalar ratio which

is estimated from the calculation of the spectrum of the curvature perturba-

tion using the Cosmic Microwave Background data [1]. According to [1], the

tensor spectrum is given by:

Ph (k) =
8

M2
pl

(
H

2π

)2

. (4.17)

This relation will permit to give an estimation of the value of H
Mpl

during in-

flation using the experimental limits on the tensor to scalar ratio from the
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observation of the Cosmic Microwave Background. The prospective detec-

tion of gravitational waves will, in the future, permit more accurate estima-

tions of this ratio [17]. For our simulations, it was imposed that : H2

M2
pl
∼ 10−10.

The graphic below is a 3D plot of the potential which illustrates the fact that

φ is indeed almost a flat direction of the potential. We recall the definition

that a flat direction is a direction in field-space where the potential is zero

(or constant if there is zero-term : i.e. V = V0 + ...). In the picture, it can

be seen that the direction φ is indeed almost constant while the value of the

potential rises in the χ-direction.

If we use the second definition proposed in 4.1 and [14], setting the χ field

to 0 gives V ∼ φ6/M2
pl which is called a non-renormalisable term in [14].

(This is because the motivation of the potential in [14] comes from Super-

symmetry, which is beyond the scope of this study). The purpose of the non-

renormalisable term is to lift the flat direction. When φ is small compared

to the Planck mass this term is suppressed due to its small coupling and φ

behaves as a flat direction. On the other hand, when the non-renormalisable

term becomes large enough, the potential is no longer 0 in the φ direction

and the flat direction has then been lifted.
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Figure 4.1: The potential shown in equation 4.16 (All variables are dimen-
sionless, as detailed in (4.12). )

4.4.4 Preliminary results

In this section, we prove the viability of the program we developed by repro-

ducing the results obtained in [14, 15] using their potential and respective

treatments of the noise correlators. Since our aim in this section is only to

reproduce the results of these previous studies and show the validity of our

program, we use the same parameters as both articles: the iteration step

dN = 10−2 and ε = 0.1. In order to generate the random numbers, we use the

standard C++11 Mersenne-Twister engine “mt19937” similarly to [15]. The

potential used by both articles is :
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V =
1

2
λ2
e

(
Φ2 + J2

)
E2 +

1

8
g2

1J
4 +

1

8
g2

2

(
J4 + 4E4 − 4J2E2

)
+
H2

M2
pl

Φ6, (4.18)

where Φ is the flat direction of the potential, J,E are two non-flat directions,

Mp is the reduced Planck mass and λe, g1, g2 are coupling constants. In this

example, we follow [14, 15] and put all coupling constants to 1. The potential

then becomes :

V =
1

2
Φ2E2 +

1

2
E4 +

1

4
J4 +

H2

M2
pl

Φ6. (4.19)

The initial conditions for both articles are: Φ (0) = E (0) = J (0) = 0.

In the case of [14], all fields have no effective masses and the noise correla-

tors are also constant with values :

Sφ =
(
1 + ε3

) dN
4π2

, Sπ = ε4
dN

4π2
. (4.20)

Figure 4.2: Time evolution of the flat and non-flat directions according to
[14]
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Similarly to [14], we found that the variance of the flat-direction Φ saturates

around 3.5H2 after about a thousand e-folds, while the variances of the non-

flat directions stay close to zero.

In the case of [15], the effective masses of the fields are given as:

m2
Φi

H2
=
∂2V (Φi)

∂Φ2
i

, (4.21)

since the authors of [15] have decided to neglect the non diagonal terms.

Hence:

m2
Φ

H2
= E2 + 30

H2

M2
pl

Φ4,
m2
E

H2
= Φ2 + 6E2,

m2
J

H2
= 3J2. (4.22)

The non-diagonal terms of the mass matrix have been neglected. The noise

correlators are functions of the fields masses, the approximation of the Han-

kel functions (4.15) is not the same for different mass ranges. The complete

expressions for the noise correlators are given in [15].

Figure 4.3: Time evolution of the flat and non-flat directions according to
[15]
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Similarly to [15], we found that the variances of the fields are initially de-

generate but the variance of the flat direction Φ does not saturate within

4000 e-folds as is it the case in [14]. The variance of the J field (blue line)

saturates at small value: this stabilisation is explained by the fact that the

mass of the J field only depends on the value of the field J when the coupling

constants are all equal to 1. We found:

m2
J

H2
= 3J2. (4.23)

In the case of the E field, its mass depends on both Φ and E, the expression

is :

m2
E

H2
= Φ2 (N) + 6E2 (N) . (4.24)

Since the Φ field is allowed to have large fluctuations, it can take large val-

ues which means that the mass of the E field becomes larger. Massive fields

fluctuate at a higher cost in energy, hence the variance of the E field is drop-

ping.

4.4.5 Numerical Results

In the previous section, it was shown that our program, given the same

input, is able to reproduce the results shown in [14, 15]. In this section,

we present the time evolution of the variances of the infrared modes using

the formalism we introduced in this work. We decided to run our program

with the same parameters as the articles presented in the section above.

Therefore we take dN = 0.01 for a time step, ε = 0.1 and we choose for initial
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conditions : Φi = Πi = 0 as in [14, 15]. Due to the grid of the program,

the number of independent runs must be a cubed-root integer and we chose

223 = 10648 while each run goes up to 4000 e-folds.

We recall that the potential we used for this simulation is slightly different

than [14, 15] since we neglected the J field. This field has no coupling term

with the Φ and E fields in the case of [14, 15] and hence acts as a spectator

non-flat direction, it can therefore be removed without loss of generality. The

potential we use in this section is :

V =
1

2
λ2Φ2χ2 +

1

2
g2χ4 +

H2

M2
pl

Φ6, (4.25)

where Φ is the flat direction, χ the non-flat and λ, g are constants equal to 1.

In the following Figure 4.4, we show the results for a constant coupling λ = 1

and for H2

M2
pl

= 10−10. The red line represents the evolution of the flat direction

, the green line is for the non-flat direction.
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Figure 4.4: Evolution of the variances of the infrared modes for λ = g = 1
and H2

M2
pl

= 10−10.

The results are clearly in agreement with [15] since the variance of the flat

direction does not saturate. The value of the variance, however, is much

lower than what is found in [15]. We explain this discrepancy using the fact

that our window functions are different. Since our definition of the infrared

modes is more selective than the one used in [15, 14], there are fewer modes

whose fluctuations contribute to the infrared variance. This graphic also

shows that the simulation done in [14] is only valid in the special case con-

sidered in their articles where the fields are massless. We should therefore

concentrate our efforts on comparing our study with [15].

Evolution of the masses

In this section, we discuss the evolution of the coupling masses of each fields.

While this is not discussed in [15], it is interesting to comment on this re-
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sult as it gives us some insight on the behaviour of the two directions. The

masses are averaged over the number of independent runs as a function of

the number of e-folds. The masses of the two fields are given by:

m2
Φ

H2
= λ2χ2 + 30

H2

M2
pl

Φ4,

m2
χ

H2
= λ2Φ2 + 6g2χ2. (4.26)

Similarly to [15], the non-diagonal terms in the mass matrix (4.21) have

been neglected. Φ and χare not mass-eigenstate fields (their mass matrix is

not diagonalised : ∂2V
∂Φ∂χ

= 2Φχ), instead their noise matrix is diagonal (there

is no term involving cross-correlation). If the simulation had been performed

for mass-eigenstate fields obtained by diagonalising the mass matrix, then

the noise matrix for these fields would not be diagonalised. This would com-

plicate the equations further so for simplicity, it was decided to ignore the

cross-terms of the mass matrix.

Below is shown the evolution of the averaged mass squared for the fields

Φ and χ. In the case of the Φ field, the dominant term is λ2χ2 because we

chose λ = 1 while the ratio H2

M2
pl

has a small value. The variance of the χ field,

however, is small so the field cannot take values far from its original value

which is zero. The Φ field is therefore free to fluctuate and hence takes large

values. Since both coupling are taken as λ = g = 1, the term λ2Φ2 becomes

the dominant term in the expression of m2
χ

H2 . The χ field developed a large

mass and is further barred from fluctuating. This feeds into the mass of the

Φ field and accentuates the phenomenon further.
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Figure 4.5: Evolution of the masses of the flat Φ and non-flat χ directions for
λ = 1 and H2

M2
pl

= 10−10 .

Evolution of the variances for the noise correlation functions

In this section we look the at evolution of noise correlation functions and

contrast our results with [15]. The choice of a new window function (4.9)

which depends on the adiabatic frequency and not only on the momentum

means that, compared to [15], it is not necessary to modify the approxima-

tions of the Hankel function depending on the mass of the fields. With this

setup, the results differ from [15] .
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Figure 4.6: Integrated noise correlation function 〈Sφ〉 averaged over the
number of runs.
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Figure 4.7: Integrated noise correlation function 〈Sπ〉 averaged over the
number of runs.

Similarly as the masses, Sφ and Sπ (see (4.10) and (4.11)) have been averaged

over the number of independent runs as a function of the number of e-folds.
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As in [15], we find 〈Sπ〉 has little effect on the calculation since 〈Sπ〉 � 〈Sφ〉 .

In the case of the field Φ, 〈Sφ〉 is mostly constant, this result is consistent

with Figure 4.4 since there is no observable change in the rate at which

the variance of the field Φ evolves. For the χ field, we do not observe the

same rapid decrease as observed in [15]. This difference is once again due

to the fact that we use a window function (4.9) compared to [15]. In [15],

the variance of the Φ field increases by roughly five orders of magnitude and

the field can take large values. The noise correlation functions depend on

the mass of the fields and the mass of the χ field depends on the value of Φ.

Since in our treatment of the stochastic noise, the variance of the fields is

more constrained than in [15], the other variables are also constrained from

varying on a large scale.

The value of H2

M2
pl

According to [14], the non-renormalisable term plays no role in the satura-

tion of the variance of the flat direction since the fluctuations never exceed

a few units of H. Our results disagree on this particular point. We found

that choosing a different value for the ratio H2

M2
pl

has a drastic impact on the

results and that the variance of the flat direction may, in that case, reach a

stationary limit. The following figure shows the evolution of the flat direc-

tion for different values of H2

M2
pl

.
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Figure 4.8: Evolution of the variance of the flat direction Φ for λ = 1 and
varying H2

M2
pl

.

As it can be seen in Figure 4.8, the saturation of the variance of the flat di-

rection depends on the value of H2

M2
pl

and the effect of the non-renormalisable

term. This Figure illustrates the lifting of the flat-direction by the non-

renormalisable term H2

M2
pl

Φ6 as described in 4.4.3: initially the non-renormalisable

term is suppressed due to its small coupling but as Φ takes larger values, the

non-normalisable term is no longer negligible and the potential is non-zero

in the Φ direction.

As described in 4.4.3, the approximation H2

M2
pl
∼ 10−10 is obtained from the

tensor to scalar ratio. We find that for H2

M2
pl

larger than 10−8, the coupling λ

has little effect on the dynamics of the flat direction over the range of e-folds

considered. In the case when H2

M2
pl

= 0, which is equivalent to removing this

term from the potential, the variance of the flat direction grows linearly as

shown in Figure 4.9 below. In this situation, only the fluctuations of the non-

flat direction can block those of the flat direction and saturate its variance,

but as shown in the figure this is not the case. We can therefore conclude
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from this figure that the mechanism described in [14] is not sufficient to

affect the variance of the flat direction within 4000 e-folds.

Figure 4.9: Evolution of the variance of the flat Φ and non-flat χ directions
for λ = 1 and H2

M2
pl

= 0 .

49



Chapter 5

Conclusion

In this study, we have analysed the time evolution of a flat and a coupled

non-flat direction governed by stochastic Langevin equations during infla-

tion. The basic ideas and equations in inflationary cosmology have been

reviewed as well as primordial perturbations.

During inflation, all scalar fields fluctuate. In the case of a single field poten-

tial, the dynamics of the inflaton are well known. In a multi-field scenario,

the coupling of the fields can lead to back-reactions between the fluctuations

of each field and this complicated situation requires computer simulations

in order to be solved. Previous studies have analysed the evolution of a flat

direction in multi-field scenarios either in a special case or in a set-up which

is believed to be incomplete.

We have revisited this topic, taking into account the effective masses of the

fields for the evaluation of the noise terms. Our definition of a more ade-

quate window function, based on the adiabatic frequency rather than only

the momentum of the modes, has solved the dilemma encountered by [15]

on whether a zero-point fluctuation should be subtracted. Indeed, [15] found

very different results at large masses depending on whether the zero-point

fluctuations were included. In our formalism, the noise correlators (and
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their zero-point contributions) are zero for large masses when the zero-point

fluctuations have a noticeable effect. It is not clear, however, whether the

zero-point fluctuations should be included at all.

Regarding the disagreement between [14] and [15] on the behaviour of the

flat direction, we found that a coupled non-flat direction cannot acquire an

effective mass too large to have fluctuations significant enough to block the

fluctuations of the flat direction. The variance of the flat direction then

evolves linearly and is proportional to the number of e-folds. However, by

making the definition of the IR modes more selective, the fluctuations of the

flat direction grow more slowly than in [15].

Eternal inflation assumes that the inflaton is a flat direction of the inflation-

ary potential and requires that its fluctuations can have a large amplitude

in order to drive inflation. The results found in [14] meant that eternal infla-

tion would not be a viable model. Whereas our results are more in favour of

eternal inflation, we have found a limited growth of the flat direction’s fluc-

tuations compared to [15] which raises the question whether the amplitude

of these fluctuations would be sufficient to sustain eternal inflation.
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Appendix 1: The Equation of

Continuity

In this section we derive the equation of continuity (2.8) which relates the

density and pressure in the Universe.

We start with the energy momentum tensor

T µν = diag (ρ,−p,−p,−p) . (1)

The conservation law T µν;µ = 0 is satisfied and the covariant derivative is

defined as T µν;µ = ∂Tµν
∂xµ

+ ΓµαµT
α
ν − ΓανµT

µ
α ,

where Γikl is a Christoffel symbol defined as Γikl = 1
2
gim
(
∂gmk
∂xl

+ ∂gml
∂xk
− ∂gkl

∂xm

)
,

and where gim is the FRLW metric.

For ν = 0, the conservation law gives

∂T 0
0

∂x0
+ Γµ0µT

0
0 − Γα0µT

µ
α = 0. (2)

The relevant non-zero Christoffel symbols are (from [19])

Γ1
01 = Γ2

02 = Γ3
03 =

ȧ

a
= H. (3)
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Finally, we now substitute the Christoffel symbols into (2) and obtain the

continuity equation

ρ̇+ 3H (p+ ρ) = 0. (4)

56



Appendix 2: The Klein-Gordon

Equation

In this section, we derive the Klein-Gordon equation in flat and curved

space-time using the Euler-Lagrange equation which was derived in 3.2.

We start from the Euler-Lagrange Equation obtained previously (3.4)

∂µ
∂L

∂ (∂µφ)
− ∂L
∂φ

= 0, (5)

we take the Lagrangian density for a real scalar field

L =
1

2
∂µφ∂µφ− V (φ) . (6)

Then we compute each term of the Euler-Lagrange equation and find

∂L
∂ (∂µφ)

= ∂µφ, (7)

and
∂L
∂φ

= −∂V (φ)

∂φ
. (8)

Hence, we obtain the Klein-Gordon equation
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∂µ∂
µφ+

∂V (φ)

∂φ
= 0. (9)

In curved space-time, the Lagrangian density becomes

L = a3

(
1

2
∂µφ∂µφ− V (φ)

)
, (10)

where a is the scale factor.

The Euler-Lagrange equation gives

∂µ
∂L

∂ (∂µφ)
− ∂L
∂φ

= 0, (11)

∂µ
(
a3∂µφ

)
+ a3∂V

∂φ
= 0, (12)

3ȧa2φ̇+ φ̈a3 − a3∇2φ+ a3∂V

∂φ
= 0. (13)

We divide each term by a3, and substitute the Hubble parameter H = ȧ
a
.

We then obtain the Klein- Gordon equation in curved space-time

φ̈+ 3Hφ̇−∇2φ+
∂V

∂φ
= 0. (14)
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Appendix 3: The Langevin

Equations

In this section, we derive the Langevin equations for the infrared fields. A

similar demonstration is shown in [14].

Let’s start from the definition of the infrared field given in (4.3)

Φ (t, ~x) =

∫
d3k

(2π)3φ
(
t,~k
)
W
(
t,~k
)
ei
~k.~x. (15)

We differentiate Φ with respect to time

Φ̇ =

∫
d3k

(2π)3 φ̇
(
t,~k
)
W
(
t,~k
)
ei
~k.~x +

∫
d3k

(2π)3φ
(
t,~k
)
Ẇ
(
t,~k
)
ei
~k.~x, (16)

and identify the first term as

Π =

∫
d3k

(2π)3 φ̇
(
t,~k
)
W
(
t,~k
)
ei
~k.~x, (17)

and the second term as the noise term

sφ =

∫
d3k

(2π)3φ
(
t,~k
)
Ẇ
(
t,~k
)
ei
~k.~x. (18)
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This gives the first Langevin equation

Φ̇ = Π + sφ. (19)

The equation for the conjugate field π is

π̇ + 3Hπ − ∇
2φ

a2
+
∂V

∂φ
= 0. (20)

We can safely neglect the gradient term since we are in de-Sitter space with

a = eHt so the gradient term is exponentially suppressed.

Furthermore, we follow [14] and use the approximation

∂V (Φ)

∂Φ
∼ ∂V (φ)

∂φ
, (21)

otherwise, it would be necessary to simulate the evolution of the UV field as

well. Our program, however, cannot simulate gradient terms as a full lattice

simulation is required. We must therefore ignore the UV field.

We write equation (20) separating the IR Π and the UV δπ fields using (4.2)

Π̇ +

∫
d3k

(2π)3 φ̇
(
t,~k
)
Ẇ
(
t,~k
)
ei
~k.~x + ˙δπ + 3H (Π + δπ) +

∂V (Φ)

∂Φ
= 0. (22)

We identify the conjugate noise term

sπ =

∫
d3k

(2π)3 φ̇
(
t,~k
)
Ẇ
(
t,~k
)
ei
~k.~x. (23)
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Finally, we separate the IR and the UV parts from (22) and obtain the second

Langevin Equation

Π̇ + 3HΠ +
∂V (Φ)

∂Φ
+ sπ = 0, (24)

with

Π̇ =

∫
d3k

(2π)3 π̇
(
t,~k
)
W
(
t,~k
)
ei
~k.~x. (25)
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Appendix 4:Derivation of the

noise correlation functions

In this section, we re-derive the noise correlation functions in the case of

[15]. We use the window function presented in both articles [14, 15].

Expression of sφ and sπ

We recall the definition of sφ and sπ derived in the previous section

sφ =

∫
d3k

(2π)3φẆei
~k.~x, (26)

and

sπ =

∫
d3k

(2π)3 φ̇Ẇ ei
~k.~x, (27)

where the dot means ∂/∂t.

The window function W is the one used in [14, 15] and is given by

W = θ (εaH − k) , (28)
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where θ is the Heaviside step-function, and ε is a positive constant chosen to

be less than 1.

We take the derivative of the step function with respect to time and obtain

Ẇ = εȧHδ (εaH − k)

= εaH2δ (εaH − k) , (29)

using the fact that H = ȧ/a is constant and where δ (x) is the Dirac delta

function.

We substitute equation (29) into (18) and (23) and obtain the expressions for

sφ and sπ:

sφ =

∫
d3k

(2π)3φe
i~k.~xεaH2δ (εaH − k) , (30)

and

sπ =

∫
d3k

(2π)3 φ̇e
i~k.~xεaH2δ (εaH − k) . (31)

Expression of noise correlation functions

We substitute sφ and sπ, derived above, into (4.7), where φ has been pro-

moted to being an operator and is written explicitly in terms of creation and

annihilation operators âk and â†k:
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Sφ =

t+dt∫
t

dt

t′+dt′∫
t′

dt′
∫∫

d3kd3k′

(2π)6

〈
0
∣∣∣(âkϕk + â†kϕ

∗
k

)(
âk′ϕk′ + â†

k′
ϕ∗
k′

)∣∣∣ 0〉(32)

× Ẇ (t, k) Ẇ (t′, k′) ei
~k. ~x1ei

~k. ~x2 ,

where ϕk is a function of k and t, and ϕk′ is a function of k′ and t′.

All terms ending with âk |0〉 = 0. Similarly, all terms beginning with 〈0| â†k =

0 (including the number operator â†kâk since we are acting on the vacuum).

The only non-zero term is

〈
0
∣∣∣âkϕkâ†k′ϕ∗k′∣∣∣ 0〉 = (2π)3 δ3 (k − k′) |ϕk|2 . (33)

Also, by defining ~r = ~x1 + ~x2, we can compute the factor ei~k.( ~x1+ ~x2).

Considering the spherical element:

∫ π

0

eikr cos θ sin θdθ =

[
−e

ikr cos θ

ikr

]θ=π
θ=0

=
sin kr

kr
, (34)

then ∫ π

0

eikr cos θ sin θdθ = jo (kr) , (35)

where jo (kr) = sin kr
kr

is the zeroth order Bessel function.

We substitute equations (33) and (35) into (32) and obtain:

Sφ =

t+dt∫
t

dt

t′+dt′∫
t′

dt′
∫∫

d3kd3k′

(2π)3 jo (kr) δ3 (k − k′) |ϕk|2 Ẇ (t, k) Ẇ (t′, k′) . (36)
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We can now use the δ-function δ3 (k − k′) to perform the integral over d3k′.

However, since we are only interested in the equal-time correlators, we can

take t = t′. This allows us to motivate the expression of Sφfor a single time t

from (36)

Sφ =

t+dt∫
t

dt

∫
d3k

(2π)3 jo (kr) |ϕk|2 Ẇ (t, k) . (37)

We substitute the expression for Ẇ using equation (29):

Sφ =

t+dt∫
t

dt

∫
d3k

(2π)3 jo (kr) |ϕk|2 εaH2δ (εaH − k) , (38)

and we use equation 6 of [15], in order to compute |ϕk|2

ϕk =

√
π

4k3
Hei(

π
2
ν+π

4 )
(
k

aH

)3/2

H1
ν

(
k

aH

)
, (39)

where H1
ν

(
k
aH

)
is the first order Hankel function.

This gives:

|ϕk|2 =
π

4

1

a3H

∣∣∣∣H1
ν

(
k

aH

)∣∣∣∣2 , (40)

which we substitute into 38 to obtain

Sφ =

t+dt∫
t

dt

∫
d3k

(2π)3 jo (kr)
π

4

εH

a2

∣∣∣∣H1
ν

(
k

aH

)∣∣∣∣2 δ (εaH − k) . (41)

We write the volume element d3k = dk1dk2dk3,which in spherical coordinates

gives : d3k = k2sinθdkdθdϕ. The integrand, however, is independent of the

angles θ and ϕ . We can therefore use the identity :
∫
d3k = 4π

∫
k2dk.
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Equation (41) becomes

Sφ =

t+dt∫
t

dt

∫
dk

(2π)2k
2jo (kr)

π

2

εH

a2

∣∣∣∣H1
ν

(
k

aH

)∣∣∣∣2 δ (εaH − k) . (42)

We can now integrate equation (42) over k using the property of the δ-

function and obtain

Sφ =

t+dt∫
t

dt

(2π)2 ε
3H3π

2
jo (εaHr)

∣∣H1
ν (ε)

∣∣2 , (43)

we use dN = Hdt and the fact that H is constant to integrate with respect

to time between t and t+ dt obtain Equation 10 from [15]

Sφ =

(
H

2π

)2

dN
π

2
ε3j0(εaHr)|H1

ν (ε) |2. (44)

Similarly for Sπ, equation (38) is modified as

Sπ =

t+dt∫
t

dtεaH2

∫
d3k

(2π)3
δ(εaH − k) |ϕ̇k|2 jo(kr). (45)

To compute |ϕ̇k|2, we take the derivative with respect to time of (39):

ϕ̇k = −
√

π

4k3
Hei(

π
2
ν+π

4 )k

a

√
k

aH

[(
3

2
− ν
)
H1
ν

(
k

aH

)
+

k

aH
H1
ν−1

(
k

aH

)]
,

(46)

where we have used [20], 9.1.27 : d
dz

[H1
ν (z)] = H1

ν−1(z)− ν
z
Hν(z).

Hence, we find

|ϕ̇k|2 =
π

4

H

a3

∣∣∣∣(3

2
− ν
)
H1
ν

(
k

aH

)
+

k

aH
H1
ν−1

(
k

aH

)∣∣∣∣2 . (47)
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As previously for Sφ, we use the identity
∫
d3k = 4π

∫
k2dk, and obtain

Sπ =

t+dt∫
t

dtεaH2

∫
dk

(2π)2 2k2 |ϕ̇k|2 jo (kr) δ (εaH − k) . (48)

We substitute for (47) and integrate over k using the δ-function and obtain

Sπ =

t+dt∫
t

ε3
(
H2

2π

)2

Hdt
π

2

∣∣∣∣(3

2
− ν
)
H1
ν (ε) + εH1

ν−1 (ε)

∣∣∣∣2 j0(εaHr), (49)

using dN = Hdt, we integrate with respect to time between t and t + dt and

obtain the second results from Equation 10 in [15]:

Sπ = ε3
(
H2

2π

)2

dN
π

2

∣∣∣∣(3

2
− ν
)
H1
ν (ε) + εH1

ν−1 (ε)

∣∣∣∣2 j0(εaHr). (50)
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