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Abstract

In this thesis, we consider the electronic properties of materials created by stacking

two-dimensional graphene layers. The first material is a heterostructure created

by placing a graphene layer on top of a layer of hexagonal boron nitride. The

energy bands are determined as well as the energy spectrum in the presence of

a magnetic field applied in the direction perpendicular to the layers. There is a

miniband structure that includes gaps and secondary Dirac points as well as a

fractal structure of magnetic minibands known as Hofstadter’s butterfly1.

The second material is multilayer graphene, which consists of a small number

of graphene layers stacked on top of one another. We determine the effect on the

low-energy electronic band structure by applying a magnetic field in the direc-

tion parallel to the layers, and find that the parallel field can induce a dramatic

change in the band structure, which is known as a Lifshitz transition. Further-

more, depending on the magnitude and the direction of the field within the plane

of the graphene layers, it is possible to access different phase regions of the band

structure.

We also model the electronic transport properties of multilayer graphene. We

use both analytical mode-matching and the numerical recursive Green function

methods to study the transport properties of electrons in multilayer graphene in

the vicinity of zero energy, zero temperature and zero magnetic field.

1Technical terms used in the abstract will be introduced in the following chapters.
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3.1 Model parameters of moiré superlattice . . . . . . . . . . . . . . . . 64

14



Chapter 1

Introduction

Figure 1.1: Graphene is a two-dimensional material consisting of a single layer of
carbon atoms arranged with a honeycomb crystal structure.

Graphene is a two-dimensional material consisting of a single layer of carbon atoms.

It can be thought of as being one layer of bulk three-dimensional graphite [1].

Due to its unique properties, graphene is considered to be a promising candidate

material for the development of electronic devices [2]. In 2010, the Nobel Prize

for Physics was awarded to A. Geim and K. Novoselov [3] for “groundbreaking

experiments regarding the two-dimensional material graphene” [4] 1.

In addition to being a two-dimensional material, graphene is chemically stable

[5] and is an excellent electronic conductor [6–8], an excellent thermal conductor

1All terminologies mentioned in the Chap.1 will be explained systematically in the following
chapters.
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[9, 10] and is flexible but strong [11, 12] while being transparent to visible light [13].

Graphene generally has great potential for applications in biology [14], chemistry

[15] and electronic devices [16].

Electrons in graphene 2 exhibit a Dirac-like spectrum [7] with a linear dispersion

relation and an additional spin-like degree of freedom known as pseudospin (the

origin of which will be explained in Chap. 2). Electrons in graphene are chiral

[17, 18], meaning that the direction of an electron’s pseudospin is linked to the

direction of its momentum. These electrons are analogous to massless relativistic

particles. The unique electronic properties of graphene are manifest in the integer

quantum Hall effect [19–26] and in transport as well as scattering properties [27–

34].

Soon after the first experiments on graphene, studies involving other two-

dimensional materials commenced, including materials such as silicene [35], hexag-

onal boron nitride (h-BN) [36, 37], and graphene oxide [38]. In other words, the

work by Profs. Geim and Novoselov [3] opened a new field of physics, that of

two-dimensional materials [2, 39].

Recently, research in graphene and other two-dimensional materials has been

extended to two-dimensional heterostructures consisting of combinations of dif-

ferent two-dimensional materials. By stacking layers of different two-dimensional

materials on top of one another, it is possible to create new two-dimensional het-

erostructures with novel properties [40–43]. Furthermore, the possibility of produc-

ing ideally clean two-dimensional heterostructures has been proven experimentally

[44]. The first and, by now, the most developed of these heterostructures is formed

by placing graphene on hexagonal boron nitride. Both materials are made from

a single layer of atoms arranged with a honeycomb structure. However, in con-

trast to graphene which is a gapless semiconductor [6, 16], h-BN is an insulator

with a band gap of approximately 6 electron volts [45]. For this reason, h-BN was

2Actually, all features described here are for the collective behavior of electrons in graphene,
i.e. quasi particle in graphene. For simplicity, we call them “electrons in graphene” from now
on.
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initially used as a substrate to preserve graphene’s electronic properties [36]. The

small difference (' 1.8%) between the lattice constants of the two crystals and

their crystallographic misalignment generates a large-scale quasi-periodic hexag-

onal pattern, which is known as the moiré3 superlattice (mSL) [37, 46, 47]. The

smaller the misalignment angle between the two lattices, the larger the moiré su-

perlattice. The huge superlattice (i.e. the size of the super unit cell, maximum

' 14 nm) allows for a much larger magnetic flux per super unit cell as compared

to the magnetic flux per unit cell of conventional material. In the moiré-perturbed

magnetic fractal spectrum of graphene, there is a peculiar quantum Hall effect

[48], which includes a systematic repetition of Dirac-like features at the edges

of consecutive minibands. These Dirac-like features form a hierarchy of gaps in

the surrounding magnetic spectrum, and are manifest as incompressible states

observed via variations of carrier density and of magnetic field [49, 50].

In this thesis, we also study the magnetic minibands of a heterostructure con-

sisting of bilayer graphene and hexagonal boron nitride. A new feature here is that,

because the inversion-symmetry is broken by the substrate, the valley symmetry

of the electronic spectra is also broken. Despite the existence of perturbations due

to the moiré potential, a zero-energy Landau level exists, although its degeneracy

is reduced. We also discuss the behaviour of electrons near zero energy in the

presence of simple-fraction magnetic flux.

Furthermore, we also consider the electronic properties of multilayer graphene,

which consists of a small number of graphene layers stacked on top of one another.

There have been many studies regarding the influence of a perpendicular magnetic

field [19] on graphene, multilayer graphene and a tilted magnetic field [21–26].

Conversely, there have been few studies [20] that consider the role of a magnetic

field parallel to the substrate because the magnetic flux magnitude is severely

limited by the small distance between graphene layers. However, at very-low en-

ergy, there is an unusual feature of the electronic spectrum of multilayer graphene,

3The term “moiré” originates from a French type of textile, traditionally of silk, with a
“watered” appearance.
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known as a Lifshitz transition. We therefore determine whether the weak effect

of the parallel magnetic field is sufficient to influence the Lifshitz transition, and

discuss some new features of the electronic spectrum.

Furthermore, we model the electronic transport properties of multilayer graphene

[31, 34]. The minimum conductivity of graphene (i.e. the lowest conductivity value

measured as a function of gate voltage) does not scale neatly with the number of

layers and depends on the temperature and aspect ratio of the sample [29, 30].

From a theoretical perspective, different methodologies have led to different pre-

dictions [184]. In this thesis, we compare and contrast two different methods to

study the conductivity of graphene.

In addition to this introductory chapter, my thesis is organized as follows.

Chapter 2 introduces the electronic properties of graphene and the theoretical

models used. In Chapter 3, we present the fractal spectrum of moiré-perturbed

single-layer graphene in a magnetic field and we discuss the incompressible states.

In Chapter 4, we focus on the peculiar zeroth Landau level of bilayer graphene

with a moiré-perturbation in a magnetic field. In Chapter 5, we investigate the

electronic energy band structure of multilayer graphene in a parallel magnetic field

and compare this with the band structure in the presence of strain. In Chapter

6, we analytically and numerically study the electronic transport properties of

graphene, single layer and multilayer graphene.
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Chapter 2

Theoretical background

2.1 Crystal structure of graphene
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Figure 2.1: Schematic of the crystal structure of SLG. The black dots represent carbon
atoms with “A” and “B” as sublattices, and the solid lines between atoms represent
covalent bonds. The cyan rhombus is a unit cell.

As shown in Fig. 2.1, graphene is a one-atom-thick sheet composed of carbon

atoms [51, 52], arranged in a honeycomb pattern. This crystal structure of single

layer graphene (SLG) consists of a hexagonal Bravais lattice with a basis of two

non-equivalent atomic sites at each lattice site [53]. In the figure, these two non-

equivalent atomic sites are referred to as A and B, (because one can not connect

them by primitive lattice vector), and the graphene structure can be taken as

consisting of an A sublattice and a B sublattice. Vectors a1 = ag(
1
2
,
√

3
2

) and
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a2 = ag(−1
2
,
√

3
2

) are two primitive lattice vectors of the graphene Bravais lattice

where ag = 2.46 Å is the lattice constant [53]. An arbitrary lattice vector may

be written as R = n1a1 + n2a2, n1, n2 ∈ Z. For any atomic site A, the relative

positions of the nearest three neighbouring B atomic sites are δ1 = ag√
3
(0, 1),

δ2 = ag√
3
(
√

3
2
,−1

2
) and δ3 = ag√

3
(−
√

3
2
,−1

2
), where |δi| = 1.42 Å.

Γ

�

���

��

��

Figure 2.2: Schematic of the reciprocal lattice of SLG, in which dots indicate reciprocal
lattice points, the blue hexagon is the first Brillouin zone, and the cyan hexagons are
the six nearest Brillouin zones. Some symmetric points are notified too.

Primitive reciprocal lattice vectors b1 and b2 may be determined by using the

relation between lattice and reciprocal lattice vectors 1 .

ai · bj = δij2π, |ai||bj| =
4π√

3
. (2.1)

Given this,

b1 =
4π

ag
(−
√

3

2
,
1

2
), b2 =

4π

ag
(−
√

3

2
,−1

2
). (2.2)

As shown in Fig. 2.2, the reciprocal lattice of graphene is a hexagonal lattice and

the first Brillouin zone is a hexagon.

1This is simplified from the three-dimensional relation bi = aj × l̂z/[ai · (aj × l̂z)]. Here, l̂z
is the unit vector along z direction, i.e. perpendicular to the substrate.
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2.2 Atomic orbitals of graphene

One isolated carbon atom has six electrons [53]. Among these six electrons, two

are core electrons, whereas the other four populate 2s and 2p orbitals. The carbon

atoms in graphene are sp2 hybridized, meaning that the three electrons in orbitals

2s, 2px and 2py form strong covalent bonds connecting three adjacent atoms ly-

ing in the plane of the graphene sheet. These bonds are shown as solid lines in

Fig. 2.1. The strong carbon-carbon bond is one of the reasons behind graphene’s

strength and flexibility. The other atomic orbital, 2pz, which is perpendicular to

the graphene plane, forms a π orbital when combined with the neighbouring 2pz

atomic orbitals of the adjacent atoms. Note that we use a model which considers

only the 2pz orbital of each atom. This model is able to adequately describe the

behaviour of the electrons in graphene in the vicinity of the Fermi level [53].

2.3 Tight-binding model of SLG

2.3.1 Hamiltonian of SLG

Following [53], in this subsection, we provide a description of the behaviour of

electrons in graphene, using the tight-binding model and Bloch’s theorem. The

former assumes that the wave functions of the electrons may be constructed from

the atomic orbitals of isolated atoms. The latter provides a recipe for how to treat

electrons in space-periodic systems, and is therefore the basis for the theory of

solids.

We consider graphene to be translationally invariant. Each unit cell has two

2pz atomic orbitals denoted by φl, where l ∈ [1, 2] represents the two sublattices

in one unit cell. We can build a tight-binding Bloch wave function Φl of one

sublattice, which depends on position vector r and wave vector k, as

Φl(r,k) =
1√
N

N∑
i=1

eik·Ri,lφl(r −Ri,l), (2.3)
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where Ri,l represents the position of the lth atomic orbitals in the ith unit cell

and N is the number of unit cells 2 . For simplicity, we set ~ = 1 from this point

onward. The electron wave function of jth band Ψj(r,k)of each unit cell can then

be expressed as a linear superposition of Bloch wave functions, i.e.

Ψj(r,k) =
2∑
l=1

cj,lΦl(r,k), (2.4)

where cj,l are the coefficients of expansion.

Based on the electron wave function Ψj(r,k), we can formally express the jth

energy eigenvalue Ej(k) of the Hamiltonian of the system Ĥ as

Ej(k) =

〈
Ψj|Ĥ|Ψj

〉
〈Ψj|Ψj〉

=

∑2
i,l c
∗
jicjl

〈
Φi|Ĥ|Φl

〉
∑2

i,l c
∗
jicjl 〈Φi|Φl〉

. (2.5)

To minimize the energy Ej in locality, we calculate the derivative of Ej with respect

to coefficient c∗ji, and set ∂Ej/∂c
∗
ji = 0. Thus, we obtain equations

2∑
l=1

Ĥilcjl = Ej

2∑
l=1

Silcjl,

Ĥil =
〈

Φi|Ĥ|Φl

〉
, Sil = 〈Φi|Φl〉 .

As each unit cell contains two sublattices, A and B, and on each sublattice only

one 2pz atomic orbital, so we can use label A to replace index l = 1 and label B

to replace index l = 2. The 2× 2 matrix equation is then

Ĥψj = EjSψj, ψj = ( cj1 cj2 )T ,

Ĥ =

 ĤAA ĤAB

ĤBA ĤBB

 , S =

 SAA SAB

SBA SBB

 , (2.6)

where Ĥ is called the transfer integral matrix, and S is the overlap integral matrix.

2Although this form seems a localized function, a simple translation operation T̂a can show
that this function holds the translational invariance, i.e. T̂aΦl(r,k) = eik·aΦl(r,k), where
a ∈ Ri,l.
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The energy Ej can be obtained by solving the determinant of the secular equation

det(Ĥ − ES) = 0. (2.7)

We will use two assumptions to simplify the equation above:

(1) In the diagonal entries ĤAA (ĤBB), the dominant contribution arises from

the same site, i.e. Ri = Rj. The contribution of other sites is omitted, which

stems from the central idea of “tight-binding”. Therefore,

ĤAA =
1

N

N∑
i=1

N∑
j=1

eik·(RA,j−RA,i)
〈
φA(r −RA,i)|Ĥ|φA(r −RA,j)

〉
' 1

N

N∑
i=1

ε2p = ε2p, (2.8)

where parameter ε2p of the 2p orbital is

ε2p =
〈
φA(r −RA,i)|Ĥ|φA(r −RA,i)

〉
. (2.9)

In addition, ĤBB = ĤAA.

With this first assumption, the diagonal element SAA of the overlap matrix is

given by

SAA =
1

N

N∑
i=1

N∑
j=1

eik·(RA,j−RA,i) 〈φA(r −RA,i)|φA(r −RA,j)〉

' 1

N

N∑
i=1

1 = 1. (2.10)

We assume that the atomic wave function is normalized, where

〈φA(r −RA,i)|φA(r −RA,j)〉 = 1. (2.11)

In addition, SBB = SAA = 1.

(2) In the off-diagonal entries ĤAB (ĤBA), the dominant contribution arises
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from the three nearest neighbouring atomic sites, so

ĤAB =
1

N

N∑
i=1

N∑
j=1

eik·(RB,j−RA,i)
〈
φA(r −RA,i)|Ĥ|φB(r −RB,j)

〉
' − 1

N

N∑
i=1

3∑
j=1

eik·(RB,j−RA,i)γ0

= −γ0f(k),

SAB =
1

N

N∑
i=1

N∑
j=1

eik·(RB,j−RA,i) 〈φA(r −RA,i)|φB(r −RB,j)〉

' 1

N

N∑
i=1

3∑
j=1

eik·(RB,j−RA,i)s0

= s0f(k), (2.12)

where the tight-binding parameters γ0 and s0 are defined as

γ0 = −
〈
φA(r −RA,i)|Ĥ|φB(r −RB,j)

〉
,

s0 = 〈φA(r −RA,i)|φB(r −RB,j)〉 . (2.13)

Note that the minus sign before the expression for parameter γ0 ensures that γ0 > 0

in practice. In addition,

f(k) =
3∑
j=1

eik·δj , (2.14)

which accounts for the phase factor acquired by hopping between nearest neigh-

bours. For clarity, Fig. 2.1 shows vectors δ1, δ2 and δ3.

Consequently, the tight-binding Hamiltonian of graphene is

Ĥ =

 ε2p −γ0f(k)

−γ0f
∗(k) ε2p

 , S =

 1 s0f(k)

s0f
∗(k) 1

 . (2.15)
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By solving the secular equation 3 , Eq. (2.7), the dispersion relation is obtained as

E± =
ε2p ± γ0|f(k)|
1∓ s0|f(k)|

. (2.16)

Once the value of parameters γ0 and s0 are known, the band structure of SLG is

known.

2.3.2 Band structure of SLG
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Figure 2.3: (Left)The band structure of SLG is shown, the Dirac cone in the vicinity of
theK in reciprocal space is shown in the middle. Note that the solid lined hexagon in the
left band structure is the first Brillouin zone. (Right) The two-dimensional dispersion of
the tight-binding model of graphene based on ky = 0, is shown with the upper-right inset
indicating the location of the K (K ′) valley in the first Brillouin zone. Parameters γ0 =
3.16 eV and s0 = 0.129 are taken from the Slonczewski - Weiss - McClure parameters
[55–58].

The tight-binding model cannot determine the values of γ0 and s0. To de-

termine them theoretically, we could use a numerical method, such as density-

functional theory (DFT). Alternatively, we could take an approach that fits exper-

imental data. In the commonly-used Slonczewski - Weiss - McClure parameters

[55–58] for graphite, γ0 = 3.16 eV and s0 = 0.129 4 . Furthermore, we would not

3Actually, this secular equation is not solved by treating it as two simultaneous equations.
In the solving process, one will notice that they are the same equations, and one can not find
any new information (about the relation between different components) from them. Besides,
the normalization gives same coefficients to the two components. So to set the determinant of
secular equation to be zero is a shortcut to solve it, and this makes sure that the solved wave
function is non-trivial (not a zero wave function).

4Most of the unique features of graphene, such as the Dirac cone, pseudospin or chirality
described later are determined by its symmetric properties, but not the exact value of parameters.
Even if the parameters for graphite are not the most accurate ones for graphene, these phenomena
still hold.
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expect a small change in the value of γ0 to have a qualitative impact on the elec-

tronic band structure. Therefore, we will use parameter values for bulk graphite

and apply them to graphene-related calculations [55].

The energy band structure of SLG, i.e. Eq. (2.16), is shown in the left panel

of Fig. 2.3, in which ε2p is set to zero for simplicity. The asymmetry between

the top and bottom bands is generated by non-zero s0. The valence and con-

duction bands touch at the six Brillouin zone corners, which are called Dirac

points (DP). Of these six points, only two are non-equivalent; we call them the

K and K ′ valleys. As shown in Fig. 2.3, the three K valleys are located at

4π
3ag

(1, 0), 4π
3ag

(−1
2
,
√

3
2

), 4π
3ag

(−1
2
,−
√

3
2

), while the three K ′ valleys are at 4π
3ag

(−1, 0),

4π
3ag

(1
2
,−
√

3
2

), 4π
3ag

(1
2
,−
√

3
2

) in the reciprocal space. At each of these K(K ′) points,

the coupling between the two bands, i.e. the off-diagonal element of Eq. (2.15),

vanishes because

f(K) = e0 + ei2π/3 + e−i2π/3 = 0. (2.17)

This indicates that there is no hopping between adjacent A and B atoms. In

other words, the A and B sublattices are not connected. However, each sublattice

supports identical electronic states, leading to a degeneracy (i.e. crossing) in the

band structure. The absence of gaps and therefore the existence of DPs makes

graphene a gapless semi-conductor.

2.3.3 Massless chiral quasiparticles in SLG

To study the electronic and transport properties of graphene in the low-energy

range, as the band structure shown in the middle panel of Fig. 2.3, we can simplify

Eq. (2.15) by expanding the off-diagonal matrix element, i.e. Eq. (2.14), in the

vicinity of valley K = 4π
3ag

(1, 0). We define p as the momentum measured from

the point K point, i.e. p = k −K, and expand in powers p, where pa/~ � 1.
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Then, to first order in p

f(k) ' −
√

3ag
2

(px − ipy). (2.18)

Following this expansion, the contribution of s0 in Eq. (2.16) appears only in

quadratic-in-momentum terms, so it is possible to neglect s0 at low energy with-

out comprising accuracy 5. Then, for the first order in p, the modified eigenvalue

equation Ĥψj = EjSψj is simplified to Ĥψj = Ejψj, where the effective Hamilto-

nian is

Ĥ = v

 0 π̂†

π̂ 0

 = vp̂ · σ, (2.19)

where π̂ = p̂x+ip̂y, v =
√

3agγ0/2 ' 106 m s−1 and σ = σxî+σy ĵ is a vector consist-

ing of Pauli matrices. This 2×2 Hamiltonian acts in the space of two-components

wave functions describing electron’s amplitudes on A and B sublattices of honey-

comb lattice of carbons, with the basis choice (φA, φB) in valley K and (φB,−φA)

in valley K ′. This choice provides us with the same form of the Dirac Hamiltonian

in both valleys.

To first order in p, the rotational symmetry and electron-hole symmetry are

recovered and the low energy band structure is a perfect cone, as shown in the

middle panel of Fig. 2.3. The eigenvalues and eigenfunctions of Eq. (2.19) are

E± = ±v|p|, ψ± =
1√
2

 1

±eiϕ

 eip.r, (2.20)

where ϕ is the polar angle of momentum p, p = |p|(cos(ϕ), sin(ϕ)). As shown in

Fig.2.3, this linear dispersion, E± = ±v|p| is valid in E ≤ 2eV 6 .

5The Taylor expansion of Eq. (2.16) is E±(k) = ε2p±
√
3
2 a|k|(γ0+ε2ps0)±a2k2(γ0+ε2ps0)(6s0+

cos(3θ)), where ~ = 1, θ is the direction angle of momentum. In the case of ε2p = 0, the
dependence of s0 to momentum is quadratic.

6Here, actually we are in the mesoscopic region, which means the characteristic length of the
electron in this system is much longer than the lattice constant. In the discussion below, the
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The two-component structure of the effective Hamiltonian, i.e. Eq. (2.19),

and wave function Eq. (2.20) is reminiscent of the two components of spin-1/2. In

graphene, this spin-like property, i.e. the two components of the wave function has

different amplitudes but same module, is called pseudospin; however, its origin has

nothing to do with an electron’s real spin and instead merely arises from the fact

that the electronic wave vector has different amplitudes on the A and B sublattices.

In addition, the direction of the pseudospin is related to the direction of momentum

p, (i.e., the direction of p determines the distribution of the wave function on the

sublattice sites in a unit cell), which is a property known as chirality7 . Pseudospin

is an intrinsic property of quasiparticles in graphene that can be manifested in

experimental measurements [7].

2.4 Tight-binding model for BLG

2.4.1 Tight-binding Hamiltonian of BLG

Bilayer graphene (BLG) consists of two SLGs stacked together. Depending on the

stacking-order configurations, BLG can either be AA-stacked or AB-stacked (i.e.

Bernal-stacked). In the former, carbon atoms of the upper layer are located on

the top of the equivalent atoms in the bottom layer. AA-stacked BLG is relatively

unstable [64–67] with respect to the mechanical displacement of the layers in re-

lation to one another. AB-stacked BLG is more stable [68], and therefore, in this

thesis, we focus on AB-stacked BLG, referring to it simply as BLG.

The schematic lattice structure of BLG is shown in Fig. 2.4. The honeycomb

crystal lattice and hexagonal Brillouin zone of BLG are the same as those of SLG.

In each unit cell of BLG, there are four atomic sites, i.e. A1, B1, A2 and B2; here,

wave length of electron (plain wave) λ ' 350 Å for ε = 0.35 eV is much larger than the lattice
constant of graphene ag = 2.46 Å. With the decreasing of energy, this approximation becomes
more robust.

7To see this, one can calculate the expectation value of the pseudo-spin operator, 〈ψ±|σ|ψ±〉
with respect to the eigen function ψ± in Eq. (2.20), where σ = (σx, σy, σz) is Pauli matrices.
The result is 〈ψ±|σ|ψ±〉 = ±(cos(ϕ), sin(ϕ), 0), which explicitly shows the relation between
pseudospin and direction pf momentum, i.e. chirality.
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Figure 2.4: Schematic of the crystal lattice with Slonczewski-Weiss-McClure param-
eterization [55–57], in which dimer site A2 sits directly above site B1 in AB-stacked
order. The solid lines between different atomic sites here represent different hopping
parameters.

index “1” refers to the bottom layer, whereas index “2” refers to the top layer.

In BLG, site A2 sits directly above site B1, and the distance between layers is

d = 3.3 Å [53], which is longer than the lattice constant ag = 2.46 Å, as shown in

Fig. 2.4.

In the tight-binding model, we use the basis of Bloch wave function (φA1, φB1,

φA2, φB2) for valley K and (φB1, −φA1, φB2, −φA2) for valley K ′, this choice

provides us the same form of the Dirac Hamiltonian in both valleys. If we keep

the transfer integral of intralayer and interlayer nearest-neighbour sites, and only

keep the overlap integral of intralayer nearest-neighbour sites, the Hamiltonian of

BLG can be written as [54, 68–70]:

Ĥ =



ε2p −γ0f(k) −γ4f(k) −γ3f
∗(k)

−γ0f
∗(k) ε2p γ1 −γ4f(k)

−γ4f
∗(k) γ1 ε2p −γ0f(k)

−γ3f(k) −γ4f
∗(k) −γ0f

∗(k) ε2p


. (2.21)

In the above Hamiltonian, the upper-left/lower-right blocks describe the intralayer

behaviour of bottom layer (A1 - B1)/top layer (A2 - B2). The off-diagonal blocks

describe the interlayer hopping. Fig. 2.4 shows a schematic sketch of atomic sites

29



connected by each parameter. In Eq. (2.21), f(k) describes the phase factor ac-

quired by hopping to nearest-neighbour sites in the same layer, γ0 describes in-

tralayer hopping, γ1 describes vertical interlayer hopping, γ3 and γ4 describe the

skewed interlayer hopping. Once we know the value of parameters γ0, γ1, γ3 and

γ4, the band structure of BLG is known 8 .

2.4.2 Hierarchy of parameters

From the above tight-binding Hamiltonian, we observe that the addition of more

atomic sites in the basis introduces more ways to hop between atoms, requiring

additional tight-binding parameters. Therefore, in this subsection, we will present

a systematic introduction to the tight-binding parameters of graphene.

As graphene is essentially one layer of graphite, commonly-used parameter sets

for graphite are suitable for graphene. The most well-known example is the afore-

mentioned Slonczewski - Weiss - McClure parameters [55–58]. The connection

between the tight-binding parameters and those of the Slonczewski - Weiss - Mc-

Clure model is discussed in [60]. Throughout this thesis, all values of hopping

parameters of graphene are taken from Slonczewski - Weiss - McClure parameters

[58] unless otherwise stated. Definitions and values of the hopping parameters

in this model, as well as their influence on the band structure of graphene, are

summarized in Table. 2.1.

The onsite energy ε2p of an atomic 2pz orbital is not necessarily zero, but its

effect is only to shift the entire band structure with respect to the zero of energy.

In a practical experiment, such a shift could be achieved using a gate voltage.

Throughout this thesis, the onsite energy is set to zero, unless otherwise stated,

because this does not lead to a loss of generality.

Parameter γ0, defined in Eq. (2.13), accounts for intralayer hopping between

8One may wonder, why s0 in the effective Hamiltonian of SLG is absent in BLG (and further
TLG). The reason is that the main effect of s0 is to cause asymmetry between conduction and
valence band, and this effect can be absorbed into γ4 effect (as we shall see in the later sections). It
is not necessary to keep s0 further in multi-layer graphene, but SLG does not have γ4 parameter,
so s0 is necessary for SLG.
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nearest neighbours.

The simplest model describing multilayer graphene employs only one addi-

tional parameter γ1, which describes vertical hopping between the closest inter-

layer atomic sites, those are directly above or below one another. Such sites, e.g.

B1 and A2 in Fig. 2.4, are referred to as dimer sites. Their coupling by parameter

γ1 results in the energy bands associated with their orbitals being shifted away

from zero energy by ±γ1.

In general, the parameters γ0 and γ1 are the dominant parameters that con-

tribute to the tight-binding model of graphene multilayers. Depending on the level

of approximation required, other parameters can be treated as a perturbation or

simply neglected. As they are relatively small, when considering parameters other

than γ0 and γ1, it is usually possible to consider them individually. One exception

here is that other parameters can significantly change the band structure at very

low energy (i.e. E � γ1).

The skewed interlayer hopping parameter γ3 connects non-dimer sites (e.g. A1

and B2 in BLG, Fig. 2.4), and its magnitude is the third highest among the given

parameters. This parameter’s physical effects include: (a) the trigonal warping

effect in BLG, explained in Section 2.4; (b) its significant impact on the transport

properties of graphene, which is described in Section 6.4 and (c) its interesting

interactions with parallel magnetic fields, which is introduced in Section 5.2.

Amongst all the nearest interlayer hopping parameters, parameter γ4 is rel-

atively weak as it describes skew interlayer hopping between dimer and non-

dimer sites. Furthermore, it provides electron-hole asymmetry, as discussed in

Section 2.4.3 and Ref. [19]. In what follows, the effect of γ4 is omitted unless

otherwise stated.

For completeness and convenience, we next describe two additional parameters

that only occur in multilayer graphene for layers n ≥ 3. These parameters are

next-nearest interlayer vertical hopping parameters γ5 and γ2.

The simplest graphene material which includes γ2 or γ5 is trilayer graphene
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(TLG) whether ABC-stacked as described in Section 2.5.1 or ABA-stacked as

described in Section 2.5.2. The presence of γ2 in TLG-ABC leads to a Lifshitz

transition (will be explained later) [63], though there is no γ5 in TLG-ABC. The

existence of γ2 and γ5 in TLG-ABA leads to a gap formation in the dispersion.

There is one point for parameter γ2 and γ5 to be mentioned. In graphite,

there is (at least, approximately) translational invariance in the z direction. So

each layer of graphite always has two next-nearest neighbor layers, γ2 and γ5 are

used to describe this interlayer hopping. But in TLG, top (bottom) layer only

has one next-nearest neighbor layer, so a intuitive way of counting this effect is

to introduce a 1/2 coefficient to γ2 and γ5, as we will see in the later sections. A

detailed discussion about this can be found in [58] and[136].

2.4.3 Effective Hamiltonian of BLG

With the tight-binding Hamiltonian of BLG, i.e. Eq. (2.21) [68] and parameter

values from Ref. [136], we can plot the band structure of BLG in the Brillouin

zone, as shown in the left panel of Fig. 2.5.

Figure 2.5: (Left) The band structure of BLG in momentum space, the hexagon in the
centre of the bands is the first Brillouin zone. Among the four bands, the transparent
two bands represent low-energy dispersion, which touch one another. The other two
opaque bands represent the high-energy bands, which are separated from one another
by energy scale γ1. All four bands are quadratic dispersion except in low energy. (Middle)
Quadratic Dirac cone of the non-dimer site of BLG around the K valley. (Right) The
trigonal-warping of bands of BLG (Lifshitz transition [63]) in the vicinity of zero energy.
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Within this model, the band structure of BLG features four bands. At the

corners of the Brillouin zone, i.e. at K and K ′ valleys, two of the four bands are

separated by γ1, whereas the other two bands touch one another. To investigate the

behaviour of electrons in the vicinity of points K/K ′, it is convenient to expand

the phase factor term f(k) in Eq. (2.21) to yield the resulting Hamiltonian on the

basis A1, B1, A2 and B2, i.e.

Ĥ =



0 vπ̂† v4π̂
† v3π̂

vπ̂ 0 γ1 v4π̂
†

v4π̂ γ1 0 vπ̂†

v3π̂
† v4π̂ vπ̂ 0


, (2.22)

where vi =
√

3agγi/2 are the velocities corresponding to each of the hopping

parameters, v0 = v. Note that Bloch wave function is on the basis of (φA1, φB1,

φA2, φB2) for valley K and (φB1, −φA1, φB2, −φA2) for valley K ′. The diagonal

elements (i.e. those describing the onsite energy) are set to zero. Here, γ1 ' 0.1γ0

[55–57] describes hopping between the nearest interlayer sites, which sits directly

above one another (e.g. A2-B1). Furthermore, γ3 ' 0.1γ0 (A1-B2) represents

skewed interlayer hopping as does γ4 ' 0.01γ0 (A1-A2 and B1-B2) [55–57].

The simplest model of BLG, which only includes the dominant parameters γ0

and γ1, has a dispersion relation describing the four bands as

E = s1γ1/2 + s2
1

2

√
γ2

1 + 4k2v2, s1, s2 = ±1. (2.23)

This dispersion shows a linear dispersion in the large momentum region γ0 �

vk � γ1 and quadratic dispersion in the low momentum region vk ' γ1.

Among the four BLG bands, the energy of the two dimer sites (i.e. B2, A1)

is lifted by vertical hopping γ1, so their bands are also separated by γ1 as shown

in the left panel of Fig. 2.6. Therefore, to study behaviour near zero energy, i.e.

E � γ1, we can perform a Schrieffer-Wolff transformation [61, 62] on Eq. (2.22)
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Figure 2.6: (Left) The low-energy band structure of the tight-binding Hamiltonian
of BLG with Eq. (2.22) in blue and Eq. (2.24) in black for ky = 0 and v3 = v4 = 0.
(Middle) The low-energy band structure of BLG, i.e. Eq. (2.24), for ky = 0 and v4 = 0,
v3 = 0.1v (blue) and v3 = 0 (black). (Right) The low-energy band structure of BLG,
i.e. Eq. (2.24), for ky = 0 and v3 = 0, v4 = 0.01v (blue) and v4 = 0 (black).

to eliminate components describing the two dimer sites, and obtain a simplified

two-component Hamiltonian 9 , i.e.

H2 = − 1

2m

 0 π̂2
+

π̂2
− 0

+ v3

 0 π̂−

π̂+ 0

− 2v4vk̂
2

γ1

 1 0

0 1

 , (2.24)

where m = γ1/2v
2 ' 0.032me is the effective mass of quasiparticles in BLG and

me is the rest mass of the electron. Note that the basis is (φA1, φB2) for valley

K and (φB2,−φA1) for valley K ′. This Hamiltonian describes a massive charge

carrier, and its dominant dispersion relation is quadratic. In the absence of γ3 and

γ4, the eigenvalue and eigenfunction of effective 2×2 Hamiltonian (Eq. (2.24)) are

E± = ± p2

2m
, ψ± =

1√
2

 1

∓e2iϕ

 eip.r, (2.25)

where ϕ is the polar angle of momentum p, p = |p|(cos(ϕ), sin(ϕ)). The dispersion

is shown in the middle panel of Fig. 2.5 and the left panel of Fig. 2.6.

9The idea of Schrieffer-Wolff transformation is to project the effect of unnecessary state on to
the favored state. One can consider this process as solving several simultaneous equations, elim-
inate unnecessary variables and derive an expression of favored variables. This transformation
itself is exact, but some approximation can significantly simplify the process and result. Here, for
BLG, the favored state is the low-energy state A1 and B2, the effect of dimer state B1 and A2
are projected onto the low-energy state. In this process, an approximation γ1 � E, vp, v3p, v4p
is used.
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The dispersion relation containing γ3 (γ4 is set to zero to emphasize the effect

of γ3) [71] is

E± = ±

√
v2

3p
2 − v3

p3

m
cos(3ϕ) +

(
p2

2m

)2

, (2.26)

where ϕ is the polar angle of the electron’s momentum.

The above equation describes three-fold rotational symmetry. Fig. 2.5 shows

the dispersion of the effective Hamiltonian.

In the very low energy region, the effect of γ3 becomes increasingly important.

When E ' 1
4
γ1γ

2
3/γ

2 ' 1meV, the bands will split into four pockets, as shown

in the middle and right subplots of Fig. 2.5. This phenomenon is called Lifshitz

transition [63] and is discussed in detail in Chapter 5; its impact on transport

properties is described in Chapter 6. Note that the asymmetries (along the x-axis)

in the middle and right subplots of Fig. 2.6 are due to the trigonal warping of γ3.

Trigonal warping in BLG originates from the interference of the matrix elements

connecting A1 - B2 sites as follows: the path A1 - B1 - A2 - B2 yields a phase factor

e2iπ, and the direct path A1 - B2 via γ3 yields e−iπ. The difference between these

phase factors causes the trigonal warping effect in the low-energy band structure

of BLG, as shown in the right panel of Fig. 2.5.

As shown in the right panel Fig. 2.6, the existence of γ4 ' γ3/100 produces

asymmetry between electrons and holes [19]. Because this phenomenon is very

weak and negligible, we ignore terms containing γ4 in the future discussion.

2.5 Tight-binding model of TLG

A system with three graphene layers is known as trilayer graphene (TLG). There

are two distinct stable arrangements, i.e. ABC and ABA. In the subsection that

follow, we will discuss TLG-ABC and TLG-ABA.
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Figure 2.7: Schematic of the crystal structure of TLG-ABC. Dimer site A2 sits directly
above site B1, site A3 sits directly above B2 and there is next-nearest layer hopping
between sites B3 and A1.

2.5.1 Band structure of TLG-ABC

TLG-ABC has the same Bravais lattices and reciprocal lattices as those of SLG.

As shown in Fig. 2.7, the unit cell of TLG-ABC consists of six atomic sites rather

than two; these six sites are labelled A1, B1, A2, B2, A3 and B3, where index “1”

represents for the bottom layer, “2” represents the middle layer and “3” represents

the top layer. The interlayer distance between layers d = 3.3 Å is the same as that

of BLG. Sites A3 and B2, as well as A2 and B1 sit directly above one another in

the nearest-layer, whereas sites B3 and A1 sit directly above one another in the

next-nearest-layer.

Generalizing the procedure for SLG and BLG, we can write the tight-binding

Hamiltonian of TLG-ABC using a basis of 2pz orbitals on atomic sites A1, B1,

A2, B2, A3 and B3. The Hamiltonian of TLG-ABC can be written on the basis of

Bloch wave function (φA1, φB1, φA2, φB2, φA3, φB3) for valley K and (φB1, −φA1,
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φB2, −φA2, φB3, −φA3) for valley K ′, as [19]:

Ĥ =



ε2p −γ0f(k) −γ4f(k) −γ3f
∗(k) 0 γ2/2

−γ0f
∗(k) ε2p γ1 −γ4f(k) 0 0

−γ4f
∗(k) γ1 ε2p −γ0f(k) −γ4f(k) −γ3f

∗(k)

−γ3f(k) −γ4f
∗(k) −γ0f

∗(k) ε2p γ1 −γ4f(k)

0 0 −γ4f
∗(k) γ1 ε2p −γ0f(k)

γ2/2 0 −γ3f(k) −γ4f
∗(k) −γ0f

∗(k) ε2p


. (2.27)

Here, we adopted the Slonczewski - Weiss - McClure parameters [55–57] typically

used to describe bulk graphite. Furthermore, γ1 ' 0.1γ0 [55–57] describes the

hopping between nearest interlayer sites, which sit directly above one another (i.e.

A2-B1 and A3-B2); γ3 ' 0.1γ0 (i.e. A1-B2 and A2-B3) and γ4 ' 0.01γ0 (i.e. A1-

A2, B1-B2, A2-A3 and B2-B3) describe the skewed interlayer hopping [55–57].

A new parameter of TLG-ABC is γ2 ' −0.005γ0, which describes the hopping of

electrons between sites in the top and bottom layers. With this new parameter

value, the band structure is plotted in Fig. 2.8.

Figure 2.8: (Left) The band structure of TLG-ABC in momentum space; the hexagon
in the centre of the bands is the first Brillouin zone. From the six bands, the two
transparent bands exist due to the low-energy bands touching one another. The other
four opaque bands are separated from one another by energy scale 2γ1. (Middle) Cubic
Dirac cone due to around theK valley. (Right) The trigonal-warping effect in TLG-ABC
(i.e. a Lifshitz transition) in the vicinity of zero energy.

Because the model represented by Eq. (2.27) includes six orbitals in the unit
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cell, the band structure of TLG-ABC features six bands. In the corner of the Bril-

louin zone, i.e. at the K and K ′ valleys, four of the six bands are approximately

separated by γ1, whereas the other two touch one another. To investigate the be-

haviour of electrons in the vicinity of points K/K ′, it is convenient to expand the

phase factor term f(k) in Eq. (2.28) with the resulting Hamiltonian determined

as [19]

Ĥ =



0 vπ̂† v4π̂
† v3π̂ 0 γ2/2

vπ̂ 0 γ1 v4π̂
† 0 0

v4π̂ γ1 0 vπ̂† v4π̂
† v3π̂

v3π̂
† v4π̂ vπ̂ 0 γ1 v4π̂

†

0 0 v4π̂ γ1 0 vπ̂†

γ2/2 0 v3π̂
† v4π̂ vπ̂ 0


, (2.28)

where vi =
√

3agγi/2 are the velocities corresponding to each hopping parameter

and v0 = v. The diagonal elements (i.e. those describing onsite energy) are set

to zero. Among the six bands of TLG-ABC, four bands are separated by 2γ1, as

shown in the left panel of Fig. 2.9.
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Figure 2.9: (Left) The low-energy band structure of the tight-binding Hamiltonian
of TLG-ABC Eq. (2.28) in blue and Eq. (2.29) in black for ky = 0, γ2 = 0 v3 = 0
and v4 = 0. (Middle) The low-energy band structure of TLG-ABC, i.e. Eq. (2.29) for
ky = 0, v3 = 0 and v4 = 0, where γ2 = −0.005γ0 (blue) and γ2 = 0 (black). (Right) The
low-energy band structure of TLG-ABC, i.e. Eq. (2.29) for ky = 0, γ2 = 0 and v4 = 0,
where v3 = 0.1v (blue) and v3 = 0 (black).

As shown in Fig. 2.9, the simplest model that includes only γ0 and γ1 is gen-

erally a good description for most of the energy region. To study the behaviour
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around zero energy, i.e. E � γ1, we can perform a Schrieffer-Wolff transformation

[61, 62] on Eq. (2.28) to project the effect of the four dimer sites onto the two

non-dimer sites, thus obtaining a simplified two-component Hamiltonian [19] as

ĤC =
v3

γ2
1

 0 π̂†3

π̂3 0

+

(
γ2

2
− vv3

γ1

2k2

) 0 1

1 0

 . (2.29)

Parameter γ4 only provides a trivial asymmetry between electron and hole, there-

fore we omit it for simplicity. As shown in the left panel of Fig. 2.9, in the

simplest model that includes γ0 and γ1 only, the dispersion of Eq. (2.29) is cubic,

i.e. E = v3k3/γ2
1 .

In most cases, the other parameters can be considered as perturbations, espe-

cially with γ3 and γ2 introducing trigonal warping in the band structure. With a

decrease in energy as well as momentum, parameter γ2 dominates the behaviour

of the very low energy dispersion as it is independent of momentum k. Similar

to the effect of trigonal warping in BLG, the bands exhibit a Lifshitz transition

at very low energy. For the Lifshitz transition of TLG-ABC, the isoenergetic line

of TLG-ABC in the vicinity of point K breaks into three parts [19], whereas

that of BLG breaks into four parts. The left-right asymmetry in the middle and

right subplots of Fig. 2.9 is due to the effect of trigonal warping. Note that the

effect that the Lifshitz transition has on the band structure of BLG and TLG

is discussed in Chapter 5, and the effect that the Lifshitz transition has on the

electronic transport properties of BLG and TLG is described in Chapter 6.

2.5.2 Band structure of TLG-ABA

TLG-ABA has the same Bravais lattices and reciprocal lattices as that of SLG.

The unit cells of TLG-ABA consists of six atomic sites rather than two; these six

sites are labelled A1, B1, A2, B2, A3 and B3, where index “1” represents the

bottom layer, “2” represents the middle layer and “3” represents the top layer.

The interlayer distance between layers d = 3.3 Å is the same as that of BLG. As
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shown in Fig. 2.10, in TLG-ABA, sites B1, A2 and B3 sit directly above one

another, i.e. there is a mirror reflection symmetry with the respect to the central

layer of TLG-ABA.

Figure 2.10: Schematic of the crystal lattice of TLG-ABA in which dimer sites A2 sit
directly above site B1, B3 sit directly above sites A2 and there are two pairs of next
nearest layer hoppings between sites B3-B1 and A3-A1.

The crystal structure of TLG-ABA is shown in Fig. 2.10. Following the same

procedure as in previous sections, the Hamiltonian of TLG-ABA can be written

on the basis of Bloch wave function (φA1, φB1, φA2, φB2, φA3, φB3) for valley K

and (φB1, −φA1, φB2, −φA2, φB3, −φA3) for valley K ′ [78–80],

Ĥ =



ε2p −γ0f(k) −γ4f(k) −γ3f
∗(k) γ2/2 0

−γ0f
∗(k) ε2p γ1 −γ4f(k) 0 γ5/2

−γ4f
∗(k) γ1 ε2p −γ0f(k) −γ4f

∗(k) γ1

−γ3f(k) −γ4f
∗(k) −γ0f

∗(k) ε2p −γ3f(k) −γ4f
∗(k)

γ2/2 0 −γ4f(k) −γ3f
∗(k) ε2p −γ0f(k)

0 γ5/2 γ1 −γ4f(k) −γ0f
∗(k) ε2p


. (2.30)

Here, we adopted the Slonczewski - Weiss - McClure parameters [55–57] typically

used to describe the bulk graphite. Each 2× 2 diagonal block describes the inter-
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layer behaviour of the bottom layer (A1 - B1), the middle layer (A2 - B2) or the

top layer (A3 - B3). The off-diagonal blocks describe the interlayer hopping.

The diagonal elements (i.e., those describing onsite energy), are set to zero.

Here, γ1 ' 0.1γ0 [55–57] describes the hopping between nearest interlayer sites,

which sit directly above one another (i.e. A2-B1 and B3-A2). Parameters γ3 '

0.1γ0 (i.e. A3-B2 and A1-B2) and γ4 ' 0.01γ0 (i.e. A1-A2, B1-B2, A2-A3 and

B2-B3) describe the skewed interlayer hopping [55–57]. The new parameters in

TLG-ABA are γ2 ' −0.005γ0 and γ5 ' 0.002γ0, which describe the hopping

of electron between sites in the top and bottom layers, respectively. The band

structure of TLG-ABA Hamiltonian Eq. (2.30) is plotted in Fig. 2.11.

Figure 2.11: (Left) Band structure of TLG-ABA in the tight-binding model. (Right)
Band structure of TLG-ABA in the vicinity of the K valley.

Because the model includes six orbitals per unit cell, the band structure of

TLG-ABA features six bands. In the corner of the Brillouin zone, i.e. at the K

and K ′ valleys, two of the six bands are approximately separated by roughly γ1,

whereas the other four approach zero energy.

To investigate the behaviour of electrons in the vicinity of points K and K ′

point, it is convenient to expand the phase factor term f(k) in Eq. (2.30). Doing
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so, the resulting Hamiltonian [78–80] is

Ĥ =



0 vπ̂† v4π̂
† v3π̂ γ2/2 0

vπ̂ 0 γ1 v4π̂
† 0 γ5/2

v4π̂ γ1 0 vπ̂† v4π̂ γ1

v3π̂
† v4π̂ vπ̂ 0 v3π̂

† v4π̂

γ2/2 0 v4π̂
† v3π̂ 0 vπ̂†

0 γ5/2 γ1 v4π̂
† vπ̂ 0


, (2.31)

where vi =
√

3agγi/2 are the velocities corresponding to each hopping parameter,

v0 = v. The diagonal elements (i.e., those describing onsite energy) are set to zero.

Because TLG-ABA has mirror reflection symmetry, using a unitary transfor-

mation, we can separate odd wave functions ψA1 − ψA3, ψB1 − ψB3 from even

wave functions ψA1 + ψA3, ψB1 + ψB3, ψA2 and ψB2. The resulting Hamiltonian of

TLG-ABA can then be expressed as

Ĥ =

 Ĥo 0

0 Ĥe

 , Ĥo =

 −γ2/ 2 vπ̂†

vπ̂ −γ5/ 2

 ,

Ĥe =



γ2/ 2
√

2v3π̂ −
√

2v4π̂
† vπ̂†

√
2v3π̂

† 0 vπ̂ −
√

2v4π̂

−
√

2v4π̂ vπ̂† 0
√

2γ1

vπ̂ −
√

2v4π̂
†

√
2γ1 γ5/ 2


. (2.32)

This transformed Hamiltonian of TLG-ABA is block-diagonal. The upper-left 2×2

block Ĥo is on the basis of odd wave functions ψA1 − ψA3, ψB1 − ψB3, and it is

similar to a gapped Hamiltonian of SLG. The size of the gap is (γ2 − γ5)/2. The

lower-right block Ĥe is on the basis of ψA1 + ψA3, ψB2, ψA2 and ψB1 + ψB3, and

it is similar to gapped BLG. Therefore, as shown in Fig. 2.12, we can expect the

band structure of TLG-ABA features SLG-like and BLG-like parts [80].

As shown in the left plot of Fig. 2.12, a simple model containing only γ0 and

γ1 produces SLG-like and BLG-like bands. The two next-nearest layer vertical
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Figure 2.12: (Left) The low-energy band structure of the tight-binding Hamiltonian
of TLG-ABA, i.e. Eq. (2.32) for ky = 0, γ2 = γ5 = 0 and v3 = v4 = 0. SLG-like bands
(black) and BLG-like bands (Blue) are explicitly shown. (Right) The band structure of
TLG-ABA, i.e. Eq. (2.32) for ky = 0, and v3 = v4 = 0, where the black line represents
γ2 ' −0.005γ0 and the blue line represents γ2 = γ5 = 0.

hoppings γ2 and γ5 open a gap in both the SLG-like and the BLG-like bands, as

shown in the right inset of Fig. 2.12.

2.6 The quantum Hall effect in graphene

2.6.1 Graphene in a magnetic field

When a perpendicular magnetic field is applied to graphene, a hierarchy of physics

phenomena will emerge as the magnitude B = |B| of the magnetic field increases

[51]. Such phenomena include:

(1) When the magnetic field is relatively weak, i.e. when B is less than several

Tesla, the cyclotron radius is greater than the mean free path, meaning electrons

are unable to complete a circle, and the Bohr-Sommerfeld quantization rule cannot

be observed. Therefore, one will observe the classical Hall effect.

(2) Then, on increasing magnetic field B ≥ 10 T, (temperature T ≤ 80 K) the

radius of a cyclotron orbit shrinks and become less than the free mean path. The

cyclotron orbit completion makes the Bohr-Sommerfeld quantization rule applica-

ble and Shubnikov-de Haas oscillations will appear [73–75].

(3) When the magnetic field is large enough, B ≥ 14 T, (temperature T ≤
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4K) to distinguish the cyclotron energy levels, the integer quantum Hall effect is

observed. The cyclotron energy levels are the so-called Landau levels [72]. Here,

the Hall conductivity displays an integer plateau with an increase in carrier density.

(4) If the magnetic field increases further (B > 45 T), the degeneracy of elec-

tronic spin is lifted, each Landau level is split, and the Zeeman effect appears.

One observes more integer plateaux and more filling factors in the carrier density-

magnetic field diagram (fan diagram) [188].

(5) When the magnetic field is huge (i.e. B ' 105 T), the amount of magnetic

flux threading each unit cell becomes a significant factor. The periodic potential

of the crystal imposes a translational symmetry on the wave function in addition

to the magnetic vector potential, and their superstition determines the transla-

tional symmetry of the electronic wave function in a crystal in a magnetic field.

In principle, the measurements of this system adhere to a fractional Hall effect,

but the strength of the magnetic field required is generally too high to realize in

practice. To observe this type of fractional Hall effect in a feasible magnetic field

(B ' 30 T), we can utilize a superlattice, either by creating an artificial lattice or

by employing a moiré pattern. The quantum Hall effect of a graphene superlattice

is discussed in detail in Chapter 3 and 4.

2.6.2 Landau levels of graphene

Electrons in a perpendicular magnetic field follow cyclotron orbits, and their energy

is quantized into separate levels known as Landau levels (LLs). The LLs are

manifest in quantum oscillations such as the de Haas-van Alphen effect and the

Shubnikov-de Haas effect in a low magnetic field as well as in the quantum Hall

effect [73–75].

In a conventional two-dimensional electron gas (2DEG), the LL energy is En =

ωC(n + 1/2), where n is a non-negative integer and ωC = eB/me is the cyclotron

frequency of electrons. In such systems, the lowest LL energy E0 = ωC/2, also

known as the “zero-point energy”, depends on the magnitude of the magnetic
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Figure 2.13: (Left) LL quantization of a Dirac cone, where the transparent cone is
the dispersion of SLG in the absence of a magnetic field, and the embedded circles on
the cone represent the discretized cyclotron energy levels. (Middle) The LL spectrum of
SLG [71], in which each level follows E ∝ n

√
B, where the magnetic field B is measured

in natural units. (Right) The LL spectrum of BLG [71], in which each level follows
E ∝ nB, where magnetic field B is measured in natural units.

Figure 2.14: The distribution of the wave function corresponding to the zeroth LL
SLG (left) and BLG (right) graphene in a perpendicular magnetic field in real space.
The blue and black dots, respectively, represent non-dimer sites A and B in SLG and
A1 and B2 in BLG, whereas the red dots represent dimer-sites B1 and A2. The solid
line represents intralayer hopping. When B > 0, all wave functions concentrate on one
atomic site in the zeroth LL of graphene.
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field. In contrast, the LL spectrum in graphene has a zero energy level, which

is independent of the magnetic field. Note that this is a characteristic feature of

the Dirac cone and can be taken as originating from the unique Berry phase of

graphene, as discussed in Section 2.7 and Appendix I.

In a magnetic field perpendicular to the graphene sheet, i.e. B = (0, 0,−B), we

can use the vector potential in the Landau gauge 10A = (0,−Bx, 0). The secular

momentum of the electron in a magnetic field is expressed by Peierls substitution

[83, 109, 112] 11 p → p + eA, where the charge of the electron is −e. Then,

operator π̂ in the Hamiltonian of Eq. (2.19) becomes a “lowering” operator for

Landau functions (with a constant factor λB). By solving the equation π̂φ0 = 0,

we obtain an expression for the Landau wave function as 12

φl(x, y) = AlHl

(
x

λB
− pyλB

)
exp

[
−1

2

(
x

λB
− pyλB

)2

+ ipyy

]
, (2.33)

where Al = 1/
√

2ll!
√
π, Hl are Hermite polynomials of order l and λB =

√
1/|eB|.

Accordingly, the action of lowering and raising operators is given by

π̂φl = −
√

2i

λB

√
lφl−1, π̂†φl =

√
2i

λB

√
l + 1φl+1. (2.34)

From the above equation, the LLs and their wave functions can be solved from

10We can choose the other gauge, because gauge invariance does not mean that the Hamilto-
nian or the wave function do not change. The gauge inveriance refers to the invariant physical
observables, such as the energy, probability. Here, Landau gauge is a relatively easy gauge to
keep translational invariance.

11The precondition of applying Peierls substitution is that the magnetic length λ is much larger
than lattice constant. For example, B = 10 T, λ =

√
~/(eB) ' 800 Å� ag = 2.46 Å.

12Here, this state is also called “magnetic oscillation state”. Because once we choose gauge
that keeps the translational invariance on y direction, the form of the wave function is a product
between a plain wave and a harmonic oscillator. Of course, by choosing another gauge (such as
cylindrical gauge), the wave function is still in a magnetic oscillation form, but with an awkward
mathematics, a 2D Harmonics.
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Eq. (2.19) in the absence of γ3 and γ4 as following,

El,± = ±
√

2v

λB
, ψl,± =

1√
2

 φl

∓iφl−1

 , for l ≥ 1,

E0 = 0, ψ0 =

 φ0

0

 , for l = 0. (2.35)

Similarly, based on Eq. (2.24), we can solve the LL and corresponding wave func-

tions of BLG in a magnetic field as

El,± = ± 1

mλ2
B

√
l(l − 1), ψl,± =

1√
2

 φl

±φl−2

 , for l ≥ 2,

El = 0, ψl =

 φl

0

 , for l = 0, 1. (2.36)

Fig. 2.13 shows both the LL spectra of SLG and BLG. By carefully considering the

wave functions corresponding to the zeroth LL of SLG (ψ0) in Eq. (2.36), and the

zeroth and first LL of BLG ψ0 and ψ1 in Eq. (2.36), we can note that there is only

one non-zero component. Remember that the basis is (φA1, φB2) for valley K and

(φB2,−φA1) for valley K ′. It means that, when the direction of the magnetic field

is downward (B = (0, 0,−B)), the wave function is located on the A1 site at the

K valley. Conversely, as shown in Fig. 2.14, the wave functions are concentrated

on the B2 site at the zeroth and first LL at the K ′ valley. Once the direction

of the magnetic field is flipped (i.e. B = (0, 0, B)), the location of the electron

wave function switches to the other sublattice. For the K valley, all of the wave

function concentrates on B2 13 .

The interaction between the periodicity of two-dimensional materials and the

vector potential is discussed in Chap. 3 and 4. The corresponding effect on the

13It seems peculiar that only one component is non-zero in zeroth LL wave function, as this
implies that the electronic distribution in real space will be different. But consider that there
are two valleys simultaneously, and each valley holds zeroth LL wave function on one sublattice,
so this does not break symmetry.
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localization of the wave function at zero energy is discussed in detail in Chap. 4.

2.7 Berry phase of graphene

In general, the Berry phase (i.e. geometrical phase) arises because an eigenstate of

a Hamiltonian acquires an additional phase after it revolves around a loop in an

external parameter space [91]. In the context of graphene, the Berry phase refers

to the phase factor acquired by an eigenstate of the Hamiltonian after it completes

a full cyclic adiabatic process14 in momentum space at fixed energy in the vicinity

of the DP, as schematically shown in Fig. 2.15.

Figure 2.15: A schematic of graphene’s Berry phase in which the blue cone is the
band structure around the K valley of the DP in momentum space and the circle in
the conduction band is the isoenergetic line. Note that an electron that completes a full
circle along the isoenergetic line will acquire additional phase factor π.

The Berry phase Γ is given by [92]

Γ = −i
∮
ψ∗(p(t))

∂

∂t
ψ(p(t))dt. (2.37)

14The terminology adiabatic process is firstly used to describe the approximation in atomic
physics, because of the significant mass difference between nucleon and electron, the relative
movement of nucleon with respect to electron can be ignored. In thermodynamics, adiabatic
means free of heat exchange. In quantum mechanics, it means free of change of energy state.
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For example, we consider the eigenfunction of SLG in Eq. (2.20) as

E± = ±v|p|, ψ± =
1√
2

 1

±eiϕ

 eip.r,

where ϕ is the polar angle of momentum p, p = |p|(cos(ϕ), sin(ϕ)). Substituting

the above eigenfunction of SLG into Eq. (2.37) yields

Γ = −i
∮
dt

1

2

∂ϕ

∂t
+

∮
dt

(
∂p

∂t
· r +

∂r

∂t
· p
)

= π. (2.38)

If we define Γ ∈ [0, 2π), the above equation provides a non-trivial phase factor π,

which further indicates that, after evolving along a closed contour path around

the DP in momentum space, the eigenfunction in Eq. (2.20) of SLG acquires an

extra phase factor π.

In the case of gapped SLG, the Hamiltonian is

Ĥ =

 ∆/2 vπ̂†

vπ̂ −∆/2

 , (2.39)

where ∆ is the gap size. The Berry phase will be less than π, the difference as

compared to perfect graphene depends on the size of the gap.

Similarly, we can calculate the Berry phase for the simplest model of BLG (i.e.

Eq. (2.24)) or TLG (i.e. Eq. (2.29)) at low energy, and they give 2π and obtain

3π respectively. Further discussion regarding the Berry phase can be found in

Appendix I.
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Chapter 3

Magnetic minibands in SLG with

a hexagonal moiré superlattice

3.1 Introduction

In this chapter, we consider a superlattice that is created when graphene is placed

on top of hexagonal boron nitride (h-BN). We will discuss its band structure,

quantum Hall effect and magnetic energy spectrum.

We begin by describing the origin of the “Hofstadter butterfly” with a simple

model. Next, we describe the more complicated moiré superlattice of graphene,

and then discuss its band structure in the absence of a magnetic field as well as

its butterfly spectrum in a finite magnetic field.

3.1.1 Origin of the Hofstadter butterfly spectrum

As shown in Fig. 3.1, the “Hofstadter butterfly” spectrum is an interesting and

beautiful phenomenon. It was first introduced by D. Hofstadter in 1976 [83].

Because it is one of the few fractal patterns1 generated from physics rather than

mathematics, it has since inspired many physicists [81, 107, 108].

1A fractal is a natural phenomenon or a mathematical set that exhibits a repeating pattern
which is displayed at every scale or iteration. The statistical index of complexity or space-filling
capacity of a fractal pattern can be measured by its fractal dimension D, which is not necessarily
an integer. See Appendix A for more details.
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Figure 3.1: The fractal spectrum of an electron on a square crystalline lattice in a
magnetic field, where the horizontal axis has units of α = φ/φ0, i.e. the magnetic flux
threading a unit cell of the crystal, and the vertical axis represents energy E in terms of
a natural unit E0. Each point of this plot is an eigen energy calculated by diagonalizing
the Hamiltonian matrix for given α, a location of Brillouin zone (here is Γ point). The
fractal dimension of this plot is D = 1.70017. The Figure was generated numerically as
described in the main text.

The fractal Hofstadter butterfly spectrum can be generated by considering a

two-dimensional square lattice with lattice constant a, as shown in the top panel

of Fig. 3.2. This system can be described by a simple Hamiltonian of the tight-

binding model:

Ĥ =
∑
〈i,j〉

tc†icj + h.c., (3.1)

where t is the transfer integral between neighboring sites located at Rj and Ri,

i.e. t is the (isotropic) hopping parameter, ci(c
†
i ) is the annihilation (creation)

operator of site ri = x̂mia+ ŷnia and mi, ni ∈ Z.

By applying a perpendicular magnetic fieldB = (0, 0,−B) and vector potential

A = −B(0, x, 0), the Peierls substitution k → k − eA shows that t depends on

the relative position of the two sites δR = Rj −Ri:

t→ te−ieA·δR = te−ieBmia·(nja−nia) = te±i2πmiα, (3.2)
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Figure 3.2: An electron in a square lattice in a magnetic field, B = ẑB, A = B(0, x, 0).
The pink rectangles indicate the area of a unit cell. The arrows represent hopping
between different sites, and the value of the transfer integral between different sites in
zero magnetic field is t. (Top) Zero magnetic field, the unit cell area is a2 and the transfer
integral between different sites t is isotropic. (Middle) Magnetic field B = φ0/(2a

2), so
the Peierls substitution introduces an additional phase factor e−iπm, where x = ma
is the coordinate of the site. Here te−iπ(m+2) = te−iπm and the unit cell contains
two sites. (Bottom) Magnetic field B = φ0p/(qa

2), the unit cell contains q sites, and
te−i2π(m+q) = te−i2πm.
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where nj = ni ± 1 represents neighboring sites of the square lattice, α = φ/φ0,

φ = a2B is the magnetic flux threading a unit cell, and φ0 = h/e is the flux

quanta. This means that, in a magnetic field, the hopping parameter t depends on

the coordinate mia. As shown in the middle and bottom panels of Fig. 3.2, once

qα = p, where p, q ∈ Z, translational symmetry is recovered, i.e. e±i2π(mi+q)α =

e±i2πmiα.

Therefore, we obtain the relation

α =
p

q
=

φ

φ0

, (3.3)

which suggests that once the ratio between magnetic flux threading a unit cell and

flux quanta is a rational number p/q, the translational symmetry of an electron in a

square lattice in a magnetic field is recovered but reduced by q times. In this case,

the unit cell is enlarged q times as shown in Fig. 3.2. Then, using the tight-binding

model introduced in Chapter 2, we can build a q×q Hamiltonian matrix to describe

a q-times enlarged unit cell. The eigenenergies of the bands can be obtained by

diagonalizing the matrix for a given point in the magnetic Brillouin zone. By

mapping the eigen energy for the rational value p/q, the butterfly spectrum can

be built as shown in Fig. 3.1. Further details of this calculation are given in

Appendix B.

Due to the nature of rational values, even a small deviation in the value of

α drastically changes the values of p and q, leading to a significant change in the

number of minibands2 . This is the origin of the recursive structure of the butterfly

spectrum, as shown in Fig. 3.1. Furthermore, because of the intrinsic discontinuity

of rational numbers, the butterfly spectrum is also discontinuous. However, our

vision intuitively suggests that this spectrum seems continuous. This is not an

2The reason we use “miniband” here are as following: (a) The unit cell is enlarged by q times
for given magnetic field strength α = p/q, so the Brillouin zone shrunk by q times, i.e. a smaller
band. (b) Because the unit cell is enlarged by q times, thus the Hamiltonian matrix becomes
q × q dimension. Therefore, the “original band” splits into q bands with smaller band width,
i.e. narrower bands. In general, we call this smaller and narrower band of electron in crystal in
magnetic field a “miniband”.
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illusion: all dots in α′ spectrum are indeed approaching the α spectrum when

α′ approaches α [83]. Considering that every physical parameter in a practical

experiment has uncertainty, such as magnetic field B applied to this square lattice,

the final value of α observed is smeared. This smearing eliminates the discontinuity

of the butterfly spectrum. To visualize this, we can imagine zooming out of Fig. 3.1

to obtain a low-resolution version. Also, all observable physical properties are not

determined by the specific band structure, but rather eventually depend on the

distribution of the number of states along a small but finite energy region, in which

only a slight change occurs in the variation of α [82]. Therefore, the instability

and discontinuity of the magnetic spectrum do not induce any disasters into actual

physical observations.

In general, for an electron in a periodic lattice in a magnetic field, both the

crystalline periodic lattice and the magnetic vector potential apply translational

symmetry to the wave function of the electron. The two translational symmetries

compete with one another and, once they satisfy the special relation expressed

in Eq. (3.3), the translational symmetry of the wave function can be recovered,

but it is reduced. Simultaneously, the degeneracy of eigenvalues of the Schrödinger

equation are also lifted. For specific values of the magnetic field, each original band

splits into numerous magnetic minibands. From a mathematical perspective, the

instability of the denominator and numerator of the rational number α = p/q is the

direct cause of the recursive structure of the spectrum. Translated into physical

terminology, the competition between the two distinct translational symmetries

determines the fractal butterfly spectrum.

3.1.2 Development of butterfly spectrum research

In general, by increasing the magnetic field strength, all electrons in a two-dimensional

lattice are eventually fractured into multiple bands [82, 107, 108], as mentioned

in Section 2.6.1. Since the sparsity of the spectrum increases for larger values

of the denominator and numerator in p/q (hence, smaller gaps), the observation
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of fractal magnetic bands in real crystals requires unsustainably strong magnetic

fields, e.g. B ' 105 T for a unit cell area of S = 1 Å2. Early efforts were focused

on two-dimensional electrons in periodically patterned GaAs/AlGaAS heterostruc-

tures [84], where the superimposed superlattice period was large enough, so that

the explicit fractal spectrum can be observed. More recent observations of moiré

superlattices (this terminology will be explained later), both for twisted BLG

[131, 132] and graphene residing on substrates with hexagonal facets [85], have

illustrated an alternative way of creating a long-range periodic potential for elec-

trons, i.e. by making lattice-aligned graphene heterostructures using a hexagonal

crystal with an almost commensurate period.

Furthermore, superlattice perturbations for Dirac electrons have been dis-

cussed in various different contexts, some of which pre-date the realization of the

graphene/h-BN heterostructure. Many studies have investigated the influence of

one or two-dimensional electrostatic potentials on graphene electrons [143–165],

which may be achievable using patterned gates [166, 167]. Magnetic and pseudo-

magnetic field superlattices (the latter arising from periodically strained graphene)

have also been extensively studied [152, 168–171] with steps towards experimental

realizations [172, 173].

3.1.3 My work: quantum Hall effect of the graphene su-

perlattice

In this subsection, we use the graphene/h-BN heterostructure as an example of

moiré-perturbed graphene to study magnetic minibands. When the surface layer

of the substrate is inversion symmetric 3 , the zero-magnetic-field spectrum dis-

plays an interesting Dirac-like band structure at the first miniband edge [86–88].

Because this “Dirac-like” structure is not located at zero energy, but rather in

3The reason we specifically mention “inversion symmetry” is that the substrate h-BN is not
inversion symmetric. The two sublattices of h-BN, Boron and Nitride, are different. One can not
get back to the initial kind of atomic site after a space inversion. However, this inversion sym-
metry breaking is not necessarily significant. So we firstly consider the situation that inversion
symmetry holds.
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the valence band, we denote this feature as the “secondary DP”. Furthermore,

when the magnetic flux threading a super unit cell is a rational number times the

flux quantum, i.e. B p
q

= pφ0/(q
√

3a2/2), where φ0 is the flux quantum, p, q ∈ Z

and a is the superlattice constant, we find that a hierarchy of Dirac-like electrons

systematically reappear at the edges of the magnetic minibands. The surrounding

fractal spectrum found at B p
q

consists of q-fold degenerate LLs of gapped Dirac-like

electrons in an effective magnetic field δB = B′p
q
−B p

q
. As the Dirac model features

a “zero-energy” LL, separated by the largest gap from the rest of the spectrum,

the size of gap decreases between higher LLs. This feature determines a specific

hierarchy of gaps in the Hofstadter butterfly, resulting in a peculiar sequence of

dominant incompressible states of electrons in graphene-hBN heterostructures in

a strong magnetic field.

This work was performed in collaboration with others. My contribution was

the numerical calculation and a portion of the analytical evaluation, especially the

fractal spectrum in a magnetic field.

3.2 Theoretical framework: zero magnetic field

3.2.1 The moiré superlattice

Two super-positioned lattices with the same Bravais lattice structure generate

a supercell with the same lattice structure and a much larger lattice constant,

the pattern formed by the supercell is called a moiré pattern. Considering that

graphene and h-BN substrate are perfect crystals placed rigidly on top of one an-

other, the corresponding moiré pattern is shown in Fig. 3.3. This geometrical effect

can be observed, for example, using scanning tunneling microscopy or conductive

atomic force microscopy [37, 40–42, 46, 47].

Note that the larger the misalignment angle θ, the smaller the superlattice

constant a. The largest superlattice constant is a = ag/δ
4 in the case of θ =

4To understand this, a simple but not rigorous way is to consider the following situation: one
lattice constant ag = 2 and the other aBN = 3, their difference is δ = 50%, so the commensurate
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Figure 3.3: The moiré pattern results from the superposition of two two-dimensional
substrates with similar Bravais lattices. Its period depends on the difference between
the lattice constants and misalignment angle. The plots here show that the period of
the moiré pattern decreases as the misalignment angle θ increases.

0, where ag is the primitive lattice constant of the layered material, here being

graphene. In this case, the superlattice vectors am and the lattice vectors of the

layered material a′m are

am = a′m/δ, a′m = R̂2πm/6(ag, 0), (3.4)

where R̂θ is the rotation matrix of angle θ. The superlattice vectors a1 and a2 are

shown in Fig. 3.4. The unit of length is set to |am| from now on. A detailed and

insightful discussion of how to describe moiré pattern can be found in Appendix C

as well as Ref. [195].

For the graphene/h-BN heterostructure, the lattice constant of h-BN is aBN =

2.50 Å, and the lattice constant of graphene is ag = 2.46 Å, so their difference is

δ ' 1.8%. The period of the moiré pattern can be as long as 14 nm at misalignment

angle θ = 0, which provides a periodicity several thousands times larger than

length is a = 6 = aBN/δ. When the two lattice constants approximate each other, a = ag/δ
holds. A rigorous discussion is given in Appendix C.
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Figure 3.4: The primitive superlattice vectors of a moiré pattern in the case of mis-

alignment angle θ = 0, a1 =a(1
2 ,
√

3
2 ), a2 =a(−1

2 ,
√

3
2 ) and unit cell area S=

√
3

2 a
2.

graphene’s unit cell. Therefore, the fractal magnetic minibands can be observed

in sustainable magnetic fields (B ' 10 T). In the subsection below, we use this

superlattice constant (14nm at θ = 0) unless otherwise stated 5 .

Figure 3.5: The Brillouin zones of graphene (left) and the moiré superlattices (right),
with various highly symmetric points and reciprocal lattice vectors.

From Eq. (2.1) and (3.4), one can derive the expression of reciprocal superlattice

vector bm as,

bm = gm − g′m ≈ δgm, m = 0, · · · 5,

gm = R̂2πm/6(0, 4π/
√

3ag), g′m = (1 + δ)−1gm, (3.5)

5The reason that we use an exact misalignment angle θ = 0 can be shown in two levels.
The first reason is the magnitude of moiré perturbation µ ≤ 10 meV is much smaller than the
characteristic energy scale of this system vb ' 350 meV. We need to minimize vb to observe the
effect of perturbation, therefore the smaller b, i.e. smaller θ, is preferred. Secondly, why do
we need a exact zero θ but not finite value? This can be justified as following. The character
of the system is determined by certain set of superlattice reciprocal lattice. If there is a finite
value of θ, the moiré pattern will be definitely misaligned with the graphene lattice in real space.
However, the Hamiltonian we use to describe graphene is Dirac Hamiltonian (Eq. (2.19)), which
is isotropic, i.e. there is no characteristic direction to compare with the directions of moiré
pattern. So even if θ is finite, its effect is to only rescale the band structure but no additional
effect. For simplicity, we set θ = 0.
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where gm is the graphene reciprocal lattice vector. The six (i.e. m = 0, · · · 5)

shortest reciprocal vectors of the moiré superlattice bm are shown in Fig. 3.5.

The area of the Brillouin zone is SBZ = b2
√

3/2, where b = |bm|. The corner of

the hexagonal superlattice Brillouin zone is denoted as ζκ = ζ(b4 + b5)/3, where

ζ = ±1.

Then, the dominant effect of moiré perturbation on the graphene Dirac elec-

trons can be modeled by scattering processes with non-zero reciprocal lattice vec-

tors bm. One such process is shown in the left panel of Fig. 3.5 , an electron which

is shown as a red point at graphene’s Brillouin zone corner, K, is scattered by

−g′4. By adding a graphene reciprocal vector, the moiré superlattices perturbation

provides intra-valley scattering by the simplest harmonics of moiré superlattices

(b4 = g4 − g′4 in this case). One point to be emphasized is, although the process

b4 = g4 − g′4 can be considered as a generalization of two successive scatterings,

the starting point of our Hamiltonian (in next section) is the moiré superlattice

vector. We are not relying on the direction of reciprocal lattice of graphene or

h-BN.

3.2.2 Hamiltonian of moiré perturbed graphene

To describe the low-energy (i.e. |ε| . vb ' 0.35 eV) behavior of electron in

graphene/h-BN heterostructure, we use following the Hamiltonian [88],

Ĥ =vp̂·σ + vb
(
u+

0 f++u−0 f−
)

+ ξvbσ3

(
u+

3 f−+u−3 f+

)
+ ξvσ ·

[
lz×∇

(
u+

1 f−+u−1 f+

)]
. (3.6)

Here σi are the Pauli matrices, acting on Bloch states (φAK , φBK)T in the K valley

(ξ = 1) and (φBK′ ,−φAK′)T in the K ′ valley (ξ = −1), f± =
∑

m(±1)m+ 1
2 eibm·r.

In the Dirac term, p̂ = −i∇ + eA (~ = 1) describes momentum relative to the

valley centre with [∇×A]z = B. The detailed process of obtaining Hamiltonian

of moiré perturbed graphene can be found in Appendix. D.
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In addition to the dominance of the simplest moiré superlattice harmonics in

the perturbation, the h-BN substrate can only affect the graphene electrons via the

following three distinct mechanisms [88]: (1) an electrostatic potential, which does

not distinguish between the two carbon sublattices; (2) a sublattice-asymmetric

part of the potential; and (3) spatial modulation of the nearest neighbour carbon-

carbon hopping amplitude. Each of these can be thought of as contributing either

symmetrically or anti-symmetrically under in-plane spatial inversion. In the two

limits where either (a) both boron and nitrogen sublattices perturb the Dirac

electrons with almost the same strength or (b) the dominant perturbation arises

from only one sublattice, it can be argued [88] that the inversion symmetry of

the system would only be weakly broken. Then, the moiré superlattice potential

can be modeled as a combination of a dominant inversion-symmetric part with

the addition of a small inversion-asymmetric perturbation. Accordingly, the moiré

superlattice perturbation can be parametrized by six phenomenological parameters

that control the inversion symmetric (u+
0 , u+

3 , u+
1 ) and inversion asymmetric (u−0 ,

u−3 , u−1 ) components of modulation mechanisms (1), (2) and (3) described above.

Possible choices for values of the phenomenological parameters u±i are discussed

in the next section.

Using the anti-commutation properties of the Pauli matrices, it is possible to

deduce the following relations [88] for band energy at different values of momentum

p and parameters u+
i s 6 :

ε
u+0 ,u

+
1 ,u

+
3

K+p = −ε−u
+
0 ,−u

+
1 ,u

+
3

K−p = −ε−u
+
0 ,u

+
1 ,−u

+
3

K+p = ε
u+0 ,−u

+
1 ,−u

+
3

K−p . (3.7)

3.2.3 Band structure of moiré perturbed SLG

In Chapter 2, we discussed the first term of Eq. (3.6). In this subsection, we take

the Dirac Hamiltonian the dominant term in the vicinity of zero energy and then

6The first equation can be derived by applying σ3 onto the eigen equation, i.e. σ3Ĥσ3σ3ψ =
εσ3ψ; the second can be derived by simply inverting the coordinate r → −r; applying the two
above operations simultaneously will lead to the third equation.
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treat the rest of Eq.(3.6) as perturbations. By applying second-order perturbation

theory (with details given in Appendix E), we can calculate the energy shift of the

DP, EShift, the effective velocity veff and the size of the gap, ∆0, of the “zero-energy”

DP [43]:

EShift = 12bv(u+
1 u

+
3 +u−1 u

−
3 ), (3.8)

∆0 = 24vb|u+
1 u
−
0 + u+

0 u
−
1 |,

veff = v[1− 6(u+
1 )2 − 6(u−1 )2].

The second equation above shows that the breaking of inversion asymmetry, i.e.

the existence of u−1 and u−0 , opens a gap. The third equation shows that the

influence on velocity is small when u±1 � 1.

Next we consider the secondary DP at the corner of the mini Brillouin zone

ζκ = ζ(b4 + b5)/3 (ζ = ±1) in the valence band of moiré perturbed graphene.

Note that zone folding using Bragg vectors bm brings together three degenerate

plane-wave states |ζκ〉, |ζ(κ+ b2)〉, and |ζ(κ+ b1)〉 at each of the two inequivalent

corners of the moiré Brillouin zone. Using k ·p theory7 , the vicinity of each moiré

Brillouin zone corner can then be described by using an effective Hamiltonian

acting on a three-component vector of smoothly varying envelope functions, which

are written on the basis of the above three plane-wave states, Eq. (2.20). A matrix

element of the effective Hamiltonian is 〈ψ(κ+ bi +p)|Ĥ|ψ(κ+ bj +p)〉 (note that

operator p̂ measures momentum relative to the corner of the mini Brillouin zone)

7Note that k ·p perturbation theory is an approximation scheme to calculate the band struc-
ture, which treats wave vector k in the Hamiltonian as a perturbation of momentum p.
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[88], i.e.

H = s
bv√

3


1 0 0

0 1 0

0 0 1

+
1

2
ζbv


−
√

3u−0 − 2su+
1 +
√

3u+
3 0 0

0
√

3u−0 − 2su+
1 +
√

3u+
3 0

0 0 4su+
1 − 2

√
3u+

3



+
1

2
bv


u+

0 − 2s
√

3u−1 + 3u−3 0 0

0 u+
0 + 2s

√
3u−1 − 3u−3 0

0 0 −2u+
0

 . (3.9)

In other words, we use the eigen function of Eq. (2.20) to linearly expand the eigen

function of Eq. (3.6). Each elements of the matrix is a coefficient of the eigen

function of Eq. (3.6) on the basis of eigen function of Eq. (2.20). By diagonalizing

this matrix, we can get the (approximated) eigen energies of Eq. (3.6). Therefore,

the secondary DP location and gap size are

EmDP = sbv

(
u+

0 − 2u+
1 −
√

3u+
3

2
+

1√
3

)
, (3.10)

∆1 =
√

3bv|u−0 + 2sζu−1 −
√

3ζu−3 |,

vmDP = v

(
1

2
+

3

4
(
√

3u+
0 + u+

3 )

)
,

where ζ = ±1 accounts for κ and κ′ and s = ±1 represents the conduction/valence

band.

In general, an inversion-symmetric perturbation (i.e. u−i = 0), produces a

gapless spectrum (i.e., ∆0 = 0), with a secondary DP either at the edge of the

first miniband or embedded in a continuous spectrum at higher energies. The

asymmetric part of the perturbation may open gaps both at the zero-energy DP,

∆0, and at the secondary DP ∆1 on the conduction/valence band side, as described

in [90] and shown in Fig. 3.8.
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Model vbu+
0 [meV] vbu+

1 [meV] vbu+
3 [meV]

Potential modulation [47] 60 0 0

2D charge modulation [86] −V0
2

0
√

3V0
2

One-site G-hBN hopping [87] 1.6 −3.2δ√
δ2+θ2

-2.8

Point charge lattice [88] ṽ
2

−ṽδ√
δ2+θ2

−
√

3ṽ
2

Table 3.1: Inversion-symmetric parameters vbu+
i for various models of the moiré su-

perlattice. In the two-dimensional charge modulation model, V0 is a phenomenological
parameter. The G-hBN hopping model in [87] uses the hopping parameter from twisted
BLG. Estimates in [88] show that the parameters using a model of point charges at-
tributed to nitrogen sites is similar to that of the G-hBN hopping model. In the last
line, 0.6 ≤ ṽ ≤ 3.4[meV]. [Table adopted from Ref. [88]]

3.2.4 Choice of superlattice parameters and their impact

on the band structure

We emphasize that the parameters u±i in Hamiltonian Eq. (3.6) are phenomeno-

logical. However, a microscopic model [178] based on hopping between graphene

and h-BN predicts that

vb{u±i=0,1,3} = V ±

{
±1

2
,
−δ√
δ2+θ2

,
−
√

3

2

}
, (3.11)

where V +/V − is the scale of symmetric and anti-symmetric perturbation, respec-

tively. Details are provided in Appendix F. Furthermore, a microscopic model

based on scattering by the graphene electrons of quadrupole electric moments in

the h-BN substrates agrees with this. Table. 3.1 shows parameters predicted by

several models.

Experimental signatures indicating that symmetric perturbation is dominant

were observed in density of states measurements, performed in Ref. [47], and also

in the transport measurements performed in Ref. [40]. In practice, by setting

V + = 0.063vb ' 22 meV and with V − = 0 in Eq. (3.11), the best agreement is

archived [50]. Translating this V + value into u+
i parameters yields u+

0 = 0.032,

u+
1 = −0.063 and u+

3 = −0.055.

Based on this parameter set, the band structure of moiré perturbed SLG can be

calculated, as shown in Fig. 3.6. Note that the DP structure is preserved around
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Figure 3.6: The band structure of moiré perturbed SLG, which is calculated using
a zone folding method. The parameter set used here is u+

0 = 0.032, u+
1 = −0.063,

u+
3 = −0.055 and u−i = 0. The main DP is conserved. In the valence band, the moiré

perturbation produces a secondary DP.

zero energy, but the moiré perturbation introduces a secondary DP in the valence

band. Because of the conservation of inversion symmetry, both of the DPs are

exactly gapless [49, 88].

3.3 Theoretical framework: finite magnetic field

3.3.1 Hamiltonian in non-orthogonal coordinates

To adapt the analysis of the electron spectrum in a magnetic field to the hexagonal

symmetry of the moiré pattern, we use a non-orthogonal coordinate system, which

is more capable of handling a perturbation in the form of the hexagonal harmonics

f± =
∑

m(±1)m+ 1
2 eibm·r in Eq. (3.6). A detailed introduction to non-orthogonal

coordinates is provided in Appendix G. We introduce two new non-orthogonal

basis vectors, i.e.

x̂1 =
a1

a
=

1

2
x̂+

√
3

2
ŷ, x̂2 =

a2

a
= −1

2
x̂+

√
3

2
ŷ, (3.12)
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instead of the orthogonal basis x̂, ŷ. From relations 8

xx̂+ yŷ = x1x̂1 + x2x̂2, x1k1 + x2k2 = xkx + yky, (3.13)

we can define non-orthogonal spatial coordinates x1 and x2 and momentum coor-

dinates k1 and k2 as

 x1 = x+ 1√
3
y

x2 = −x+ 1√
3
y
,

 k1 = 1
2
kx +

√
3

2
ky

k2 = −1
2
kx +

√
3

2
ky

. (3.14)

In the case, all bm in non-orthogonal coordinate system are much simplified, as

well as the further calculation. Note that

x̂1 · x̂2 = 1/2, d2r = dxdy =

√
3

2
dx1dx2. (3.15)

Here, the second equation comes from the Jacobian determinant. We define the

Brillouin zone as the rhombus area defined by reciprocal vectors b1 and b2. Fur-

thermore, we shift the centre of the Brillouin zone to point (0, 0). Then the range

of available values of k1 and k2 in non-orthogonal coordinates can be written in a

“square” format, i.e. k1, k2 ∈
√

3b
2

[−1
2
, 1

2
], which is a rhombus Brillouin zone in the

orthogonal coordinates system.

To study the magnetic field effect in non-orthogonal coordinates, we choose the

Landau gauge as

A = −Bx1(−x1 + 2x2)/
√

3, B = ∇×A = (0, 0,−B). (3.16)

Note that the curl operation ∇×A is different when using non-orthogonal coordi-

nates due to the Jacobian matrix. In this case, the Dirac Hamiltonian in Eq. (2.19)

8The first equation comes from the fact that a position vector in any arbitrary coordinate
system is identical. The second equation comes from the fact the the dot product between cor-
responding coordinate of contra-variant and covariant vector is identical, and detailed discussion
can be found in Appendix G.
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is transformed into

ĤD = v

 0 d̂†

d̂ 0

 , (3.17)

d̂ =
−2√

3

[
∂x1e

i 2π
3 + (∂x2 + i

√
3eBx1/2)e−i

2π
3

]
,

where operator d̂ is the non-orthogonal version of operator π̂. Then, the basis of

LL states for Dirac electrons is transformed from Eqs. (2.35) and (2.33) to

ψk20 =
eik2x2√
L

1+β
2
ϕ0

1−β
2
ϕ0

 ψk2n6=0 =
eik2x2√

2L

 ϕ|n|+β−1
2

cnϕ|n|−β+1
2

 , (3.18)

ϕm = Ame
− z

2

2 e
− iz2

2
√
3Hm(z), Am =

1√
m!2(m−1)λB

√
π
,

En =
n

|n|
v

λB

√
2|n|, z =

√
3x1

2λB
− k2λB, cn = − n

|n|
e−i

2π
3 β.

Here, β = B/|B| (B can be negative), Hn is the Hermite polynomial and λB =

1/
√
|eB| is the magnetic length.

3.3.2 Magnetic translational symmetry and magnetic Bloch

wave function

An electron in a square lattice crystal in a magnetic field must satisfy both the

constraint of the periodic lattice potential and the magnetic vector potential. Just

like the simple model introduced in the beginning of this chapter, for an electron

in a hexagonal moiré superlattice in a magnetic field, once the magnetic field

satisfies the relation BS/φ0 = p/q, where S =
√

3a2/2 is the area of a super

unit cell, the translational symmetry of the electron will be recovered but in a

reduced way [82, 107]. To rigorously investigate this, consider an electron that

exists in a periodic potential environment in the absence of a magnetic field B.
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Figure 3.7: An example of the moiré superlattice Brillouin zone (i.e. the larger hexagon
with area

√
3b2/2, and reciprocal lattice vectors bm) and two smaller magnetic Brillouin

zones (shaded blue). Red dots show the k2 values used to construct Bloch states |n,jt,k 〉.

The Hamiltonian of the electron follow the translational symmetry

T̂XĤ(r) = Ĥ(r +X) = Ĥ(r), T̂Xϕ(r) = eik·Xϕ(r), (3.19)

where X = m1a1 + m2a2, and T̂X describe the geometrical translations. In the

presence of a magnetic field, however, as the vector potential of a magnetic field

A(r) depends on the coordinate; the Hamiltonian Ĥ(r) after a translation a,

Ĥ(r + a), is not necessarily the same as Ĥ(r), i.e. [T̂X , Ĥ] 6= 0. In this case,

we must introduce a “magnetic translation operator” Θ̂X , which generates the

magnetic translational group

GM = {Θ̂X = eieBm1a
√

3
2
x2T̂X ,X = m1a1 +m2a2}. (3.20)

Here, Θ̂X satisfies [Θ̂X , Ĥ] = 0, but it does not self-commute, i.e.

Θ̂XΘ̂X′ = ei2π
p
q
m′1m2Θ̂X+X′ , Θ̂XΘ̂X′ = ei2π

p
q

(m′1m2−m1m′2)Θ̂X′Θ̂X . (3.21)
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To avoid this problem, we consider the subgroup of GM consisting of translations

G′M = {Θ̂R = eieBm1a
√
3

2
x2T̂R,R = m1qa1 +m2qa2}, (3.22)

on a (q × q)-enlarged superlattice 9 . All reciprocal lattice vectors are shrunk by

1/q, i.e. folding the momentum space on a magnetic Brillouin zone with area
√

3b2/(2q2), as shown in Fig. 3.7. In this new group, all translations commute, i.e.

Θ̂RΘ̂R′ = Θ̂R+R′ , Θ̂RΘ̂R′ = Θ̂R′Θ̂R.

Furthermore, subgroup G′M is isomorphic to the simple group of translations, T̂R

such that the eigenstates of Θ̂R form a plane-wave basis.

The Bloch wave function can be constructed as

|n,jt,k〉 =
1√
N

∑
s

eik1qasψ
k2+

√
3

2
b
q

(pqs+jq+tp)
n , (3.23)

where the sum runs over s = −N/2, · · · , N/2, j ∈ [0, p− 1] and t ∈ [0, q− 1]. This

Bloch wave function has the following properties:

Θ̂sqa1|
n,j
t,k〉 = eik1qas|n,jt,k〉, Θ̂rqa2|

n,j
t,k〉 = eik2qar|n,jt,k〉, s, r ∈ Z, (3.24)

Θ̂a1|
n,j
t,k〉 = |n,jt+1,k〉, Θ̂a2|

n,j
t,k〉 = ei

2πpt
q eik·a2|n,jt,k〉.

This basis is similar to the set of Bloch states for a one-dimensional chain with p

sites per elementary unit cell, and multiple atomic orbitals on each site labelled

by the LL index, n. Details about the magnetic translational operator and the

construction of the Bloch wave function can be found in Appendix H.

9One point to be emphasized here is the subgroup of GM is not unique, another simple

definition is G′′M = {Θ̂R = eieBm1a
√

3
2 x2 T̂R,R = m1a1 + m2qa2}, i.e. only enlarge the unit cell

along a1 direction by q times. This choice will cancel the q-fold degenerate in that of G′M , but
will lead to a difficulty that one has to distinguish between odd number q and even number q
[72], and one lose the symmetry of point group.
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3.3.3 The Heisenberg matrix on a basis of magnetic Bloch

states

To calculate the eigenenergies of the Hamiltonian of moiré perturbed graphene in

magnetic field, we expand eigen functions of that on the basis of wave function of

graphene in magnetic field. The coefficient of the basis is the element of matrix,

which generates the same eigen energies by diagonalization. In practical, using

the Bloch wave function, Eq. (3.23), to sandwich the Hamiltonian including the

moiré perturbation Eq. (3.6), we obtain a general expression for the elements of

the matrix, i.e.

〈n,jt,k |Ĥ|
ñ,j̃

t̃,k̃
〉 =

1

N

∑
s,s̃

e−ik1qaseik̃1qas̃〈ψ
k2+

√
3

2
b
q

(pqs+jq+tp)
n |Ĥ|ψ

k̃2+
√
3
2
b
q

(pqs̃+j̃q+t̃p)

ñ 〉

= δt,t̃δk,k̃
∑
∆s

e−ik1qa∆sµ
k2+

√
3

2
bj, k2+

√
3

2
b(p∆s+j̃)

nñ , (3.25)

where ∆s = s̃− s and

µk2k̃2nñ = δn,ñEn + ξβv
∑
m

(u+
1 (−1)m − iu−1 )

× [ei2π/3
ñ

|ñ|
(ib1

m + b2
m)Mn−,ñ+

m + e−i2π/3
n

|n|
(−ib1

m + ib2
m)Mn+,ñ−

m ]

+ vb
∑
m

(u+
0 + i(−1)mu−0 )[Mn−,ñ−

m +
n

|n|
ñ

|ñ|
Mn+,ñ+

m ]

+ ξvb
∑
m

(u−3 + i(−1)mu+
3 )[Mn−,ñ−

m − n

|n|
ñ

|ñ|
Mn+,ñ+

m ], (3.26)

Mn1,n2

0 = eiβλ
2
√

3δ−W n1,n2

1,-1,-1, Mn1,n2

1 = δ−W n1,n2

-1,1,0 , Mn1,n2

2 = δ0W n1,n2

-1,0,1 ,

Mn1,n2

3 = eiβλ
2
√

3δ+W n1,n2

-1,-1,1, Mn1,n2

4 = δ+W n1,n2

1,1,0 , Mn1,n2

5 = δ0W n1,n2

1,0,-1 ,

W n1,n2
c1,c2,c3

=
Nn1,n2

3
λBAn1An22

n̄
√
πn!L|δn|n (2λ2) e-λ2λ|δn|

× ei|δn|(c1
π
2

+c2
δn
|δn|β

π
3

)eiβc3λ
24k2/b.

Here Lαn(x) is the associated Laguerre polynomial, λ = bλB/2, δ± = δk̃2,k2±
√

3b/2,

δ0 =δk̃2,k2 , n̄=max[n1, n2], n=min[n1, n2], δn=n1 − n2, and Nn1,n2 =(1−δn1,-1)(1−
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δn2,-1)
√

1+δn1,0

√
1+δn2,0. Furthermore, we make use of the integral

∫ ∞
−∞

e−x
2Hn(x+ y)Hm(x+ z)dx = 2n

√
πm!yn−mLn−mm (−2yz), n ≥ m, (3.27)

which can be found in Ref. [196].

Therefore, the entire Hamiltonian is described by a big matrix. For a given

flux ratio p/q and momentum k and k̃ in the magnetic Brillouin zone, this matrix

contains all cross-terms between different LLs n, indices j and t as well as a

summation of s and s̃. Since Hamiltonian Eq. (3.6) contains only the simplest

moiré harmonics, i.e., bm, the cross term between |n,jt,k〉 and |ñ,j̃
t̃,k̃
〉 is limited to the

difference between k2 +
√

3
2
b(ps+j) and k̃2 +

√
3

2
b(ps̃+ j̃), which prescribes the value

of |s̃ − s| ≤ 1. For simplicity, we set ∆s = s̃ − s = 0,±1. Because [Θ̂X , Ĥ] = 0

and index t are conserved, t is q-fold degenerate as well. We will later set t = 0 to

reduce the dimension of the Heisenberg matrix by 1/q times.

3.3.4 Calculation and programing details

Given the momentum position k in the Brillouin zone, the flux ratio φ/φ0 = p/q

and the number of included LLs, nmax, a matrix containing all elements 〈n,jt,k |Ĥ|
ñ,j̃

t̃,k̃
〉

can be constructed, and after diagonalization, we obtain a set of eigenenergies. By

varying the magnetic field φ/φ0 at the given k, we can obtain the magnetic energy

spectrum. By varying k in the Brillouin zone, we can obtain the magnetic band

structure for the given φ/φ0.

To obtain an accurate description of the spectrum up to energy E, we must

include LLs up to a cutoff energy Ec to guarantee that (Ec − E)/|V ±| � 1. The

number of matrix elements and hence the computational time thus scale as E4
c . By

using practical calculations, we determine an empirical formula suggesting that the

inclusion of a number of LLs nmax ' cNφ0/φ+ dN (where cN = 10 and dN = 2) is

sufficient for convergence in the energy range −0.85vb < ε < 0.85vb (vb ∼ 350meV)

when
∑

i |ui| = 0.15, i.e. V + = 22meV. The software we used is Mathematica.
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Each unperturbed LL can hold gφ/φ0 = gp/q electrons per unit cell where

g = 4 accounts for spin and valley degeneracy. After applying the perturbation,

each LL splits into p minibands, so each magnetic miniband holds g/q electrons

per unit cell.

3.4 Results and discussion

3.4.1 Magnetic spectrum of moiré perturbed SLG

Figure 3.8: (Right panel) A typical fractal energy spectrum found by exact numerical
diagonalization. It is calculated for an inversion-symmetric superlattice perturbation
with V + =0.063vb and V −=0, θ=0 from Eq. (3.11) (i.e. u0 = 0.032, u1 = −0.063 and
u3 = −0.055). The fractal dimension of the butterfly spectrum is D = 1.71567. (Left
panel) The B=0 minibands with a distinct secondary DP in the valence band.

Fig. 3.8 shows a typical fractal spectrum of magnetic minibands as a function

of the magnetic flux φ = SB per moiré supercell 10 . The plot shown is calculated

for an inversion-symmetric superlattice perturbation with V + = 0.063vb, V − = 0

and θ = 0 from Eq. (3.11) (i.e. u0 = 0.032, u1 = −0.063 and u3 = −0.055)

by diagonalizing the Heisenberg matrix in the basis |n,jt,k〉. The B = 0 miniband

10One may notice that this plot is not so symmetric as Fig. 3.1. It is because that: (1) Once
the inversion symmetry holds, the spectrum in the magnetic field with an opposite direction
(B < 0) is simply the mirror reflection of the counter part, so it is omitted for simplicity. (2) The
magnetic spectrum of Fig. 3.1 is periodic in the aspect of integer α, but Fig. 3.8 is not. Because
the system described by the latter has a moiré perturbation coupled with magnetic field, the
increasing of magnetic field leads to more asymmetric feature in Fig. 3.8. Besides, this is also
the reason for a “rescaled butterfly” pattern.
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spectrum is displayed on the left side of Fig. 3.8, with the main DP and a secondary

DP in the valence band. For φ . 0.2φ0, the magnetic miniband spectra can be

traced to the analytically-calculated sequence of LLs associated with the two DPs

as shown by the red lines on the far left of Fig. 3.9. At a higher flux, the LLs are

fractured into a hierarchy of bands and gaps, which can be understood by analyzing

the dispersion of electrons at the simplest flux fractions. In the vicinity of each

simple fraction, the miniband spectrum also resembles a spectrum of Dirac-like

LLs. The splitting of the zero energy LL can be viewed as an effective broadening

of it which is proportional to e−
φ0
φ , so it goes fast when φ ≤ φ0, and slows down

when φ ≥ φ0.

3.4.2 Hierarchy of the Dirac-like spectrum

Figure 3.9: The hierarchy of the Dirac-like spectrum, which is found by exact numerical
diagonalization, with u0 = 0.032, u1 = −0.063 and u3 = −0.055. Note that only the
minibands generated from the lowest ten “LLs” are shown. The numerical data (black)
is the same as shown in the right panel of Fig. 3.8. The red lines in the vicinity of
zero magnetic field are the LLs of the first and secondary DP, which are calculated from
Eq. (3.18), Eq. (3.8) and Eq. (3.10). The insets show examples of magnetic minibands,
at simple fractions Bp/q = p

qφ0/S, and their fit (shown in yellow, from Eq. (3.28)) with
Dirac spectra used to calculate the energies of the effective Dirac LLs. The red lines in
the vicinity of each simple fraction are also fit to LLs via Eq. (3.28) as well. For the
Dirac-like spectrum in φ/φ0 = 1/2, the Berry curvature of the lower magnetic miniband
is shown as a colour map inset, in which lighter colours represent higher values of Berry
curvature.
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In a strong perpendicular magnetic field (i.e. φ & 0.2φ0), the edges of many

of the consecutive magnetic bands can be described in terms of a weakly gapped

Dirac-like spectrum [40, 49], i.e.

HD =

 1
2
ξ∆ vπ̂†

vπ̂ −1
2
ξ∆

 . (3.28)

Then, the basis of LL states for the gapped Dirac-like electrons are described by

E0 =
ξβ∆

2
, En6=0 =

n

|n|

√
∆2

4
+

2|n|v2

λ2
B

, (3.29)

ψ0 =
eikyy√
L

1+β
2
ϕ0

1−β
2
ϕ0

 , ψn 6=0 =
eikyy√

2L

 ϕ|n|+β−1
2

cnϕ|n|−β+1
2

 ,

ϕm = Ame
− z

2

2 Hm(z), Am =
1√

m!2mλB
√
π
,

z =
x

λB
− kyλB, cn = −βλB

En − ξ∆/2
v
√

2|n|
.

Here, β=B/|B|, Hn is a Hermite polynomial and λB = 1/
√
|eB| is the magnetic

length. Then, the largest gaps in the surrounding fractal spectrum at B=Bp/q+δB

can be interpreted [89] in terms of weakly broadened LLs of these next generation

Dirac electrons, which are evaluated using Eq. (3.29) and parameters ∆ and B→

δB. In Fig. 3.9, the analytically calculated effective LLs are shown in red in the

vicinity of the corresponding rational flux values. They interpolate the groups of

minibands into the interval within which the exact diagonalization fails, due to

the basis set size. This correspondence can be best seen in cases when the gap

∆ between consecutive minibands is small, and the largest gaps are around the

broadened “n=0” LL of the corresponding effective Dirac-like model.

One example is shown as an inset in Fig. 3.9 with the Berry curvature of the

lower magnetic miniband shown as a colour map. Most of the Berry curvature con-

centrates on the tip of the cone, confirming that the magnetic minibands of moiré-

perturbed graphene are Dirac-like but not a quadratic dispersion Ĥ = p̂2/2m.
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Furthermore, for some parameters, there will be a real DP without any gap in

the magnetic minibands, thus yielding an exact π Berry phase. The calculation

details of the Berry curvature of the magnetic Bloch wave functions are presented

in Appendix I.

3.4.3 Incompressible states of moiré perturbed SLG

Figure 3.10: The experimental (left) and theoretical (right) carrier density-magnetic
field diagram. The experimental diagram is from [50]. It is measured from a capacitance
experiment, in which a top gate (gold lead) on graphene-h-BN heterostructure is used.
By tuning the gate voltage as well as magnetic field, the capacitance of the setup can be
measured and mapped onto the plot. The darker, the capacitance smaller. Therefore,
a significant black stripe represents a continuous big gap. The theoretical plot maps
the gaps in the magnetic spectrum Fig. 3.8 onto the carrier density per super unit cell
ρS-magnetic field diagram. Larger gaps are shown using a darker colour.

A sample in which the Fermi level is located at a gap acts as an insulator.

This state is called an “incompressible state” because an incoming electron does

not have an energy level to occupy. If we vary the carrier density ρ of the moiré

perturbed graphene at a given value of magnetic field, the conductivity of the sam-

ple will alternatively display both conducting and insulating behavior depending

on whether the carrier density is located in a miniband or a gap. Varying the

magnitude of the magnetic field generates a similar phenomena.

Because each Bloch wave function can hold gsgv electrons and splits into q

minibands, each miniband can hold gsgv/q electrons 11 . Here, gs and gv are spin

11As a reminder, each LL holds gsgvφ0/φ electrons, and splits into p minibands; besides, each
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and valley degeneracy. At the zeroth LL, the carrier has 50% possibility of being

an electron or a hole, so the largest gaps above (below) the broadened “n = 0”

LL have carrier density per unit cell ρS = gsgvp/2q (ρS = −gsgvp/2q). Using the

largest gap as a reference for tracing the main DP in graphene, we can understand

the carrier density for a given magnetic field by counting how many minibands

are filled. The filling factor is defined as the gradient of density with respect to

magnetic field, i.e.

ν =
d(ρS)

d(BS/φ0)
. (3.30)

The reason of the weird definition is to adopt the label of axis of Fig. (3.10).

Noticeably, the filling factor is constant when the Fermi level is in a gap. By

filling the minibands in Fig. 3.8 up to the Fermi level, we can map the gap size

as a function of carrier density and magnetic field, resulting in the so-called “fan

diagram”, in which the “bone of the fan” is the filling factor describing the big

gaps, as shown in the right panel of Fig. 3.10.

The darkest lines in Fig. 3.10 correspond to filling factors ν = ±2, which

radiates from ρS = 0, BS/φ0 = 0. Furthermore, dark lines radiate from ρS = −4,

BS/φ0 = 0 track the LLs of the valence band secondary DP. Other dark lines

correspond to the large gaps surrounding the “n= 0” LLs in the next generation

of Dirac electrons, e.g. in the vicinity of B1, B1/2. From Eq. (3.30), we can derive

the change in the filling factor when the Fermi level crosses a miniband, i.e. the

change of gradients at these inter-crossings is

δν = gsgvq. (3.31)

This reflects the additional q-fold degeneracy of states in magnetic minibands at

Bp/q
12 . These same qualitative features are also presented in the left panel of

original BZ holds gsgv electrons, and the magnetic BZ is 1/q2 smaller but q-fold degenerates, so
each each miniband can hold gsgv/q electrons.

12Eq. (3.31) can be derived by solving the cross point of two straight lines. One needs to notice
that crossing point between the horizontal axis and the filling factor line is not arbitrary, but
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Fig. 3.10, which displays the results of experimental capacitance measurements

performed on the graphene-h-BN heterostructure in Ref. [50]. Fig. 3.10 shows

both the experimental [50] and theoretical results for the density-magnetic field

diagram of moiré-perturbed SLG. Both of the fan diagrams show explicit radiat-

ing structures, which originates from the biggest gap between the zeroth LL and

the ±1st LL of the main DP and the secondary DP in the valence band. The

comparison shown in Fig. 3.10 demonstrates that even the super unit cell is big

(S =
√

3
2

142 nm2), it still requires a significantly strength of magnetic field, i.e.

B ' 25T, to achieve a flux quantum φ = φ0.

One may notice that there are 3 additional black lines (3 additional gaps,

i.e., 4 additional energy levels) between ν = 2 and ν = −2 in the left panel

of Fig. 3.10, and there is no counterpart in the theoretical predication. This

phenomenon originates from the fact that the state around zero energy is relatively

near, the 4-fold spin and valley degeneracy is lifted by many-body effect. The plot

in the right panel of Fig. 3.10 is based on the single-electron picture. So to explain

this feature, a further calculation including many-body effect is needed.

3.4.4 The lifting of valley degeneration using an inversion

asymmetric perturbation

To study the effect of the addition of a weak inversion-asymmetric perturbation

in Eqs. (3.6-3.11), we set V − = V +/10 = 0.015 in Eq. (3.11). Given this, the

final parameter set is u+
0 = 0.032, u+

1 = −0.063, u+
3 = −0.054, u−0 = −0.0032,

u−1 = −0.0063 and u−3 = −0.0054.

Fig. 3.11 provides an example of the magnetic miniband spectrum and in-

compressibility map calculated for an inversion-asymmetric perturbation. The

degeneracy of K and K ′ is lifted due to the inversion-asymmetric perturbation.

The Dirac-like features and corresponding hierarchy of gaps in the magnetic mini-

bands persist, but the fan diagram acquires additional lines, intercrossing with

gsgvn, n ∈ Z.
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Figure 3.11: (Upper) The magnetic spectrum of the valley K (blue dots) and K ′ (red
dots) of inversion asymmetric moiré perturbed SLG, with parameter set u+

0 = 0.032,
u+

1 = −0.063, u+
3 = −0.054, and u−0 = −0.0032, u−1 = −0.0063, u−3 = −0.0054. (Lower)

The corresponding density-magnetic field diagram, which shows the incompressible elec-
tron state in the fractal spectrum of magnetic minibands. Here, larger gaps are shown
with a darker colour; furthermore, yellow points indicate a trivially small gap with the
gap size in units of vb.
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δ[dρ/dB] = gvq/φ0, indicating that a combination of inversion and time inversion

asymmetry lifts the valley degeneracy 13 of the fractal spectra.

3.4.5 Magnetic spectra of various superlattice perturba-

tions

By varying u+
i , the spectrum can be classified into three groups depending on the

mutual arrangement of the first and second minibands in the valence band [88].

These groups and corresponding figures are: (a) the first and second bands do

not overlap and are connected by a single isotropic secondary DP as shown in the

valence band of the left panel of Fig. 3.8; (b) the first and second bands do not

overlap and are connected by a triplet of anisotropic secondary DPs as shown in the

upper left panel of Fig. 3.12; and (c) the first and second bands overlap as shown

in the conduction band in Fig. 3.8. Note that, while a purely inversion-symmetric

moiré superlattice perturbation generates both a gapless primary DP and a gapless

secondary DP, the addition of a finite inversion-asymmetric component opens gaps

at both DPs.

The examples of model-dependent values for parameters ui, listed in Table 3.1,

indicate that the combination of several factors can strongly shift the resulting

moiré perturbation across the parameter space [88]. Here we systematically inves-

tigate the effect of several different choices of parameters for the moiré perturba-

tion.

We choose three representative situations, each with only one non-zero param-

eter, i.e. u+
0 = 0.15, u+

1 = 0.15 and u+
3 = 0.15. Similarly to Fig. 3.8, the left side of

each panel in Fig. 3.12 displays the B = 0 miniband structure, whereas the right

side displays the fractal magnetic miniband spectrum. Fig. 3.12 shows the band

structures as the yellow transparent bands for several simple fractions 1
2
, 1

1
, 3

2
and

13For u−i =0, the spatial inversion symmetry, H(r, ζ)=σzH(−r,−ζ)σz, prescribes the relation
εK+k = εK′−k between spectra in graphene’s two valleys. For B = 0, time reversal symmetry
prescribes the same relation, however when both B 6=0 and u−i 6=0 the spectra in the two valleys
are unrelated.
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Figure 3.12: Magnetic minibands for u+
0 = 0.15 (top), u+

1 = 0.15 (middle) and u+
3 =

0.15 (bottom). The panel on the left shows the B = 0 band structures, whereas the right
panels show the magnetic spectra. For the simple fraction φ/φ0 = 1/2, 1/1/, 3/2, 2/1,
the full dispersion of the magnetic minibands structures is given.
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2
1
. From the magnetic spectra shown in Fig. 3.12 and Fig. 3.8, we note that the

LL structure of the main DP is relatively robust.

For the simple potential modulation, i.e. u+
0 = 0.15, the spectrum obeys

the “inversion symmetry” εK+p = εK−p, which follows from the 4th equality in

Eq. (3.7) with u+
1 = u+

3 = 0. The valence band of this spectrum provides an

example of a spectrum with three secondary DPs, which is in sharp contrast to

the other spectra - which display only a single secondary DP.

For u+
1 = 0.15, the spectrum obeys electron-hole symmetry εK+p = −εK+p,

which follows from the 3rd equality in Eq. (3.7) with u+
0 = u+

3 = 0. Note that the

zeroth LL is completely degenerate.

For u+
3 = 0.15, the spectrum obeys the semi-electron-hole symmetry εK+p =

−εK−p, which follows from the 2nd equality in Eq. (3.7) with u+
0 = u+

1 = 0.

This symmetry is manifested in the magnetic minibands of the “zeroth LL” in

the magnetic spectrum for simple fractions, shown as the yellow bands in the

bottom panel of Fig. 3.12. As an example, φ/φ0 = 2/1 in the vicinity of E = 0

displays a completely gapless third-generation Dirac cone, so the Berry phase can

be evaluated exactly as π.

3.5 Conclusion

To conclude this chapter, we found a systematic reappearance of Dirac-like features

at the edges of consecutive minibands formed in magnetic fields Bp/q = p
q
φ0/S

that provides rational magnetic flux through a unit cell of the moiré superlattice

created by a hexagonal substrate for electrons in graphene. The Dirac-type features

in the minibands at B = Bp/q determine a hierarchy of gaps in the surrounding

fractal spectrum. Using the additional q-fold degeneracy of magnetic minibands

at Bp/q, we traced the hierarchy of the gaps to their manifestation in the form of

incompressible states based on variation in carrier density and magnetic field.
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Chapter 4

Valley asymmetry and

zero-energy modes in the

Hofstadter spectrum of a BLG

van der Waals heterostructure

with hexagonal boron nitride

4.1 Introduction

In the previous chapter, we presented moiré-perturbed SLG in a magnetic field.

In this chapter, we repeat the analysis for BLG and study the moiré superlattice

(mSL) perturbation on a BLG-hexagonal boron nitride (h-BN) heterostructure.

Apart from the quantum Hall effect of SLG superlattices described in the pre-

vious chapter, there has also been significant work on aligned heterostructures of

BLG with h-BN, including the observation of Hofstadter’s butterfly in transport

measurements [41]. Theoretically, the mSL perturbation of this heterostructure

can be modeled in a similar manner to the monolayer-graphene/h-BN heterostruc-

ture, except that the perturbation is felt much more strongly for the graphene
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layer closest to the h-BN [174, 175]. Because of this, the inversion symmetry of

this heterostructure is broken, typically leading to gaps both at zero energy and

at the edge of the first miniband [174]. In a magnetic field, the broken inversion

symmetry is manifested as a strongly broken valley symmetry in the magnetic

miniband structure [175]. Other systems in which the miniband structure is gen-

erated by an mSL include twisted BLG [48, 132, 176–181], graphene with almost

commensurate
√

3×
√

3 hexagonal crystals [186], and graphene on metal catalysts

such as Ir(111) [185].

In this chapter, we focus on the fractal magnetic minibands in BLG, where the

sublattice composition of the electron states at the edge between the conduction

and valence bands produces specific features in the Hofstadter butterfly spectra.

We show that the low-energy Hofstadter butterfly spectrum of BLG, dominated by

the bands composed of zero-energy LL states n = 0 and n = 1, which are degen-

erate in unperturbed BLG [68], is a superposition of two very different miniband

spectra associated with electrons in opposite valleys of graphene’s band structure.

The miniband spectrum in one valley is only slightly broadened by the superlat-

tice potential, incorporating one completely unperturbed n = 0 LL. However, the

miniband spectrum in the other valley is substantially broadened by the superlat-

tice potential. This valley asymmetry results from the interplay between inversion

symmetry breaking produced by a moiré perturbation applied to only one of the

two BLG layers and the sublattice composition of the electron LL states n = 0

and n = 1, which reside on different sublattice/layers in the opposite valleys, i.e.

K and K ′.

4.2 Theoretical framework

4.2.1 Introduction to the Hamiltonian

To describe the sublattice (A/B) and top/bottom (1/2) layer composition of elec-

tron states in BLG with Bernal-stacking of the layers on boron nitride, we start
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from the clean BLG Hamiltonian represented in Eq. (2.22) and then add moiré

perturbation M̂ξ from Eq. (3.6) into the top layer, resulting in a 4× 4 matrix

Ĥξ =

 vp̂ · σ +Mξ γ1(ξσ1 − iσ2)/2

(γ1(ξσ1 − iσ2)/2)† vp̂ · σ

 , (4.1)

Mξ = vbu+
0 f+ + ξvbσ3u

+
3 f− + ξvσ ·

[
lz ×∇

(
u+

1 f−
)]
,

where we use the basis of Bloch functions (φA1 , φB1 , φA2 , φB2) for valley K (ξ = 1)

and (φB1 ,−φA1 , φB2 ,−φA2) for valley K ′ (ξ = −1). The 2 × 2 Pauli matrices

σ1,2,3 act in the space of sublattice components. The off-diagonal parts of this

Hamiltonian account for γ1 ' 0.4 eV, which describes interlayer hopping between

A2 and B1 sublattices. The diagonal entries consider the electrons’ Dirac spectrum

within each layer (i.e. v ' 108 cm/s [105] and p = −i∇+ eA) with a perturbation

M̂ξ produced by the h-BN substrate crystallographically aligned with the bottom

layer [49, 88]. Here, f± =
∑

m(±1)m+ 1
2 eibm·r, where m = 0, 1, ..., 5, bm = R̂mπ/3[1−

(1 + δ)−1R̂θ](0,
4π√
3a

), and R̂ϕ is the anti-clockwise rotation by angle ϕ. For highly

oriented van der Waals heterostructures, with a small misalignment angle θ �

1, the Bragg vectors bm of the moiré superlattice potential, satisfy |bm| = b ≈
4π√
3ag

√
δ2 + θ2, where ag = 2.46Å is the lattice constant of graphene. The moiré

pattern period a = ag
√
δ2 + θ2, δ = 1.8% considers the relative lattice mismatch

between graphene and h-BN [37], and θ is the misalignment angle between the two

hexagonal lattices. A moiré perturbation applied to only one of the two graphene

layers in BLG breaks its inversion symmetry [174], which, in conjunction with time-

inversion symmetry breaking due to a magnetic field, causes the energy spectra

to be different for electrons in the K and K ′ valleys [68]. This feature of BLG-h-

BN heterostructures persists even if BLG is covered on top by another h-BN film

since the perturbation for BLG electrons at low energies will be dominated by only

one h-BN layer, i.e. the one better aligned with graphene. Because the inversion

symmetry in the BLG/h-BN heterostructure is broken from the beginning, it is
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unnecessary to introduce inversion asymmetric properties. Therefore, we use ui =

u+
i for simplicity.

4.2.2 Low-energy effective Hamiltonian for moiré-perturbed

BLG

Low-energy electron states in BLG can be described [68] using a simplified 2-band

Hamiltonian, which can be obtained from Eq. (4.1) by using the Schrieffer-Wolff

projection [61, 62] on the basis of Bloch states residing on A1 and B2 sublattices.

To study the low energy behavior of moiré-perturbed BLG, the projection results

are presented in [174]. The simplified 2 band Hamiltonian is

H̃ξ = −ξ v
2

γ1

 0
(
π̂†
)2

π̂2 0

+ M̃ξ, (4.2)

M̃1 =

 vbg+(r) bv2

γ1
h∗+(r)π̂†

bv2

γ1
π̂h+(r) v3b

γ21
π̂g−(r)π̂†

 ,

M̃-1 =

 v3b
γ21
π̂†g−(r)π̂ bv2

γ1
π̂†h−(r)

bv2

γ1
h∗−(r)π̂ vbg+(r)

 ,

g±(r) =
∑
m

eibm.r(u0 ± iu3(−1)m),

h±(r) = ±iu1

∑
m

(−1)meibm.r (bxm ± ibym) /b.

Hamiltonian Ĥξ is written in the basis of Bloch states (φA1 , φB2) for the K valley

and (φB2 ,−φA1) for the K ′ valley. In the absence of a magnetic field, the first term

in Eq. (4.2) describes gapless massive chiral fermions with quadratic dispersion

ε = αp2/2m, where α = +1 (α = −1) denotes the conduction (valence) band. The

symmetry-broken perturbation leads to a gap in the main DP [88, 174]. In moiré-

perturbed BLG, the gap size at the neutrality point can be calculated by third

order perturbation, ∆0 ' 12vb|u1u3|+ 6bv|u0(u2
0 + 2u2

1 + u2
3)| (see Appendix E).
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4.3 Secondary DP of moiré-perturbed BLG

Similarly to moiré-perturbed SLG discussed in Chapter 3, the moiré perturbation

leads to secondary DP formation in the valence band. Using k·p theory to describe

the vicinity of each moiré Brillouin zone corner |ζκ〉, |ζ(κ + b2)〉, and |ζ(κ + b1)〉

(ζ = ±1), the corresponding effective Hamiltonian can be written in a basis of the

above three plane wave states Eq. (2.25) as

Ĥζκ=


ε̂0+ 2ṽp̂x W ∗ W

W ε̂0− ṽ(p̂x+
√

3p̂y) W ∗

W ∗ W ε̂0− ṽ(p̂x−
√

3p̂y)

 ,

W ≈ vb
2

(u0+iζu3)+
v3b3

6γ2
1

e
2iπ
3ξ (u0−iζu3)+

αζv2b2

ξ
√

3γ1

e
-2iπ
3ξ u1,

ε̂0 =
αv2b2

3γ1

+
αv2

γ1

p̂2, ṽ=ζα
bv2

√
3γ1

. (4.3)

Time-reversal symmetry prescribes that Ĥ(ξ, ζ,p,B)=Ĥ∗(-ξ, -ζ, -p, -B)1 . There-

fore, we focus on Ĥ(1, ζ,p,B) from now on. For the exact moiré Brillouin zone

corner, because of the three-fold rotational symmetry of the above Hamiltonian 2 ,

we can diagonalize using

ϕ1 =
1√
3


1

1

1

 , ϕ2 =
1√
3


eiξπ

e-iξ π
3

eiξ
π
3

 , ϕ3 =
1√
3


e-iξπ

eiξ
π
3

e-iξ π
3

 .

1As a reminder: ξ, ζ = ±1, ξ identifies the valley of the Brillouin zone of graphene, and ζ
identifies the valley of the moiré Brillouin zone.

2After applying a coordinate rotation R̂2π/3 as well as a basis rotation:

R̂3 =

 0 1 0
0 0 1
1 0 0

 , (4.4)

the Hamiltonian is invariant, i.e., it is three-fold rotational symmetric.
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Then, using a basis of (ϕ1, ϕ2, ϕ3), the effective Hamiltonian can be written as:

Ĥ3 =


ε̂0 + ε1 ṽΠ̂† ṽΠ̂

ṽΠ̂ ε̂0 + ε2 −ṽΠ̂†

ṽΠ̂† −ṽΠ̂ ε̂0 + ε3

+
k2v2

γ1


s1 + s2 0 0

0 −s1 0

0 0 −s2



+ ṽ


0 −(s1 + s2 + s3)Π̂† (s2 − s3)Π̂

−(s1 + s2 + s3)Π̂ 0 −(s1 + 2s3)Π̂†

(s2 − s3)Π̂† −(s1 + 2s3)Π̂ 0

 , (4.5)

where the energy shift of the bands resulting from the moiré perturbation is

ε1 = 2<W = s1γ1 + s2(γ1 −
b2v2

3γ1

) + s3
2b2v2

3γ1

, (4.6)

ε2 = −<W +
√

3=W = s1
b2v2

3γ1

− s2(γ1 −
b2v2

3γ1

) + s3
2b2v2

3γ1

,

ε3 = −<W −
√

3=W = −s1(γ1 +
b2v2

3γ1

)− s3
4b2v2

3γ1

,

s1 =
bv
(
µ0 +

√
3ζµ3

)
2γ1

, s2 =
bv
(
µ0 −

√
3ζµ3

)
2γ1

, s3 =
1

2

√
3ζµ1,

where < and = denote the real and imaginary parts, respectively, and Π̂ = p̂x+ip̂y.

The onsite energy shifts ε1, ε2 and ε3 fulfill the relation ε3 = −(ε1 + ε2) and the

gap is given by

∆κ = ε1 − ε2 = −bv
γ1

(b2v2 − 3γ2
1)(3u0 − ζ

√
3u3), (4.7)

which shows that the gap size of secondary DP depends on the difference between

u0 and u3 values. Interestingly, a pair of simple microscopic models [88] predict

the same ratio for the moiré potential parameters of Eq. (3.11), which, for α = −1

and ξ = −ζ, result in gap ∆κ vanishing, i.e ε1 = ε2 are degenerate in the lowest

order of zone folding.
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4.4 Heisenberg matrix of moiré-perturbed BLG

in a magnetic field

Similarly to Eq. (3.23) in Chapter 3, we can build a magnetic Bloch wave function

of moiré-perturbed BLG, but the only difference is that the LLs of SLG are replaced

by those of BLG:

ψn=0,1(k2) =
eik2x2√
L

 1−β
2
ϕ|n|(k2)

1+β
2
ϕ|n|(k2)

 , ψα|n|≥2(k2) =
eik2x2√

2L

 ϕ|n|−1−β(k2)

- n|n|τϕ|n|-1+β(k2)

 ,

εn=0,1 = 0, εn≥2 =
n

|n|
1

mλ2
B

√
|n|(|n| − 1), ϕm(k2) =

√
3e
− z

2

2
− iz2

2
√
3√

m!2(m+1)λB
√
π
Hm(z)

z =

√
3x1

2λB
− k2λB, λB = 1/

√
|eB|, π̂ϕn(k2) = −τλ−1

B

√
2nϕn−1(k2), (4.8)

where β = B/|B|, τ = ei
2π
3 and Hn(z) are the Hermite polynomials.

By the same technique presented in Chapter 3, the expression of an element of

the Heisenberg matrix of BLG is

µk2k̃2nñ = δn,ñδk2,k̃2En + vb(
n

|n|
ñ

|ñ|
)δξ,-1

∑
m

(u0 + i(-1)mu3)M |n|−ξβ-1,|ñ|−ξβ-1
m

+
v2b

γ1

e−iπ/3 ñ
|ñ|β

λB

√
2(|ñ| δξ,1 + |n|δξ,-1) + ξβ − 1 (−iu1)

×
∑
m

(-1)m
(
b1
m − ib2

m

)
M
|n|-1−βδξ,1,|ñ|-1+βδξ,-1
m

+
v2b

γ1

eiπ/3 n
|n|β

λB

√
2(|n|δξ,1 + |ñ|δξ,-1) + ξβ − 1 (iu1)

×
∑
m

(-1)m
(
b1
m + ib2

m

)
M
|n|-1+βδξ,-1,|ñ|-1−βδξ,1
m

+
v3b

γ2
1

( n
|n|

ñ
|ñ|)

δξ,1

λ2
B

√
2|n|+ ξβ − 1

√
2 |ñ|+ ξβ − 1

×
∑
m

(u0 − i(-1)mu3)M |n|-1,|ñ|-1
m , (4.9)
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where

Mn1,n2

0 = eiβλ
2
√

3δ−W n1,n2

1,-1,-1, M
n1,n2

1 = δ−W n1,n2

-1,1,0 , M
n1,n2

2 = δ0W n1,n2

-1,0,1 ,

Mn1,n2

3 = eiβλ
2
√

3δ+W n1,n2

-1,-1,1, M
n1,n2

4 = δ+W n1,n2

1,1,0 , M
n1,n2

5 = δ0W n1,n2

1,0,-1 ,

W n1,n2
c1,c2,c3

=
Nn1,n2

3
λBAn1An22

n̄
√
πn!L|δn|n (2λ2) e-λ2λ|δn|

× ei|δn|(c1
π
2

+c2
δn
|δn|β

π
3

)eiβc3λ
24k2/b,

Here, ξ = ±1 is the valley index, Lαn(x) is the associated Laguerre polynomial, λ=

bλB/2, δ±=δk̃2,k2±
√

3b/2, δ0 =δk̃2,k2 , n̄=max[n1, n2], n=min[n1, n2], δn=n1−n2 and

Nn1,n2 =(1−δn1,-1)(1−δn2,-1)
√

1+δn1,0

√
1+δn2,0(1−δn1,-2)(1−δn2,-2)

√
1+δn1,1

√
1+δn2,1.

4.5 Magnetic butterfly spectra of moiré-perturbed

BLG

The most interesting feature of electrons in clean BLG in strong magnetic fields

is the degeneracy of the two orbital LLs, with n = 0 and n = 1, which appear at

ε = 0, the edge between the valence and conduction bands. As shown in Fig. 4.1,

the mixing of these degenerate LLs by the moiré superlattice potential determines

the main features of the lower-energy portion of the magnetic miniband spectrum.

Figure 4.1 shows both the band structure in the absence of a magnetic field (the

left panels) and the magnetic spectrum of the K and K ′ valleys of the BLG/h-

BN heterostructure (the right panels) for different parameter sets. For small flux,

the magnetic miniband spectra can be traced to the sequence of LLs for (gapped)

BLG. At a higher flux, these LLs broaden and split, forming a fractal pattern,

with the most striking features formed around zero energy. Because of the large

energy spacing between the zero-energy and next LL, i.e. ∆ε ' 1
mλ2B

in Eq. (2.36),

the qualitative features of the spectrum around zero energy can be explained by

considering only the coupling between the two zero-energy states, i.e. n = 0 and

n = 1.
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Figure 4.1: The fractal energy spectrum of the moiré pattern for (from top to bottom)
parameters u0,1,3 = {0.032,−0.063,−0.055}, u0 = −0.15, u1 = 0.15 and u3 = 0.15. The
left inset shows the band structure of moiré perturbed BLG in the absence of a magnetic
field, which illustrates the generically gapped original DP and the secondary gapped DP
in the valence band. The middle and right subplots show the magnetic spectrum of
BLG/h-BN in the K (K ′) valley, where the vertical lines represent the band width for
simple fractions of flux.
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Beyond the features of SLG discussed in Chapter 3, including traceable LLs,

the hierarchy of DP and incompressible electron states, we note that the valley

symmetry of the spectrum of moiré perturbed BLG, preserved in the absence of

a magnetic field, is broken. This occurs because, in the absence of the perturba-

tion, the distribution of the wave function among the layers is, for a given LL,

exactly inverted in the two valleys. The moiré potential primarily affects the wave

function component in the top layer, which is directly below h-BN, breaking the

layer symmetry and leading to valley-asymmetric spectra with gaps. As shown in

Fig. 2.14, the zero-energy LL are localized, depending on the valley, either com-

pletely on the bottom (K ′) or on the top (K) layer in the absence of perturbation.

The spectrum in the valley in which the wave function sits on the layer furthest

from the substrate, contains a zero-energy LL completely decoupled from the rest

of the spectrum. This is highlighted in red in the left-hand side of the main panel

of Fig. 4.1.

As discussed in [174], we note that the Hamiltonian of Eq. (4.2) has the property

εu0,u1,u3K+p = −ε−u0,u1,−u3K+p . In particular, for the situation u0 = u3 = 0 and u1 6= 0, we

find that the Hamiltonian of Eq. (4.2) obeys σzĤξσz = −Ĥξ, which prescribes an

“electron-hole” symmetry in the resulting spectrum. This relation also suggests

that

〈n,jt,k |H̃ξ|ñ,j̃t̃,k〉 = −〈−n,jt,k |H̃ξ|−ñ,j̃t̃,k
〉, 〈0/1,jt,k |H̃ξ|0/1,j̃t̃,k

〉 = −〈0/1,jt,k |H̃ξ|0/1,j̃t̃,k
〉,

such that the Heisenberg matrix has 2p-fold degenerate eigenvalues ε = 0. Hence

in such a moiré superlattice, the zero-energy LL remains completely unperturbed.

4.6 Summary

In summary, we have shown that the presence of the h-BN substrate lifts the valley

degeneracy of BLG in a magnetic field, which in turn leads to a different magnetic

Hofstadter’s butterfly in each of the valleys. Furthermore, the zero-energy LL
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located on the top layer remains unaffected by the moiré perturbation, making

the BLG/h-BN spectra unique in comparison to other known magnetic spectra, in

which all LLs split into sub-bands.
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Chapter 5

Influence of a parallel magnetic

field on the electronic properties

of multilayer graphene

In this chapter, we study how a magnetic field parallel to the graphene layers im-

pacts the low-energy electronic dispersion of BLG and TLG-ABC [19]. Based on

the tight-binding model, we derive the parallel-field-induced term in the Hamilto-

nian [20] and describe its influence on both the low-energy electronic band struc-

ture and the Lifshitz transition [63]. Depending on the magnitude and angle of

the magnetic field, the low-energy dispersion splits into several different phase re-

gions. Our results show that the effect of a parallel field on BLG is similar to

that of uniaxial homogeneous strain [110, 111]. However, in TLG-ABC, results

are more complicated due to the presence of next-nearest layer hopping (γ2 of the

Slonczewski-Weiss-McClure parameters [55–57]) which has a strong effect on the

low-energy band structure.

5.1 Introduction

The effects of a perpendicular magnetic field on graphene and the corresponding

LLs have been widely studied [19] in addition to the role of a tilted field in BLG
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[21–26]. To our knowledge, the effect of a parallel magnetic field on BLG and

multilayer graphene has to date been overlooked, because the flux is limited by

the small distance between layers. The manifestation of any effect requires a huge

field ' 100T, which is why interest in this subject is limited [20]. However, the

Lifshitz transition in BLG and TLG-ABC only occurs in the low-energy regime,

so its interplay with a parallel field may reveal new features that have yet to be

studied.

In this chapter, we study the influence of a parallel field on the Lifshitz tran-

sition in BLG and TLG-ABC, comparing our results with the effect of strain

[110]. First, BLG is initially described within the tight-binding model, and a par-

allel magnetic field is introduced by Peierls substitution [83, 109, 112]. Next, the

model is reduced to a two-component low-energy effective Hamiltonian. The band

structure of BLG with a parallel field is comprehensively analyzed, and the phase

diagram is compared with that of strained BLG. Next, TLG-ABC with a parallel

field is studied in a similar manner. In addition, after deriving the effective two-

component Hamiltonian for TLG, we study its low-energy band structure without

the effect of skewed hopping γ3, then discuss the interplay between γ3 and γ2 in

the presence of a parallel field.

5.2 BLG with a parallel magnetic field

5.2.1 Low-energy Hamiltonian of BLG with a parallel mag-

netic field

In a parallel magnetic field, the degeneracy of electron spin will be lifted by Zeeman

effect, for B = 10T, the Zeeman energy is EZeeman = µeB = −0.58meV where the

magnetic momentum of an electron is µe = −9.3× 10−24J/T.

Although the Zeeman energy scale is comparable with the trigonal warping

of BLG, E = γ1v
2
3/4v

2 ' 1meV. and the interaction between the Zeeman effect

and trigonal warping is complicated. However, in the vicinity of zero energy, the
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dominant impact Zeeman effect has on the band structure is in lifting the spin

degeneracy, duplication and shifting the location of Dirac cone. Note that this

does not affect the shape and dispersion of the Dirac cone, due to the coupling

between spin and orbit is weak [113]. In other words, the Zeeman effect is almost

irrelevant in comparison to the effect the parallel field has on the shape of the

electronic bands. Therefore, we only focus on the orbital effect of the magnetic

field and disregard possible spin effects [20, 141].

In the tight binding model, the electromagnetic interaction is induced by the

Peierls substitution [83, 109, 112]. Any two operators located at different sites, i.e.

n and n+δ, are connected by an additional phase factor that represents the effect

of parallel transport along the magnetic field direction, as shown in Fig. 2.4),

f(k) =
3∑
i=1

exp

(
ik · δi − ie

∫ n+δi

n

A dx

)
. (5.1)

Here, k is the vector momentum and δi is the relative vector between atomic

sites. Applying a Taylor expansion in the vicinity of the K point, we can obtain

an expression for the shift momentum, which is different for each hopping path.

Considering a BLG sheet with a parallel field, the vector potential is chosen such

that the magnetic field can be evaluated as follows

A = z(By î−Bxĵ) = Bz(sin(θ)̂i− cos(θ)ĵ),

B = Bxî+By ĵ = B(cos(θ)̂i+ sin(θ)ĵ). (5.2)

Using the mid-point between the bottom and top layer as the zero point for coor-

dinate z and applying the transformation k → k + eA, the Hamiltonian of BLG
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(2.22)

ĤBLG =



0 vπ̂† v4π̂
† v3π̂

vπ̂ 0 γ1 v4π̂
†

v4π̂ γ1 0 vπ̂†

v3π̂
† v4π̂ vπ̂ 0


,

will be transformed into

Ĥb =

 D̂− 1
2

V̂0

V̂ †0 D̂ 1
2

 , D̂n =

 0 v ˜̂π†n

v ˜̂πn 0

 , V̂n =

 v4
˜̂π†n v3

˜̂πn

γ1 v4
˜̂π†n

 .

Here ˜̂πn = π̂ + nβie−iθ (˜̂π0 = π̂), and β = Bed represents the momentum modifi-

cation due to parallel field B, where e is the electron charge and θ describes the

angle of the field. When B = 1T, β ' 3× 10−5γ0/v.

Based on [20], we consider the situation in which the energy is much lower than

γ1. Using the Schrieffer-Wolff transformation and assume that γ1 � ε, vk, vβ, v3k,

we can obtain a new low-energy effective Hamiltonian in the basis of orbitals on

A1 and B2 sites as follows:

Ĥ = Ĥ1 + Ĥ2 + Ĥ3, Ĥ1 = − 1

2m

 0 π̂†2

π̂2 0

 ,

Ĥ2 = v3

 0 π̂

π̂† 0

 Ĥ3 =
β2

8m

 0 −e−2iθ

−e2iθ 0

 . (5.3)

Here, the effective mass of the electron in BLG is m = γ1/(2v
2). This new low-

energy Hamiltonian has one additional term, Ĥ3, which describes the parallel field

effect. The term Ĥ1 results in a parabolic dispersion within a relatively high-energy

region [68]. Both of the Ĥ2 and Ĥ3 terms tend to modify the topology of the low-

energy band structure when their corresponding energy magnitude is comparable

to that of Ĥ1. If |k| . mv3, then the second term, Ĥ2, will have a significant effect
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on the low-energy band structure, and lead to the appearance of trigonal warping

[68]. The term Ĥ3, which will become important when the magnitude of β is as

large as k, causes two-fold splitting.

5.2.2 Lifshitz transition in BLG with a parallel field

In the extreme situation of β � mv3, where v3 can be ignored, the dispersion

relation is

E2 =
k4

4m2
+

β4

64m2
+
k2β2

8m2
cos(2θ − 2ϕ),

where ϕ is the polar angle of momentum k. In the scenario θ − ϕ = nπ and

k = β/2, the field splits the low-energy dispersion into two pockets with two new

DPs along the direction of the parallel field direction located at β2v2/(2γ1) [20].

There is a strong interplay between the parallel field effect and skewed hopping

γ3. To simplify the process of analyzing this interplay, and as there are only two

variables β and v3 aside from momentum k, it is convenient to define a dimension-

less variable to eliminate one of these variables. We therefore choose Kb = mv3 as

a new momentum unit and consequently Eb = mv2
3/2 ' 2.53meV as new energy

unit. Thus, k̂ = k/Kb, β̂ = β/Kb (when B = 55T then β = Kb), Ê = E/Eb and

the dispersion relation given by the Hamiltonian in Eq. (5.3) is

Ê2 = (−2 + k̂x)
2k̂2
x + 4k̂2

y + 2k̂x(6 + k̂x)k̂
2
y + k̂4

y + β̂4

+ 2β̂2
[(

(−2 + k̂x)k̂x − k̂2
y

)
cos(2θ) + 2(1 + k̂x)k̂y sin(2θ)

]
.

The first limiting case we consider regarding the dispersion is for β = 0 in

Eq.(5.3); we obtain a dispersion with the usual trigonal warping and three DPs

located around the central DPs at a distance of 2mv3 from the centre in momentum

space and with the Lifshitz transition occurring at v2
3γ1/(4v

2), as shown in Fig. 2.5.

For θ = 0 (i.e. the field is in the direction of one of the three outer DPs) and when

β̂ < 1, the band structure has four DPs, as shown in Fig. 5.1(a). Increasing β̂,
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Figure 5.1: Contour plots for the valence band structures of BLG with different parallel
fields. The longer wavelength of the colour light, the higher the energy. The unit of
momentum is Kb = mv3 ∼ 1/300γ0/v. Panels along the top correspond to θ = 0 with
strengths as follows: (a) β̂ = 3/4Kb; (b) β̂ = Kb and (c) β̂ = 2Kb. Panels along the
bottom correspond to θ = π/2, with strengths as follows: (d) β̂ = Kb; (e) β̂ =

√
3Kb

and (f) β̂ = 3Kb. The point locates (1, 0) is always an extreme point (but not necessary
a Dirac point).
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the two DPs on the x-axis move towards each other, and coalesce at β̂ = 1, as

shown in Fig. 5.1(b). When 1 < β̂ < 3, the two combined DPs have an increase

in energy and form a local minimum, as shown in Fig. 5.1 (c). As β̂ ≥ 3, the

magnetic field effect overwhelms the trigonal warping effect of v3, and the band

structure has only two DPs. In general, β̂ = 1 and β̂ = 3 are critical values for

phase transitions for the θ = 0 case. For θ = π/2 (i.e. the field does not cross

the outer DP) and when β̂ <
√

3, there are four DPs, as shown in Fig. 5.1(d).

With increasing β̂, three DPs move towards each other and coalesce at β̂ =
√

3,

as shown in Fig. 5.1(e). When
√

3 < β̂, two of the three coalesced DPs vanish and

the band structure is left with only two DPs, as shown in Fig. 5.1(f). The effect

of the field overwhelms the effect of v3 from this point onwards. Here, in the case

of θ = π/2, β̂ =
√

3 is the critical condition for a phase transition. For both θ = 0

and θ = π/2, point (kx, ky) = (1, 0)Kb is a constant extreme point.

To determine the phase diagram of BLG in a parallel field, we first distinguish

the phase I (i.e. with four DPs) from the other phases. This can easily be achieved

by requiring that the off-diagonal component of the Hamiltonian in Eq. (5.3) be

zero, i.e.

− 1

2m
π̂2 + v3π̂

† − β2

8m
e2iθ = 0. (5.4)

This equation can be solved analytically for simple values of θ or generally solved

by a numerical method. By counting the number of real solutions in the momen-

tum space and for various field strengths, the first phase can be determined. To

determine the remaining phases, which may include a local minimum, we need

some additional criteria. For a continuous function, the determinant of the Hes-

sian matrix (i.e. a matrix of second derivatives) H of the function (i.e. dispersion

E) can be used to determine the property the point (kx, ky) [114], i.e.

H =
∂2E
∂k2x

∂2E
∂kx∂ky

∂2E
∂ky∂kx

∂2E
∂k2y

. (5.5)
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If H(kx, ky) > 0, then the point (kx, ky) is a local minimum or maximum depending

on whether ∂kxÊ
2 > 0 or ∂kxÊ

2 < 0. If H(kx, ky) < 0, then the point (kx, ky) is a

saddle point. In addition, if H(kx, ky) = 0, then we need to include higher order

derivatives. By counting different types of points, we construct the phase diagram

shown in Fig. 5.2, which is six-fold and consists of three phases, and these distinct

phase regions are as follows: (I) Four DPs corresponding to the contour plots

shown as subplots (a) and (d) in Fig. 5.1; (II) Two DPs and one local minimum,

shown as subplots (b) and (e) in Fig. 5.1 and (III) Two DPs shown as subplots (c)

and (f) in Fig. 5.1.

5.2.3 Comparing the effect of parallel field with homoge-

neous strain

Figure 5.2: The phase diagram of BLG in a parallel magnetic field (left) and with
homogeneous strain (right) [110]. u1 and u2 is the real and imaginary part of the complex
number ω, respectively. In the left panel, the phase shown in yellow corresponds to the
regime with four DPs, the phase shown in red corresponds to the regime with two DPs
and one local minimum and the phase in white corresponds to the regime with only two
DPs.

To describe the effect of homogeneous strain on BLG in the low-energy regime,

the following term is used [110]:

Ĥs =

 0 ω

ω∗ 0

 , (5.6)
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where ω is a complex number. Both terms in Ĥs (i.e. homogeneous strain) and

Ĥ3 (i.e. parallel field) do not interact with momentum, so their effect will not

generate three equidistant new DPs as skewed hopping γ3 does. In the extreme

case of v3 → 0, they only provide a quadratic splitting with two new DPs. Similar

to the phases for a parallel magnetic field, the additional terms of Ĥs lead to a

three-fold rotational symmetric phase diagram with the following three distinct

phases, (a) four DPs, (b) two DPs and one local minimum point and (c) two DPs

only.

In Fig. 5.2, both the parallel field and homogeneous strain phase diagrams have

three phases, illustrating the competition between the external effect (i.e. either

parallel magnetic field or homogeneous strain) and the intrinsic trigonal warp-

ing effect due to skewed hopping γ3. In general, in the regime of weak external

fields, the trigonal warping effect dominates, so the band structure has four DPs.

With increasing external fields, the double warping effect gradually becomes com-

parable. At certain critical points in the parametric regime, the external fields

overwhelm the intrinsic trigonal warping effect in BLG and the dispersion changes

dramatically.

The difference here arises because strain is not a vector so two opposite strain

directions are identical, but the magnetic field is an axial-vector, so the two oppo-

site field directions are not identical. Therefore, the phase diagram is three-fold

symmetric for strain and six-fold symmetric for a parallel magnetic field.

As for the magnitude of the field, β2/8m ' 0.7meV for B = 100T is still smaller

than ω = 5meV, which is estimated for 1% strain effect in BLG [111]. Because of

the small distance between the different layers of graphene, the magnetic flux is

limited. Therefore, from the point of view of the band structure, the parallel field

effect on BLG is a weaker version of uniaxial homogeneous strain. For practical

use, a common magnitude of magnetic field in a laboratory is about B = 10T,

β̂ = 0.06[mv3] is still in the region of β̂ < 1, so the dominant effect is still γ3 and

the low-energy band structure always has four DPs, as in the normal clean BLG.
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5.3 TLG-ABC with a parallel field

5.3.1 Low-energy Hamiltonian of TLG-ABC with a paral-

lel field

By applying a Peierls substitution, we can study the effect of a parallel field

in TLG-ABC Hamiltonian Eq. (2.28). Choosing the same gauge transformation

Eq. (5.2) as in the last section, we can obtain ĤC for TLG-ABC with a parallel

field as follows

ĤC =


D̂−1 V̂−1/2 W

V̂ †−1/2 D̂0 V̂1/2

W V̂ †1/2 D̂1

 , W =

 0 γ2
2

0 0

 . (5.7)

Using a Schrieffer-Wolff transformation, we can project the effect of high-energy

atomic sites on low-energy sites, and obtain a two-component effective low-energy

Hamiltonian as

ĤC = ĤC1 + ĤC2 + ĤC3, ĤC1 =
v3

γ2
1

 0 π̂†3

π̂3 0

 , (5.8)

ĤC2 =

(
γ2

2
+
vv3

γ1

(
β2 − 2k̂2

)) 0 1

1 0

 , ĤC3 =
β2v3

γ2
1

 0 e−2iθπ̂†

e2iθπ̂ 0

 .

In addition to the Hamiltonian considered in Ref. [19], the trigonal warping term

ĤC2 includes a magnetic field dependent part, and there is a double-warping term

ĤC3. Because the underlying dispersion relation changes from square to cubic, the

parallel-field-induced term behaves differently from that of BLG. Trigonal warping

in TLG-ABC has three origins, i.e. the skewed hopping parameter γ3, next-nearest

interlayer hopping parameter γ2 and the parallel field β. In ĤC2, the parallel field

term is independent of electronic momentum, and it becomes one of the joint

origins of trigonal warping.
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The Lifshitz transition in TLG-ABC in the absence of an external field occurs

at (v3k3/γ2
1)2 ' (γ2/2 − 2vv3k

2/γ1)2, i.e. k ' 0.037γ0/v. Below this energy, γ2

is the dominant term. In a parallel magnetic field, the magnetic field effect is

comparable with vv3β
2/γ1 ' γ2, i.e. B ' 166T. Below this magnitude of the

magnetic field, the dominant term of changing the shape of band is γ2.

5.3.2 TLG-ABC band structure in a parallel magnetic field

with γ3 = 0

Figure 5.3: Contour plots for the energy bands of TLG-ABC in a parallel field with

γ3 = 0. All momenta are in the units of Kc = γ
2/3
1 (−γ2/2)1/3/v ∼ 1/50γ0/v. The longer

wavelength of colour light are for the higher energy. Panels along the top correspond to
the θ = 0 field with strengths as follows: (a) β̂ = 0Kc; (b) β̂ = 1Kc and (c) β̂ = 3/2Kc.
Panels along the bottom corresponds to θ = π/2 with strengths as follows: (d) β̂ = 1Kc;
(e) β̂ =

√
3/21/3Kc and (f) β̂ = 3/2Kc.

As in the discussion of Ref. [19], the trigonal warping in TLG-ABC is domi-

nated by the presence of next-nearest layer hopping γ2, as discussed in conjunction

with Eq.(2.29), with magnitude γ2/2 = −10meV∼ −1/400γ0, much higher than

the magnitude of k2vv3/γ1 in ĤC2. Therefore, we begin TLG-ABC analysis with a

parallel magnetic field from v3 = 0, which still holds most of the essential features.
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With new units Kc = γ
2/3
1 (−γ2/2)1/3/v ∼ 0.02γ0/v and Ec = v3

3γ1/v
3 ∼ 0.3meV,

the physical quantities change to k̂ = k/Kc and β̂ = β/Kc, Ê = E/Ec. Further-

more, the dispersion is given as

Ê2
γ3=0 = 1− 2k̂3

x + k̂6
x + 6k̂xk̂

2
y + 3k̂4

xk̂
2
y + 3k̂2

xk̂
4
y + k̂6

y + (k̂2
x + k̂2

y)β̂
4 (5.9)

+ 2β̂2
[
(−k̂x + k̂4

x − k̂4
y) cos(2θ) + k̂y

(
1 + 2k̂x(k̂

2
x + k̂2

y)
)

sin(2θ)
]
.

Using the above dispersion, we calculated the contour plots shown in Fig. 5.3 for

different magnitudes and directions of the parallel magnetic field.

In the case of β̂ = 0, the dispersion reduces to Ê2 = k̂6 + 1− 2k̂3 cos(3ϕ), and

the DPs spread around the central local minimum at a distance of k̂ = 1, as shown

in Fig. 5.3(a). When θ = 0, the TLG-ABC band structure in a parallel magnetic

field always has three DPs, and the distance between each of them increases with

the increase of magnetic field, as shown in Figs. 5.3(b) and 5.3(c). When θ = π/2,

the band structure still has three DPs, as shown in Figs. 5.3(d) and 5.3(f), except

for one scenario in which it has only two DPs, as shown in Fig. 5.3(e). The origin

of this phenomenon is that two of the three DPs become superimposed when the

parallel magnetic field effect overwhelms the trigonal warping effect, which occurs

at β̂ =
√

3/21/3Kc (i.e. B ' 900T).

In the extreme case of β̂ � Kc, the effect of γ2 can be neglected, so the parallel

magnetic field will lead to a three-fold splitting. All three DPs are on the same

axis which is perpendicular to the magnetic field direction, which is similar to that

of Fig. 5.3(f). The monotonic phase diagram for γ3 = 0 is shown in Fig. 5.6(a).

5.3.3 Lifshitz transition in the presence of γ2 and v3

Given that we already have three parameters γ2, γ3 and β together with momentum

k, it is not possible to only keep one parameter and eliminate the other two by

simply introducing a new dimensionless unit as in BLG or TLG-ABC (without γ3).

Therefore, we employ a new unit to simplify and eliminate γ3, Kd = v3γ1/v
2 '
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Figure 5.4: Contour plots for TLG-ABC in a parallel field, with γ3 6= 0 and γ2 6= 0. All
momenta are in the units of Kd = v3γ1/v

2 ∼ 1/150γ0/v. The longer wavelength of colour
light are for the higher energy. Panels along the top correspond to θ = 0 with strengths
of the fields as follows (a) β̂ = 0; (b) β̂ = 2/

√
3Kd and (c) β̂ = 4Kd. Panels along the

bottom correspond to θ = π/2 with strengths of the fields as follows (d) β̂ = 2Kd; (e)
β̂ = 3.7Kd and (f) β̂ = 4Kd. Given that Kd = 1/150γ0/v is 1/3 of Kc ∼ 1/50γ0/v, i.e.
the scale of the axis in Fig. 5.3 and Fig. 5.5.
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0.01γ0/v with Ed = v3
3γ1/v

3 ' 0.3meV and leave γ2 and β for the analysis. Thus,

we have k̂ = k/Kd, β̂ = β/Kd, Ê = E/Ed and γ̂2 = γ2/Ed. The new regularized

dispersion is:

E2
A = E2

A1 + E2
A2, (5.10)

E2
A1 = 4k̂4 + k̂6 + β̂4 + k̂2β̂2(−4 + β̂2) + 2k̂3(−2k̂2 + β̂2) cos(3ϕ)

+ 2k̂β̂2
(
k̂3 cos(2ϕ− 2θ) + (−2k̂2 + β̂2) cos(ϕ+ 2θ)

)
,

E2
A2 =

1

4
γ̂2

(
−8k̂2 + 4β̂2 + γ̂2 + 4k̂3 cos(3ϕ) + 4k̂β̂2 cos(ϕ+ 2θ)

)
.

By analytically evaluating the parallel-magnetic field dispersion with v3 and

γ2, we can finally recognize that there are 19 extreme points. Among them, nine

are potential DPs. Although analytical expressions for k̂x and k̂y are obtainable,

expressions are along and complicated, and not particularly useful.

Since the presence of γ2/2 = −50Ed completely overwhelms the effect of γ3 for

β = 0, the dispersion becomes

Ê2 = (k̂3 − 2k̂2 − 25)2 + 4k̂3(25 + 2k̂2) sin(3ϕ/2)2. (5.11)

Compared with the situation in which γ3 = 0, we note that when θ = 0, the

band structure will be similar to that of Fig. 5.3. When θ = π/2, the presence

of γ3 generates additional DPs and a new phase within the regime of small β

values. With increasing β, the parallel field effect overwhelms the effect of v3, so

the topology of the two band structures is qualitatively identical with or without

γ3. As for the phase diagram, which is shown in Fig. 5.6(b), the presence of γ3

causes it to become anisotropic. Only in a specific window of β and θ are there

additional phases.
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Figure 5.5: Contour plot of TLG-ABC band structure in a parallel field with γ2 = 0.
The axes are k̂x and k̂y. All momenta are in units of Kd = v3γ1/v

2 ∼ 1/150γ0/v. The
longer wavelength of colour light, the higher the energy. Panels along the top correspond
to θ = 0 with strengths as follows: (a) β̂ = 0; (b) β̂ = 1/2Kd and (c) β̂ = 3/2Kd. Panels
along the bottom correspond to θ = π/2 and (d) β̂ = 1/2Kd; (e) θ = π/2 β̂ = 1Kd and
(f) θ = 31π/64, β̂ = 1/2Kd. Finally, the scaling of the axes in Fig. 5.5 is the same as in
Fig. 5.3 and Fig. 5.4.
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5.3.4 TLG-ABC band structure in a parallel field and the

absence of γ2

In Eq. (5.7), we employed γ2 as half of the value in bulk graphite, but the exact

value of γ2 in TLG-ABC is still unknown. Therefore, for completeness, we discuss

different input values of γ2 for the dispersion.

First, consider the extreme situation in which γ̂2 = 0. Following the same

procedure of counting DPs as before, we can distinguish the following four different

major phases, as shown in Fig. 5.5: (I) three DPs shown in subplots (a), (c) and

(e); (II) five DPs shown in subplot (b); (III) seven DPs shown in subplot (f) and

(IV) 9 DPs shown in subplot (d).

By comparing this set of band structures (i.e. Fig. 5.5) with the former band

structures obtained in Figs. 5.1, 5.3 and 5.4, we note that the extremely low-energy

band structure becomes more complicated due to the existence of γ3. The maxi-

mum number of DPs achieved is nine points as shown as Fig. 5.5(d). The existence

of γ̂2 simplifies the complicated band structure given by γ3. The corresponding

phase diagram, which is anisotropic, is shown in Fig. 5.6(f); as evident from the

figure, the number of DPs monotonically decreases with increasing β.

5.3.5 TLG-ABC phase diagram with a parallel magnetic

field

If γ3 = 0, then the phase always has three DPs and is isotropic, as shown in

Fig. 5.6(a). If γ2 = 0, then there will be four different phases with three, five, seven

and nine DPs, as shown in Fig. 5.6(c). Between these two extremes, the interplay

between γ2 and γ3 leads to a shift between the one and four phase situations. When

γ2 equals half the value of that of in bulk graphite, the phase diagram consists of

five DPs and three DPs, and the five DPs phase only exist in six small triangular

regions, as shown in Fig. 5.6(b).
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Figure 5.6: TLG-ABC phase diagram with a parallel field. All momenta are in units
of Kd = v3γ1/v

2 ∼ 1/100γ0/v. For β = Kd, B ' 300T. The left subplot corresponds
to γ3 = 0 and γ2 equal to half the value of that of bulk graphite. The middle subplot
corresponds to for γ3 = 0.1γ0 and γ2 equal to half the value of that of bulk graphite. The
right subplot corresponds to γ3 = 0.1γ0 and γ2 = 0. The colour represents the different
number of DPs, cyan corresponds to three DPs, yellow corresponds to five DPs, red
corresponds to seven DPs and blue corresponds to nine DPs.

5.4 Conclusion

In this chapter, we discussed the influence of a parallel magnetic field on BLG,

and we then compared our results with the effect of homogeneous strain in BLG.

As shown in this chapter, these two influences are similar: both phase diagrams

consist of three phases and a maximum of four DPs. The difference between the

parallel magnetic field and homogeneous strain is that the phase diagram of the

latter is three-fold, whereas it is six-fold for the former. Furthermore, the effect

of a parallel magnetic field is as small as that of a 1% strain. In addition, we

investigated the effect of a parallel magnetic field on TLG-ABC, finding that γ3

solely provides sophisticated phases and γ2 generally overwhelms the effect of γ3.

Finally, we obtained a diagram consisting of two phases.
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Chapter 6

Electronic transport properties of

multilayer graphene

6.1 Introduction

As noted in Chapter 2, interactions between different layers in multilayer graphene

may be described by additional hopping parameters in the tight-binding model,

and their effect is manifested in band structure and transport properties [31, 34].

For example, trigonal warping, which is the distortion of the band structure in

the low-energy region, is caused by skew hopping γ3 in BLG and next-nearest-

layer hopping γ2 in TLG-ABC. Such a change in the band structure will alter the

transport properties in the low-energy region [33]. The minimum conductivity σm

of finite-size multilayer graphene 1 is still an open and interesting question [7, 32].

Snyman and Beenakker [29] calculated σm for BLG in the absence of γ3 using an

analytical mode matching (MM) method, finding that it is σm = 2σ0, where σ0 =

gsgve
2/hπ is minimum conductivity of SLG [128], and gs and gv are the degeneracy

of spin and valley, respectively. Then, Cserti [30] calculated σm, including the effect

of γ3, using Kubo’s formula. His results suggest that σm of BLG will increase

three-fold when γ3 is considered, i.e. σm = 6σ0. The transport properties of this

1The minimum conductivity is the characteristic of the system. In experiment, one may not
be necessary to know where DP is; however, with the equipment of this information, one can
tune the gate voltage to the minimum conductivity to approach DP.
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system have also been calculated by Gao using a Green Function (GF) method

[115]. Experimental measurement on minimum conductivity of BLG is studied by

NovoSelov et al [93].

In this chapter, the transport properties of multilayer graphene, especially

BLG, and TLG-ABA and TLG-ABC, are studied using analytical as well as nu-

merical methods and the results of these methods are compared. We also discuss

the impact of using different parameter values. This chapter is organized as follows.

In Section 6.2, we introduce the main concepts for calculating transport properties

and the setup used in our study. In Section 6.3, we describe the analytical mode

matching method. Next, in Section 6.4, we show and discuss the results of this

method. In Section 6.5, we describe the numerical method used, i.e. the recursive

GF method is described. In Section 6.6, we describe the numerical results of the

recursive GF approach and compare them with the results of the mode matching

method.

6.2 Theoretical framework of transport

6.2.1 Sketch of setup

ϕ�
>

ϕ�
<

ϕ�
>

ϕ�
<

ϕ�
>

ϕ�
<

�� �����

Figure 6.1: Sketch of the transport setup. The black arrow represents the propagating
modes of the wave function.

In this section, we describe the conceptual setup used in later calculations. A
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sketch of the setup used in our study is shown in Fig. 6.1. The setup models a

two-probe conductance measurement with a central conductor (a graphene ribbon)

sandwiched between two leads. Here, UL, UC and UR are the gate voltages applied

to the left lead, central conductor and right lead, respectively, and E is the incident

electron energy. In the left lead, φ>L and φ<L are the rightwards incident wave and

leftwards reflected wave, respectively. On the right-hand side, φ>R and φ<R are the

rightwards outgoing wave and leftwards incident wave, respectively. The waves in

the conductor are denoted by φC .

6.2.2 Landauer-Büttiker formalism

The fundamental equation describing the transport properties of mesoscopic sys-

tems is the Landauer-Büttiker (LB) formula. A further discussion of electronic

transport in mesoscopic systems can be found in Appendix. J.1 LB formula trans-

forms the transmission problem into a scattering problem [117] as follows:

I =
2e2

h

µR − µL
e

T̄ . (6.1)

Here, I is the current, µL/R is the chemical potential, the left-right transmission

probability (flux), T̄ =
∑

n,m |snm|2, snm is the element of scattering matrix S =

[snm] and n/m is the index of the transverse mode of the wave function [133]. The

LB formula is the mesoscopic version of Ohm’s rule, I = U/R, where R is the

macroscopic resistance, and 1/R can be considered as a generalization of different

scattering channels. A further discussion about scattering matrix can be found in

Appendix J.3.

Thus, the Landau conductance and conductivity are

G = g
e2

h
T̄ , σ =

L

W
G. (6.2)

Here, g is degeneracy, for graphene it is the product of spin and valley degen-

eracy, i.e. 4. The expression of the other transport properties can be found in
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Appendix J.2.

6.3 Mode matching method

6.3.1 Theoretical introduction

The basis of the mode matching method is to match the incident wave to the

outgoing waves at each interface. This method can be used to calculate the trans-

mission coefficients and also other transport properties. A further discussion can

be found in Appendix J.4.

At the interface between the left lead and conductor, the matching equation is

(
φ>L1

φ>L2
φ<L1

φ<L2

)


1

0

r11

r12


=

(
φ>C1 φ>C2 φ<C1 φ<C2

)


t11

t12

0

0


. (6.3)

Here, transmission coefficients t11 and t12 and reflection coefficients r11 and r12

construct the t-matrix and the r-matrix, respectively, i.e.

t =

 t11 t12

t21 t22

 , r =

 r11 r12

r21 r22

 . (6.4)

Note that “1” represents the unit incident wave amplitude. We also consider mode

matching at the right interface and the phase factor eikL acquired by each wave

while propagating within the conductor.

6.3.2 Wave function of BLG at zero energy

In this section, we calculate the minimum conductivity σm of multilayer graphene

of finite size at zero temperature, zero energy, zero external field and zero impurity,

which is a well-defined system [184].
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We first need to find the wave functions for both conductor and leads. For the

former, Eq. (2.22) can be solved at UC = E = 0 in the absence of γ3 and γ4 from

vπ̂†B1 = 0,

vπ̂A1 + γ1A2 = 0,

γ1B1 + vπ̂†B2 = 0,

vπ̂A2 = 0. (6.5)

These equations separate, so exact analytical solutions for the E = 0 wave function

are (not normalized) calculated as 2

χ1 =



0

0

0

1


, χ2 =



0

1

0

x
l1


, χ3 =



1

0

0

0


, χ4 =



− x
l1

0

1

0


. (6.6)

Here, l1 = v/γ1 is the characteristic length and x represents the coordinate. We

observe that the peculiar form of the wave functions depend on x, which means

that in the process of propagation the electron density shifts from the dimer to the

non-dimer site. Since the corresponding dispersion relation related to the dimer

site is at higher energy, it can only have a virtual state at zero energy. In the leads,

the gate voltage and the Fermi level should be large enough to provide a sufficient

number of transverse modes to guarantee that a reduction in conductivity is not

due to the leads. For this reason, we can solve the equation at E=∞ to guarantee

that the leads act as a source. In this case, the wave functions are (not normalized)

calculated as 3

2In the solving process, one will encounter equation π̂2A1 = 0. This equation can be solved
by an ansatz φ = xeikxxeikyy.

3This set of wave function can be derived by solving Eq. (2.22) in the ab-
sence of v3 and v4. The four eigen energies can be expressed as: Ea1,a2 =

(a1γ1 + a2
√

4v2p2 + γ21)/2, and four corresponding eigen functions are: ψa1,a2 =(
−a1(px + ipy)2/p2,−ia1a2Ea1,a2(px + ipy)/(vp2),−ia2Ea1,a2(px + ipy)/(vp2), 1

)
. In the ex-
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τ1 =



−i

1

0

0


, τ2 =



0

0

−i

1


, τ3 =



i

1

0

0


, τ4 =



0

0

i

1


. (6.7)

In this situation, infinite energy overwhelms the interlayer hopping effect, therefore,

the layers are essentially separate.

6.3.3 Minimum conductivity contributed by evanescent modes

As shown in Eq. (2.26), at zero energy, there is no non-zero real solution for the

dispersion relation of BLG, i.e., propagating modes are prohibited in this region,

there is only evanescent modes 4 . For a wide and narrow conductor (W � L)

in which W is the width of the conductor, there are many evanescent modes that

contribute appreciably to the conductance. This is somewhat counter-intuitive,

because an evanescent mode should only contribute towards transport over a small

length before vanishing. In an undoped clean graphene sheet at zero energy, all

modes are evanescent, and σm is dominated by transport due to evanescent modes

[128].

For a wide and short conductor (W � L), the boundary condition in the y

direction is irrelevant, so in the γ1 � ε region, the summation of the discretized

transverse momentum ky,n = 2πn/W , n = 0,±1,±2, . . . , determined by periodic

boundary condition, can be replaced by an integral over ky, i.e.

tr[t.t†]→ W

π

∫ ∞
0

dky
∑
s=±

Ts(0, ky). (6.8)

treme of E � γ1, vpy, p2 ' p2x, the wave function can be simplified as ψa1,a2 =
(−a1,−ia1a2px/|px|,−ia2px/|px|, 1). Here, we take a2 = 1 (conduction band), then the different
signs of a1 and px will generate four wave functions.

4For a plain wave, eikxx, if kx ∈ R, it will not decay in propagation, so it is called “propagating
modes”. However, if kx 6∈ R, it will decay (or explode) in propagation, so it is called “evanescent
modes”. A detailed discussion can be found in Appendix. J.5.
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Then, the conductance can be calculated from the Landauer-Büttiker formula, i.e.

Eq. (J.10).

6.4 Numerical results of the mode matching method

6.4.1 Minimum conductivity of BLG at E = 0 with γ1 only

Figure 6.2: Transmission coefficients for BLG at zero energy for a system with L =
1000ag and γ3 = 0; the calculation for γ1 = 0 is shown on the left, whereas the calculation
for γ1 6= 0 is shown on the right.

First we study the minimum conductivity of BLG, at zero energy in the simplest

parametric region, and therefore, we only include γ0 and γ1 in this model [29]. The

distribution of transmission coefficients along ky is shown in Fig. 6.2.

The transmission coefficients T±(ε, ky) for BLG, in the absence of γ3, are given

by the eigenvalues of t.t†, i.e.

T±(ε, ky) = cosh−2(kyL± kcL),

kc = L−1 log

(
L

2l1
+

√
1 +

L2

4l21

)
, (6.9)

Here, the characteristic length is l1 = v/γ1. ±kc is the location of the peak of

the right panel of Fig. 6.2. The value of peak is unit. Then, from Eq. (J.10) and

Eq. (6.8), the minimum conductivity of the simplest BLG model [29] is

σm = 2σ0, σ0 =
gsgv
π

e2

h
. (6.10)

116



This is two times the minimum conductivity of SLG [7, 135]. Note that γ1 by itself

does not influence the transport properties of BLG, but shifts the distribution of

transmission coefficients along the ky axes.

6.4.2 Minimum conductivity of BLG at E = 0, with γ3 only

Figure 6.3: Transport properties of BLG at zero energy for γ3 = 0.1γ0 and γ1 = 0.
In the left plot, the horizontal axis ky is in unit of γ0/v and vertical axis represents
transmission coefficients T . The length of the example setup is L = 1000ag. The blue
horizontal line is reference conductivity σm = 2σ0.

For completeness, we also calculated the transmission probability of BLG with

γ3 = 0.1γ0 and γ1 = 0, obtaining the results shown in Fig. 6.3. As shown in

Fig. 6.3, the existence of γ3 changes the minimum conductivity to be a function of

system length. If the length of system is too short, the minimum conductivity can

even be zero, which is counter-intuitive because the shorter the length of system,

the easier it is to penetrate for evanescent modes. When system length L > 200ag,

we have σE=0 ' 2.005σ0, i.e. two times the minimum conductivity obtained for

the simplest BLG model in the previous subsection.
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Figure 6.4: Transport properties of BLG for E = 0 and γ1 = γ3 = γ0/10. The left
plot shows the probability distribution as a function of ky for L = 13500ag = 90l3. The
right plot shows σm as a function of L. The blue horizontal line is reference conductivity
σm = 2σ0.

6.4.3 Minimum conductivity of BLG at E = 0 with γ3 and

γ1

The eigen wave functions of Eq. (2.22) when γ4 = 0 and E = 0 are

χ1 =



1

0

βp

0


, χ2 =



1

0

βn

0


, χ3 =



0

βp

0

1


, χ4 =



0

βn

0

1


, (6.11)

Here, βp = (1 + ρ)l1/2l3, βn = (1 − ρ)l1/2l3 and ρ =
√

1 + 8kyl3. An analytical

expression we calculated for the transmission probability for BLG with γ1 = γ0/10

and γ3 = γ0/10 is

T±(ε, ky) (6.12)

=
λ2ρ2

(
λ2 cosh(αt)(ρ

2 cosh2(αρ)+sinh2(αρ))+sinh2(αρ)(cosh(2αρ)(τ
4+1)+2τ 2)

)
(cosh(2αρ)(τ 2 − 1)2+λ2ρ2 cosh(2αt)−(τ 2 + 1)2+λ2)2 .

Here, αt = −Lky − L/2l3, αρ = −Lρ/2l3, l3 = l1v/v3 ∼ 150ag, λ = l1/l3 and

τ 2 = λ2(1−ρ2)/2. From the above, the transport probability depends on variables

L, ky and l3, the latter being the characteristic length given by γ3. The left panel

of Fig. 6.4 shows transmission probability as a function of ky.
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The behaviour of minimum conductivity σm as a function of L is also shown in

Fig. 6.4. In the region of L < l3 = 150ag, the effect of γ3 lowers the value of σm,

even to zero. With an increase of L, σm increases quickly, and at L ' 2000ag, it

starts to oscillate. This oscillatory behaviour is due to the resonance of evanescent

modes at certain lengths. Once L ' 10l3, conductivity becomes almost stable at

5σ0; beyond this value, the increase of σm slows down, gradually approaching the

expected analytical value of 6σ0 [30].

From Eq. (6.12), the ratio between the system length L and the characteristic

length l3 changes the resonance conditions for the evanescent modes, therefore

revealing the manifestation of γ3 in the transport properties of BLG. The smaller

the value of γ3, the larger length L is required to reveal the influence of γ3.

6.4.4 Minimum conductivity of TLG-ABC at E = 0

To study the minimum conductivity of TLG-ABC at zero energy, zero external

field and zero temperature, we investigate the effect of each of the parameters

from most important to least important.

The simplest model for TLG-ABC only includes intralayer hopping γ0 and

vertical interlayer hopping γ1, which together capture the features of the cubic

dispersion of the TLG-ABC band structure in Eq. (2.29). The next parameter in

order of importance that we consider is γ2. As discussed in the Section 2.5.1 and

expressed in Eq. (2.29), γ2 induces the trigonal warping effect in TLG-ABC and

therefore causes significant modifications in the band structure [19].

Finally, skewed hopping γ3 is considered as it has a weaker impact on the band

structure. The other skewed interlayer hopping γ4 is omitted in this calculation,

as it is relatively small compared to the other parameters and only induces an

electron-hole asymmetry in the band structure.
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6.4.5 Minimum conductivity of TLG-ABC at E = 0 with

γ1 and γ2

Figure 6.5: Regarding the transmission probability for TLG-ABC at zero energy, for
the result in the left plot, we only considered the effect of γ1, i.e. γ3 = 0, whereas for
the right plot includes the effect of γ2 = −0.005γ0. Both situations yield σm = 3σ0. In
both the subplots, the horizontal axis ky is in units of γ0/v and the vertical axis shows
the transmission amplitude T . The length of the setup is L = 1000ag.

If only γ1 is considered in TLG-ABC, then σm = 3σ0, which is the same as the

conductivity of three separate layers of SLG. As shown in Fig. 6.5, the transmission

coefficients in this case are

Tα(ε, ky) = cosh−2(kyL+ αkcL), α ∈ [−1, 0, 1]. (6.13)

The eigenfunctions for γ2 = −0.005γ0 and γ1 = 0.1γ0 are

χ1=



0

β1

0

α1

0

1


, χ2=



0

β2

0

α2

0

1


, χ3=



0

β3

0

α3

0

1


, χ4=



1

0

α1

0

β1

0


, χ5=



1

0

α2

0

β2

0


, χ6=



1

0

α3

0

β3

0


,

(6.14)

Here, αm = |γ2/γ1|2/3(iηm)−1, βm = |γ2/γ1|1/3(iηm), and ηm = eiπ(2m−1)/3. Al-

though the influence of γ2 on the band structure of TLG-ABC is much stronger
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than that of γ3 in BLG, from Eq. (2.29), we note that the presence of γ2 does not

affect σm.

6.4.6 Minimum conductivity of TLG-ABC at E = 0, with

γ0, γ1 and γ3

Figure 6.6: Regarding the transport properties of TLG-ABC for E = 0, γ1 = γ3 =
γ0/10 and γ2 = 0, the left plot shows the distribution of the transmission coefficients as
a function of ky for L = 1000ag = 6.6l3. In the right plot, σm is calculated as a function
of L. The blue horizontal line is reference conductivity σm = 3σ0.

To study the interplay between γ1 and γ3 considering the transport properties

of TLG-ABC, we first set γ2 to zero. As shown in Fig. 6.6, γ3 reduces the value of

minimum conductivity σm in TLG-ABC, after which σm stabilizes at σm ' 2.125σ0.

6.4.7 Minimum conductivity of TLG-ABC at E = 0, with

γ0, γ1, γ2 and γ3

As shown in Fig. 6.7, the interplay between γ2 and γ3 slightly increases σm to

3.25σ0, which is slightly higher than that of three separate SLG, i.e. 3σ0. Note

that this is still much lower than the minimum conductivity of BLG which is 6σ0.

We observe that the oscillations shown in Fig. 6.6 are much weaker than those of

Fig. 6.7 because the presence of γ2 increases the distance between the peaks of the

evanescent modes, therefore causing the resonance between different evanescent

modes to be much weaker.
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Figure 6.7: Regarding the transport properties of TLG-ABC in the case of incident
energy E = 0 and both γ1 = γ3 = γ0/10 and γ2 = −0.005γ0, the left plot shows
the distribution of transmission coefficients as a function of ky, for conductor length
L = 1000ag = 6.6l3. In the right plot, σm is calculated through L. The blue horizontal
line is reference conductivity σm = 3σ0.

6.4.8 Conclusions of the mode matching calculation

In this section, we calculated the minimum conductivity σm of multilayer graphene,

BLG and TLG-ABC. We found that the role each hopping parameters plays is not

as intuitive as in the band structures. Our analytical evaluation suggests that

vertical hopping such as γ1 and γ2, does not influence σm. In addition, skewed

hopping γ3 changes σm to be a function of length L with a behaviour approximat-

ing a limit. Furthermore, given the interplay between γ3 and γ1, γ2 significantly

modifies σm in a non-monotonical manner. In BLG, the interplay between γ3 and

γ1 increases σm. However, in TLG-ABC, given the interplay between γ3 and γ1, γ2

decreases σm below the value obtained using BLG. Moreover, the numerical values

of γ1 and γ2 do not affect the minimum conductivity. Conversely, the exact value

of γ3 affects the minimum conductivity, as shown in Eq. (6.12), which depends on

the characteristic length l3. Finally, the mode matching method also induces a

dependency on length L. The completed manifestation of the effect of γ3 can only

be observed for L� l3, such as L ' 90l3 ' 2µm.
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Figure 6.8: Sketch of the transport setup of Green function Calculation. The central
conductor has a hexagonal lattice to represent graphene and is sandwiched between
square lattices (representing normal metal) on the left and right. The edges of the
graphene nano-ribbon are armchair style. The size of this setup is L = 7

√
3ag and

W = 8ag, (i.e. 7 hexagons long and 8 hexagons wide). The black arrow represents the
propagating modes of the wave function, and the red arrows define the total length and
width of the ribbon.

6.5 Theory of the recursive GF

6.5.1 Sketch of setup

Because we need to switch from continuous model describing infinite-size sample

to discretized model describing finite-size sample, so here we need to redefine our

conceptual setup. A sketch of the setup used in Green function calculation study

is shown in Fig. 6.8. The idea of this setup is similar to that of Fig. 6.1: two-

probe, conductance measurement and varying gate voltage. However, there are

some details need to be emphasized. In Green function study, the leads adopted

are either normal metal (i.e. square lattice), or graphene (i.e. hexagonal lattice).

The typical size of the setup is L = 30
√

3ag and W = 150ag, (i.e. 30 hexagons

long and 150 hexagons wide), with armchair [116] top and bottom edges 5 . All

5The reason that we do not calculate the nano-ribbon with a zigzag edge is the electron in
it will have a non-binding edge state, which features very different electronic, magnetic as well
as chemical properties. We are not interested in these weird behavior caused by edge state, we
would like to understand the system as a whole. So in the study of a finite-size setup, we will
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Green function calculations reported here will model systems of this size unless

otherwise stated.

6.5.2 Definition of Green function

Following [117], Green function (GF) is a general name for functions with the

specific mathematical structure

G = (E − Ĥ)−1, (6.15)

which are usually used for describing the distant response to a source. The GF

can be expanded in a basis of eigenfunctions as 6

G (~r, ~r′) =
∑
α

ψα (~r)ψ∗α (~r′)

E − εα + iη
. (6.16)

Here εα is the eigen energy of state α, and η is an infinitesimal value used to avoid

a singularity. The alternative form of GF, i.e. Eq. (6.16) is more suitable for a

system with solvable wave functions.

6.5.3 Tight binding model and GF

Within the tight-binding model, since the wave functions of the electrons can

be described by the superposition of the atomic orbitals, the Hamiltonian of the

system can be expressed as a matrix in which diagonal elements are the on-site

energies of the atomic orbitals, and off-diagonal elements describe the interactions

keep our study in armchair-edge. If we have a infinite-width setup, we can use continuous model
and we will not observe edge state, which is the reason we did not emphasize this point in the
calculation of mode matching method.

6This expression can be simply obtained by expanding GF on the orthogonal basis of eigen
function of Hamiltonian. In Eq. (6.16), there is a “+iη” in the denominator, which indicates it is
‘Retarded” GF. Its counterpart is “Advanced” GF, which features a “−iη” in the denominator.
The origin of the two kinds of GF is that Eq. (6.15) has two solutions. One describes an excitation
generating two waves traveling outwards, i.e. distant responses chronologically happen after
a excitation, which is named by retarded GF. Oppositely, the other one describes two waves
traveling inwards and colliding to generate an excitation, i.e. distant responses chronologically
happen before a excitation, which is named by advanced GF. In the following discussion of this
thesis, we will only discuss retarded GF unless stated otherwise.
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Figure 6.9: Diagram of a one-dimensional chain of atoms sandwiched between two one-
dimensional leads. The red/blue dots represents the atomic sites of conductor/leads.
The on-site energies are denoted as εc/εL/εR with the dashed lines between the dots
representing the hopping between different sites, denoted as tc/tL/tR, respectively.

between different atomic sites.

As an example, the discretized Hamiltonian of a one-dimensional wire con-

nected by two different one-dimensional leads, shown in Fig. 6.9, is



εL tL 0 0 0 0 0

tL εL tL 0 0 0 0

0 tL εc tc 0 0 0

0 0 tc εc tc 0 0

0 0 0 tc εc tR 0

0 0 0 0 tR εR tR

0 0 0 0 0 tR εR



→


ĤL ĤLc 0

ĤcL Ĥc ĤcR

0 ĤRc ĤR

 .

Because only nearest neighbour interactions are allowed, the off-diagonal block

(elements) are zero. Therefore, this matrix is able to be block-diagonalized.

6.5.4 Self energy

At the interface between the leads and the conductor, as shown in Fig. 6.8, the

GF method can be expressed as (6.15), i.e.

 GL GLc

GcL Gc


 E − ĤL −ĤLc

−Ĥ†Lc E − Ĥc

 =

 I 0

0 I

 .

Here, Gc and Ĥc are the GF and Hamiltonian of the conductor, respectively, GL

and ĤL are the GF and Hamiltonian on the left lead, respectively, and GLc, GcL

and ĤLc are the off-diagonal block of GF and Hamiltonian.
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The matrix describing the lead is considered to be semi-infinite, so ĤL and ĤR

are of infinite order. A common way to treat this infinite dimensional matrix is to

describe the influence of a lead on the conductor using an effective term called the

self energy (SE), denoted by Σ, with

Gc = (E − Ĥc − ΣL)−1,

ΣL = Ĥ†LcgLĤLc, (6.17)

gL = [E − ĤL]−1.

For general types of crystal lattice, the self energy is difficult to calculate [120, 122–

127]. In Appendix L, we present several methods for calculating the self energy.

As an example, the self energy of a semi infinite normal metal (i.e. a square

lattice) can be calculated using Eq. (6.16) together with the fact that the eigenfunc-

tions of square lattices can be expressed in the form of standing waves sin(ak),

where k is the wave vector. The self energy of the left lead obtained with this

method is Σ = −eikatL/a [117], where tL is the hopping parameter between the

nearest-neighbour atoms in the left lead.

6.5.5 Fisher-Lee relation and transmission probability

The Fisher-Lee relation [118] is the bridge that relates the response at a certain

position to inputs at a different position in the ribbon by using various scattering

matrix components. An element of this relation can be expressed as follows 7 :

snm = −δnm + i
√
vnvm

WR∑
q

WL∑
p

χn (q)GRL (q; p)χm (p) . (6.18)

Here q ∈ WR and p ∈ WL are the indices of atomic sites in real space, WL/R is

the width, (i.e. the total amount of sites), n and m are mode indices, Gqp is the

7This can be simply understood as transforming the distant response in real space into the
response in momentum space, and modifying obtained “probability amplitude” to “current am-
plitude”. In other words, the transmission coefficients snm is obtained by using the eigenfunction
of different modes χn to extract corresponding probability amplitude from GF, then modulate
it with velocity. Another way of deriving Fisher-Lee relation can be found in Appendix L.1.
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(retarded) GF relating sites q and p, vn/m and χn/m are the the velocity and the

transverse wave function of mode n/m.

Furthermore, we can use this information to obtain the total transmission prob-

ability 8

T̄RL = tr
[
ΓRGΓLG

†] , ΓL/R = i
[
ΣL/R − Σ†L/R

]
. (6.19)

For a graphene conductor, evanescent modes must be included into the self

energy calculation, as they may penetrate into the finite-size conductor and con-

tribute towards transport. However, in the semi-infinite leads, the evanescent

cannot penetrate the infinite-size lead, this manifests as these modes have zero

group velocity, so the corresponding elements of the transmission matrix vanish

[119].

6.5.6 Generalization of the GF method

Below is a brief procedure for applying the GF method to a transport problem. A

further discussion can be found in Appendix ch:GFacceleration.

(1) Discretize the Hamiltonian for both the leads as well as the conductor.

(2) Based on the Hamiltonian of the lead, obtain the eigenfunction, all modes

(i.e. propagating and evanescent modes), the dispersion relation, the velocity and

the self energy of the lead.

(3) With the self energy describing the effect of the leads on the conductor,

the proper method of dividing the system into slices, and the proper auxiliary

technique (i.e. recursive method or matrix decimation), we can invert the big

matrix and obtain the necessary blocks of the GF.

(4) From the necessary blocks, e.g. GRL and so on, calculate the S-matrix, and

all the other physical quantities.

The most complicated step in the above GF method is the self energy calcula-

tion, the central conductor region can be easily simulated by a Hamiltonian matrix

8This expression can be simply obtained by deriving the square of Fisher-Lee relation.
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regardless of how complicated its structure is. The self energy calculation involves

finding the eigenfunctions of the lead (especially the relative phase difference be-

tween different sites in one cell), the velocity, (which might be directed opposite to

the momentum), and the contour integral (if the eigenfunction expansion method

is used to obtain the self energy).

6.6 Numerical results of the GF

As the multilayer graphene conductor is connected to the leads, the transport

properties of the system depend on the nature of the leads. However, it is imper-

ative to distinguish physical effects of the conductor from those of the lead and

to minimize any particular effects of the lead. To this end, two different types of

leads are chosen and compared. The first is a normal metal, (i.e. a square lattice),

which is the simpler of the two. The second is the same material as the conductor

itself. The gate voltage is fixed such that the lead has a large number of modes

and the robustness of electronic transport properties at these points is confirmed.

Note that the details of how different lattices are connected at the interface have

no significant influence on the transport properties [129]. In the following sub-

sections, we present various transport results obtained for multilayer graphene for

different parametric regions.

6.6.1 Transport properties of the BLG conductor

Investigation of lead properties

As shown in Fig. 6.10, there is a deep cusp in the centre of the curve for the BLG

lead, but there is no counterpart in the curve corresponding normal metal leads.

Zero conductivity at UL = 0 arises from the presence of the DP of graphene, in

which both UL and UC are zero. The central conductor together with the leads

form an infinitely long and homogeneous system in which the evanescent modes

do not contribute towards transport.
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Figure 6.10: Conductivity of BLG as a function of gate voltage on lead UL with UC =
E = 0. The left panel shows results for the normal metal (i.e. a square lattice) leads,
whereas the right panel shows results for BLG leads (hexagonal lattice). The different
lines represent different values of γ3. The horizontal line is reference conductivity σm =
2σ0.

In the case of UL = −γ0 for square lattice leads or UL = 0.24γ0 for hexagonal

lattice leads, the lead will have a large number of modes and minimum resistance.

In the latter calculations of this thesis, the gate voltages on the leads are fixed to

the above two values. To keep the matrix inversion stable, a very small complex

value is added to the energy input, which is the source of the asymmetry in the

figure.

Initially, for slowly increasing γ3, σ increases slowly, but at large values of γ3,

σ drastically changes because the characteristic length of γ3, i.e. l3 = vγ0/(γ1γ3),

decreases when γ3 increases, as shown in Fig. 6.4. When L is comparable to l3,

the effect of γ3 gradually emerges.

Investigating the robustness of the central conductor

In this subsection, we investigate the robustness of the transport properties of

the central conductor in the parametric region in which the leads have minimum

resistance. As discussed above, minimum resistance in the leads is achieved for

UL = −γ0 for the square lattice leads and UL = 0.24γ0 for graphene leads. Our

results, depicted in Fig. 6.11 for various values of γ3 (i.e. γ3 = 0, 0.1γ0, 0.3γ0

and 0.5γ0), show little change in the conductivity with increasing γ3 values. These
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Figure 6.11: Conductivity of the BLG conductor as a function of the gate voltage in
the leads Uc. The four plots are for γ3 = 0, γ3 = 0.1γ0, γ3 = 0.3γ0 and γ3 = 0.5γ0,
respectively. The gate voltages of the leads are UL = −γ0 and UL = 0.24γ0 for the square
lattice (i.e. black solid line) and hexagonal lattice (i.e. red dashed line) respectively. The
incident energy is E = 0. The horizontal line is reference conductivity σm = 2σ0.
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observations confirm that for small values of γ3, the transport properties of the

device are robust and uncover the low importance of γ3 in this parametric region.

Transport properties of the central BLG conductor

Figure 6.12: Regarding the conductivity of BLG as a function of incident energy, the
left plot shows square leads with gate voltage UL = −γ0, whereas the right plot shows
for BLG leads with UL = 0.24γ0. Different lines represent results for various values of
γ3. The horizontal line is reference conductivity σm = 2σ0.

By varying overall energy E, the transport properties of the conductor can be

studied, as shown in Fig. 6.12. The conductance in the vicinity of E = 0, which

corresponds to the position of the DP, exhibits a minimum without becoming zero,

because in the parametric region, evanescent modes are strong and can penetrate

through the central conductor, contributing towards transport. The second local

minimum is the conductance that occurs at E = 0.24γ0, in which σ falls to almost

zero. This feature occurs because at this energy, we are close to the DP in the

leads, where the evanescent modes are weak and cannot penetrate through the

conductance and do not contribute towards transport.

As shown in Fig. 6.12, conductivity increases with increasing γ3. Furthermore,

the minimum conductivity in the absence of γ3 confirms the theoretical prediction,

i.e. σm = 2σ0. However, the minimum conductivity of BLG with γ3 effect, i.e.,

σm = 6σ0, can be only approached by a very high value of γ′3 ' 0.8γ0 � γ3 = 0.1γ0.

This confirms our theoretical prediction that the interplay between l3 = v2/v3γ1 '

150ag and length of conductor L determines the minimum conductivity. Once l3

is comparable with L = 30
√

3ag, (for γ′3 = 0.8γ0, l3 ' 20ag) the trigonal warping
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effect on transport will be explicit. The completely manifestation of that effect

require much longer sample. Additionally, we need W � L [128], (here W/L ' 5)

so this is the reason that a σm = 6σ0 is not shown.

Transport properties of the central BLG conductor with biased voltage

Figure 6.13: The conductivity of BLG as a function of gate voltage on conductor UC ,
the left plot represents square leads with gate voltage UL = −γ0, whereas the right plot
represents BLG leads with UL = 0.24γ0. Different lines represent results for various
values of biased gate voltage δUC .

The biased voltage is defined as δUC = (Utop−Ubottom)/2, which opens a gap in

the band structure. By applying the biased gate voltage to the conductor, BLG

behaves like a semiconductor [69], as shown in Fig. 6.13.

6.6.2 Transport properties of TLG-ABA and TLG-ABC

Influence of different parameters on the conductivity of TLG-ABC and

TLG-ABA

Our previous calculation from Section 6.4 suggests that the minimum conductivity

σm of TLG-ABA and TLG-ABC should be approximately three times that of SLG,

but a small constraint to width W can hinder the numerical calculation. The non-

linear behaviour of σm with respect to variations in γ3 is because of the oscillations

that occur by varying l3 while maintaining constant length L.

As shown in Fig. 6.16, the effect of γ2 generally follows the prediction of the

mode matching method, i.e. the value of γ2 does not affect the σm.
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Figure 6.14: The transport properties of TLG-ABC. In the left panel, a TLG-ABC
ribbon is sandwiched between square lattice leads, with UL = −γ0 and UC = 0. In the
right panel, a TLG-ABC ribbon is sandwiched between TLG-ABC leads with UL = 0.5γ0

and UC = 0. Different lines represents different values of γ3. The horizontal line is
reference conductivity σm = 3σ0.

Figure 6.15: Regarding the transport properties of TLG-ABA. In the left panel, a TLG-
ABA ribbon is sandwiched between square lattice leads with UL = −γ0 and UC = 0.
In the right panel, a TLG-ABA ribbon is sandwiched between TLG-ABA leads with
UL = 0.5γ0 and UC = 0. Different lines represents different values of γ3. The horizontal
line is reference conductivity σm = 3σ0.

Figure 6.16: Regarding the transport properties of a TLG-ABC ribbon sandwiched
between square lattice leads with UL = −γ0, E = 0 and γ3 = 0. Different lines present
different value of γ2. The horizontal line is reference conductivity σm = 3σ0.
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6.6.3 Conclusion of the GF investigation

Our analytical expressions are based on the continuous situation in which the trans-

verse wave vector ky has infinitely high resolution. However, in the GF calculations,

the resolution of ky is determined by the width of the conductor. This relation sug-

gests that if the width of the system is not large enough, low-energy conductivity

will be decreased or may even be zero. Note that the required computing memory

for the GF calculation is proportional to the square of the width. In addition, the

calculation time is dominated by the matrix inversion, which is proportional to the

cube of the matrix dimension. For example, consider an armchair nano-ribbon of

BLG, with modest size L = 30ag ' 73Å and at least W = 10L ' 730Å(to guar-

antee W � L), which suggests approximately 300 hexagon arranged transversely.

The required memory to save each slice is (300 × 12)2 × 8 × 2 ' 207MB (i.e. 12

atomic sites for one slice of BLG, 8× 2 digits for one complex number).

Therefore, to observe the effect of γ3, the setup needs to fulfill W � L as

L � 90l3 = 13500ag ' 2µm, so we must take W = 10LMin ' 20µm [128]. In

addition to the aforementioned cubic relation of time, this calculation requires

approximately 16, 000GB of memory for one block of the calculation (and needs at

least four similarly sized blocks to complete the calculation). This computational

requirement is the current difficulty in the numerical GF calculation approach.

Nevertheless, to study the electronic transport properties of multilayer graphene,

especially in the low-energy region and in the presence of skew hopping parameter

γ3, the GF method is applied. Due to the limitations of memory and time, we

did not achieve the condition of L � l3, and therefore, our results do not reveal

the complicated behaviour discussed in Fig. 6.4, or the analytic predictions in the

low-energy region discussed in Ref.[30, 128]. The measurement of minimum con-

ductivity requires very clean sample in zero temperature, zero gate voltage and

zero energy, this is not a easy condition. To our knowledge, there have not been

any experiments to date that have directly proven the results presented in this

chapter.
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Chapter 7

Conclusion

This thesis covered the following topics:

(1) We focussed on the butterfly spectrum of moiré perturbed SLG in a perpen-

dicular magnetic field. Beyond the secondary DP of the moiré perturbed graphene,

the magnetic spectrum demonstrates a hierarchy of third-order DPs with LL struc-

tures. By mapping the size of the gap on the plot of carrier density and magnetic

field strength, the fan diagram provides a theoretical analysis comparable with

experimental results. Moreover, the inversion asymmetry effect lifted valley de-

generacy and exhibited some new filling factors. In addition, magnetic spectra

involving different types of parameter sets were systematically studied.

(2) Based on the work of the previous chapter, we then focussed on the magnetic

spectrum of moiré perturbed BLG in a perpendicular magnetic field. As the

inversion symmetry is broken from the beginning, the magnetic spectra of moiré

perturbed BLG shows two very different spectra in the two valleys and also features

a non-perturbed zeroth LL. Finally, we focussed on the zeroth and first “fractured

LL” in a simple fraction; the simplified 2×2 Hamiltonian can be a basis for further

study of the many-body problem around the zero energy of moiré perturbed BLG.

(3) Next, we focussed on the impact of a parallel magnetic field on BLG and

TLG-ABC. The band structure of BLG in a parallel magnetic field may acquire

different shapes depending on the direction and strength of the applied field. These

shapes can be generally classified into three distinct phases based on the number
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of DPs and/or extreme points contained in the spectrum. The phase diagram

of BLG in parallel magnetic field is similar to that of homogeneously strained

BLG. However, the overall effect of the former is much weaker than that of the

latter. Next, we investigated the impact of a parallel magnetic field on the band

structure of TLG-ABC and found that next-nearest layer hopping γ2 overwhelms

the trigonal warping effect caused by skewed hopping γ3.

(4) We studied the transport properties of multilayer graphene, by using both

a continuous analytical and a discrete numerical model. The analytical calcula-

tions of minimum conductivity of BLG and TLG-ABC revealed that the vertical

hoppings (i.e. γ1 and γ2) did not qualitatively affect the transport properties.

However, the skewed hopping (i.e. γ3) had a sophisticated effect on electronic

transmission in multilayer graphene. The study suggested that the conductivity

of multilayer graphene depends on the system size in the sense that a complete

manifestation of the influence of γ3 can only be seen with a relatively long sample.

Our numerical simulations, using the recursive GF method, seemed to confirm

our analytical results. However, significant restrictions in terms of memory and

computational time limited our numerical calculations. Therefore, we were unable

to obtain a definitive confirmation of the analytical results.
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Appendix A

An introduction to fractal

patterns

Figure A.1: The procedure to generate a Koch snowflake fractal pattern up to the 5th
recursion.

A fractal is usually defined as a “Fragmented geometric shape, which can be

divided into several parts, and each part (at least approximately) has the shrunk

overall shape” [201]. That is to say, that a fractal pattern is self-similar. This
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idea was first proposed in the 17th century, but the word “fractal” was coined by

Benóıt B. Mandelbrot in 1975.

Typically, a fractal pattern has the following features:

1. It always has a fine structure on any small scale;

2. It is very irregular, and can be described neither entirely nor partly by

traditional Euclidean geometric language;

3. It has a (at least approximate or statistical) self-similar form;

4. In some cases, it has a simple recursive definition.

As an example of a two-dimensional fractal pattern, the Koch snowflake (also

known as the Koch curve) is shown in Fig. A.1 (a algorithm for the generation of

this pattern is given at the end of this chapter in Mathematica language). The

initial perimeter is 1, and the area is s0 =
√

3/6. Each step increases the perimeter

by 1/3 over its previous value, and the unit of the length increase is ε = 1/3n, where

n is the number of recursions. Its area limit is s08/5. Infinite recursive steps lead

to an infinite perimeter, with an infinitesimal unit of increased length but finite

area. On can notice that this recursively-defined fractal pattern has some unique

features as compared to a normal line: its length is infinite, and since it has a fine

and irregular structure on any small scale no matter how small, one cannot define

a gauge small enough to describe it. Thus, a Koch curve is not a one-dimensional

pattern. Some new language is needed to describe this type of pattern.

Figure A.2: The fractal dimension of a square. By defining a smaller scale ε = 1, 1/2,
1/3, the number of tiles for filling this unit square is N = 1, 4, 9, so that the fractal
dimension of the square is D = − log n/ log ε ≡ 2.

One of the commonly used characteristics of a fractal is“fractal dimension”.

138



This describes how complex the fractal patterns are when measured at different

scales and their capability of “space-filling”. If we define a small “tile” with a scale

is ε, and use it to measure the number of the tiles N needed to fill the geometrical

pattern, so from the equation

(
1

ε

)D
= N, (A.1)

the fractal dimension is defined as D = − log n/ log ε. For example, the fractal

dimension of a square is constantly at D = 2, no matter how small a tile is used,

as shown in Fig. A.2. The same applies to all simple geometrical objects, i.e.

straight line (D = 1), rectangles (D = 2) and cubes (D = 3).

However, this quantity is not necessarily an integer for fractal patterns. Consid-

ering the Koch snowflake as shown in Fig. A.1, in the nth recursive step, the small

tile is the unit of ε = 1/3n. The perimeter of nth recursive is (1 + 1/3)n. There

are N = (1 + 1/3)n3n tiles. Thus, the fractal dimension of the Koch snowflake is

given as follows:

D = − logN

log ε
= − log[(1 + 1/3)n3n]

log[1/3n]
=

log 4

log 3
∼ 1.26186,

i.e. the dimension of the Koch snowflake is higher than that of a one dimensional

line but lower than that of a two-dimensional square.

The exact value of fractal dimension quantity D is not always easy to evaluate.

In fact, most of time it is quite difficult to find, and one can only estimate its

upper and lower limits.

A program for generating the Koch snowflake is given as following, where the

function “KochFractal” determines how change to the fractal, if recursively gen-

erated, will generate new fractal patterns:

KochFractal[x ]:={x[[1]],(2 x[[1]]+x[[2]])/3,RotationMatrix[[Pi]/3]

.((x[[1]]+2 x[[2]])/3-(2 x[[1]]+x[[2]])/3)+(2 x[[1]]+x[[2]])/3,

(x[[1]]+2 x[[2]])/3,x[[2]]};
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Kochsnowflake[PointSet0 ,nD ]:=Nest[Flatten[KochFractal/@

Partition[#,2,1],1]&, PointSet0,nD];

Graphics[Polygon[Kochsnowflake[{{0,0},{1,0},{1/2,-Sqrt[3]/2},{0,0}},3]]]

140



Appendix B

The origin of Hofstadter butterfly

spectrum

The fractal Hofstadter butterfly spectrum, as show in Fig. 3.1, can be generated

considering a two-dimensional square lattice with lattice constant a, as shown in

the top panel of Fig. 3.2. This system can be described by a simple Hamiltonian

of the tight-binding model applied to derive the graphene Hamiltonian in Chap. 2.

If one unit cell has q atomic orbitals, then each atomic orbital can be denoted

by φl, l ∈ [1, q]. Because of the translational symmetry of a crystal, we can build

a tight-binding Bloch wave function Φl of one unit cell which depends on position

vector, r, and the wave vector, k, as follows:

Φl(r,k) =
1√
N

N∑
i=1

eik·Ri,lφl(r −Ri,l), (B.1)

where Ri,l represents the position of the lth atomic orbital in the ith unit cell, and

N is number of unit cells. Then, the electron wave function Ψj(r,k) of each unit

cell can be expressed as a linear superposition of Bloch wave functions as follows:

Ψj(r,k) =

q∑
l=1

cj,lΦl(r,k), (B.2)

where cj,l are the coefficients of the expansion. Based on the electron wave func-
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tion Ψj(r,k), we can formally express the jth energy eigenvalue Ej(k) of the

Hamiltonian of the system Ĥ, as follows:

Ej(k) =

〈
Ψj|Ĥ|Ψj

〉
〈Ψj|Ψj〉

=

∑q
i,l c
∗
jicjl

〈
Φi|Ĥ|Φl

〉
∑q

i,l c
∗
jicjl 〈Φi|Φl〉

. (B.3)

To minimize the energy Ej, we calculate the derivative of Ej with respect to the

coefficient c∗ji, and set ∂Ej/∂c
∗
ji = 0. Thus, we obtain the following equation:

q∑
l=1

Hilcjl = Ej

q∑
l=1

Silcjl,

Hil =
〈

Φi|Ĥ|Φl

〉
, Sil = 〈Φi|Φl〉 ,

which can be transformed into a matrix form.

As each unit cell contains q atomic orbitals, the q× q matrix equation is given

as follows:

Ĥψj = EjSψj, ψj = ( cj1 cj2 · · · cjq−1 cjq )T ,

H =



H11 H12 · · · H1q−1 H1q

H21 H22 · · · H2q−1 H2q

· · · · · · · · · · · · · · ·

Hq−11 Hq−12 · · · Hq−1q−1 Hq−1q

Hq1 Hq2 · · · Hqq−1 Hqq


(B.4)

S =



S11 S12 · · · S1q−1 S1q

S21 S22 · · · S2q−1 S2q

· · · · · · · · · · · · · · ·

Sq−11 Sq−12 · · · Sq−1q−1 Sq−1q

Sq1 Sq2 · · · Sqq−1 Sqq


(B.5)

and the energy Ej can be obtained by solving the determinant of the secular
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equation as follows:

det(H − ES) = 0 (B.6)

We will use the following assumptions to simplify Eq. (B.6): The dominant

contribution of the diagonal entries Hll arises from the same site Ri = Rj as well

as the nearest neighboring sites |Ri −Rj| = a. The off-diagonal entries Hll′ arise

from the nearest neighboring sites |Ri−Rj| = a. The contribution of other further

sites is omitted. Therefore, for the diagonal entry,

Hll =
1

N

N∑
i=1

〈
φl(r −Rl,i)|Ĥ|φl(r −Rl,i)

〉
+

1

N

N∑
i

N∑
j near i

eik·(Rl,j−Rl,i)
〈
φl(r −Rl,i)|Ĥ|φl(r −Rl,j)

〉
= εao +

N∑
j near i

teik·(Rl,j−Rl,i)

εao =
〈
φl(r −Rl,i)|Ĥ|φl(r −Rl,i)

〉
t =

〈
φl(r −Rl,i)|Ĥ|φl(r −Rl,j)

〉
, (B.7)

where εao is the onsite energy of atomic orbitals in the absence of a magnetic field.

Because its only effect is to shift the global on-site energy, here we simply set it

to zero. t is the transfer integral of the two atomic orbitals in the absence of a

magnetic field, which only depends on the difference between Rl,i and Rl,j for the

nearest neighboring sites of the square lattice. For off-diagonal entries,

Hll′ =
1

N

N∑
i

N∑
j near i

eik·(Rl,j−Rl′,i)
〈
φl(r −Rl,i)|Ĥ|φl′(r −Rl′,j)

〉
=

N∑
j near i

teik·(Rl,j−Rl′,i) (B.8)

Furthermore, we assume that the dominant contribution of each entry of S arises

from the same site Ri = Rj, and that all wave functions are orthogonal and
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normalized, such that matrix S becomes a unitary matrix. Thus, the eigenenergy

can be obtained by diagonalizing matrix Ĥ.

In the case of zero magnetic field, the lattice constant is a, the unit cells are

not enlarged, and each unit cell contains only one atomic orbital, as shown in the

top panel of Fig. 3.2. In this case, matrix H in Eq. (B.5) is a 1× 1 matrix,

Ĥ11 = t

N∑
j near i

eik·(Rl,j−Rl,i)

= t(eikxa + e−ikxa + eikya + e−ikya)

= 2t [cos(kxa) + cos(kya)]

In finite magnetic field A = B(0, x, 0), the Peierls substitution k → k − eA

suggests that the exponential term, eik·(Rl,j−Rl′,i), which describes hopping between

nearest neighboring sites in Eq. (B.8) and (B.7) becomes coordinate dependent,

eik·(Rl,j−Rl′,i) → eik·(Rl,j−Rl′,i)−ieA·(Rl,j−Rl′,i) = eik·(Rl,j−Rl′,i)e±i2πmφ/φ0 (B.9)

where Rx
l′,i = ma and the nearest sites are Rl,j −Rl′,i = (±a, 0) or (0,±a) for a

square lattice. φ = Ba2 is the magnetic flux threading a unit cell, and φ0 = h/e is

the flux quantum, ~ = 1.

For example, if φ
φ0

= 1
2
, the phase factor in Eq. (B.9) e

±i2πm φ
φ0 = e

±i2π(m+2) φ
φ0 ,

will be periodic for length 2a, as shown in the middle panel of Fig. 3.2. The

translational symmetry is reduced by 2 times, and each unit cell contains two

atomic orbitals. The matrix in Eq. (B.5) is of 2× 2 order now:

H = 2t

 cos(kya) cos(kxa)

cos(kxa) cos(kya− π)


One can find that the translational symmetry of the electron in the square

lattice in the magnetic field can be recovered if the ratio between magnetic flux
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and flux quanta φ/φ0 in e±i2πmφ/φ0 is a rational number (like 1/2 or 2/3 etc):

α =
p

q
=

φ

φ0

, p, q ∈ Z (B.10)

In this case, the magnetic unit cell is enlarged q times, as shown in the bottom

panel of Fig. 3.2. The form of the matrix containing the eigen energies is

H = 2t



cos (kya− 2πα× 0) cos (kxa) 0 cos (kxa)

cos (kxa) cos (kya− 2πα× 1) cos (kxa) 0

0 cos (kxa) · · · cos (kxa)

cos (kxa) 0 cos (kxa) cos (kya− 2πα× (q − 1))


.

(B.11)

The eigenenergies of the bands can be obtained by diagonalizing the matrix for

a given point in the magnetic Brillouin zone. By mapping the bandwidth on the

rational value p/q, the butterfly spectrum can be built as shown in Fig. 3.1.
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Appendix C

The description of moiré pattern

Two super-positioned lattices with the same Bravais lattice structure generate a

supercell with the same lattice structure and a much larger lattice constant, and

the pattern formed by the supercell is called a moiré pattern.

To describe this pattern, we firstly define difference between the two lattice

constants δ as,

aBN = (1 + δ)ag, (C.1)

where ag ' 2.46 Å and aBN ' 2.50 Å are the primitive lattice constants of

graphene and h-BN, respectively. So δ = 1.8%. Here, both ag and aBN are

not necessary rational number, which means that the exact superlattice constant

a does not exist, i.e. one can not find two integer n1 and n2 to commensurate the

two lengths,

n1ag 6= n2aBN , n1, n2 ∈ Z. (C.2)

In other words, the moire pattern in real space does not have exact translational

invariance once if the two lattice constants are not exactly commensurate. There-

fore, we alternatively utilize the concept of “beat” to describe this pattern.

Consider that we have two stasis wave with wave number g and g′ respectively.
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Figure C.1: The superposition of two stasis waves. The cyan line represents cos(gx),
and the green line represents cos(g′x). Their superposition generates a fast oscillation
wave cos(x(g+g′)/2), as the black line shown, as well as a slow oscillation wave cos(x(g−
g′)/2), as the red line shown. If we are only interested in “the period of the amplitude
of envelop wave”, but not “the period of phase”, then the periodical envelop wave can
be described by wave number b = g − g′.

The triangular equation suggests that their superposition can be expressed as

following form,

cos(gx) + cos(g′x) = 2 cos(
g + g′

2
x) cos(

g − g′

2
x). (C.3)

On the right hand side of Eq. (C.3), the first term represents a fast oscillation wave

with wave number (g + g′)/2, and the second term represents a slow oscillation

envelop wave with a wave number (g − g′)/2. As shown in Fig. C.1, “the period

of the amplitude” of envelop wave can be described by wave number b = g − g′.

Extend this concept of beat to two-dimensional situation, we can define the

reciprocal vectors of the moiré superlattice. Consider that two substrates of 2D

materials, the difference of reciprocal lattice constant is g′ = (1+δ)-1g, and a finite

misalignment angle θ, where g(g′) is the module of reciprocal vector gm (g′m). We
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can build following relation

g′m = (1 + δ)-1R̂θgm, m ∈ [0, ..., 5], (C.4)

where R̂θ is the rotational operator. For hexagonal lattice, the six (i.e. m = 0, · · · 5)

shortest reciprocal vectors of the moiré superlattice are shown in Fig. 3.5.

In the case of small misalignment angle θ ' 0, the reciprocal vectors of the

moiré superlattice are defined as

bm = gm − g′m '

 δ θ

−θ δ

 gm. (C.5)

Here, b = |bm| is the module of reciprocal superlattice vector. Then the moiré

superlattice is defined as

am =
bm+1 × l̂z

bm+1 · (bm × l̂z)
' 1

δ2 + θ2

 δ θ

−θ δ

ag, (C.6)

where ag is the lattice vector of the material with shorter lattice constant, here,

being graphene. In the case of θ = 0,

bm = δ ∗ gm, am = ag/δ, (C.7)

gm = R̂2πm/6(0, 4π/
√

3ag).

The superlattice vectors a1 and a2 are shown in Fig. 3.4.

In general, we utilize the concept of beat to overcome the problem of non-

commensuration. Opposite to normal sequence of defining lattice of a system, we

define reciprocal superlattice vector firstly, then we define superlattice vector in

real space. One point need to be emphasized is that the “superlattice constant”

a = |am| defined here does not describe the “exact translational invariance of

moiré pattern in real space”, as it only exists for commensurate lattice constants.
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Appendix D

Construction of Hamiltonian of

moiré perturbed graphene

This Hamiltonian Eq. (3.6) is not microscopically derived, but phenomenologically

derived based on symmetric analysis argument. It can be understood as a kinetic

term and potential terms. We take the Dirac Hamiltonian of clean graphene, i.e.,

Eq. (2.19), as the dominant part of Hamiltonian of moiré perturbed graphene 1 .

The rest of Eq. (3.6) can be considered as terms due to the moiré potential.

Let’s consider the second term vbu+
0 f+, this diagonal term has no σ matrices, it

simply describes the potential arising from the moiré perturbation. The vb is the

magnitude of energy scale. Furthermore, we assume moiré perturbation is trans-

lational invariant, and we can represent the periodic moiré potential as a Fourier

series, and relate the scattering process of electron due to moiré potential with the

reciprocal superlattice vectors. Although different reciprocal lattice vectors may

have different coefficients in the Fourier series, we assume this perturbation should

bear the same symmetric properties as the system, such as rotational symmetry, so

the reciprocal lattice vectors of same module will have the same numerical values.

If we only keep the lowest order of reciprocal lattice (reason is given below), then

we can truncate Fourier series and represent it by f+ =
∑

m e
ibm·r, and use u+

0 to

1Because that h-BN has a large band gap (i.e. ∆h-BN ∼ 6 eV [45]), its influence to low-energy
band structure can be counted in by Schrieffer-Wolff transformation, but it is not necessary as
it is trivial.
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describe the size of the potential. So this is the simplest potential term vbu+
0 f+.

Moreover, because the difference between boron and nitride atom sites, the

inversion symmetry and six-fold rotational symmetry are broken in h-BN, so we

need an additional term to describe this “asymmetric effect”. Similarly, we repre-

sent the “asymmetric” potential by Fourier series, generalize the size of potential

as u−0 , and absorb the minus sign into the phase factor term, so we get the term

f− =
∑

m i(−1)meibm·r. This f− will get a minus sign if coordinate is inverted

r → −r. So this is the potential term vbu−0 f−.

The further two terms in Eq. (3.6), ξvbσ3(u+
3 f−+u−3 f+) describe the difference

of sublattices caused by moiré perturbation. The reason that u+
3 accompanies

with f− but not f+ is following: The Dirac Hamiltonian of graphene we use here

is not a normal “Hamiltonian”, but actually a matrix of coefficient of Bloch wave

function on sublattices space. When we rotate the coordinate π/3 (or inverse) in

real space, the sublattice space as well as valley space will change too, we use σ

and ξ to notify sublattice and valley. So we need to include this effect into the

symmetric operation Ĉ6. The detail of this symmetric operation can be found in

Ref. [88]. Anyway, by applying symmetric operation, the term ξvbσ3u
+
3 f− holds

six-fold rotational invariance but ξvbσ3u
−
3 f+ not.

The last two terms ξvσ ·
[
lz ×∇

(
u+

1 f− + u−1 f+

)]
in Eq. (3.6), which has an

additional ∇ operator, describe the modulation of the hopping amplitude between

the nearest atomic sties, . This comes from the fact that σ1 and σ2 are mixed

together after the symmetric operation Ĉ6. We need to build a vector matrix σ

including these two matrices simultaneously. So we need another vector term to

be the counter part of σ. By applying simple rotation to f±, one can discover that

the simplest form of this counter part can be constructed as (−bym + bxm, bxm + bym).

The vector (−bym,bxm) can be transformed into ∇ × f±, associated with u±1 . The

other vector (bxm,bym) can be transformed into ∇f±, associated with u±2 .

The reason of absence of u±2 in Eq. (3.6) is that its effect can be removed by a

gauge transformation, ψ′ = exp[−iξ(u+
2 f−+u−2 f+)]ψ, so we can omit this term for
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simplicity. Due to symmetric operation requirement, there is no more valid term,

so we construct the Hamiltonian of moiré perturbation.

The validity of discarding higher order of reciprocal superlattice in Fourier

series comes from a numerical investigation [88]. It turns out that higher order

is ten times smaller than lower order, so they can be neglected without too much

compromise of accuracy. This fact can be understood by the following physical

picture. To describe the effect of atomic sites of h-BN to sublattices of graphene,

we can calculate it by the electric quadrupole of point charge. Due to the system is

translation-invariant, we can represent this by Fourier series. Then the integral of

the potential depends on the module reciprocal superlattice vector. If we treat this

heterostructure as a two-dimensional system, then the higher order of reciprocal

superlattice vectors are not trivial and can not be discarded at will. However,

if we treat this system as three-dimensional, i.e. count in the interlayer distance

between graphene and h-BN (d = 3.22 Å). This distance is much larger than the

Bohr radius of 2pz atomic orbital of graphene (0.27 Å≤ apz ≤ 0.53 Å). The higher

order effect of reciprocal superlattice in Fourier series will decay very fast, therefore

we can neglect them.

This approximation also suggests that the inter-valley scattering is trivial. Be-

cause an inter-valley scattering needs the momentum transferred δk ' gm, where

gm is the reciprocal lattice of graphene. From Eq. (C.5), one knows that gm ' 55b

(δ = 0.18% and θ = 0), which means that inter-valley scattering is a 55th order

effect or moiré perturbation, so it is obviously trivial.

The formal procedures of constructing this Hamiltonian based on symmetric

analysis argument is following:

1. Determine the dominant term, the Dirac Hamiltonian describing the electron

in clean graphene, which also corresponds to the kinetic energy part.

2. We need to describe the effect of moiré perturbation, but we do not know

the exact form or size of the potential, and we want to include effects correspond-

ing to all different symmetries. So we start our analysis from several symmetric
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requirements:

(a) We assume that the moiré pattern is translation-invariant, so we can rep-

resent the periodic moiré potential by Fourier series.

(b) We assume that the Hamiltonian has the same symmetric properties (ro-

tational invariant, or etc) as the system. The detailed form of this symmetric

operator (and time-reversal operator below) can be found in Ref. [88].

(c) We assume that the Hamiltonian is time-reversal invariant in the absence

of magnetic field.

(d) We do not consider inter-valley scattering, this can be understood from the

fact that only the lowest reciprocal superlattice vector dominates the perturbation.

3. Because that the Dirac Hamiltonian is written on the basis of sublattices and

dependent on valley, so we need to distinguish valid matrix structure from sublat-

tices space and valley space. From the symmetric requirements and assumptions

above, we can rule out all invalid matrix forms. Finally, one can get four potential

matrices: I, ξσ3, (mixed) ξσ1 and ξσ2.

4. To account in coordinate inversion-symmetric and inversion-asymmetric

terms, we can construct two different Fourier series, f+ and f−.

5. Therefore, we can have four matrices multiply two Fourier series, i.e. eight

different symmetric terms, and we use eight parameters u±0,1,2,3 to describe the

corresponding size of potential respectively. Furthermore, u±2 can be gauged away,

so finally we have six terms to describe the moiré perturbation.
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Appendix E

The degenerate perturbation

calculation using Green function

Using perturbation theory, one can analytically calculate the nth-order self energy

at the main DP of the moiré perturbed SLG Eq. (3.6), or BLG, Eq. (4.2). Because

that there are two states locating at zero energy, therefore in principle, we need to

use degenerate perturbation theory; however, because the perturbation term only

includes non-zero reciprocal lattice, so the coupling term between the two zero

energy states actually vanishes. The modification comes from the higher orders,

that is the reason the second order perturbation but not first order dominates in

Eq. (3.8).

Assume that a system can be described by a Hamiltonian, Ĥ0, and a pertur-

bation, M̂ :

Ĥ = Ĥ0 + M̂. (E.1)

To derive the energy modification of energy valley at E = 0, we can consider

this problem as obtaining an effective Hamiltonian from the original Hamiltonian

containing all necessary momentum states that are coupled. Because that the

perturbation term only includes the lowest reciprocal lattice vector, so we can

only project the effects of these states onto the zero-energy zero-momentum states
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by Schrieffer-Wolff transformation.

In practice, we utilize Green function to express the effect from couple states.

Green function is defined by Eq. (6.15) and can be Taylor expanded at zero energy

as follows:

G = (E − Ĥ)−1

= G0 +G0M̂G0 +G0M̂G0M̂G0 + O(M̂3)

' G0(1 + M̂G0 + M̂G0M̂G0),

where

G0 = (E − Ĥ0)−1. (E.2)

By inverting this expression, we obtain the following:

E − Ĥ = (1 + M̂G0 − M̂G0M̂G0)−1G−1
0

' (1− M̂G0 − M̂G0M̂G0)G−1
0

= G−1
0 − M̂ − M̂G0M̂

= E − Ĥ0 − M̂ − Σ̂(2),

where the second-order self energy is

Σ̂(2) = M̂G0M̂. (E.3)

Σ̂ contains the effect of coupled states. To understand this process, we use the

moiré perturbation of SLG, Eq. (3.6) to exemplify this procedure. One can consider

right hand side of Eq. (E.3) as following procedures:

(1) an electron (of zero momentum) is moiré perturbed, and the change of its

momentum is bm;

(2) the propagation of this electron can be described by zeroth order Green
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function G0;

(3) this electron is scattered again by moiré perturbation, and gets an additional

change of momentum b′m.

After (3), if bm + b′m 6= 0, then this term will not generate a modification to

the diagonal term (onsite energy), but an off-diagonal term, i.e., a higher order

modification we are not interested in.

In practice, one can find the combination of reciprocal superlattice with a sum

of zero bm1+bm2 = 0, i.e. (b0, b3), (b1, b4) and (b2, b5). The second-order self-energy

at the exact DP is as follows:

Σ̂(2) = lim
ε→0,p→0

M̂b0G0(ε,p+ b3)M̂b3 + M̂b3G0(ε,p+ b0)M̂b0

+ M̂b1G0(ε,p+ b4)M̂b4 + M̂b4G0(ε,p+ b1)M̂b1

+ M̂b2G0(ε,p+ b5)M̂b5 + M̂b5G0(ε,p+ b2)M̂b2 .

Here, M̂bi is the component of M̂ that includes only the Bragg vector, bi.
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Appendix F

Microscopic model for the moiré

perturbation

To describe the interlayer coupling in graphene/h-BN heterostructure, several stud-

ies [87, 175, 189, 190] have made use of the similarity between this system and

twisted BLG. In the latter system [176–179], the electronic structure can be de-

scribed by a bilayer-like Hamiltonian, in which the intralayer blocks are given by

the Dirac Hamiltonian and the interlayer blocks describe the modulation of the

interlayer coupling as a function of the position within the mSL [178]. Applied to

the K valley of the graphene/h-BN heterostructure, such a Hamiltonian takes the

form

Ĥ2layer =

 vσ · p T̂ (r)

T̂ †(r) ĤhBN

 , ĤhBN =

 εN 0

0 εB

 ,

T̂ (r) =
1

3

∑
j=0,1,2

e−i(R̂2πj/3κ)·r

 γN γBe
−i 2π

3
j

γNe
i 2π

3
j γB

 .

As mentioned above, the Dirac Hamiltonian is used for the graphene layer, ĤhBN

describes the h-BN layer with εB and εN characterizing the on-site energy of

the boron and nitrogen sublattices, respectively, and T̂ (r) describes the spatially

varying interlayer coupling, with γB and γN being the hopping integrals from
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graphene to the boron and nitrogen sites, respectively. For the energies of inter-

est, |ε| � |εN |, |εB|, the Hamiltonian can be projected onto the Hilbert space of

the graphene layer using a Schrieffer-Wolff transformation [61, 62], so that the

perturbation can be parametrized by Eq. (3.6) with,

{U±i=0,1,3} = V ±

{
±1

2
,−1,

−
√

3

2

}
, (F.1)

where

V + =
1

18

(
γ2
N

εN
+
γ2
B

εB

)
, V − =

√
3

18

(
γ2
N

εN
− γ2

B

εB

)
.
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Appendix G

Vectors in non-orthogonal

coordinates

The word “covariant” and “contra-variant” describes “how the quantitative de-

scription of certain geometric or physical entities changes with a change of basis”

[202] . When an orthogonal basis is rotated into another orthogonal basis, the dis-

tinction between co- and contra-variant vectors is invisible, but in skew coordinate

or, curvilinear coordinates, the differences are clear.

Definition: Let V be a vector space of dimension N over the field of scalar

S, and let each of f = (x1, x2, ..., xn), f ′ = (y1, y2, ..., yn) (a row array with basis

vector entries) be a basis of V , then the change of basis from f to f ′ is given by

the following:

f → f ′ = (
∑
i

a1ixi, ...,
∑
i

anixi) = fA, (G.1)

where a1i is a scalar without an array structure. A is an invertible n×n matrix with

entries aji, each vector xi of f and yi of f ′ is a linear combination yj =
∑

i ajixi.

Based on the transformation matrix A and a fundamental transformation equation

of basis f ′ = fA (f ′A−1 = f), we can define two different types of vector by

comparing their form with the form of the transformation of the basis.
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G.1 Contra-variant vector

First, the contra - variant vectors are defined as follows: One vector “v”(a col-

umn array with vector entries) in V is expressed as one linear combination of the

elements of the f basis as v =
∑

i v
i[f ]xi, where vi[f ] are scalars without array

structure in S (e.g. coordinates), known as the components of v in the f basis.

Denote the column vector of components of v by v[f ] (the column array with a

scalar entry vi[f ]) as follows:

v[f ] =

(
v1[f ] ... vn[f ]

)T
.

To ensure that the above equation can be expressed as the matrix product of one

row vector and one column vector, start from the equality that a position vector

in any arbitrary coordinate system is identical

fv[f ] = f ′v[f ′]. (G.2)

One obtains v[fA] = A−1v[f ]. The method for transforming v is opposite to the

method of transforming basis f ; thus, v are called “contra-variant vectors”.

For a vector, such as a velocity or direction vector, to be basis-independent, the

component of the vector must contra-vary with the change of basis to compensate.

That is, the components must vary with the inverse transformation to that of the

change of basis. Examples of contra-variance include the position of an object

relative an observer, or any derivative of position with respect to time, such as

velocity and acceleration.

G.2 Covariant vector

Covariant vectors are defined as follows: One linear functional α (row array with

vector entries) on V is uniquely expressed in terms of its components α(xi) (scalar

in S without array structure) in the f basis as α(xi) = αi[f ], α(yi) = αi[f
′]. These
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components are the result of α acting on the basis vector xi of f basis under change

of basis f ′ = fA.

αi[f
′] = α(yi) = α

(∑
i

ajixi

)
=
∑
i

ajiα(xi) =
∑
i

ajiαi[f ].

The last two steps apply the properties of linear functional. Then, rewriting in the

matrix form, we obtain the following: α[fA] = α[f ]A. Because the components of

the linear functional α transform with the matrix A, these components are said to

transform covariantly under a change of basis.

For a dual-vector to be basis-independent, it must covary with a change of

basis (i.e. it must be subject to the same transformation as the change of basis).

Thus, these dual-vectors (or co-vectors, as opposed to the vectors) are said to

be covariant. In general, covariant vectors appear when taking the gradient of a

function.

In physics, contra-variant vectors often have units including a distance unit,

whereas covariant vectors often have units including an inverse-distance unit.

G.3 Practical calculations in the Thesis

From the expression above, it can be determined that

α[f ′]v[f ′] = α[f ′]AA−1v[f ′] = α[f ]v[f ]. (G.3)

This means that the dot product between corresponding coordinate of contra-

variant and covariant vector is identical. Alongside Eq. (G.2), all properties of

non-coordinates can be evaluated. But one needs to ensure that the following

relation does not hold:

fα[f ] 6= f ′α[f ′]. (G.4)

For example, the common orthogonal basis f , corresponding column vector
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v[f ] and linear functional vector α[f ] are

f = (x̂, ŷ), v[f ] = (x, y)T , α[f ] = (kx, ky). (G.5)

In addition, we introduce a new non-orthogonal basis f ′,

f ′ = (x̂1, x̂2), x̂1 =
1

2
x̂+

√
3

2
ŷ, x̂2 = −1

2
x̂+

√
3

2
ŷ. (G.6)

In this new basis, the column vector v[f ′] and linear functional vector α[f ′] are

notified as

v[f ′] = (x1, x2)T , α[f ′] = (k1, k2). (G.7)

From Eq.(G.2) and Eq.(G.3), we can get the following equations,

xx̂+ yŷ = x1x̂1 + x2x̂2,

xkx + yky = x1k1 + x2k2.

Their solutions are

x1 = x+
1√
3
y, x2 = −x+

1√
3
y,

k1 =
1

2
kx +

√
3

2
ky, k2 = −1

2
kx +

√
3

2
ky.

As shown in Fig. G.1, one can notice the coordinates of reciprocal superlattice

vectors in non-orthogonal coordinate system are much simplified, all components

of momentum can be expressed by integer times
√

3b/2.

Furthermore, Eq. (G.4) suggests that

kxx̂+ kyŷ 6= k1x̂1 + k2x̂2.
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Figure G.1: Momentum in orthogonal and non-orthogonal coordinates. (Left) The
first order of reciprocal superlattice vectors (shown in Fig. 3.5) in Cartesian coordinate
system. (Right) The first order of reciprocal superlattice vectors in non-orthogonal
coordinate system.

Therefore, we define two new vectors c1 and c2 to fulfill the identity of vector

kxx̂+ kyŷ = k1c1 + k2c2.

This suggests that

c1 = x̂+
1√
3
ŷ, c2 = −x̂+

1√
3
ŷ, (G.8)

Note that c1 and c2 are not unit vector, but they fulfills

x̂i · cj = δij. (G.9)

If one choose gauge for letting vector potential along c1 or c2 direction, this

choice can simplify the solution of LLs, so

A = −
√

3

2
Bx1c2. (G.10)

Therefore, in a magnetic field, the momentum changes to

p̂→ p̂+ eA = k1c1 + k2c2 − e
√

3

2
Bx1c2, (G.11)
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So the operator π̂ transforms into

π = (x̂+ iŷ) · (k̂ + eA)

=

[
(x̂1 − x̂2) +

i√
3

(x̂1 + x̂2)

]
·

[
k1c1 + k2c2 − e

√
3

2
Bx1c2

]

=
2√
3

[
ei
π
6 k1 + ei

5π
6 (k2 −

√
3

2
eBx1)

]
.
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Appendix H

The magnetic translational group

and magnetic Bloch wave function

H.1 The magnetic translational symmetry

We know that an electron in a square lattice crystal in a magnetic field will be

subject to both the periodic lattice potential as well as the magnetic vector po-

tential. For an electron in a hexagonal moiré superlattice in a magnetic field, once

the magnetic field fulfills the relation BS/φ0 = p/q, where S is the area of unit

cell and p, q ∈ Z, the translational symmetry of the electron will be recovered but

in a reduced way [82, 107]. To investigate this further, we start from the gauge

invariance of the Hamiltonian. Consider an electron existing in a periodic poten-

tial environment in the absence of a magnetic field B. The Hamiltonian of the

electron obeys translational symmetry as follows:

T̂XĤ(r) = Ĥ(r +X) = Ĥ(r),

T̂Xϕ(r) = eik·Xϕ(r),

where X = m1a1 + m2a2, and T̂X are geometrical translations. However, when

a magnetic field is present, its vector potential A(r), depends on the coordinate.

Therefore, the Hamiltonian, Ĥ(r), after a translation a is Ĥ(r + a), which is
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not necessarily the same as Ĥ(r). To preserve the translational symmetry of the

Hamiltonian, one can apply gauge invariance so that the vector potential A(r)

and the eigenfunction of a Hamiltonian ψ to fulfill the relation [82]:

A→ A+∇f(r), ψ → ψeief(r),

where f(r) is an arbitrary function that depends on the coordinates. To describe

the transformation of the wave function in a magnetic field, one can define a

“magnetic translation operator” Θ̂X = eief T̂X , where

f(r) = −Bẑ · r × (m1a1) = Bm1ax2

√
3/2.

This operator generates a magnetic translational group as follows:

GM = {Θ̂X = eieBm1a
√
3

2
x2T̂X ,X = m1a1 +m2a2},

where Θ̂X is known as the “magnetic translational operator”.

Θ̂XΘ̂X′ = ei2π
p
q
m′1m2Θ̂X+X′ , Θ̂XΘ̂X′ = ei2π

p
q

(m′1m2−m1m′2)Θ̂X′Θ̂X .

The subgroup of GM is comprised of translations

G′M = {Θ̂R = eieBm1a
√

3
2
x2T̂R,R = m1qa1 +m2qa2},

on a (q × q)-enlarged superlattice. In subgroup G′M , the additional phase factor

induced by commutation of magnetic translational operators automatically van-

ishes:

Θ̂RΘ̂R′ = Θ̂R+R′ , Θ̂RΘ̂R′ = Θ̂R′Θ̂R,
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This subgroup, G′M , is isomorphic to the simple group of translations, T̂R, so that

the eigenstates of Θ̂R form a plane wave basis,

Θ̂Rψk(r) = eik·Rψk(r).

Moreover, all reciprocal lattices shrink by 1/q, i.e. the momentum space is folded

onto a magnetic BZ (mBZ) with area
√

3b2/(2q2).

Furthermore, because the translation operator Θ̂a2 commutes with Θ̂R, one can

define a new quantum number t ∈ [0, · · · , q− 1] to index this q-fold degeneracy as

follows:

Θ̂qa2ψk(r) = (Θ̂a2)
qψk(r) = eik·qa2ψk(r),

Θ̂a2ψk(r) = ei2πt/qeika2ψk(r), t ∈ [0, q − 1], (H.1)

Note that the operator Θ̂a2 does not commute with Θ̂a1 , so that one cannot use

Θ̂a1 to define another new quantum number.

H.2 Magnetic Bloch wave function

Below, we attempt to build a Bloch wave function based on the LL wave function

Eq. (3.18). The result of applying a magnetic translation operator to the LL wave

function is:

Θ̂n1a1ψ
k2
n = ψ

k2+n1

√
3b
2

p
q

n , Θ̂n2a2ψ
k2
n = ein2ak2ψ

k2+n1

√
3b
2

p
q

n .

Moreover, the Bloch wave function |X〉 needs to satisfy the requirement of group

theory, where X are quantum numbers, which will be determined later,

Θ̂sqa1|X〉 = eik1qas|X〉, Θ̂rqa2|X〉 = eik2qar|X〉, s, r ∈ Z. (H.2)
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The summation of the nth LL wave function all over sites is given by the following:

∑
r,s

Θ̂sqa1Θ̂rqa2ψ
k2
n =

∑
r,s

eiqark2ψ
k2+

√
3b

2q
pqs

n .

To satisfy the requirement, one can multiply the additional phase factor, e−ik2qar

and eiqask1 to complement the two equations of Eq. (H.2) respectively. Further-

more, the argument k2 +
√

3b
2q
pqs can not cover the entire k2 axis, because that the

magnetic Brillouin zone is k2 ∈
√

3b
2q

[−1
2
, 1

2
]; therefore further quantum numbers are

needed. It is intuitively to take v ∈ [0, pq − 1], so

|n, v,k〉 =
1

N
3
2

∑
s

ei(k1qs+k2sr)aΘ̂−qsa1Θ̂−rsa2ψ
k2+

√
3b

2q
(qps+v)

n ,

However, considering that there is one additional q-fold degeneracy as given by

Eq. (H.1), it is more convenient to set two separate quantum numbers j ∈ [0, p−1]

and t ∈ [0, q − 1] (with the coprime property between p and q guaranteeing that

there will be no superposition points), so that the final Bloch wave function is

given as follows:

|n,jt,k〉 =
1

N
3
2

∑
r,s

ei(k1qs+k2sr)aΘ̂−qsa1Θ̂−rsa2ψ
k2+

√
3b

2q
(qj+pt)

n

=
1√
N

∑
s

eik1qasψ
k2+

√
3

2
b
q

(pqs+jq+tp)
n , (H.3)

where the sum runs over s = −N/2, · · · , N/2. This basis is similar to the set of

Bloch states for a one-dimensional chain with p sites per elementary unit cell, and

multiple atomic orbitals on each site are labelled by the LL index, n. It is easy to

confirm that Eq. (H.3) fulfills the magnetic translational group requirement, and

has the following properties:

Θ̂a1|
n,j
t,k〉 = |n,jt+1,k〉, Θ̂a2|

n,j
t,k〉 = ei

2πpt
q eik·a2|n,jt,k〉.
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Appendix I

The Berry phase

I.1 Origin and definition of Berry phase

Assuming that an eigenstate, |n(R)〉, of a Hamiltonian Ĥ(R), evolves adiabatically

in a circle in a parameter space, R, the state evolves in the circle such that it differs

by a phase factor from the initial state. This phase factor is the so-called Berry

phase Γn, which can be expressed as a path integral in the parameter space as

follows:

Γn =

∫
C

dR · An(R), (I.1)

where the vector-valued function

An(R) = i 〈n(R)| ∂
∂R
|n(R)〉 , (I.2)

is called the Berry vector potential. Eq. (I.1) shows that, in addition to the

dynamical phase, the quantum state will acquire an additional phase Γn.

In a two-dimensional parameter space (such as momentum space), one can

derive the Berry curvature Ωn(k) from the Berry vector potential, An(k) as follows:

Ωn(k) = [∇k × An(k)]kz . (I.3)
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Berry phase can be expressed as a form of flux,

Γn =

∮
S

dS ·Ωn(k). (I.4)

In this form, the Berry curvature Ωn(k) and Berry vector potential An(k) resemble

a magnetic field B and a magnetic vector potential A. The difference is that real

space changes to parameter space.

I.2 Berry phase and LLs of graphene

To introduce the impact of Berry phase on the vanishing of the “zero point energy”

of LL, following the discussion in reference [92], we consider a normal electron in a

magnetic field, with a vector potential A. The canonical momentum is replaced by

p = k − eA, and the semiclassical model of electrons in a magnetic field suggests

that k̇ = −eṙ ×B. Then, coordinate r and momentum p are prescribed by the

Bohr-Sommerfeld quantization rule (to ensure a single valued wave function),

∮
dr · p = 2π

(
n+

1

2

)
, (I.5)

where n is an integer, and the additional fraction 1/2 accounts for the Maslov

Index [187]. Substituting the expression for k into Eq. (I.5) and applying Stokes’

theorem, we obtain the following:

φ

φ0

= n+
1

2
, (I.6)

where φ = BS = Bπr2 is the magnetic flux threading the orbit of electron,

and φ0 = h/e is the flux quantum. One can translate this from real space into

momentum space with the relation k = −er×B+ constant, which is the integral
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of the acceleration equation of an electron in a magnetic field.

k2

2eB
= n+

1

2
. (I.7)

Now that the momentum is quantized, accordingly, the energy can also be evalu-

ated. Let us consider the free electron gas,

En =
k2

2m
=

(
n+

1

2

)
ωC , (I.8)

where ωC = eB/m is the frequency of a cyclotron. Note that the Maslov index is

the origin of the “zero point energy” of two-dimensional electron gas.

The vanishing of zero point energy for the LL of graphene occurs because of the

existence of the π Berry phase. One Bloch electron cycle in graphene will attain

an extra π factor, so the Bohr-Sommerfeld rule for graphene is given as follows:

∮
dr · p+ π = 2π

(
n+

1

2

)
, (I.9)

Obviously, the π Berry phase cancels the effect of the Maslov Index and zero point

energy. Thus, the LL spectrum of graphene features a zeroth LL independent of

the strength of the magnetic field as follows:

En = vk = v
√

2neB, n = 0, 1, 2, · · · (I.10)

I.3 Berry phase in Bloch bands

An electron in a crystal can be described by the Bloch wave function ψnq(r),

where q is the crystal momentum, located in the first Brillouin zone. Following

the discussion in reference [91], we use the transformed eigenstate

unq(r) = e−iq·rψnq(r), (I.11)
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to satisfy the strict periodic boundary condition, unq(r+a) = unq(r), where a is a

lattice vector. Following Eq. (I.11), the Bloch state’s Berry phase, Berry curvature

and Berry vector potential are given as follows:

Γn =

∮
C

dq · An, Ωn(q) = ∇q × An, An = 〈un(q)| i∇q |un(q)〉 . (I.12)

I.4 The calculation of Berry phase for the mag-

netic minibands of the graphene/h-BN het-

erostructure

The Berry phase Γm, Berry vector potential Am and Berry curvature Ωm(k),

Eq. (I.12), of the third generation of DPs of moiré perturbed graphene, for a

circular contour, are expressed in terms of non-orthogonal momenta k1 and k2, at

k1 = k2 = 0:

Γm = i

∫ 2π

0

dθ[cos(θ +
π

6
)〈um(k)|∂k1um(k)〉 − cos(θ − π

6
)〈um(k)|∂k2um(k)〉],

Am = îi〈um(k)|∂k1um(k)〉+ iĵ〈um(k)|∂k2um(k)〉,

Ωm(k) = −2Im[〈∂k1um(k)|∂k2um(k)〉],

where

um(k) = e−ik·r
∑
n

Cn,j
m (k)|n,j0,k〉

=
∑
njs

Cn,j
m (k)

eik1(qas−x1)ex2
√

3
2
b(ps+j)√

NL(2− δ0n)

 ϕ|n|(z(s, j))

−ei 2π3 n
|n|ϕ|n|−1(z(s, j))

 ,

with z(s, j) =
√

3
2

x1
λB
− (k2 +

√
3

2
b(ps+ j)), Cn,j

m (k) being the coefficient of the mth

bands, which comes from the eigenvector of the Heisenberg matrix.

One can calculate the distribution of the Berry curvature in the Brillouin zone
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using

〈∂k1um(k)|∂k2um(k)〉 =
1

N

1√
3

∑
n1,n2,j,s

1√
(2− δn10)(2− δn20)

× [Gj,s
m,n1

(∂k2C
n2,j
m (k))

√
3δ|n1|,|n2|(1 +

n1n2

|n1n2|
)

−Gj,s
m,n1

Cn2,j
m (k)λB

√
3δ|n1|,|n2|−1(

√
2|n2|+

n1n2

|n1n2|
√

2(|n2| − 1))

+ Gj,s
m,n1

Cn2,j
m (k)λB(1 +

i√
3

)

√
3

2
(F|n2|,1
|n1| +

n1n2

|n1n2|
F|n2|−1,1
|n1|−1 )

+
i2λB√

3
Cn1,j∗
m (k)(∂k2C

n2,j
m (k))

√
3

2
(F|n2|,1
|n1| +

n1n2

|n1n2|
F|n2|−1,1
|n1|−1 )

− i2λB√
3
Cn1,j∗
m (k)Cn2,j

m (k)λB

√
3

2
(
√

2|n2|F|n2|−1,1
|n1| +

n1n2

|n1n2|
√

2(|n2| − 1)F|n2|−2,1
|n1| )

+
i2λ2

B√
3
Cn1,j∗
m (k)Cn2,j

m (k)(1 +
i√
3

)

√
3

2
(F|n2|,2
|n1| +

n1n2

|n1n2|
F|n2|−1,2
|n1|−1 )

+
i2λ2

B√
3
Cn1,j∗
m (k)Cn2,j

m (k)(1 +
i√
3

)
1

2
δ|n1|,|n2|(1 +

n1n2

|n1n2|
)],

where

Gj,s
m,n1

= (∂k1C
n1,j
m )∗ − iCn1,j∗

m (qas− 2λ2
B√
3

(k2 +

√
3

2
b(ps+ j))),

Fn2,n3
n1

=


√
n1!n2!n3!

(
n1+n2−n3

2
)!(

n2+n3−n1
2

)!(
n3+n1−n2

2
)!

For n1 + n2 + n3 = even

0 For n1 + n2 + n3 = odd

In the case of a small gap induced by u0 = 1/1000, the Berry phase is approx-

imately π. With the increasing of the size of the gap, the Berry phase rapidly

decreases, but still occupies at least half of π in the region of the tip of the cone.

This confirms that the LL structure shown in Fig. 3.8 is a manifestation of (gapped)

Dirac Hamiltonian. In the ideal case, where u0 = u1 = 0, u3 = 0.15, as shown in

the zeroth LL in the bottom panel of Fig. 3.12, the Berry phase of an electron in

a finite magnetic field in a moiré superlattice will be exactly π.

For practical numerical calculation of the Berry phase, there are some points

that need to be mentioned. First, the gauge choice for Cn,j
m (k) should be continu-

ous in K. Otherwise, in the procedure for the diagonalization of the matrix, the
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eigenfunctions corresponding to degenerate eigenvalues may cause an artificial dis-

continuity in the derivatives of the eigenstates because they appear in the wrong

sequence.

Secondly, because most of the Berry phase is concentrated at the very centre

of the secondary DP, the numerical calculation of derivatives needs to evaluate

the difference in the eigenstates in a very small step. One could appeal to the

numerical method of multi-points interpolation to increase the accuracy in the

vicinity of the secondary DP.
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Appendix J

Electronic transport in

mesoscopic systems

J.1 Landauer-Büttiker (LB) formula

Consider an one-dimensional conductor of length L, there is only one transverse

mode of electron with wave number k, and the probability density per unit length

is n = 1/L. So the corresponding electronic current (the charge of electron is −e)

is

I = −
∑
k

envk = −2e

h

∫
dE, (J.1)

where the velocity of the electron vk = dE/(dk~), factor 2 comes from the spin

degeneracy, and relation
∑

k(· · · ) = (L/2π)
∫

(· · · )dk used.

Next, let us consider that two conductors are connected, we label them as left

and right side of the interface, and all states in left (right) conductor are filled to

chemical potential µL (µR). Thus, the current flow is due to the electrons with

energies in the range between µL and µR (and linear response holds [117]). The
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injected current from left side is

I in
L = −2e

h

∫ µL

µR

dE =
2e2

h

µR − µL
e

. (J.2)

If the contact is not reflectless, the electron has a probability to be reflected,

thus we use transmission probability T to describe this. Thus, the outgoing current

in the right side and the reflected current in the left side are

Iout
R =

2e2

h

µR − µL
e

T, Iout
L =

2e2

h

µR − µL
e

(1− T ). (J.3)

The total current flow though the interface is

I = I in
L − Iout

L =
2e2

h

µR − µL
e

T. (J.4)

This is the origin of Eq. (6.1).

Since the electronic voltage drop across the conductor is V = (µL − µR/(−e),

and the conductance is G = I/V , thus,

G =
2e2

h
T. (J.5)

This is the Landauer-Büttiker (LB) formula for a single-mode wire at zero tem-

perature.

If there are multiple transverse modes in the conductor, and the temperature

is not zero, then the transmission probability of each channel, will be a function

of transverse momentum(ky), temperature T, Fermi level εF , energy ε or other

variables, T (ky,T, εF , ε, · · · ), and the conductance is

G =
2e2

h
T̄ , T̄ =

∑
ky

T (ky,T, εF , ε, · · · ), (J.6)

where T̄ is total transmission probability for all channels.

If there are more than two terminals, then the current flow going out from the
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terminal p is the summation of pure current from all the other terminals:

IL =
2e

h

∑
M

[T̄MLµL − T̄LMµM ]. (J.7)

Here, T̄LM is the total transmission probability from terminal M to terminal L.

The conductance between two terminals from L to R is

GRL =
2e

h
T̄RL. (J.8)

In the calculation of this thesis, the LB formula of multi-terminal and finite

temperature is not referred. Further detailed discussion can be found in [117].

J.2 Important physical properties in transport

problem

In order to use the Landauer formula, it is necessary to calculate the total trans-

mission probability T̄ , and this can be archived by using scattering theory [117].

Basically, total transmission probability T̄RL (suppose here we have only left and

right two terminals) is the summation over all transmission probability between

transverse modes in different terminals, i.e.

T̄RL =
∑
m∈L

∑
n∈R

Tnm, Tnm = |snm|2 . (J.9)

Here, n and m are indexes of different transverse modes in left and right side,

respectively. Tnm is the transmission probability between transverse modes n in

right contact and m in left contact. snm is the transmission coefficients between

transverse modes n in right contact and m in left contact, which is also the element

of scattering matrix SRL = [snm].
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Thus, the Landau conductance and conductivity are

G = gsgv
e2

h
tr
[
S†RLSRL

]
, σ =

L

W
G. (J.10)

Here, gs and gv are degeneracy indices for spin and valley, respectively. L and W is

the length and width of two-dimensional materials. The noise in electronic trans-

port problem can be understood as the interference between different channels, so

it can not be expressed by conductivity, and it is given by

P = tr
[
S†RLSRL(1− S†RLSRL)

]
. (J.11)

The Fano factor [134] measures the shot noise 1 . Fano factor is given by

F = 1−
tr
[
S†RLSRLS

†
RLSRL

]
tr
[
S†RLSRL

] . (J.12)

The Fano factor of clean graphene (and BLG) is the same as diffusive metal, 1/3

[29]. Both Fano factor and conductivity are important parameters for a material

of a detector.

So the key to solve the problem is generalized into obtaining the scattering

matrix SRL.

J.3 Scattering matrix

In quantum mechanics, an electron is described by a wave function. Using the

superposition principle, one can solve the scattering problem of an electron incident

on a scatterer [133].

Consider an incident electron wave function, Ψin, and outgoing electron wave

1Shot noise is the noise caused by fluctuation that a detector receives. Once the signal is weak,
amount of incoming particles is few, and the fluctuation matters. We use shot noise to describe
this noise and Fano factor to describe the distribution of related events, which is different from
Poisson distribution, as these events in Poisson distribution are not related to each other. It can
be understood as noise to signal ratio.
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function, Ψout, which can be expressed as follows:

Ψin =
∑
m

amψ
in
m , Ψout =

∑
n

bnψ
out
n , (J.13)

where am and bn are coefficients and ψinm and ψoutn are the basis functions consti-

tuting the full orthogonal basis. For a simple incident wave

Ψin = ψin1 , (J.14)

where a1 is constant, the quantum-mechanical transition amplitude from state ψin1

to the state ψoutn is denoted using sn1 by

ψin1 =
∑
n

〈
ψoutn |ψin1

〉
ψoutn =

∑
n

sn1ψ
out
n . (J.15)

The (first-indexed) outgoing wave is,

Ψout
1 =

∑
n

sn1ψ
out
n . (J.16)

Therefore, for an arbitrary incident wave,

Ψin =
∑
m

amψ
in
m , Ψout

m =
∑
n

snmψ
out
n , (J.17)

Ψout =
∑
m

amΨout
m =

∑
m

am
∑
n

snmψ
out
n ≡

∑
n

ψoutn ,

where am is the coefficient of the basis. Thus,

bn =
∑
m

snmam. (J.18)
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If the coefficients bn and am are collected into vector columns,

b̂ =


b1

b2

· · ·

 â =


a1

a2

· · ·

 , (J.19)

then the quantities snm can be treated as a matrix:

S = [snm], (J.20)

which is the so-called scattering matrix. Note that a summation over each line and

each column of the transmission probability matrix Tnm = |snm|2 are equal to unity,

because of flux conservation. In other words, the summation of the amplitude

probability of reflected and transmitted wave equals that of incident wave, i.e.

unit. This can be used to check the validity of our numerical calculations.

Depending on the different arrangements of the coefficient columns â and b̂,

the scattering matrices can be divided into an s-matrix or a t-matrix. In each

scatterer, if all coefficients (both inwards and outwards) of each side are gathered

into coefficient columns, this scattering matrix is the so-called “t-matrix”. On

the other hand, if the coefficients are classified as inwards and outwards to the

scatterer (irrespective of their sides), the scattering matrix is the so-called “s-

matrix”. The advantage of the t-matrix is that it is analytically friendly and

can easily conjoins successive transmission process, but it is numerically unstable

because of the potential propagation of evanescent modes. In contrast, the use of

the s-matrix is more complicated, but it is generally stable.

As shown in Fig. 6.1, there are four wave functions at the left interface between

the left lead and nano ribbon (the incident wave function is leftward). If the â

comprises the coefficients of ψ>L and ψ<L (left side), and b̂ comprises the coefficients

of ψ>C and ψ<C (right side), then the constructed matrix [SCL] is the t-matrix. If â

comprises the coefficients of ψ>L and ψ<C (inward to the surface), and b̂ comprises
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the coefficients of ψ>C and ψ<L (outward from the surface), then the constructed

matrix [SCL] is the s-matrix.

J.4 Mode matching

Because the probability of electron is continuous everywhere, one can match the

outgoing wave function and the incident wave function to solve the scattering

problem of an electron at an interface [133]. .

Commonly, the Schrödinger equation is second-order derivative equation. Be-

cause that the electronic probability is continuous, the wave function and its first-

order derivates are continuous (one can integrate Schrödinger equation to get a

first-order derivative equation). One can get two equations at each interface. For

Dirac equation of graphene, it is first-order derivates equation. We do not nec-

essarily get the continuous condition of first-order derivates. So the number of

equations we get is halved. However, Dirac equation Eq. (2.19) has 2 × 2 matrix

structure, which provides additional boundary condition. Furthermore, The effec-

tive Hamiltonian of BLG in low energy Eq. (2.24) is second order. In principle, we

can apply the continuous condition of first-order derivates. An alternative way of

matching wave function of BLG is to use the 4 × 4 Hamiltonian, Eq. (2.22). We

replace the continuous condition of first-order derivates by continuous condition

of wave function of more sites. In practice, (discontinuous) potential that in the

interface may be important to the wave function of dimer sites, so a first-order

derivates condition may not be the best choice. That is the reason we chose 4× 4

Hamiltonian and corresponding to wave function in our calculation.

J.5 Evanescent and propagating modes

A fundamental equation of mesoscopic transport problem is “Single-band effec-

tive mass equation”. Its basic idea is to consider necessary band only (normally

conduction band), absorb the lattice potential into the effective mass (by expan-
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sion at the extreme point in BZ), and discretize the continuous band into several

minibands.

Anyway, one can easily extend these ideas into Dirac equation of graphene.

[v(i~∇+ eA) · σΨ(r)] = EΨ(r). (J.21)

Here, A is vector potential and m is the effective mass of quasi electron. The

solution (with A = 0) can be written in the form

Ψ(r) =

 φA

φB

 eikxxeikyy. (J.22)

By applying the periodic boundary condition on the wave function along transverse

direction, the transverse momentum is given by,

ky = ny
2π

W
, (J.23)

where W is the width of the nano-ribbon. The momentum along longitudinal

direction, kx, is continuous. Thus the continuous band is discretized into several

sub-bands,

E2(kx, ny) = v2

(
k2
x + n2

y

4π2

W 2

)
. (J.24)

Thus, each wave function referring a discretized ky is a “transverse mode” or a

“channel”.

From this point of view, we can distinguish “evanescent mode” and “propa-

gating modes”. In Eq. (J.24), if E2 < v2n2
y4π

2/W 2, then we get k2
x < 0, and this

will leads to an imaginary momentum kx = iκx. Correspondingly, longitudinal

plain wave eikxx = e−κxx. This wave will decay (or explode, depends on the sign

of κx) with the increase of length, so it is called evanescent mode. The existence

of evanescent mode is the reason of numerical instability of t-matrix. The group
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velocity of evanescent mode wave function is zero. Depends on the absolute value

of κx, evanescent mode may travel through a certain length before it vanishes, but

it can not penetrate an infinite length system. Oppositely, the plain wave referring

to a real number of kx is “propagating modes” as it will not decay in propagation.
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Appendix K

Methods of accelerating the GF

calculation

K.1 Recursive Method and Gauss elimination

The recursive Green function (GF) method [117, 121] follows from the practical

demand for efficiently inverting a matrix. It relies on the fact that interactions

between atoms are dominated by the nearest neighboring atomic orbitals. It is

possible to build a GF atom by atom though a recursive procedure. If the Hamil-

tonian can be block diagonalized into the following form:

H =



H11 V12 0 0 0

V21 H22 V23 0 0

0 V32 H33 ... 0

0 0 ... ... Vm−1m

0 0 0 Vmm−1 Hmm


, (K.1)
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then the corresponding GF can be derived recursively to have the following form:

G =





G
(m)
11 ... ... G

(m)
1m−1

... G
(m)
22 ... ...

... ... ... ...

G
(m)
m−11 ... ... G

(m)
m−1m−1





G
(m)
1m

...

...

G
(m)
m−1m


(
G

(m)
m1 ... ... G

(m)
mm−1

) (
G

(m)
mm

)


, (K.2)

where elements can be recursively expressed as follows:

G(m)
mm =

(
(E −Hmm)− Vmm−1G

(m−1)
m−1m−1Vm−1m

)
−1,

G
(m)
1m = −G(m−1)

1m−1 Vm−1mG
(m)
mm,

G
(m)
m1 = −G(m)

mmVmm−1G
(m−1)
m−11 ,

G
(m)
ab = G

(m−1)
ab +G

(m−1)
am−1 Vm−1mG

(m)
mmVmm−1G

(m−1)
m−1b . (K.3)

Here, the impact from the m − 1th slice to the mth slice can be calculated using

the GF G
(m−1)
m−1,m−1, where the superscript denotes the (m − 1) recursive step, and

the subscript indicates the block of the m − 1th line and m − 1th column. All

expressions start from the first-order GF, G
(1)
11 = (E − H11)−1. At the mth step,

the first evaluated block is G
(m)
mm, which requires the Hamiltonian of the slice m

(E − Hmm), the two corresponding neighboring interaction matrices (V1m, Vm1)

and the block GF of the m− 1th slice of the m− 1 slices system (G
(m−1)
m−1m−1). Once

the G
(m)
mm is obtained, the other block is achievable.

From the perspective of practical application, the most essential block is GRL,

in particular, the G
(m)
m1 . Less important blocks are G11, G1m and Gmm. One

can use them to check correctness via the unitary relation of the transmission

probability matrix and the transmission function. The next most useful blocks are

the diagonal matrices, which will be needed in the calculation of density of states.

The rest of the block matrices are useless, calculating them all will drastically slow

the calculation. We should necessarily store the very end slice, G
(m−1)
m−1m−1 for G

(m)
mm,
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and the other three corner blocks G
(m−1)
1m−1 , G

(m−1)
m−11 , and G

(m−1)
11 (or even only the

left-lower corner if one only need SRL). If one wants the density of states, the

diagonal block should be stored, too.

The physical meaning of recursive GF method is intuitive. For our current

sliced system, each Hamiltonian matrix block represents the dynamical property

of each slice in real space. We know that the G (r, r′) represent the response

at r to the source at r′. For our current sliced situation, G
(m)
ab represents the

response at b to source at a. From this perspective, let us reconsider the expression:

G
(m)
m1 = −G(m)

mmVmm−1G
(m−1)
m−11 . The first one, G

(m)
m1 , which represents the response of

the right lead to the excitation in the left lead, consists of G
(m−1)
m−11 , Vmm−1 and G

(m)
mm;

they represent the excitation generated at the 1st slice; this excitation spreads to

the entire conductor until the m−1th slice and generates a response at the m−1th

(G
(m−1)
m−11 ); then, the excitation affects the next slice mth via the interaction matrix,

Vmm−1. Finally, the mth slice generates a response to the excitation in itself, in

particular, namely G
(m)
mm. Furthermore, we can transform G

(m)
m1 as follows:

G
(m)
m1 = −G(m)

mmVmm−1G
(m−1)
m−11

= G(m)
mmVmm−1G

(m−1)
m−1m−1Vm−1m−2G

(m−2)
m−21

= (−1)mG(m)
mmVmm−1G

(m−1)
m−1m−1. (K.4)

Then, the physical meaning is clearer. A source of excitation at the 1st slice, via

V21, it spreads to 2nd slice, then transports on and on, until the very last slice mth,

where we denote the response at mth to the source 1st with G
(m)
m1 . The second

expression is as follows:

G
(m)
ab = G

(m−1)
ab +G

(m−1)
am−1 Vm−1mG

(m)
mm. (K.5)

With the interpretation above, the latter term G
(m−1)
am−1 Vm−1mG

(m)
mmVmm−1G

(m−1)
m−1b can

be understood as the excitation from the bth slice spreading to the mth (which

is the new slice) via Vmm−1, then spreading from the new mth slice back to the
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m− 1th slice via Vm−1m, so we can reasonably understand it as the reflection due

to a new slice. The first term in the right hand side of Eq. (K.5), G
(m−1)
ab , obviously

represents the response at the bth slice to an excitation at the ath slice without

mth slice, so we can understand G
(m)
ab as a superposition of the old response in the

1 ∼ m − 1 slices and the new response generates from the reflection by the new

mth slice.

K.2 Matrix decimation

Both the recursive GF technique and the to-be-introduced matrix decimation

method originate from the Gauss elimination, which eliminates unnecessary di-

mensions of a matrix for calculating the transport properties. The recursive tech-

nique discussed above only calculates and saves the necessary blocks of GF, so as

to avoid the immense computational effort of inverting a huge matrix.

Matrix decimation directly decimates the unnecessary freedom of a huge matrix

of a Hamiltonian, but its numerical stability is not as good as that of the recursive

technique.

Consider an N ×N matrix H = E − Ĥ. If the lth dimension needs to be dec-

imated, its influence can be effectively expressed as a modification of all elements

Hij in this matrix:

H
(1)
ij = Hij +Hil(Hii −Hll)

−1Hlj, (K.6)

where H
(1)
ij is the element of a new decimated matrix H(n−1), all related elements

will be transformed into an effective form. It is very suitable to treat elements or

blocks with only nearest-slice-interactions. The recursive form of this decimation

expression is as follows:

H
(n)
ij = H

(n−1)
ij − H

(n−1)
il H

(n−1)
li

H
(n−1)
ll

. (K.7)
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Because of the fact that decimation is arbitrarily available to any diagonal block

(slice) in the matrix, and it does not need to involve the self-energy from the very

beginning, as in the recursive GF. Thus, we can decimate all of the extra freedom

from the Hamiltonian, i.e. all blocks describing the atomic sites inside the con-

ductor, only leave the blocks describing the atomic sites at the interface. Then,

we can connect the effective decimated Hamiltonian to the lead, then calculate

the GF with the self-energy of the lead. Finally, if the Hamiltonian of a crys-

tal has longitudinal translational symmetry, then the decimation process can be

accelerated.
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Appendix L

Several methods of self energy

calculation

L.1 Analytical treatment of the self energy of a

hexagonal lattice

Because of the contour path integration of the surface GF of graphene, the form of

the eigenfunction is hard to determine; therefore, another method is applied [119].

Consider a periodic lead coupled to a central region, which is described by the

following Hamiltonian and corresponding eigenfunction as follows:

HAllψAll =



... ... 0 0 0

B†L AL VL 0 0

0 V †L H V †R 0

0 0 VR AR B†R

0 0 0 ... ...





ψLe
−ikain + ψ̃Le

ikaout

ψLain + ψ̃Laout

φ

ψRbin + ψ̃Rbout

ψRe
−ikbin + ψ̃Re

ikbout


, (L.1)

where AX is the diagonal block representing each slice of lead, BX is the interac-

tion between slices of lead, VX is the interaction between lead and conductor, H

itself represents the Hamiltonian of conductor, ain,out and bin,out are the coefficients

of wave function, eink is the longitudinal wave function that provides a phase fac-
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tor for each additional slice, ψX and ψ̃X are the transverse wave function. The

corresponding eigenfunction of each slice is in the same line of the vector array. φ

is the wave function for the conductor, however, it has no particular form because

the situation inside the conductor not necessarily known; therefore, we will use the

surface wave function to express it.

Let us simplify to collect the terms including ain, aout, bin and bout, which can

be expressed using the following:

G
(0)
ab = Va(E −H)−1V †b . (L.2)

We obtain the following form

 aout

bout

 = S

 ain

bin

 , (L.3)

where the S-matrix is

S = −1 + i


(
−e−iktL −G(0)

LL

)
ψL −G(0)

LRψR

−G(0)
RLψL

(
−e−iktR −G(0)

RR

)
ψR


−1

vAΨA (L.4)

= −1 + iΨ

g−1 −

 G
(0)
LL G

(0)
LR

G
(0)
RL G

(0)
RR



−1

vAΨA,

where gX = −1
t
ψXe

ikψX , and notify:

vA =

 vL 0

0 vR

 , gA =

 gL 0

0 gR

 , (L.5)

ΨA =

 ψL 0

0 ψR

 , VA =

 VL

VR

 .
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Therefore, in the space of lead,

 G
(0)
LL G

(0)
LR

G
(0)
RL G

(0)
RR

 = VA(E −H)−1V †A (L.6)

Then,

S = −1 + iΨA

(
g−1
A − VA(E −H)−1V †A

)−1

vΨA (L.7)

= −1 + iΨAgAΨAvA + iΨAgAVA

(
E −H − V †AgAVA

)−1

V †gΨv

= −1 + iΨA
VA
t

(
E −H − V †gAVA

)−1 V
†
A

t
ΨAvA.

Finally, the self energy part is given as follows:

Σ = V †AgAVA. (L.8)

L.2 Amplitude transfer matrix method

This section will involve the amplitude transfer matrix (ATM). Based on its fun-

damental idea, we will discuss the accelerated amplitude transfer matrix (AATM)

as our main application. If the reader wants to know more about this numerical

method, we recommend an excellent review [127].

Define the amplitude transfer matrix T+, T− which represents the amplitude

of a unit source (Gn,m) to the right (Gn+1,m) or left (Gn−1,m) as follows:

Gn+1,m = T+Gn,m for n ≥ m,

Gn−1,m = T−Gn,m for n ≤ m,
(L.9)

where Gn,m is the matrix block at n, m. Thus, the definition of the GF in the form

of the multiplication of matrix GH̃ = I, where H̃ = E −H, yields the following:

H̃1G10 + H̃0G00 + H̃−1G−10 = −1, (L.10)
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where H̃1 = H̃n,n+1, H̃0 = H̃n,n and H̃−1 = H̃n,n−1, so

G00 = −(H̃1T+ + H̃0 + H̃−1T−)−1. (L.11)

Furthermore, in the case of left and right end surfaces, the T+ and T− matrices

will vanish. Therefore we obtain the boundary condition as the right surface GF,

GRS
00 , and the left surface GF, GLS

00 respectively (the superscripts “RS” and “LS”

denote the right surface and the left surface, and are not to be confused with the

“retarded” GF) as follows:

GRS
00 = −

(
H̃1T+ + H̃0

)
−1,

GLS
00 = −

(
H̃0 + H̃−1T−

)
−1, (L.12)

if one sets n′ = 0 and n 6= 0,

H̃0Gn,0 = −H̃−1Gn−1,0 − H̃1Gn+1,0

Gn,0 = −H̃−1
0

(
H̃−1Gn−1,0 + H̃1Gn+1,0

)
(L.13)

Let us apply the definition of T+ (T−) in the case of n > 0 (n < 0), so that the

recursive expression can be given as follows:

T
(n+1)
+ =

(
1− ν0T

(n)
+

)
−1µ0,

T
(n+1)
− =

(
1− µ0T

(n)
−

)
−1ν0, (L.14)

where µ0 = −H̃−1
0 H̃−1 and ν0 = −H̃−1

0 H̃1. The initial input can be given as

T
(0)
+ = T

(0)
− = 0. Thus, the transfer matrices T+ and T− can be evaluated for

as many slices as possible to simulate the effect of a semi-infinite lead. After we

obtain the T+ and T− that fulfills our precise demand, we can substitute them into

(L.12) to obtain the surface GF that we want.

There is one critical point in the general numerical calculation, in particular,
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we know that the entire matrix of the conductor is real, but after many inversions,

the real matrix will diverge. Therefore, we have to add a small imaginary part to

the energy as E + iη to avoid the divergence of the inverted matrix. The bigger η

is, the faster convergence but the lower precision will be and vice versa.

L.3 The accelerated amplitude transfer matrix

method

The ATM method is not difficult to understand, and it has a clearly physical

meaning [127]; however it has the downside of low convergent speed. Therefore,

the accelerated amplitude transfer matrix (AATM) is developed, on the basis of

the same concept as ATM. Substituting µ0 ν0 into (L.13), one can obtain the

following:

Gn,0 = µ0Gn−1,0 + ν0Gn+1,0. (L.15)

Applying (L.9), this becomes

Gn,0 = µ0T−Gn−2,0 + ν0T+Gn+2,0. (L.16)

Therefore, Gn,0 is related to Gn±2,0 now. Now, if we continue this process to relate

the Gn,0 to Gn±i,0, one can evaluate the recursive expression as follows:

Gn,0 = µiGn−2i,0 + ν0Gn+2i,0. (L.17)

where

µi = (1− µi−1νi−1 − µi−1νi−1) −1µ2
i−1,

νi = (1− µi−1νi−1 − µi−1νi−1) −1ν2
i−1, (L.18)
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For (L.17), let us take n = 2i; then we can write each expression for i = 1, 2, ...n:

i = 0 G1,0 = µ0G0,0 + ν0G2,0,

i = 1 G2,0 = µ1G0,0 + ν0G4,0,

i = 2 G4,0 = µ2G0,0 + ν0G8,0,

... ...

i = j G2j ,0 = µjG0,0 + ν0G2j+1,0.

(L.19)

Now, we plug each equation in reverse order, i.e. plug ith into i−1th, in ith which

makes the Matrix νi is arbitrarily small, so that we can obtain expressions for G1,0

and G0,0 as follows:

G1,0 = T+G0,0,

T+ = µ0 + ν0µ1 + ν0ν1µ2 + ... + ν0ν1...νi−1µi + ... (L.20)

If one takes n = −2i, after a similar process,

G−1,0 = T−G0,0,

T− = ν0 + µ0ν1 + µ0µ1ν2 + ... + µ0µ1...µi−1νi + ... (L.21)

Combining (L.20), (L.21) and (L.18), we can calculate T+ and T− in a more efficient

way.
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L.4 Pre-basis semi-analytical method

Following the discussion in [122, 123], for the given two-terminal setup, in the case

of the preservation of time-reversal symmetry, the entire matrix can be given as,

H =



... H1 0 0 0

H−1 H0 HML 0 0

0 H†ML HM HMR 0

0 0 H†MR H0 H1

0 0 0 H−1 ...


, (L.22)

where HM is the Hamiltonian of the conductor, HMR and HML are the interaction

matrices between the conductor and the first slice on the right and left hand side

lead. H0 and H±1 are the blocks for the lead and the interaction between other

slices and the lead, respectively. For an orthogonal basis set, the overlap matrix

S has the same structure as H, but in the following discussion, we will remain in

the region of the orthogonal basis, so that all diagonal blocks S in S are I and the

rest are 0.

From the Schródinger equation, (H− ES)Φ = 0, in the region of the lead, we

define K0 = H0 − E, K1 = H1, K−1 = H−1 and Φ = (..., n
1/2
k eikzφk, ...).

We construct a new 2N × 2N matrix,

M =

 −K−1
1 K0 −K−1

1 K0

IN 0

 . (L.23)

For its 2N 1×2N eigenvectors, the first N -lines of each eigenvectors are simply the

eigenvectors, φk, of H0, and the 2N eigenvalues, eik(E), give the wave vector k(E)

in the lead for a given E. Therefore, once K1 becomes invertible, this method can

be used. If it is not, an extra decimation step is needed, and then we can perform

the next step. But for now, we will consider K1 to be invertible.

Based on the 2N eigenvalues, eikn(E), where n ∈ [1, ..., 2N ] and the 2N eigen-

194



vectors ψkn , we can obtain the velocity of the waves and distinguish their prop-

agation directions, and, based on the complexity of kn, know whether the waves

are evanescent. This can be expressed as follows:

vkn = iφ†kn(H1e
ikn −H−1e

−ikn)φkn , (L.24)

where φkn are the first N components of ψkn . Based on whether v < 0 or v > 0,

the 2N wave can be divided into left-going (<) and right-going (>) groups.

The surface GF is given as follows:

GL = [IN −
N,N∑
n<,n>

φk<n e
−ik<n φ†

k<n
φk>n e

ik>n φ†
k>n

]V−1,

GR = [IN −
N,N∑
n<,n>

φk>n e
ik>n φ†

k>n
φk<n e

−ik<n φ†
k<n

]V−1,

V = K†1[
N∑
n>

φk>n e
−ik>n φ†

k>n
−

N∑
n<

φk<n e
−ik<n φ†

k<n
]. (L.25)

Then, one can obtain the self-energy simply from the surface GF.

IfK1 is non-invertible, one needs to apply singular value decomposition toH1 to

squeeze the unnecessary dimensions of the matrix. In LAPACK, this command is

“zggsvd”; in Mathematica, it is “SingularValueDecomposition”. If the dimension

of H1 is N , and the dimension of full rank block of H1 is R, then this routine will

be given as follows:

H1<N×N> = U<N×N>Λ1<N×R>[0<R×(N−R)>,W<R×R>]Q†<N×N>, (L.26)

where < X × Y > is the dimension of the matrix. The matrix Q is the rotation
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matrix we need, we construct a global rotation matrix as follows:

Q =



... 0 0 0 0

0 Q 0 0 0

0 0 IM 0 0

0 0 0 Q 0

0 0 0 0 ...


. (L.27)

The matrix of the entire Hamiltonian can be rotated into the form as follows:

Q†HQ =



... Q†H1Q 0 0 0

Q†H−1Q Q†H0Q Q†HML 0 0

0 H†MLQ HM HMRQ 0

0 0 Q†H†MR Q†H0Q Q†H1Q

0 0 0 Q†H−1Q ...


. (L.28)

Each block will transform into:

Q†H0Q =

 C<(N−R)×(N−R)> B<(N−R)×R>

B†<R×(N−R)> D<R×R>

 ,

Q†H1Q =

(
0<N×(N−R)> H̃1<N×R>

)
,

Q†H−1Q =

 0<(N−R)×N>

H̃†1<R×N>

 . (L.29)

Because the diagonal block, C<(N−R)×(N−R)>, is only semi-connected to block

B<(N−R)×R>, but not connected to the block H̃1<N×R>, it is ideal for decima-

tion. Applying the Eq. (K.7), all C blocks can be decimated, and the smaller
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block will be expressed as follows:

 Q†H0Q Q†H1Q

Q†H−1Q Q†H0Q

 All C→

 D2<R×R> Θ<R×R>

Θ†<R×R> ∆<R×R>

 , (L.30)

 Q†H0Q Q†H1Q

Q†H−1Q Q†H0Q

 Upper C→

 D2<R×R> T1<R×N>

T †1<N×R> D1<N×N>

 ,

 0 HMRQ

Q†H†MR Q†H0Q

 Lower C→

 0<N×N> ΘMR<N×R>

Θ†MR<R×N> D2<N×N>

 .

Thus, after decimation of all the blocks C, the entire matrix will become

Q†HQ =



... Θ 0 0 0 0 0

Θ† ∆ T1 0 0 0 0

0 T †1 D1 Q†HLM 0 0 0

0 0 H†LMQ KM ΘMR 0 0

0 0 0 Θ†MR D2 Θ 0

0 0 0 0 Θ† ∆ Θ

0 0 0 0 0 Θ† ...



. (L.31)

Thus, this is a new matrix of the entire Hamiltonian, for which the hopping matrix

of the lead Θ is invertible. Using the same technique, the corresponding surface

GF is obtained as GL and GR in Eq. (L.25), and the self-energy is given as follows:

ΣL = H†LMQ
(
−D1 − T †1GLT1

)
−1Q†HLM ,

ΣR = ΘMR

(
G−1
R − (D2 −∆)

) −1Θ†MR. (L.32)
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[125] M. P. López Sancho, J. M. López Sancho and J. Rubio, J. Phys. F: Met.

Phys. 14, 1205 (1984).
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[185] I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. N’Diaye,

C. Busse and T. Michely, Phys. Rev. Lett. 102, 056808 (2009).

[186] J. R. Wallbank, M. Mucha-Kruczyński and V. I. Fal’ko, Phys. Rev. B 88,
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