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Abstract

Let A7 denote the restricted nullcone of the Lie algebra g of a simple algebraic group in char-
acteristic p > 0, i.e. the set of z € g such that z[P) = 0. For representatives e1,...,e, of the
nilpotent orbits of g we find the irreducible components of g N N; for g = G5 and Fy in good
characteristic p. We do the same for g = Eg with the exception of three nilpotent orbits. We use
this information to determine the irreducible components of the restricted nilpotent commuting
variety C(g) = {(z,y) € N1 x N1 : [z,y] = 0} for g = G2 and F,;. We do the same for g = g
with the exception of when p = 7 where we describe C1!(g) as the union of an irreducible set of

dimension 78 and one of dimension 76 which may or may not be an irreducible component.
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Chapter 0

Introduction

Over the last 30 years, support varieties have been a strong theme of research literature on
representation theory of finite groups, Lie algebras and finite group schemes . For background
on support varieties for finite groups see [Ben98| and see [Farl2] for group schemes. There have
been several major applications of support varieties including Premet’s proof of the Kac-Weisfeiler
conjecture [Pre95].

Let G be a reductive algebraic group over an algebraically closed field k of characteristic p > 0
with Lie algebra g. Denote by A/ the nilpotent variety of g and let A; be the set of elements
x € g such that P! = 0. This is the restricted nullcone of g which is a Zariski closed subset of
N. The representation theory of G is captured by its Frobenius kernels. For GL,, the Frobenius
morphisms are given by F,. : GL,, - GL,, which sends (z; ;) — (xf;) The r-th Frobenius kernel
of Gis G, = {M : F,(M) = I}. For more details on Frobenius kernels see [Jan03|. It was shown
in [SFB97| that for G the support variety of the trivial module over the r-th Frobenius kernel is

isomorphic to
e (g) = () €Ny x - X Ny [y = 0)

A lot is known about the case r = 1. For example the dimension and nilpotent orbits of
Crl(g) = N are known, see [CLNP03]. However very little is known when r > 2.

It was proved in [MT55] and [Ger61] that the set of all pairs of commuting n x n matrices over
an algebraically closed field is an irreducible variety. This is a special case of the commuting

variety of g given by

C(g) ={(z,y) €gxg:[z,y] =0}

It was shown by Richardson in [Ric79] that when char(k) = 0 the commuting variety C(g) is
irreducible. This was extended to good positive characteristic by Levy in [Lev02], under certain

mild conditions on G.



The nilpotent commuting variety for a Lie algebra is given by
C"(g) = {(z.y) EN X N : [z,9] = O}

It was shown in [Bar01] that C"(sl,) is irreducible for char(k) = 0 and char(k) > n. A more
general result was established for an arbitrary reductive algebraic group G (under some mild
conditions) in [Pre03a]. This showed that C™"(g) is equidimensional, i.e that the irreducible
components of C"*(g) all have the same dimension. Specifically, Premet showed that for a nilpo-
tent element e, with centralizer g¢, the set g° N A is irreducible and the irreducible components
of C"(g) are given by C(O.) = G - (e, g° N N) for distinguished elements e.

When the characteristic p is greater than or equal to the Coxeter number h of g then N = N7,
hence C™(g) = C1(g). Therefore by Premet’s work the irreducible components of C}%(g) are
known for p large enough. It is also known that when p = 2 then C"!(sl,) is equidimensional
and its irreducible components are found in [Lev07].

The aim of this thesis is to consider the irreducible components of the restricted nilpotent com-
muting variety C(g). In particular we consider when g is an exceptional type Lie algebra.
Unlike the classical types, there are only finitely many cases to consider so a computational
approach can help to obtain a complete answer. Also since the exceptional types greatly differ
from sl,,, then considering these cases may giver a broader picture. Specifically we consider the
following two questions for g = G2, Fy and Fjg:

Question 1 Find the irreducible components of g% N N7, where O, ,...,O.  are the nilpotent
orbits of g.

Question 2 Find the irreducible components of the restricted nilpotent commuting variety C'(g).
The irreducible components found by answering the first question allow us to determine some of
the components of C""(g) and therefore help to answer the second question.

In Chapter 1 we start with an introduction to simple Lie algebras in characteristic zero. This is
followed by a discussion of nilpotent orbits which includes the Jacobson-Morozov Theorem. This
allows us to embed any nilpotent element of a simple Lie algebra into a triple {e, f, h} satisfying
the relations of the standard basis of sl,. Then we present the details of three methods to classify
nilpotent orbits, namely by partition types, weighted Dynkin diagrams and via the Bala-Carter
Theorem. This lays the groundwork for the more complicated situation in positive characteristic.
In the positive characteristic case sly-triples are less helpful. Instead we define an associated
cocharacter which is in some way analogous to the element h in an sly-triple. This is presented
in Chapter 2 along with the classification of nilpotent orbits in positive characteristic. These
classifications are important for answering Question 1.

Chapter 3 gives more details of some specific simple Lie algebras that are of particular interest.
This includes some structural information for the simple Lie algebras G2, Fy and Eg along with
some classical Lie algebras which are helpful for our calculations. For each of these Lie algebras

we examine some properties of their nilpotent orbits, including the Bala-Carter labels and the
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Hasse diagrams of the nilpotent orbits.

In Chapter 4 we introduce some specialist topics which are necessary for our (partial) answer
to Question 2, beginning with Lusztig-Spaltenstein induction. This is subsequently related to a
description of the nilpotent commuting variety and some results from [Pre03a].

In Chapter 5 we present the research questions we wish to answer along with an outline of the
basic methods we used to answer these questions. This includes some results which enable us to
calculate the dimension of each of the irreducible components of g¢ N A;. We then have all of
the tools we require to answer Questions 1 and 2.

We automate part of the calculations to these questions by using [GAP12|. The details of the

calculations for G5 are presented in Chapter 6. This leads to the following result:
Result 1 For p =5 the variety C}'(Gy) is irreducible of dimension 14 = dim(g) where
C1(G2) = C1(Ga(ar).

The details of these calculations for F); are presented in Chapter 7. This leads to the following

result:

Result 2 The variety C'(Fy) is equidimensional of dimension 52 = dim(g) with respectively 1,

2, and 8 components given by

p=>5: CI"(Fy) = Ci(Fi(as))
p="T: C"(Fy) = Ci(Fu(a3)) UCi(Fy(az))
p=11: CMYFy) = C1(Fy(a3)) UCi(Fy(az)) UCi(Fy(ar)).
In Chapter 8 we answer Question 1 for all the nilpotent orbits of Eg with the exception of Ay, A?
and A3. Finally Chapter 9 presents most of the details of the calculations for answering Question

2 for Eg with the exception of when p = 7. In this case we show C7""!(Eg) = C(Fg(a3))UC(D4(a1));

however we do not know if C(Dy(a1)) C C(Eg(as)). Therefore we have:

Result 3 For p =5 (resp. 11) the variety C'(Eg) is equidimensional of dimension 76 (resp.
78) with respectively 3 and 2 components.

P = 5: C?ZZ(E(;) =G- (B,Xl) UG- (€,X2) UC1(D4(G1));

p = 11: CI”Z(EG) = Cl(EG(G,g)) UCl(EG(@l)).

Here X1 and X5 are the two irreducible components of g¢ NN7 for the nilpotent orbit O, = A4A;.
For p = 7, C}"Y(Eg) has one irreducible component of dimension 78 and perhaps one further

component of dimension 76.

The results of all these calculations are summarised in Chapter 10 along with some suggestions
for further work. A detailed description of the [GAP12| code used throughout is presented in
the Appendix.



Notation

Throughout, G is an algebraic group defined over an algebraically closed field k of characteristic

p=0.
e k* is the multiplicative group of the field k.
e Lie(@) is the Lie algebra of G, often denoted by g.
e 3(G) is the centre of G.

e (A, B) is the group generated by the commutators aba=1b~! for closed subgroups A and B
in G and a € A, b € B. The commutator subgroup is closed and connected if either A or

B are connected [Bor91, §2.3 Corollary|. In particular (G, G) is always closed.



Chapter 1

Simple Lie Algebras in

Characteristic Zero

1.1 Preliminaries

In this chapter we discuss a few different methods for classifying nilpotent orbits in a simple Lie
algebra. We assume basic knowledge of algebraic geometry, algebraic groups and Lie algebras.
For more information on these areas refer to [Hum?75] and [Hum?72]. We start with some defi-
nitions and results about algebraic groups and Lie algebras and then go on to define nilpotent
orbits in characteristic zero. Finally we discuss three methods for classifying these nilpotent

orbits, namely via partitions, weighted Dynkin diagrams and the Bala-Carter Theorem.

Simple Algebraic Groups and Lie Algebras

Let G be an algebraic group over k with identity 1. A morphism of algebraic groups ¢ : G — G’
is a group homomorphism which is also a morphism of varieties. The identity component of G
is the unique irreducible component that contains 1 [Hum?75, p.53]. We denote this by G°. We
say G is connected if G = G°. The derived series of G is defined inductively by

PG =G, DG = (D'G,D'G)

We say G is solvable if D"(G) = {1} for some n. For all i, DY(G) is a closed normal subgroup
of G and is connected if G is connected. It can be shown that any connected algebraic group
G contains a unique largest closed normal solvable subgroup [Hum?75, Cor 7.4, Lemma 17.3(c)].
The identity component of this subgroup is known as the radical of G and denoted by R(G).
Then R(G) is the largest connected normal solvable subgroup of G.

The set of unipotent elements in a connected solvable linear algebraic group is a closed connected

normal subgroup, [Hum75, Thm 19.3]. Let R, (G) denote the set of unipotent elements in R(G);
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we call this the unipotent radical of G. It is easy to see that R,(G) is normal in G. The group
G is reductive if R,(G) = {1}. If G is reductive then the derived subgroup is semisimple [CM93,
§1.2]. Throughout this chapter let G be a connected reductive algebraic group over C.

We say that G is simple if it has no closed connected normal subgroups other than itself and
{1}, and semisimple if the maximal connected solvable normal subgroup is {1}. Similarly a Lie
algebra is simple if it has no non-zero proper ideals and semisimple if its unique maximal solvable
ideal is zero. Therefore any simple Lie algebra is semisimple. It is shown in [Hum75, §13], that
G is simple (resp. semisimple) if and only if Lie(G) is simple (resp. semisimple). Note that this

is not the case if char(k) > 0, which is discussed in Chapter 2.
Examples 1.1.1

Here are some examples of algebraic groups and their Lie algebras. All are simple, with

the exception of the first case.

1. GL, is the set of n xn matrices with non-zero determinant. Then Lie(GL,,) = gl,, consists

of all n x n matrices.

2. The algebraic group SL,, is the set of n x n matrices with determinant equal to 1. The

Lie algebra sl,, consists of matrices with zero trace.
3. 0, ={AeGL,: A'A =1,} and SO,, = {A € SL,, : A'A = I,,} are simple algebraic
groups and Lie(SO,,) = so,, = {z € gl,, : ' = —x} consists of skew symmetric matrices.
4. Spo, = {A € GLy, : A'J, A = J,} where J,, = (7% Ig) and sp,,, is given by
{(ﬁ; ﬁi) : A; € Mat,xn, Ay = —AY and Ag, A3 are symmetric}.

These examples are the classical groups.

For an element x € g, the adjoint endomorphism is the map

ady 1 g — @

y e [z, y].

The adjoint representation of G is given by the homomorphism Ad : G — Aut(g) C GL(g)
where v — Ad,. Then we can define the map Ad,, : g — g where y — Ad,(y). In each example

in 1.1.1 we have Ad,(y) = vyv~1.

For a subset K in g denote the centralizer of K in g as
g% = {z € g: [z,K] = 0}, similarly for a subset H in G the centralizer of H in G is given by
GH ={v e G:vh=hv Vh € H}. If H is a closed subgroup of G then G¥ is also a closed
subgroup of G [Hum?75, Cor 8.2]. For an element z € g, we have g* = Lie(G*) [Hum75, Thm

13.4]. From now on all subgroups are assumed to be closed unless otherwise specified.

A Borel subgroup of an algebraic group G is a maximal connected solvable subgroup of G. For

11



example if G = GL,, then

b11 bl,n

s

b2 2 bijek forl1<i<j<n
'bi,iek:x for1<i<n

0 bn.n

is a Borel subgroup. Any subgroup of G which is conjugate to a Borel subgroup is also a Borel
subgroup. Conversely given a Borel subgroup B then any other Borel subgroup is conjugate to
B [Hum75, Theorem 21.3]. A closed subgroup of G that contains a Borel subgroup is a parabolic
subgroup of G. For a fixed Borel subgroup B then any parabolic subgroup in G is conjugate to
one that contains B. A subgroup T of G is a torus if it is connected and contains only semisimple

elements. We say T is a mazimal torus if it is not properly contained in any other torus. In GL,,

t1 0

to
T = ) ZtiEkX

0 ty

is a maximal torus. A Cartan subgroup is a subgroup of the form GT where T is a maximal
torus. If G is reductive then GT = T' [Hum?75, Cor 26.2 A].

Now consider the Lie algebra g = Lie(G). A Borel subalgebra of g is a maximal solvable subal-
gebra. For example when g = gl,, then

b1’1 bln

b272 : . .
b= b jekfor1<i<j<n

0 bn.n

is a Borel subalgebra of g. As a consequence of our assumption on the characteristic, the Borel
subalgebras are the subalgebras of the form Lie(B) where B is a Borel subgroup of G. For a
parabolic subgroup P of G then p = Lie(P) is a parabolic subalgebra of g. If T is a torus in G

then t = Lie(T) is a toral subalgebra of g. For example if T is as above then
a1 0
t= ) ta; €k
0 an

is a toral subalgebra of gl,,. A Cartan subalgebra of g is by = Lie(GT) where T is a maximal
torus of G. When G is reductive Lie(GT) = g7 therefore in this case hr = Lie(T) [Bor91, Prop
9.1].

12



Roots of a Simple Lie Algebras

For the remainder of this chapter let g be a simple Lie algebra. We may assume that g = Lie(G)
for some complex Lie group G.

Let b be a Cartan subalgebra of g with dual space h*. Then for an element o € h* let
go ={x €9:hz]=alh)xVh e h}.

The roots of g relative to b are the set of non-zero a € h* where g, # {0}. We say g, is a root
space of a in g. The root system of g is the set ® of roots of g, then
g="bo Pao-
agd
A basis of @ is a subset A where each root 8 € ® can be written uniquely as 8 = > ko«
where k, € Z such that either all the k, are non-negative or non-positive. A basisa 6a?ways
exists and any two bases are conjugate by the action of the normalizer Ng(T) of T, where
Ng(H) = {r € G : 27 'Hx = H} for a subgroup H of G. The elements in A are the simple
roots of g. We denote by ® all the positive roots of g, i.e. all the roots 3 € ® such that

ko > 0 for all @« € A. The height of a root (relative to A) is given by ht(8) = > ko. We can
aEA
relate roots in ® to elements in g. For a root o in ®1 we can choose e, € go, and fo € g_qo

such that {eq, fa, ha = [€a, fa]} satisfy the relations of the standard basis of slo. We can write
e_q and f, interchangeably. Throughout, the elements e, f, and h, are given in their natural

upper-triangular, lower-triangular, and diagonal forms respectively.

Example 1.1.2
Let g =sl3, A = {aj,as}, ® = {1, a2, 01 + a2, —a1, —az, —(a1 + a2)} and

(I)Jr = {Oél,OéQ, o1 + 042}.
We can represent these roots via the following diagram.

Q2 a1 + Qg

—o

—0p — Qg —Q2

For a root a; € ®, we can find elements ey, fo,, ha, € sl3 with the conditions described
. 0a0 010 .

above. In this case go, = {( 0 8) ta € k} therefore let e,, = ( 0 8)’ here we are using

the convention that blank entries in a matrix are zero. We use this convention throughout.

For all o € &1 we have

13



01 0 0 0 O 0 0 1
€ay = 0 O Cay = 0 1 Cait+ax = [eaweo@] = 0 0
0 0 0
0 0 0
foq = 1 0 fa2: 0 O fa1+a2:[faz>fa1]: 0 0
0 0 O 0 1 0 1 0 0
1 0 1
B, = 1 Ry = 1 ha,+as = 0
0 -1 -1

The Killing form on g is the bilinear form x : g x g — k defined by k(z,y) = Tr((ads)(ady))
where =,y € g and where ad, is the adjoint endomorphism of z.
Example 1.1.3

Let g = sl; with a basis given by

0 1 1 0
e = h = f =
0 -1 1 0
Then
0 -2 1
ade(e) =0 ade(h) = =—2e ad.(f) = =h
0 -1

-2

0
Therefore we can represent ad, relative to the basis {e, h, f} so ad, = ( 91 ); similarly

ady = (_21 § §) So ke, f) = Tr((ade)(ady)) = Tr (2 2 O) —4

coo

The following results can be found in [Hum72, §5.1].

Theorem 1.1.4 A Lie algebra g is semisimple if and only if its Killing form is non-degenerate

i.e. if k(x,y) =0 for ally € g then z = 0.

In fact x is a symmetric bilinear form and is G-invariant which means for any v € G we have
k(Ady(2), Ady(y)) = k(z,y).

For any o € h* there exists a unique element t, € b such that a(h) = k(h,ty) for all h € b.
Then for a, 3 € b* let (a, B) = K(ta,tg). We say a € ® has length ||o| = \/(a, a). For a simple
Lie algebra there are only two possible root lengths [Hum72, Lemma 10.4 C]. Therefore we can
split ® into long roots and short roots. If there is only one root length then by convention we

say all the roots are long.
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AA(l>l])e—eo—e@-------- —e

aq a2 ag Q-1 e7]
B(I>2)e—e--—-—-—-—- —e«>>»
( - )al Q2 a2 Q7 [2%)

Clllzs) g DTS

aj—1
Dl (l > 4) o — --------
a1 o2 Q-3 -3
a
« « [0 [0 (0%
E (1=6,7,8) o—e f‘ oo o
(e5]

F — e > o
Yoo as7 a3 g
G é’

2 « [e%

1 2

Figure 1.1: The Dynkin diagrams for all the simple Lie algebras

For two roots «, 5 € ® let

(8, @)

(o, )

(B,0) =2

If @ and B are linearly independent the a-string (or a-chain) through 8 is the maximal sequence
of roots of the form S—ra,...,[B,..., B+qa for non-negative integers r and ¢ where r—q = (3, a)
[Hum?72, §9.4].

Each simple Lie algebra g can be represented by a Dynkin diagram. This graph contains a node
corresponding to each simple root «; of g. The nodes «; and «; are joined by (a;, @j) - {a;, o)
number of edges. Finally if two roots of different lengths have a connecting edge then we mark
that edge with an arrow pointing to the short root. The Dynkin diagrams for all the simple Lie

algebras are given in Figure 1.1.

Example 1.1.5
In reference to Example 1.1.1, we have that SL,, is of type A,,_1, Spa, is of type C,, and
SOy, is of type Dz if n is even and of type Banl if n is odd.

For a semisimple Lie algebra g with Cartan subalgebra b, the simple roots {aq,...,a,} form a
basis of h*. There is another basis, the fundamental basis, {w1, ... ,wy} of h* such that
lifi=y

wi(ha,) = (wi, o) =
0 otherwise
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We define a Chevalley basis of g to be a basis {eg : f € @} U{hq, :i=1,...,n} such that

(i) [ha;,ha,] =0forall 1 <i,j <mn,

(ii) [has,es] = (B, i)eg = B(ha,)eg foralll <i<nand § € ®ie. ez € gg,

m

(il) [es,e—p] = hg = 3 (wj, BYha,,

j=1
(iv) If a, B are linearly independent roots and § — ra,..., 8 + ga the a-string through S

then
0ifg=0
[eaaeﬁ] =
t(r+1)eqtpifa+5€®

For a simple Lie algebra g a Chevalley basis always exists, this is shown in [Hum72, §25].

Example 1.1.6
Let g = sl3 and A = {ay,a2}. Then g has Chevalley basis

{hoq ) haz y€ayy Cass Cagtass fa1 ) faza fa1+a2}
where ey, fo, and h,, are given in Example 1.1.2.

We are particularly interested in the exceptional type Lie algebras. Below is a table which states

the dimension, the number of positive roots and the highest root of each of these Lie algebras.

Number of )
Lie Algebra|Dimension Highest Root
Positive Roots
Go 14 6 3ag + 209
Fy 52 24 2ar1 + 3as + dag + 20
E6 78 36 (65} —+ 20&2 —+ 2(13 —+ 30[4 + 20&5 —+ (673
Er 133 63 2001 + 2ai0 + 3az + 4oy + 3as + 206 + o
FEyg 248 120 201 + 3as + 4daz + 6ay + bas + dag + 3ar + 2ag

For the exceptional Lie algebras we can label the element €4, +...ta,0, € ®* by e subscripted

with the Dynkin diagram of g with the node corresponding to «; labelled a;. For example the

highest root in Eg can be expressed as ei12321. To express the negative roots we replace an e
2

with an f, for example fi12321 .
2

Weyl Groups

Let G be an algebraic group with maximal torus T where h = Lie(T) is a Cartan subalgebra of
g = Lie(G). The Weyl group is given by

Ng(T)
T

W =
The following result is a consequence of [Hum?75, Cor 16.3].

16



Theorem 1.1.7 The Weyl group is finite.

The restriction &(-,-)|pxp is W-invariant which means x(w(hi), w(h2)) = K(hy, ha) for w € W

and hi, ho € b. Since this restriction is non-degenerate it induces an isomorphism

h—b"
h'_)(haf)

This isomorphism still holds when restricting to bg = {h € b : a;(h) € R}. In particular the map
br — bi sends h — (h,—) where (h,h') € R for any h,h’ € hg. By this isomorphism, w € W

acts on h* by
(w-A)(h) = Mw™'(h)) for A€ h*,h e
The isomorphism 7 : h — h* satisfies
w(h) = (w(h), =) = (h,w™(-))

since (w(h),w(z)) = (h,z) so (w(h),z) = (w(h),w(w 'z)) = (h,w (z)). Therefore 7 is also
W-invariant.

The Weyl group W is generated by elements s,. When W acts on by then these elements are
given by so () = A—A(hqa)a where s4(A) sends « to —av and fixes {A € bk : A(hy) = 0}. Similarly
if W acts on b then s4(h) = h — a(h)h, sends h, to —h, and fixes the set {h € bhg : a(h) = 0}.
For more details see [Hum75, §27.1]

Example 1.1.8

Consider the Lie algebra g = sl3. The element s, on by fixes the hyperplane P, given by
{X € b} : A(ha) = 0}. This can be represented by
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As can be seen in the diagram, W creates finitely many regions of hj which are called Weyl
chambers. These chambers are permuted transitively by the action of W on g. The positive Weyl

chamber is the chamber where A(hy,;) > 0 for all simple roots «;.

Example 1.1.9

For the case when g = sl3, the positive Weyl chamber is represented by

Positive Weyl Chamber

The horizontally hashed area is where A(hq, ) > 0 and the diagonally hashed area is where
A(hasy) > 0. Therefore the Weyl chamber with both hashes is the positive Weyl chamber.

Similarly the Weyl group partitions hg into finitely many Weyl chambers. Then the positive
Weyl chamber is given by h € hg such that «(h) > 0 for all simple roots .

Theorem 1.1.10 [Hum75, §10.4] Every element in h € hr is conjugate by the Weyl group to a

unique element in the closure of the positive Weyl chamber.

Highest Weight Modules

Let V be a finite dimensional g-module for a Lie algebra g. Then V is simple if V' # {0} and
has no proper non-zero submodules.

Let g = sly with the usual basis {e, f, h}. Then h = kh is a Cartan subalgebra of g. A linear map
i b — k, in the dual space h*, is completely defined by u(h) since u(&h) = u(h). Therefore
we can express g as p(h)w where w € h* and w(h) = 1. Let V be a simple finite dimensional
slp-module and, for any p € h*, let V(u,h) = {v € V : hov = p(h)v}. Then p is a weight and
V(w, h) is a weight space of V if V/(u, h) # 0. Now V can be expressed as

V=Vph

Heh*
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In fact since p = £w for some & € k then

V=Evin

{ck
where V(&,h) = {v € V : h.v = &v}. Therefore we refer to £ as a weight of V if V(&,h) # 0.

Any non-zero vector v € V (£, h) such that e.v = 0 is a mazimal vector of weight &.
Lemma 1.1.11 Ifv € V({,h) then ew € V(§+2,h) and fov € V(E—2,h)
Proof. Consider the following

h.(e.v) = [h,e].v + e.h.v
= 2e.v + aew
=(£+2)ew

Therefore e.v € V(£ + 2, h). Similarly f.v € V(€ —2,h) ]

Since V is finite dimensional there exists an n such that V(n,h) # 0 and V(n +2,h) = 0. The

following two results are presented in [Hum72, §7.2].

Theorem 1.1.12 Let V be an irreducible module for g = sl such that dim(V) =m + 1. Then
V is a direct sum of the weight spaces V(m,h), V(m —2h), ..., V(=m+2,h), V(—=m,h) and
dim(V(i,h)) = 1 fori = m,m —2,...,—m. Also V has a unique mazimal vector v (up to

non-zero scalar multiples), this vector has weight m.

Theorem 1.1.13 For g = sly there exists exactly one irreducible sla-module of each possible

dimension m+1, m > 0 (up to isomorphism,)

An irreducible module V for sly of dimension m + 1 can be represented pictorially as follows.

e e e
m Vom42 /_\
Um e oUm—2 * - - - - - . oU_m
\_/\_/ rUTn_4 \_/
f f f

We denote the unique (up to isomorphism) irreducible sly-modules of dimension m+ 1 as L(mw)
with maximal vector v,, of weight m. Then we call v, the highest weight vector of L(mw) and

m the highest weight.

Examples 1.1.14
1. The sly-module L(2w) has highest weight vector va. Moreover, there is an isomorphism

of L(2w) with the adjoint representation sending vs to e.
e e

V2@ Vo e oU_
f f

2
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2. L(w) = k? has highest weight vector v; = ().

e
Vi e eU_1

\7/

For a sly-module V let S™(V) be the symmetric tensor where S™(V) is the subspace of the n'®
power tensor V®" which contains all elements v; QU ®- - -Q@uv,, € V" such that v, @2 ®- - -Qv, =

Vg (1) ® Vg(2) @ -+ @ Vg(p) for every permutation o of {1,2,...,n}. Then for any g € g,

g(v1®...®vn):(g.v1)®1]2®...®fun+ful®(g.v2)®fu3®...®vn
+---+v1®-~-®vnf1®(9-vn)

Theorem 1.1.15 S™(L(w)) = L(nw)

Proof. The module L(w) of sly has basis {vy,v_1} where v1 = (}) and v_; = ({) with the
action of sly by (left) matrix multiplication. Then S"(L(w)) is spanned by v&", v®" ' @ v_,
P2 @ %5, ..., v®). Then consider h= (§ %) € g,
(P @ v =(h 1) @ v T @B 4 0P @ (hvy) @ 0%+
P @ (hvog) @VEPT 4 0P T @ 0T (R vsy)
=(n —m)(uP"" @vE) —m(uP" T @ vE)

—(n— 2m) (" © oY)
Then S™(L(w)) has weights n,n — 2,...,—n. Therefore by Theorem 1.1.13 the result holds.

We shall now consider the general case. Let g be a simple Lie algebra with root system ® with

basis A = {a1,...,a,} and Cartan subalgebra . Let V be a finite dimensional g-module and
let V, ={v € V:hwv=p(h)vVh €bh}. Then we have V= @ V,. When V, #0 wesay V, is a
neh*

weight space and p is a weight of V. A non-zero vector v € V), is a mazimal vector of weight p
ifz.v=0for all z € g,,, & € A. The g-module V has at least one maximal vector v.

For a weight 1 of V and a; € A the a-string through p is the maximal sequence of weights
o= Ty ooy by ..y b+ qoy; Where 7 — g = (1, o).

Let V' be an irreducible g-module with maximal vector v of weight p. Then every maximal vector
of V has weight u. We say that p is the highest weight of V. The submodule of V' generated
by a maximal vector of v is equal to V. A proof of the following result is presented in [Hum?72,

§21.1].

Theorem 1.1.16 If V is a finite dimensional irreducible g-module of highest weight p then
w(hea,) is a non-negative integer. In fact for any weight u of V- then u(hea,) = (p, o) € Np.
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Let L(u) be the irreducible g-module with maximal vector v, in the weight space L(p),. A
module of a Lie algebra g is faithful if the corresponding map g — gl(V') is injective. Every non-
trivial module of a simple Lie algebra is faithful. We can describe the minimal (dimensional)
faithful modules for the exceptional types. Specifically L(wy) is the minimal faithful module of
G2 and has dimension 7. For Fy this module is L(w4) of dimension 26. For Eg we have L(w;) or
L(we) both of dimension 27. The minimal faithful module of E; is L(w7) of dimension 56 and
finally the minimal faithful module of Fg is L(wg) of dimension 248, this is the adjoint module

of Eg.

1.2 Nilpotent Orbits

Let g = Lie(G) be a simple Lie algebra. Then an element e € g is ad-nilpotent if the map
ad, : g — g is a nilpotent endomorphism, specifically if (ad,)™ = 0 for some m > 0. For example
an element = € sl, is nilpotent if and only if the m-th matrix power ™ = 0 for some integer
m. The set of nilpotent elements of g, denoted N (g) or simply N, is invariant under the adjoint

action of G. For a nilpotent element e € g the nilpotent orbit of e is

O, ={Ady(e) : y € G}
Theorem 1.2.1 Let g be a simple Lie algebra. Then there are finitely many nilpotent orbits in
g.

Proof. When g = gl,, then any nilpotent element is conjugate to an element in Jordan normal

form which has Jordan blocks of the form

0 1 0

1
0

Nilpotent elements with the same Jordan normal form (up to re-ordering the blocks) are in the
same nilpotent orbit. Since there are finitely many possible Jordan normal forms of this type
then there are finitely many nilpotent orbits of gl,,. The method for the other classical types are
similar, see §1.3. For the exceptional types we can use the Bala-Carter theorem to find all the

nilpotent orbits of g, this is described in §1.5. For more details see |[Ric67, Theorem 8.2|. |
For a Lie algebra g then {e, f,h} C g is an sly-triple if
[h,e] =2e, [h,f]=-2f, and [e, f] =h.

Theorem 1.2.2 (Jacobson-Morozov Theorem) Let g be a simple Lie algebra and let e € g

be a nilpotent element. Then there is an sly-triple {e, f,h} in g.
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Proof. The following method constructs an sly-triple for a given nilpotent element e in gl,,.

Suppose e has a single Jordan block of size n. Then we can form an sly-triple {e, f, h} where
0 n—1 0

M1 0 n—3
f= Hy , h= n—>5

Hn—1 0 0 —(n—l)
where p; =i(n—1) fori € {1,...,n—1}.

If e has multiple Jordan blocks ey, ...e, where ¢; is a A; x A; Jordan block, then e has the form

The block diagonal matrices

fi hy
fa ha
f= ) and h =

fr hy,
form an sly-triple if {e;, fi, h;} is an sly-triple for each i. Therefore every nilpotent element of
gl,, can be embedded in an sly-triple by Theorem 1.2.5 given below. A similar construction can

be found for the other Lie algebras. For more details see [Car85, Theorem 5.3.2]. [ |

Example 1.2.3

0 1
0 1 0
For g = gl; and e = 0 we can form an sly-triple {e, f, h} as follows:
0 1
0
0
0 2
2 0 0 0
f = 2 0 ) h = -2
0 1
0
1 0 -1

For a nilpotent element e € g with sly-triple {e, f,h} and for £ € k, let

9(&h) ={z e g:[ha] =&}
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Clearly e € g(2,h) and by the Jacobi identity we have [g(£), g(¢")] C g(€ + &’). The following
theorem means we can express g as the direct sum of these eigenspaces. For more details refer

to [CM93, §3.4].

Theorem 1.2.4 Let g be a simple Lie algebra and let {e, f,h} C g be an sly-triple. Then

g=EPa(& )

EEL

o= P& n

£€No

Where g°(§,h) = g° N g(&, h).

Theorem 1.2.5 Let g be a simple Lie algebra and let e € g be a nilpotent element. Then any

two sla-triples containing e are G°-conjugate.
Proof. Suppose there are two sl,-triples {e, f,h} and {e, f’,h’}. Then
[h' —h,e] = I e] —[h,e] =0

Soh —h e g Alsoe,f'— f]=h"—hsoh' —h € [e,g], therefore by [CM93, Lemma 3.4.7]
there exists an x € G° such that x - h = b’ and z - e = e. Similarly z - f — f' € g° since

e,x-f—f1=[x-e,x-fl—|e,f]=x-h—h"=0. Then

(W w-f = fl=[0z f]= [N, f]
:‘T[h>f] - [h/mf/]
— o f)

By Theorem 1.2.4 we must have z - f — f/ = 0. Therefore {e, f,h} and {e, f',h'} are G°-

conjugate. ]

1.3 Partitions

As we have seen in the previous section a nilpotent orbit in gl, is completely determined by
the sizes of its Jordan blocks. Therefore we can associate a partition of n with each nilpotent
orbit and vice-versa where a partition of n is a sequence of integers [A1, Aa, ..., \p] such that
AMZ>A > > Ny >1and Ay + A2+ -+ A\, = n. Since a classical simple group G embeds
in some GL,, there is a map from the set of nilpotent orbits in g to partitions of n. This map
turns out to be injective if G = SL,,, Spa, or O,,.

If g = sl,, then the map between nilpotent orbits of sl,, and partitions of n is bijective. For sp,,,
the map from nilpotent orbits to partitions of 2n is injective but not surjective. The partitions
of 2n in the image of this map are those in which odd parts occur with even multiplicity. For

example [2,1, 1] corresponds to a nilpotent orbit in sp, but [3, 1] does not.
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Finally if g = so0,, then the partitions of n in the image of this map are those where even parts
occur with even multiplicity. For example [4, 4] corresponds to a nilpotent orbit in sog but [6, 2]
does not. However for so,, the very even partitions, those which only have even parts, correspond
to two nilpotent orbits for the action of SOs, but only a single Os,-orbit. For example for sog
there are ten partitions of 8 where the even parts occur with even multiplicity. The very even
partitions of 8 are [4,4] and [2,2,2,2], so sog has twelve nilpotent orbits. For these statements
above we refer to [CM93].

Given two partitions [p1,...,p,] and [q1,...,¢s] of n. If s > r then let p,41,...,ps = 0 or vice

versa. Then we define [p1,...,pr] > [q1,...,qs] if

P1 = q1

P1+D2 = q1+q

Prtpet-+ps 2@t gt tgs

This is known as the dominance ordering on partitions. A partition [A1,...,\;] of n can be
represented by a Young diagram. A Young diagram is an arrangement of blocks with \; blocks

in the i-th row. For example the partition [2,2,1] for n = 5 has the following Young diagram.

For two partitions A and pu, then A > p if the Young diagram of p can be obtained from that of

A by moving some blocks downwards. For example [4,1,1] > [3,2,1] since

The ordering of partitions of n can be represented via a Hasse diagram in which the relation
A > is represented by a series of edges connecting A downwards to p. For example the partitions

of 3 are [3] > [2,1] > [1,1,1]. Therefore the corresponding Hasse diagram is

[T 1] [3]

| 2.1]

[1,1,1].
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Let e and ¢’ be nilpotent elements with corresponding partitions A and g. Then A > p if and
only if G.e D G.e/ [CM93, Theorem 6.2.5]. Therefore the closure of a nilpotent orbit is contained
in the closure of the nilpotent orbit which is connected to it above in the Hasse diagram.

For the classical Lie algebras the dimension of a nilpotent orbit can be calculated using the corre-
sponding partition. Consider the orbit O, in g which corresponds to the partition [A1, Ag, ..., Ap]
of n. Let r; be the number of rows of length 4 in the Young diagram and let s; be the number

of rows of length greater than or equal to ¢. Then it is shown in [CM93] that

2 2 ifq =
ne—>.,s; if g =sl,

202 +n— 1Y st 1Y i if g =502,
dim(0,) = 2 3 2ui odd

2 1 2 _ 1 e
54— 5308 — 5 20aai I 9= 5Py,

2 1 2,1 T
2 —n— 53,8 + 52 0aami if 9 =502,

Example 1.3.1
Consider the orbit corresponding to [4,1?%] in spg. Then 7y =2, ro =r3 =0 and 74 = 1 so
S ri=2 Alsos; =3 and s; = s3 =54 =150 >.52 =32+ 1+ 1+ 1= 12. Therefore

i odd

the dimension of this orbit is 2n% + n — 3 Zsf -3 Z{;dm =18+3-6-1=14.
2 10

Alternatively for g = sl, we can inductively calculate the dimensions of the nilpotent orbits
by considering Young diagrams. Consider two Young diagrams A and p which are adjacent in
the dominance ordering such that A > p . Then let N be the number of rows a block moves
in transforming A to pu. Then the dimension of the nilpotent orbit corresponding to A is the
dimension of the orbit corresponding to p plus 2/N. This can be seen from the fact that we have

replaced an adjacent pair s; and s;41 =s; — N —1 of p by s; — 1 and s; — N. For example

I A

N =2 {— <

In this case the dimension of the nilpotent orbit corresponding to u is 18. Therefore dim()) is

equal to dim(u) + 2N = 22.

1.4 Weighted Dynkin Diagrams

Another method for classifying nilpotent orbits in g is by a unique labelling of the nodes of the
corresponding Dynkin diagram.

In the Lie algebra g = sl,,, the set of diagonal matrices with trace zero forms a Cartan subalgebra
of g. Let this subalgebra be denoted by h. Then for a given nilpotent element e there is an

slo-triple where we may assume, after conjugating if necessary, that h € h. Let h have the
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same diagonal entries as h but re-ordered so that they decrease from top left to bottom right.
The weighted Dynkin diagram is produced by labelling the node of the Dynkin diagram of sl,,

corresponding to «; by a;(h) = A; (where [h, eq,] = Ai€q,)-

Example 1.4.1
Let g = slg and consider the nilpotent element e with partition [4,2]. Then we can form

an sly-triple with h of the form

Then

[y ea,] = (3= 1)eq, = 2ea,

[ﬁ,eaz] =(1-1)eq, = Oeq,

[h’ 6045] = (_1 - (_3))60(5 = 2eq,

Therefore the weighted Dynkin diagram corresponding to the nilpotent orbit e is

2 0 2 0 2
° ° o

For an arbitrary simple Lie algebra g we have a choice of Cartan subalgebra h. For a nilpotent
element e there is an sly-triple {e, f, h} such that, after conjugation if necessary, h € h. Then
we can apply w € W to h giving an element h in the closure of the positive Weyl chamber, i.e.
such that «; (7L) > 0 for all 5. Then the node on the Dynkin diagram of g corresponding to «; is

labelled by «;(h). A proof for the next result can be found in [BC76a).

Theorem 1.4.2 Let e, € be nilpotent elements in a simple Lie algebra g. Then the weighted
Dynkin diagrams of e and €’ are the same if and only if e and €' are conjugate. Therefore there

is a unique weighted Dynkin diagram for each nilpotent orbit in g.

It was shown by Dynkin that a;(h) = {0,1,2} (see [Car85, Proposition 5.6.6]). However not

every possible way of labelling a Dynkin diagram with 0, 1,2 corresponds to a nilpotent orbit.
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1.5 Bala-Carter Theorem

The final method for classifying nilpotent orbits is via the Bala-Carter theorem. This method
utilizes distinguished nilpotent orbits. A nilpotent element e in a simple Lie algebra g is dis-
tinguished if e does not commute with any non-zero semisimple element of g. For example
a nilpotent element e € sl,, is distinguished if it is regular (an n x n matrix A is regular if
dim(g?) =n —1).

Let h” be a Cartan subalgebra of g corresponding to a maximal torus 7" of G. Let A be a basis
for the root system ® of g and for a subset I C A let &; = ZI N ®. Now let pr be

Pr=br® > ga® Y ga
Q€d; acd+
Clearly py D b = hr @& > go- The subalgebras p; with I C A are the standard parabolic

acedt
subalgebras.

Example 1.5.1
Let g = gly, A = {a1, a2} and hr = {t - (“ t2 t3> 1 € k} Then [t ea,] = (t1 — t2)ea,
so ay(t) = t1 — to and similarly as(t) = to —t3. For I = {ay} then ®; = {a;1,—a1} so
Pr =07 ® ga; D 9-a1 D Jay D Jai+a,- This gives

h a b
pr= d ta ¢ tti,a,b,c,d €k
0 0 t3

Proposition 1.5.2 [CM93, Lemma 3.8.1] Let G be a simple algebraic group and let g = Lie(G).
Then any parabolic subalgebra of g is conjugate to at least one standard parabolic p; for some

ICA.

Let g be a Lie algebra with basis A and let I C A. Then the standard Levi subalgebra and

unipotent radical of p; are respectively

L=br® Y ga

a€dy
W= ) a
aedPt\P;
t1 a O
Then p; = I; G uy. Consider the p; in Example 1.5.1 then [; = {( é t@ 1t0 ) ta,d,t; € k} and
3

uy = { (§ (8) g) :b,c€ kz} Then [ = gl, & k is reductive. We can now state the first Bala-Carter
Theorem from [BC76b, Theorem 6.1].

Theorem 1.5.3 (Bala-Carter Theorem I) Any nilpotent element of a Lie algebra g is con-

jugate to a distinguished nilpotent element of some standard Levi subalgebra of g.
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For example consider g = gl; as above; then the nilpotent element (O 0 §) is distinguished in
[{a1}'
For I C A there is an associated grading of g. Let g(I;0) = [; and let g(I;2m) be spanned by

all go where o =3, a;0; and > a; =m.
a; EA\T

Example 1.5.4
Let g = G2, A ={«, B} and let I = {a}. Then g, C g(I;0) and gg C g(I;2). Therefore

0o+ has degree 2, g3o+23 has degree 4 etc. We can represent the roots of G as in Figure

1.2.

3o+ 203 4

2/\2 2
3a+ 2

Then the grading

corresponding to 0 0
I = {a} can be
represented as -2 =2 \/[2 -2
~3a-28 4

Figure 1.2: Positive Roots of G4

Since g = @a(I;i) and [g(134), 9(1;5)] C g(L3i + j), then p; = 37,5, 9(L;1), I = g(1;0) and
ur = > M;izg(i). A nilpotent orbit O, is distinguished in g if the only Levi subalgebra of g
containing e is g itself. Equivalently, e is distinguished if it does not commute with any non-
zero semisimple elements of [g, g]. For a simple Lie algebra g, p; is a distinguished parabolic if

dim g(7;2) = dimg(/;0) in the grading corresponding to I. The second Bala-Carter Theorem
from [BC76a] is as follows.

Theorem 1.5.5 (Bala-Carter Theorem II) Let g be a simple Lie algebra. Then there is a
bijective map between distinguished nilpotent orbits in g and distinguished parabolic subalgebras
of g up to conjugacy given by

pr—=G-eg

where ey is a nilpotent element contained in the dense Py orbit on uj.

Example 1.5.6
When g = G, there are four standard parabolics. These are g, p., pg and py = b. For

the proper parabolic subgroups the regular nilpotent orbits of [, [g and [y correspond
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to three nilpotent orbits in G2 which we denote Ay, ;lvl and 0 respectively. Therefore
all that remains is to find the distinguished parabolic subalgebras of G,. Now g is not
a distinguished parabolic because dim g({«,8};2) = 0 and dimg({«, 8};0) = dim(g).
Alternatively b is a distinguished parabolic because g((;2) = Y7 c A 8a. In fact for any
semisimple g we always have that b is a distinguished parabolic and g is not. Therefore

it only remains to check p, and pg.

First consider p,, then by the previous example we have
9({a};0) =br & ga S g-a
g({a};2) = 98 D ga+p D 92a+8 D 93a+5-

Therefore dim g({a};2) = dimg({a};0) = 4 so p, is distinguished. Finally for pg the

associated grading is indicated in the following diagram:

So

0({8};2) = 8o © Ga+s

9({8}:0) =br B gs® gs

Since dim g({£};0) = 4 and dimg({5};2) = 2 then pg is not distinguished. Therefore
G2 has two distinguished nilpotent orbits. The Borel subalgebra b always corresponds
to the regular nilpotent orbit in g. The non-regular distinguished nilpotent orbit in G,
associated to p, is labelled G3(a1) and has representative e, + €2q+5. Therefore G has

five nilpotent orbits.

This gives us another method for labelling nilpotent orbits in g, by considering I C A. For

example if g = Fg with A = {ay,...,a6}. The Dynkin diagram of g is




Now I = {ag,as, a4, a5} is of type Dy which can be seen by the sub-diagram of the Dynkin

diagram
Qs oy Qs
a2

The nilpotent orbit corresponding to the regular nilpotent orbit of [; is labelled D4. The orbit
which is subregular in the Levi subalgebra of type Dy is denoted Dy(a1). (In sog the regular
orbit has partition [7,1] and the subregular has partition [5, 3]). Similarly for g = Fj the regular
nilpotent elements in [(,, o,) and [y, o,) correspond to different nilpotent orbits in Fy. Since
both are of type Ay then the label of the orbit corresponding to lf,, .} is denoted as A; and
lfas,a.} 8S ;1;, since {a1, as} are long roots and {as, a4} are short roots.

For example Fy has the following standard Levi subalgebras up to conjugacy (with the number

of distinguished orbits in parentheses):

=

(1)

Al(l)v;ﬁ(l)

A?(l)’ Ar + A~1(1)7,/4\;(1)’ BQ(l)
Bs(1), Az + A1 (1), Ay + Az(1), C5(2)
)

IS

(4

Therefore there are 16 nilpotent orbits in Fj.
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Chapter 2

Classification of Nilpotent Orbits in

Positive Characteristic

2.1 Preliminaries

In this chapter we discuss the positive characteristic analogues of the classifications of nilpotent
orbits which were shown in the previous chapter. This is followed by an introduction to transverse
slices.

Let G be a connected reductive algebraic group over an algebraically closed field k of characteristic
p > 0. Then let g = Lie(G). The examples of simple algebraic groups in characteristic zero are
still simple in positive characteristic p. However, the Lie algebra of a simple algebraic group need
not be simple. The Lie algebra sl,, is not simple when p|n; all other classical Lie algebras are
simple if p > 2. Similarly the exceptional type Lie algebras are simple if p > 3. Also there are
new simple Lie algebras that arise which we do not consider (see [BW84]). Most of Section 1.1
still holds in positive characteristic, however some definitions need to change.

The definitions of a Borel subgroup, parabolic subgroup and maximal torus are the same as the
definitions given in Chapter 1. However a Borel subalgebra of g is defined to be a subalgebra
b where b = Lie(B) for some Borel subgroup B of G. Unlike when the characteristic is zero,
a Borel subalgebra is not necessarily a maximal solvable subalgebra of g. A standard example
is a Borel subalgebra in sls when p = 2. A parabolic subalgebra p and torus t of g are defined
similarly. Specifically p = Lie(P) (resp. t = Lie(T)) for some parabolic subgroup P of G (resp.
for some maximal torus T of G). All of the statements about conjugacy of Borel subgroups and

Cartan subalgebras now hold.
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Roots of Simple Lie Algebras

In positive characteristic the root system is generally defined in relation to a maximal torus 7" in
G. Let X(T') be the set of morphisms A : T'— k*. In X (T') we use additive notation, therefore for
A€ X(T) then (A+ p)(t) = A(#)u(t) for t € T. Now let gy = {g € g: Ad(g) = A(t)g Vt € T'}.
Then the root system ® of g is the set of non-trivial « € X (T') such that g, is not trivial. Any
element o € @ is a root of g. Then we have that

g=1to @ga where t = Lie(T)
acd

When G is semisimple and simply connected (defined in the next section) then a Chevalley basis
{€a;s fais ha; + a; € @} still exists and is defined in the same way as for characteristic zero

[BGP09, §2.2]. A proof of the following result is presented in [Hum?75, §26.3].

Theorem 2.1.1 Let G be a reductive group with a mazimal torus T and let o € P.

(i) There exists a unique connected T-stable subgroup U, of G with Lie(Uy) = gq-

(ii) G is generated by T and the subgroups U,, where o runs over all elements of ®.

For a root a € ® there exists an isomorphism &, : k — U, such that t(E,(£))t™! = E,(a(t))
and d&,|o(1) = e where d€,|o(1) denotes the differential of the morphism &, at 0 evaluated at
1. If we consider G = SL,, then &,(§) = I 4 e, for € € k.

The definition of the Weyl group is the same as in characteristic zero, specifically W = N¢(T)/T.
Let n, be the map given by E,(1)€_4(—1)E4(1), which is an element of Ng(T). This is a
representative of the element s, in YW which reflects elements in the hyperplane P,, in particular
Sa = noI’. To see this observe that the subgroup of G generated by U,,U_, is isomorphic to
either SLs or PGLs. Then the result is given by the following matrix calculation.

1 1 1 0 11 0 1

Highest Weight Modules

Let G be a reductive algebraic group with a maximal torus T and simple roots A = {1, ..., Qm}-
The roots « € ® give rise to coroots a¥ : k* — T such that daV|;(1) = hy. Let @Y be the set

of coroots of G.

Example 2.1.2
Let G = SL3 with maximal torus T = {(

t 0
s 1) 1s,t € kX} and simple roots
0 (st)

ay, g € &, Then
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Now let Y(T') be the set of morphisms ¢ : kX — T then a1y + -+ + ana,), € Y(T) for a; € Z
where (a1 + -+ + ama))(t) = of () oy (£)*2 ... ay, (t)*. If all the elements of Y (T') have
this form then Y (T') = Z®" and so G is (semisimple and) simply connected.
Examples 2.1.3

1. Let G = SL, with maximal torus T = {((t)tgl) it e kx} and oV = (tt—l). Now

Z =Y (T) where
a —

We have Y (T') = Za" where « is the unique positive root, hence G is simply connected.

2
2. Let G = SO3 with maximal torus T' = {(t 1t71) te kx}. Now oV (t) = (t 1 2) S0
-

Y(T) =Z(3a"). Therefore SOs is not simply connected.

A finite dimensional G-module V is rational if p : G — GL(V) is a morphism of algebraic groups.
From now on all G-modules are assumed to be rational. Then for a finite dimensional G-module
v

V= @ V., where V, = {v e V : p(t)v = p(t)v Yt € T'}
HEX(T)

If V,, is non-trivial then p is a weight of V and V), is a weight space. For every o; € A, let

wi € X(T) be such that w;(ay) = d;; Then every weight u € X(T') we can express as
=, 0y Jwr + (s g Jwz + -+ 4 (1, 0 Y

A weight p is dominant if (u, ) > 0 for all 7.

A non-zero vector v € V), for some weight p is a mazimal vector of weight 1 if it is fixed by
all p(U,,). Given a Borel subgroup B of G, if V is irreducible then there is a unique B-stable
1-dimensional subspace spanned by a maximal vector with dominant weight . We say u is the
highest weight of V. All the other weights of V are of the form p— Y ¢;a; for o € @, ¢; € ZT.
An irreducible G-module V' of highest weight ' is isomorphic to V if and only if 4 = y’. For
every dominant weight 1 € X (T') there exists an irreducible G-module with highest weight .
For more details and other standard results refer to [Hum?75, §31].

Let L(p) denote the unique irreducible G-module with a maximal vector v, in the weight space
L(p),. Any rational G-module is also a g-module by differentiation of the morphism G — GL(V).
However an irreducible G-module is not necessarily irreducible as a g-module. This leads to the

next result, for details see [Jan03, Chap II §3.15].

Theorem 2.1.4 For a G-module L(p) then L(p)|g is simple if (p, o) € {0,...,p — 1} for

1< <m.
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Example 2.1.5

For n < p, the sly-module L(nw) is simple as a g-module.

L(nw) = S™(V) = (wP™ @ w®}™™ : 0 < m < n) where w; = (§)and w_q = (9).

Then
e (WP ® w%n*m)) =(e-wy) ® wi@(mfl) 4w ® w?ﬁ”*’"*” ® (e-w_q)
= (0= m)(wy ™Y @)
Therefore if we let vy,,_, = w?m ® w%n_m); then L(nw) = (vn,Vn—2,...,V_p) Where

€ Vom—n = (’Il - m)”Qm—n—i—Q f cV2m—n = MU2m—n—2-

We can depict this by the following diagram

e e e
V-n+2 ‘/_\
Une® oUn—2 e - - - - — - ) eU_n
e \_/
f f f

If n > p then L(nw) is not simple over g. For example if n = p then e-v_, =0 s0 kv_,

is a (trivial) submodule of L(pw)

Let V be an irreducible G-module with highest weight p. The length of the a-chain of weights
in V given by {p,u — o, — 2a,... } is {u, ). For example if g = w; is the highest weight of
V then p — a; is a weight of V but 4 — 2o is not and neither is ¢t — a; for 7 # j. For example

L(pw) is 2-dimensional and consists of just v, and v_,.

z_

o0
The following lemma utilizes the exponential map given by the usual power series exp(z) = 3 %
0

Note that for positive characteristic p, this map is not defined if 2P # 0.

Lemma 2.1.6 Let G = SL,, with highest weight module L(rw) = S"(L(w)) for r < p. Then
Adg_ (&) = exp(ad(€ey)) for & € k*.

Proof. In this case £3(¢) = (I + &ep). Then for u; ® - -- @ u, € S"(L(w)) we have

Ep(§) (w1 ® - ®u,) =(I +E&eg)ur @ --- @ (I 4 Eep)uy
2
s (eg (m® - @ur))+

ot Sy (e (s © @) )

=(u1® - Qup) +&eg- (U1 ®---Qu,) +

:emp(geﬁ) . (ul R U'r‘)

r+1

Since%65-(65-(...(65'(u1®"'®u7~))...)):0. u
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If p > 3 then the exceptional type Lie algebras g are simple. Then every non-trivial module
of g is faithful. We can form modules which correspond to the minimal faithful modules in
characteristic zero. Although we call these the minimal faithful modules it is not clear if these
modules have the smallest dimension. If we form the modules over Z, then the root elements
act via integer matrices. We can now reduce these modules mod p. Once the action of roots

elements is determined, this can then be extended by linearity and the bracket.

2.2 Nilpotent Orbits

The p-operation on a Lie algebra g is a map z +— z[P! satisfying
i) ad,p = (ad,)? for z € g
i) (\x)lPl = \PalPl for z € g, A€k
iii) (z+y)P = 2l 4yl 4 P71 5 ”’) forz,y € g

where s;(z,y) is the coefficient of #*~! in the expression ad(tx +y)?~!(x). For example when g is
a classical Lie algebra then the p-operation is the p-th power of matrices. We denote by N7 the
subset of g of elements satisfying z[P) = 0. The iterated p-th power (((z[P))[Pl).. )Pl is denoted
2P, By definition z is nilpotent if 2[?"] for some n > 0. Note that if 2 € A; then z is nilpotent.
A nilpotent element e is distinguished if (G¢)° contains no non-trivial semisimple elements. Here
a non-trivial semisimple element is a semisimple element not contained in 3(G).

For the remainder of this chapter we consider the classifications of nilpotent orbits of simple Lie
algebras g over an algebraically closed field of characteristic p. There are a few primes p for
which the following classifications do not hold. Let g be the simple Lie algebra of a simple group
G with simple roots A = {ay,...a,}, and highest root & = Z m;ay; for m; € k. A prime p is
bad if p divides some m;, otherwise p is good [SS70]. =

The bad primes for the simple groups are as follows:

Lie Algebra g Bad Primes p
A, No bad primes
Classical types (except Ap,) 2
Exceptional types (except Eg) 2,3
Eg 2,3,5

If p is good then the partition classification of nilpotent orbits given in the previous chapter still
holds for the classical types. Note that any p is good for sl,, and for the other classical types
p > 2 is good. The following is from [NPV02, Theorem 6.3.1].

Theorem 2.2.1 Let p be a good prime and let G be a reductive group. Then N7 is irreducible.
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Let G be simple but not of type SL,, and let p be good. Then for x € G we have Lie(G*) = g*
[SS70]. The following classifications of nilpotent orbits do not hold when p is bad, therefore for

the remainder of the chapter we assume that p is good.

2.3 Weighted Dynkin diagrams

For the weighted Dynkin diagram classification to hold we require a few more conditions on G.
Let G be a reductive algebraic group and g = Lie(G). We require that the derived subgroup of
G is simply connected and that there exists a non-degenerate symmetric bilinear G-equivariant
form x : g x g — k. We assume these hold throughout this section. In positive characteristic
embedding nilpotent elements into sly-triples is less helpful. This is because a nilpotent element
of g need not lie in Nj. In the case where p is greater than the Coxeter number then we
have N7 = N, otherwise we need to find an alternative. We recall that the Cozeter number is
(1 4+ > m;) where the highest root is given by > m;q; for simple roots «;.

A cocharacter is a morphism A : k* — G. Let
g(X;i) = {z € g: Adyy(2) = t'a Vt € K}

For an element e € g, a cocharacter A is an associated cocharacter for e if
(i) e €g(X2)

(i) g° < Do(A;i)
>0
(iii) There exists a Levi subgroup L of G such that A(k*) C (L, L) and e is a distinguished

nilpotent element of Lie(L).

An associated cocharacter of a nilpotent element e is in some ways analogous to h in an sly-triple
containing e. The following result was proved by Pommerening in [Pom77] and [Pom80]. A

uniform proof is also given in [Pre03b, Theorem A].

Theorem 2.3.1 Let g = Lie(G) with the above assumptions on G. Then any nilpotent element

e € g has an associated cocharacter. Any two such cocharacters are G€-conjugate.

Any parabolic subgroup of G can be decomposed as P = L - U where L is a Levi subgroup and
U is the unipotent radical. There is a parabolic subgroup P(\) = L(A\)U(A) where U(]A) is the
unique connected T-stable unipotent subgroup of G such that L(\) = G*, Lie(U()\)) = > 9(Ni)
and Lie(P()\)) = p(\) = 2;09()\; i). The following two results are from [Pre03b, TheOI‘é;I? Al

Theorem 2.3.2 Let G be a reductive algebraic group such that the above assumptions hold.
Then for any nilpotent element e € g and any associated cocharacter A we have G¢ = C x U

where C = L(A) NG® and U = U(X\) N G°.
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Lemma 2.3.3 Let G be a reductive algebraic group and g = Lie(G). Then for e € g, with

associated cocharacter \

S o(hi) = POV ¢

i>2
For any nilpotent element e of g we have g® = g°()\;0) @ @ge()\;i). Let the reductive part of
g° be ¢ = g(X;0) and the unipotent part of g° be u® = EBZEEI(A,Z), then g¢ = ¢ + u®. With our
assumption on G we have ¢ = Lie(C) and u® = Lie(U). ’zl“zlius if e is distinguished then ¢ = 3(g).

Lemma 2.3.4 Let e be a distinguished nilpotent element in the Lie algebra of a simple group.

If e € N7 then g¢ C N7.

Lemma 2.3.5 Let O, be a nilpotent orbit of g. If c,c’ € cN N7 are such that C-c¢> C - and
c+u® C Ny, then C-(c+ue) DC-(d +u).

Proof. If C-¢ Cc C-c and ¢+ u® C N7 then ¢/ + u® C ANj. Since u®¢ is C-stable then
C-¢/+ucCcC-c+uc. [ |

Consider a homomorphism p : SLy — G where dp : sly — g and dp (3 }) = e. We say p is an

optimal S La-homomorphism if

t 0
P =A(t) Vtek”
0 t!

for some associated cocharacter A of e [McNO5]. The image of an optimal homomorphism is called
a good SLy subgroup of G (see [McNO5] and [Sei00]). A proof for the following proposition can
be found in [McNO5, Prop 33| and [Sei00, Theorem 1.1].

Proposition 2.3.6 Let e € N7 with associated cocharacter \. There is an optimal homomor-

phism, p for e where p (§ %) = A(t).

For an element e € N with associated cocharacter A we have that g = >, g(\;4). Each
v; € g°(A\;4) generates an SLg-submodule L(iw). If i < p then this submodule is irreducible
by Theorem 2.1.4. If all the weights of A\ on g° are less than p then g = %_1L(iw)”i where
dim(g* (\;)) = . =

Let e be a nilpotent element of g with associated cocharacter A : k* — T. Then we associate a

weight (A, ;) to each «; € A, where
— ¢{Xaq) X
Adygy(ea,) =t €q; fort €k

After conjugating by some element of W we may assume (A, «;) > 0 for all a; € A by Theorem
1.1.10. Then the weighted Dynkin diagram corresponding to e is given by the Dynkin diagram
of g where the node corresponding to «; is labelled with (A, «;). As before the weighted Dynkin
diagrams of nilpotent elements e and e’ are the same if and only if e and ¢’ are conjugate.

Therefore there is a unique weighted Dynkin diagram for each nilpotent orbit in g.
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2.4 Generalization of the Bala-Carter Theorem

The Bala-Carter theorem holds in positive characteristic p as well as in characteristic zero. When
p > 0 and p = 0 the proof presented in [BC76b] holds. For p good, this is shown in [Pom80] and
a uniform proof is given in [Pre03b]. There is also a generalization of the Bala-Carter theorem
which can be helpful for describing representatives of nilpotent orbits. This generalization was
shown in [Som98, Thm 13| for char(k) = 0 and in [MS03] or [Pre03b, Thm 3.7] for char(k) = p.
For this we require the same assumptions on G as mentioned at the beginning of Section 2.3.
A subgroup H of G is a pseudo Levi subgroup if H = (G*)° for some semisimple element s € G.
Similarly a subalgebra b C g is a pseudo Levi subalgebra if h = g*. Since Lie((G*)°) = g* [Bor91,
§9] then the pseudo Levi subalgebras in g correspond to pseudo Levi subgroups of G.

Let @ be the root system of g with basis A = {a1,...,a;} and let & be the highest root in ®+.
Then we denote A = AU {ag} where ag = —a. Let J be a proper subset of {0,1,...,1} and let
® ;7 be the set of all roots in @ of the form > a;a; for a; € Z. For a torus T of G then [; is a

ieJ
standard pseudo Levi subalgebra of g where

j=t& Z Oa
a€d,
Then we define a subgroup L; of G generated by T and U, for « € ®;, where Lie(Ly) = [;.
Then L is a standard pseudo-Levi subgroup of G. For details of the next proposition see [Pre03b,
Proposition 3.1].

Proposition 2.4.1 A subgroup H C G is a pseudo Levi subgroup of G if and only if it is

G-conjugate to a standard pseudo Levi subgroup.
For a nilpotent element e in g the component group of e is A(e) = G¢/((G®)°3(G)).

Theorem 2.4.2 (Generalization of Bala-Carter Theorem) There is a bijection between G-
conjugacy classes of pairs (L,e) where L is a pseudo Levi subgroup of G and e is a distinguished
nilpotent element in | = Lie(L), and G-conjugacy classes (e, D) where e is a nilpotent element

in g and D is a conjugacy class in Ale).

Example 2.4.3
Consider g = spg and nilpotent orbit Oy ). This orbit has Bala-Carter labelling C3(ay).

However we can consider the following representative e of Oy o)

0 1
0 1
0 1
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Then the inner block corresponds to a distinguished nilpotent element in sp,. The outer
corners form a block which corresponds to a distinguished element in sls. Therefore e is

distinguished in the pseudo-Levi subalgebra sp, @ sla, of type Cy x A;.

Let g be a simple Lie algebra with highest root &. The affine Dynkin diagram of g is the Dynkin
diagram of g with an extra node attached corresponding to ay. This node is attached to the oy
where —d& + «; is a root. (In type A,, aq is attached to both «; and «,. In other types it is only
connected to one ;). If this «; is a short root element then we draw a double bond between g

and «;.

Example 2.4.4
The highest root of spg is & = 21 + 22 + 3. Then the affine Dynkin diagram of spg is

s

Qp ap [6D) Q3

This is because — (g + 1) and —(ag+2aq) are roots in spg. The arrow from «y is present
because «q is long but oy is not. Then by Example 2.4.3 we can represent the nilpotent

orbit Oy o) by the sub-diagram

Ay Cy

O Oio

Qo a2 a3

The regular orbit in A; x C5 can be represented by the element e, , + eq, + €q;-

2.5 Transverse Slices

Throughout this section let X be an affine variety with coordinate ring k[X] where k is an
algebraically closed field of arbitrary characteristic. For a multiplicative set U of k[X], the
localization of k[X] at U, denoted U~'k[X], is the set of equivalence classes f/g for f € k[X]
and g € U, where f1/g1 ~ f2/g2 if and only if there exists an w € U such that u(f1g2 — fog1) =0
(see [Lan93, Chap II §4]). For a point z € X the set Ux, = {g € k[X] : g(z) # 0} is a
multiplicative set of k[X] and the local ring of X at x is the localization Ox , = U;(’lxk[X].
There is a unique maximal ideal m; of Ox , which consists of all elements which vanish at z.
For example let X = A; with coordinate ring k[t] then the local ring of X at 0 is given by
Oxo = 1£(t)/g(t) : 9(0) # 0} and mo = {£(t)/g(t) : 9(0) # 0, £(0) = 0}. The dimension of a
local ring is the Krull dimension, i.e. dim(Ox ) is the largest » such that there exists a chain

po C p1 C -+ C p,r of prime ideals of Ox ;.

Proposition 2.5.1 Let X be an affine variety with point x € X. Then dim(Ox ,) = dim,(X),

where dim, (X) is the largest dimension of an irreducible component of X passing through x.
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Proof. Consider the prime ideal p = {g € k[X] : g(z) = 0} of k[X], then by [AM69, Cor 3.13]
there is a one-to-one correspondence between chains of prime ideals g0 € ¢1 € --- € ¢, of Ox
and chains pg C p1 € -+ € p, of prime ideals of k[X] which contain p. Therefore dim Ox , is

equal to the maximum length of such a chain of prime ideals of k[X] containing p. There is also

a one-to-one correspondence between chains pg C p; S -+ € p, of prime ideals of k[X] which
contain p and chains Xg 2 X3 2 --- 2 X, of irreducible closed subsets of X which contain z.
Therefore dim(Ox ) = dim, (X). [ |

Consider the sequence
e = OX@/mi — Ox,x/mi — Oxx/mx =k

The isomorphism Ox ;/m, = k is a consequence of the weak Nullstellensatz. In particular since
Ox ; is a finitely generated k-algebra and m, is a maximal ideal then Ox ,/m, is a field which
is a finitely generated k-algebra. Hence by the Weak Nullstellensatz Ox ,/m, is an algebraic
extension of k. Since k is algebraically closed then Ox ,/m, = k (see [AMG69, Cor 7.10]). In
the case where X = A,, and = = (0,0,...,0), every element of Ox ,/m}, can be represented
by a polynomial truncated at rth-degree. The completion of Ox , is given by the limit of this

sequence. This is denoted by
OXJ = lgn (OX7$/mx)

In particular an element of (5; is given by a sequence (f1, fo, f3,...) where f. € m] and
fr = fr—1 mod m’~!. In the case X = A; and = = 0 the completion @ is isomorphic to the

formal power series denoted k[[t]]. By [AM69, Cor 11.19] we have the following proposition.
Proposition 2.5.2 Let Ox , be the local ring of x € X. Then dim(Ox ;) = dim((’m).

We say Ox., is regular if dimy(m,/m2) = dim(Ox ). A point x is smooth in X if Ox . is
regular, otherwise we say x is singular. An affine variety X is smooth if every point in X is

smooth.

Example 2.5.3
Consider the irreducible affine variety X C A? defined by the polynomial y? = 2?(z + 1),
as depicted in Figure 2.1. Then the point p = (—1,0) in X is smooth. To see this first
note that dim(Ox ) = dim(X) = 1 by Proposition 2.5.1. Now m,, and m? are generated
by (z+1), y and (x +1)?, y?, (x + 1)y respectively. Since 2°(x+1) = y*> =0 mod m}
then

c+l=z+1-2*(z+1)=(1+2)*(1-2)=0 modm

Therefore dim(m,/m?) = 1. The point ¢ = (0,0) is singular since dim(my/m2) = 2. In

fact X is smooth at every point except at (0, 0).
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Figure 2.1: X = {(z,y) : y*> = 2%(z + 1)}

A proof for the following results is presented in [ZS60, Chap VIII, §11 and §12|.

Theorem 2.5.4 Let X be a variety and let the local ring Ox 5 for € X have dimension n.
(i) Ox y is reqular if and only zf(’j); 1s reqular
(i1) (@ is regular if and only if (5)(\@ > k[[x1,. .. xn]] where k[[z1,...,x,]] denotes the

formal power series ring.

Proposition 2.5.5 Let x € X andy € Y be points in varieties X and Y, andlet f : X — Y be

a morphism such that f(x) =y. Then there exists a homomorphism (@ — (’)/y\y

Proof. There exists a homomorphism f, : k[Y] — k[X], g — go f. Now consider the multi-
plicative set Uy, = {g € k[Y] : g(y) # 0} of k[Y], then g € Uy,, if and only if f.(9) € Ux . =
{h € k[X] : h(z) # 0}. Therefore we get a homomorphism given by

Oy, = Uy kY] = fu(Uyy) "k[X] = U Lk[X] = Ox s
This homomorphism maps m,, to m, so the homomorphism Oy, / my — Ox o /m is well defined.
Therefore we get the following diagram

...—>Oy7y/mg —>Oy7y/m2*1 *>...*>(9y7y/my >k

i | l

co—=Oxp/ml ——=Ox /mi ——  — = Oy, /m, 2k

So we have the morphism 6y\y — Ox /m’ for all r such that the following diagram commutes.

—_—
OY,y

|

OX,z/mg — Oxym/mgil
Therefore by the universal property of the limit there exists a morphism 65; — 6;1; |
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Let f : X — Y be a morphism of affine varieties such that for points z € X and y € Y we
have f(x) =y. Then (X, ) and (Y,y) are locally analytically isomorphic if the homomorphism
induced by f as described in Proposition 2.5.5 is an isomorphism 65; ~ (7)-(: Suppose that
dim(X) = n and dim(Y) = n — r. Then f is smooth of relative dimension r if the comorphism

f*:Oy,y — Ox can be extended to an isomorphism
Oy yllt1, .- tr]] = Ox»

Examples 2.5.6
1. If X and Y are both smooth varieties then any morphism f : X — Y is smooth.

2. Let X be as in Example 2.5.3 and let Y C A? be defined by the polynomial y? = z%(z+1)
as depicted in Figure 2.2. Then the morphism f : Y — X where (z,y,2) — (z,y) is

smooth at all points.
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Figure 2.2: Y = {(z,y,2) : y* = 2%(x + 1)}

Let G be an algebraic group which acts on X. A subvariety S of X is locally closed if it is the
intersection of an open set with a closed set. A transverse slice in X (to G-x) at x € X is a
locally closed subvariety S of X such that
(i) z €8,
(ii) the morphism G x S — X where (g,s) — g - s is smooth at (e,x) where e is the identity
of G,

(iii) the dimension of S is minimal given (i) and (ii) (see [Slo80]).

Let e be a nilpotent element of g = Lie(G) and suppose that Lie(G¢) = g°. This holds when
char(k) = 0 and G is simple, or when char(k) is good and G is simple but not of type SL,.
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Consider the map ¢ : G — g where v — Ad,(e). Then d¢; : g — T.(g) sends y — e+ [y, e] (note
that T,,(X) denotes the tangent space of X at ). Let E denote the image of d¢ so E = e+][g, e].
Now let v be some linear (C-stable) complement to E in T.(g) = e + g. So

[g,e] Po=g and [g,e] N o = {0} (2.1)

Let S be the preimage of v under the map 7 : g — T.(g) which sends y — e + y. Then, by the
proof of [Slo80, Chap III, §5.1, Lemma 1], S = e + v is a transverse slice of e in g.
Let g be a Lie algebra of characteristic zero; then for a nilpotent element e of g there exists an
sly-triple {e, f,h}. The Slodowy slice at e given by S, = e + g/ is a transverse slice of e in g
[S1o80, §7.4]. In the case when char(k) > 0 then e € N; has an associated cocharacter A with
good SLy-subgroup {e, f,h} of G. If the weights of A are between —(p — 1) and p — 1 then the
Slodowy slice S, = e + g/ is a transverse slice.
Example 2.5.7
Let g = sl3 with p > 3. Consider e = (0 8 é) which is contained in Aj. Now e has
associated cocharacter A(t) = (t 1 t_1> which has weights {—2,—1,0,1,2}. Therefore
there is a good SLs subgroup of G given by {e, f,h} where f = <§ 0 0)' The Slodowy

slice S, = e + g/ is a transverse slice when p > 3 where

a 0 1
Se = ¢c —2a 0 |:a,b,c,dek
d c a

A proof of the following proposition is presented in [Slo80, §5 Lemma 2].

Proposition 2.5.8 Let G be an algebraic group which acts on a variety X. Let S, be a transverse
slice at © in X and let Y be a closed G-stable subvariety of X such that x € Y. Then S, NY is

a transverse slice at x in'Y .

Let O be a nilpotent orbit of g and let e be contained in O with transverse slice S, in g. For a
nilpotent orbit O’ such that @ < O we have e € O’. Then by Proposition 2.5.8, S, N O’ is a

transverse slice of e at O’.

Example 2.5.9
In Example 2.5.7, e is contained in Ojy 1}, therefore a transverse slice of e in O3 is given

by

SeﬂﬁzSeﬂN: b “9a 0 |:4a®4+bc=0
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Lemma 2.5.10 Let O be a nilpotent orbit in g with e € O. Let S, be the Slodowy slice of e in

g which is also transverse. Then S. N O = {e}.

Proof. Let e have associated cocharacter A with good SLs subgroup {e, f,h} of G such that
f € g(—2;\). Consider the element

etzotar_ 1tz ot--€(et+g/)NO

where x_; € g(—i; A). There is a scaling action on S, which preserves the intersection with every

nilpotent orbit, this is given by the following two steps:

Adyp(e+ao+ a1 +20+...)=tlet+azo+t o1+t 20 o+ - € (tPe+g/)NO

t2Pe+zo+t e+t 22 o+, ) =e+t 2no+t 31 4---ce+gf)NO

So we obtain a 1-dimensional subset of elements belonging to S.NO. By [S1o80, Chap 5, Remark
2] we get

dim,(S. N O0) < dim,(0) — dim(G - e)

So if O = G - e then S, N O is finite. Therefore we cannot have anything in S, N O of the form
e+xo+x_1+... with (xg,z_1,...) # (0,0,...). [ ]

Corollary 2.5.11 Let O < O’ be nilpotent orbits in g such that there is mo orbit O where
O <0O" <O, and let e € O. Then all elements of S. N O’ are contained in O except e.

Proof. Let x € S, N O’ such that 2 # e. Then G -2 C G- O’ and so G -x C O’. Similarly, by
the scaling action described in Lemma 2.5.10, we have e € G - x, therefore O C G - x. By proof

of Lemma 2.5.10 we have dim(G - =) > dim(G - e) therefore z € O'. [ |

Hence in Example 2.5.9 all the elements in S, N A such that (a,b,c) # (0,0,0) are contained
in Oj3). This property means that transverse slices can help to describe points of O’ which are
close to e. This is utilized in [FJLS15].

We can parametrize the Slodowy slice in Example 2.5.9. We have S. NN 2 k[a, b, c]/(4a® + be).
There is a surjective map from this ring to k[st, —4s3,t3] by sending a + st, b — —4s> and
¢ + t3. This map is well-defined since the images of a, b and ¢ satisfy the polynomial 4a>+bc = 0.
Because this polynomial is irreducible then both of these rings are integral domains. Since these
rings also have the same dimension they are isomorphic. A similar process of parametrization

can often be applied to transverse slices making it easier to describe their elements.
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Chapter 3

Special Cases

3.1 Classical Types

In this chapter we consider in detail a few simple Lie algebras that are helpful for subsequent
calculations. Throughout this chapter we assume that char(k) = p is good. We start by looking
at sly, sl3, sly and slg. Below are the Hasse diagrams of the nilpotent orbits of these Lie algebras

labelled by the corresponding partition along with the dimension of each orbit.
O dim(Opy)) = 12

O dim(Opy)) = 6 Opy  dim(Op ) =10
Oy dim(Opg)) = 2 ‘ ‘
‘ Op,y dim(Op ) =4 Op2) dim(Ojp2)) = 8
Opzp dim(Opz)) =0 | |
Ops dim(Ops)) =0 Opaz  dim(Op)) =6
O[‘ld] dim(O[la]) =0

Figure 3.1: Hasse Diagram of Nilpotent Orbits of sly, sl3 and sly respectively.

Ops.1) (11111((9[5,1]) =28
0[472] din1(0[4_2]) =26

Ol 17 dim (O3 3)) = dim(Opy,12)) = 24

0[372,1] dim(0[3,2’1]) =22

0[3.13]/ \0[23] dim(0Oy3,13)) = dim(Opg) = 18
\[22, 12]/ dim(Oj2 1)) = 16
[2,‘14} dim(Opp 14)) = 10
(’)[‘1@] dim(Opye)) = 0

Figure 3.2: Hasse Diagram of Nilpotent Orbits of slg
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Consider the nilpotent orbit O, of sl, with partition type [A1, ..., Ay], then O, has Bala-Carter
label Ay, 1 X -+ x Ay, _1, for more details see [Pan99, §3|.

The other classical cases we are interested in are sos, s07 and spg. Below are the Hasse diagrams
with each nilpotent orbit labelled by the corresponding partition type and Bala-Carter label.

Alongside this is also the dimension of each nilpotent orbit.

B3 0[7] dim(Om) =18
Bg 0[5712] dim(0[5)12]) =16
By  Op dim(Op) = 8 |
‘ AQ 0[3271] dim((’)[32,1]) =14

A1 0[3712] dim((’)[g’lz]) =6 ‘
‘ A+ Ay 0[3)22] dim(0[3722]) =12

Al 0[22’1] dim(O[Qz’l]) =4 ‘

‘ A1 0[3714] dim((’)[3714]) =10
0 0[15] dlm(O[ls’)]) =0
A1 0[22’13] dim(O[szla]) =38
0 0[17] dim(0[17]) =0

Figure 3.3: Hasse Diagram of Nilpotent Orbits of so5 and so7 respectively

Cs Oe) dim(Og)) = 18
Og(al) 0[472] d1m(0[4,2]) = ].6
Csy 0[4712] 0[32] Z; dim(0[4712]) = dim(0[32]) =14
:4\1 x Ap Ol23) dim(O[QS]) =12
;E 0[22711] dim(0[22’12]) =10
A1 0[2714] dim(O[Q’yk]) = 6
0 0[16] dim(O[lﬁ]) =0

Figure 3.4: Hasse Diagram of Nilpotent Orbits of spg
If a nilpotent orbit O, of sp,,, has a partition of distinct even parts then O, is distinguished.
If it is the regular orbit then its Bala-Carter label is C),. The first example of a distinguished
non-regular orbit is [4,2] in spg which has label C3(ay). Otherwise the partition of O, has a
pair of elements [A;, A;] which are equal. For each such pair there is a component A z;—1 in the
Bala-Carter label. Removing these pairs leaves a partition with at most one even part. The final

part of the Bala-Carter labelling is C; in which this new partition is distinguished (or A; if we
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are left with a single part of length 2). The method is same for a nilpotent orbit in so,, with the
pairs of elements [\;, \;] in the partition corresponding to an Ay, component instead of g&-fl-
(These results are presented in [Pan99, §3]).

We are interested in some highest weight modules of G. For G = SLs the highest weight
module L(nw) has dimension n + 1. When G = SL,, then L(w;) = A*(k™) where A represents
the alternating product. Therefore the highest weight module L(ws) = A%(k*) for SL, and
so has dimension 6. Both L(w;) and L(ws) have dimension 4. For SLg we are interested in
L(ws3) = A3(k®) which has dimension 20. Also SL3 has an 8 dimensional highest weight module
given by L(w;+ws). Similarly we are interested in L(ws) and L(w;) of SO5 which have dimensions

4 and 5 receptively. Finally L(w;) of SO7 has dimension 8 and L(ws) of Spg has dimension 14.

3.2 Exceptional Types

The main focus is the exceptional Lie algebras G, Fy and Eg. There are five nilpotent orbits of
G, two of which are distinguished. Similarly Fj has sixteen nilpotent orbits, four of which are
distinguished. Finally FEg has twenty two orbits, three of which are distinguished.

Let p be a minimal faithful representation of g. For G2, F; and Eg respectively, p has dimension
7, 26 and 27 respectively. For a nilpotent element e, the sizes of the Jordan blocks of p(e) are
calculated by considering the successive powers of p(e). An element x € g is contained in O, if
and only if the Jordan blocks of p(z) are the same size as those of p(e). The following result is

shown in [CLNPO03, §4.4].

Theorem 3.2.1 For g = G5, Fy and respectively Eg we have N1(Gs) = Ocy(a,) when p =5

and
OF,(a,) when p =11 Opg(ay) when p =11
Ni(Fy) = OF,(ay) whenp =17 and Ni(Eg) = OEg(ay) when p =17
OF,(a3) when p=15 Oa,+4, whenp=5

The Tables 3.2, 3.4 and 3.6 give details of the non-zero nilpotent orbits of G, Fy and Eg. These
are labelled using the Bala-Carter labelling which is described in Section 1.5. The tables also
include the weighted Dynkin diagram of each orbit O, and the sizes of the Jordan blocks of p(e).

These tables are followed by the corresponding Hasse diagram of the nilpotent orbits.
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Orbit Weighted Dynkin | Size of Jordan blocks in
diagram Characteristic p
pP=5 p=>T7
G» = - 7
Ga(ay) 5% 32, 1]
A = |2
A %{ [22,13]

Table 3.2: Nilpotent Orbits of Gs

Figure 3.5: Hasse Diagram of
Nilpotent Orbits of G4

Orbits | Weighted Dynkin Diagram Size of Jordan blocks in Characteristic p
p=5  p=T7 p=11 p=13p>17
o S : - - sy
Fy(ay) ;——gﬁzﬁ——g - - [11,9,5,1]
Fiw)| & =1 % : 7,5 97,57
B | S8 - [P
G| 3 - [P .65
Puw) § 5708 | B850
Cy(ar)| S E—8 |[52,42,3 22 1]
Aa | TR B
B, | $ =0t | bl
Ak | §TEET S |y
AL | T | B
A | ST | B
MA| TS | B
Al ST | B
4| TS | Y

Table 3.4: Table of Nilpotent Orbits of Fy
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Orbits

Weighted Dynkin

Size of Jordan blocks in Characteristic p

Diagram p=> p="7 p=11 p=13 p=>17
22222 )
Es =T - - - [132,1] [17,9,1]
Fo(ar) 2—2?—22 ; [13,72] 12,5 [13,9,5]
20202
D - - 11,9,5,12
5 ‘_E)_I_‘_‘ [ ]
Eyas)| T : 50 [9,7,5%1]
Ds(ay) l%%l} - [73,3,2,1] [8,7,6,3,2,1]
21012
A - 72,621 9,62,5,1
5 T [ ] [ ]
AgAy l%%Ll} [5°, 2] [7,6,5,4,3,2]
00200
Dy T - [73,16]
20002
A 5°,1 7,5%,3,12
4 =T [5°,1] [ ]
Dy(ay) (%%ﬂ) [53,33,19]
AszAq O__I__ll() 10 [52,42,3,2% 12
AgAl :%_(Ll [57423337227”
10001
A 5,44, 16
3 T [ ]
A G
20002
2 7
A3 T [5,37,1]
Ay Ay %é%%ﬁl} 4,34, 24,13]
00000
A 36,19
2 =T 3%, 17]
00100
A3 =T 33,26,19]
10001
Af T [3,2%,1%]
A 02000 [26,115)

Table 3.6: Table of Nilpotent Orbits of Fg
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Fy
F4(|a1)

Fy(az)
Bg\ /03
Fy(a3)

Cs(ay)

;15141 By
\|

f42ﬁ1;
A, Az
A1 A
|
A
|
Ay
|
0

Hasse Diagram of Nilpotent Orbits of Fy
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Chapter 4

The Nilpotent Commuting Variety
and Induced Nilpotent Orbits

In this chapter we discuss Lusztig-Spaltenstein induction, which induces a nilpotent orbit in a
Lie algebra g from a nilpotent orbit of a Levi subalgebra of g. This is followed by a description
of the nilpotent commuting variety including some results from [Pre03a] which utilize induced
orbits. Throughout this chapter we assume that G be a connected reductive algebraic group over

an algebraically closed field k& of good characteristic p.

4.1 Lusztig-Spaltenstein Induction

Let p be a parabolic subalgebra of a simple Lie algebra g with Levi decomposition p = [ S u
where [ is a Levi subalgebra and u is the unipotent radical. For a nilpotent orbit O in [ there
is a unique nilpotent orbit O in g such that @ N (O 4+ u) is dense in Oy + u. This orbit is the
induced orbit and denoted Ind{(Oy). This process is called Lusztig-Spaltenstein induction. This
procedure was introduced by [LS79] for unipotent orbits in G with parabolic subgroup P = Lx U.
This is equivalent to our description in good characteristic by considering the homeomorphism
(G) — N(g) given in [SS70, Thm 3.12] where L(G) is the set of unipotent elements in G. For
characteristic zero a proof is presented in [CM93, Theorem 7.1.1]. The following result is from

[LS79, Theorem 2.2]

Theorem 4.1.1 Let p =@ u and p’ = [ D be two parabolic subalgebras of g with the same
Levi subalgebra I. For a nilpotent orbit Oy of | we have Indy(Oy) = Indg,(O[).

Not all the orbits of g can be induced from proper Levi subalgebras. Those that cannot are
called rigid orbits. The following gives a sufficient condition for an orbit to be induced, see

[LS79, Proposition 1.9].
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Proposition 4.1.2 Let g be a simple Lie algebra with root system A = {ay, ... a,} and nilpotent

orbit O with weighted Dynkin diagram D. Let the vertices ;,,...o;, of D be the those labelled
with a 2 and let I = {1,...,n}\{i1,...,is}. Then O = Indy, (Oy,) for some nilpotent orbit Oy,
of l;. Let D’ be the subdiagram of D which only contains the nodes corresponding to I. If D’

corresponds to a nilpotent orbit O in [ then O = Ind}(O').

Suppose [ and [y are Levi subalgebra of g such that [, C [y then Ind}, (Ind:f((’)ll)) = Ind} (Oy,).
This is shown in [LS79, §1.7].

Example 4.1.3
Let g = D5 with maximal torus t and simple roots A = {a1,..., a5} and positive roots

d*. Consider the parabolic subalgebra p,,, then pa, = lo; + U, Where

[ag =td I+tas
ua3 = Z g(l
ace®t\{az}

Now let O be the zero nilpotent orbit in I. The induced orbit of Oy is an orbit O of g

such that O Nu,, is dense in uq,.

Consider the orbit Op,q4,) of g then there exists an e € Op,(4,) such that there is an associ-
ated cocharacter A where (\, a3) = 0 and (\, o) = 2 when i # 3. Now G(),0) - e = g(); 2)
and since Pa; = ;50 0(A;7) then Poy-e =375, 8(X;i) = ta,. Therefore Op,(4,) N ta,
is dense in u,,. So Indf‘us({O}) = Opy(ar)-

This can also be seen by considering the weighted Dynkin diagram of Ds(a1) which is

2

Then the subdiagram given by removing the nodes labelled by 2 leaves the single node as

which is labelled by 0. This corresponds to the zero orbit in [,,.

4.2 Nilpotent Commuting Varieties

Let G be a connected reductive algebraic group with Lie algebra g = Lie(G). The nilpotent
commuting variety of g is

C"(g) = {(z,y) €N x N : [z,y] = 0}

It was proved in [Pre03a] that C"%(g) is equidimensional where equidimensional means that
all the irreducible components have the same dimension. For a nilpotent orbit O, of g let

C(0.) =G (e,g° N N).
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Theorem 4.2.1 [Pre03a] Let eq,... e, be representatives of the distinguished nilpotent orbits

of g. Then the sets C(e;) are pairwise distinct and all have dimension equal to dim(G,G) and
C"(g) =C(e1) U---UCler)

Suppose g is a simple Lie algebra with simple roots A = {aq,...,a;,}. A nilpotent element
e in g is almost distinguished if g¢(0) is a torus. Therefore all distinguished elements are also
almost distinguished. For example a representative of the nilpotent orbit D4(a;) of Eg is almost
distinguished.

For a subset I in {1,...,m}, let [; (resp. p;) be the standard Levi (resp. parabolic) subalgebra
of g corresponding to I. For a subset J C I let p; ; be the standard parabolic subalgebra of

[; associated to J. Let A be a cocharacter contained in Y, ; Z«' such that «;(Ar s(t)) =1

iel
when i € J and «a;(Ar,s(t)) = t*> when i € I\J. Denote by \; the cocharacter A; ; where
I={1,...,m}.

Let e be an almost distinguished element. We may assume that e is distinguished in a standard
Levi subalgebra [; for some subset I of {1,...,m} by Theorem 1.4.2 and that A is an associated

cocharacter for e. Let € be an element of py in g(Ar;2) such that [pr, €] = uy, this is a Richardson

element of p;. We may assume that € is contained in e + . g, = e+ u; and so € is in
a€d\oF
Ind} (L -e).
I

This is equivalent to extending the weighted Dynkin diagram of e in [; to a weighted Dynkin
diagram for g with the new nodes labelled by 2. We can let € be a representative to the nilpo-
tent orbit in g given by this extended Dynkin diagram. It can be observed that € is always a
distinguished element of g. The following proposition is shown by combining [Pre03a, Prop 3.6]
and the proof of [Pre03a, Theorem 3.7].

Proposition 4.2.2 Let e be an almost distinguished element in g and define € as above. Let
€1,...,€q be representatives of distinguished nilpotent orbits in g such that G - & C G -¢. Then
ce)c | @

1<i<q
Example 4.2.3
Consider the case when g = Eg. A representative e of Op,(,,) is almost distinguished.
We may assume that e is distinguished in [; where I = {2,3,4,5}. Now e is subregular

in [; and so has corresponding weighted Dynkin diagram

2 0 2
2

Therefore let J = {4} and the extended weighted Dynkin diagram is
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[\
N
o
[ 1)
o

This weighted Dynkin diagram corresponds to the nilpotent orbit Fg(a;) in Eg, therefore

let € be a representative of Eg(a1). Then Proposition 4.2.2 gives

C(D4(a1)) C C(Es(a1)) UC(Es(as)).
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Chapter 5

Research Question and Methodology

In this chapter we state the two questions we wish to answer and give an outline of the methods
we use to answer them. Throughout let G be a reductive algebraic group over an algebraically

closed field k of characteristic p and let g = Lie(G).

5.1 Research Questions

For p good the commuting variety C(g) = {(z,y) € g x g : [x,y] = 0} is irreducible. This
was shown in [Ric79] for p = 0 and later extended to all good characteristic in [Lev02]. As
was discussed in Section 4.2, the irreducible components of the nilpotent commuting variety
were found in [Pre03a] for good characteristic p. The aim of this thesis is to consider a similar

question for the restricted nilpotent commuting variety given by
C1'(g) = {(z.y) € M x N : [a,] = 0}
First we consider the following lemma.

Lemma 5.1.1 Suppose O,,,...,O. are the nilpotent orbits of g contained in N7 with repre-
sentatives ey, ..., en. Let the irreducible components of g¢ N N7 be X(l), el Xi(ni). Then

Cril(g) = UG- (ei,Xi(j)) fori=1,....m, j=1,...,n,.
i,
Proof. Consider e € Nj then clearly (e,g® N N;) C C(g), therefore G - (e, g¢ NN7) C CP(g).
We can express the restricted nilpotent commuting variety by the following union
i = | @ (e n Ay
1<i<n

Hence the result holds. u
Thus every irreducible component of C?"!(g) is of the form G - (e;, Xi(j)) for some i, j. Our aim

is to answer the following two questions.
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Question 1 For g = G2, F, and Eg with nilpotent orbits O.,,...,O., and p good, find the

irreducible components of g¢ NN7.
Question 2 Find the irreducible components of C7"(g) for g = Go, Fy and Eg and p good.

When p > h, where h is the Coxeter number, then N7 = N and so g¢ NN; = gNN is irreducible
[Pre03a]. Under this condition on the characteristic we have C7'"(g) = C™"(g) and therefore the
irreducible components of C}'!(g) are given by Theorem 4.2.1. Since the Coxeter number for G
is 6 and p good implies that p > 3 then only p = 5 needs to be considered for Questions 1 and
2. The Coxeter number for both F; and FEg is 12 therefore we need to consider p = 5, 7 and 11.
The following two sections give an outline of the method we used to answer these questions. The
details of the computations for answering these questions for g = G2, F, and Fg are given in

Chapters 6 to 9.

5.2 Methodology for Question 2

The irreducible components found in Question 1 give us the form of the components of C}(g)
as given by Lemma 5.1.1. Then all that remains is to eliminate some of the sets G - (ei,Xi(j)).

To achieve this the following result from [Lev07, Lemma 1.1] is useful.

Proposition 5.2.1 Let G - (e, Xi(j)) be an irreducible component of C3¥(g) for some irreducible

component Xi(j) of 9 NNi. Then Xi(j) C (G-e).

Therefore some components can be eliminated by finding elements in Xi(j ) that are not contained
in G - ¢;. We do this by computing the Jordan normal form of the minimal faithful representation

©)

of an element in X,;”’ to show it is in a nilpotent orbit which is not contained in G - ¢;. For the
remaining components we need to check whether they are contained in any other component
using transverse slice arguments and Proposition 4.2.2.

If g° NN, is irreducible for a nilpotent orbit O, then let C;(O.) = G- (e,g¢ N N7). Now
dim(C1(0,)) < dim(g) and equality holds when e is distinguished. This is because when e
is distinguished then G - (e, g¢ N N;) is irreducible of dimension dim(G, G) —rank(G¢) = dim(g).
Therefore, when e is distinguished, C;(O,) is an irreducible component of C'!(g). Note that

rank(G°) = rank(C) and rank(C) is the dimension of maximal torus in C.

5.3 Methodology for Question 1

To answer Question 1 let e be a representative of a nilpotent orbit of g. Then by Theorem 2.3.2

there exists an associated cocharacter A of e and
g=chgM1)dg°(\2)D. ..
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where ¢ is the reductive part of g¢ and is isomorphic to a direct sum of Lie algebras. For an
element ¢+ x1 +x2 + ... of g° to be contained in A; then ¢ must belong in N (¢). Therefore let
ci,...,C, be representatives of the nilpotent orbits of ¢. Then define ./\/IZ(-j ) to be the irreducible
components of (¢; + g¢(A;> 0)) N N;. Every irreducible component of g¢ N A is of the form
/T/E(j) =C- Mz(-j) for some j and C' = G° N G*. This holds by the following two results, for
detail see [Hum75, §1.3 and §1.4]

Proposition 5.3.1 A product of two irreducible affine varieties is irreducible.

Proposition 5.3.2 Let X be a topological space. Then a subspace Y of X is irreducible if and
only if its closure Y is irreducible. Also dim(Y) = dim(Y).

Therefore C' x X is irreducible if X is irreducible. Now C'- X is the image of the map C' x X — g°
and therefore is irreducible since the image of a morphism from an irreducible variety is irreducible
[Hum?75, §1.3]. Once the Ml(-j ) have been found, all that remains is to establish the inclusions
M(j) c M (4"

To do this we consider [LT11] which gives a complete description of g¢ in terms of the grading
g¢(\, 7) for a given associated cocharacter A for e. The cocharacter \ is presented diagrammati-
cally in [LT11] by a Dynkin diagram with the node corresponding to «; labelled by the A-weight
of a;. From now on we denote g(\, i) = g(i). Also [LT11] specifies the precise structure of ¢ via
a system of simple root elements. Similarly the maximal weight vectors in g¢(i) for the action

of ¢ are specified. This allows one to construct bases ui, ..., us for each of the g°(é). Therefore

every element in g¢ can be expressed as the following finite sum for some a;,b;, -+ € k

¢ +ajuy + -+ asus+bivg + -+ bvg+--- € g° for all a;,b;,--- €k, cE€c

N g°(1) 9°(2)

Consider the minimal faithful representation p of g as calculated by [GAP12]. Let v; = p(¢;),
U; = p(u;), ete. and let M; = {v;+a1U1+- - -+ap,Up+b1Vi+- - -+b,Vy+- - 1 a;, b; - - - € k}. Testing
when an element M; € M, satisfies M = 0 gives polynomial conditions on the coefficients

ai, bi,--- € k. These polynomial conditions can be found using the [GAP12| code presented in

the Appendix. Now let M, =C- {vi + a1 UL\—i—/- . /_\1\/4;” = 0} which is contained in N;. We can
now determine the irreducible compon(gl\ti MEI), ./\/12@), ... of M . Every irreducibkz\c/omp%u\an/t
of g° N N7 is equal to one of the sets ng). We just need to establish inclusions Mi(j) C Mi(/j/)
which are calculated case by case. The [GAP12] code used throughout this thesis, including the
set up of each nilpotent orbit and the tests to verify the code is correct, can be found in the
Lancaster University repository.

To calculate the dimension of each irreducible component g¢NA/7 we can use the following results,

see [Sha72, Chl §6 and Thm 7]
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Proposition 5.3.3 If X, Y are irreducible then dim(X x Y) = dim(X) + dim(Y).

A fibre of a morphism ® : X — Y is the closed set ®~1(y) for some y € Y. If X is irreducible

then we say ® is dominant if ®(X) is dense in Y.

Theorem 5.3.4 Let  : X — Y be a morphism of irreducible varieties such that ®(X) =Y.
Then dim(Y) < dim(X) and
(i) dim(®~1(y)) > dim(X) — dim(Y) for everyy € Y
(ii) in'Y there exists a non-empty open set W such that dim(®~*(y)) = dim(X) — dim(Y)
foryeW.

Lemma 5.3.5 Let G be a reductive algebraic group and let e € Ny; then by Theorem 2.3.2,
G¢ = CxU°e. Letc € Ni(c) and V = {u € u® : ¢; + u € N1} where ¢ = Lie(C) and
u¢ = Lie(U¢). Finally let X be an irreducible component of V.. Then

dim(C - (¢; + X)) = dim(X) + dim(C - ¢;)

= dim(C - (¢; + X)) = dim(X) + (dim(c) — dim(c))

Proof. To see this first note that since X is a component of V' then it must also be a component
of C° - X. Moreover, all component of C% - X must be translates of X therefore dim(C% - X) is
equal to dim(X). Now consider the following commuting diagram where 7(g - (¢; + ) =g - ¢
forge C and z € X.

X <~—C (¢; +X)

(~——C ¢
Now 7(g-(¢;+2)) = ¢; & g € C%, therefore 71 (c;) = ¢;+(C¢-X). Since dim(C¢-X) = dim(X)
then dim(7~!(c;)) = dim(X). Moreover 7= 1(g - ¢;) = g -7 (¢;) for any g € C, therefore
dim(m~*(g - ¢;)) = dim(X) for all g € C%. By Theorem 5.3.4 there is a subset W which is open
in C - ¢; such that dim(7~1(w)) = dim(C - (¢; + X)) — dim(C - ¢;). Now let w = g - ¢; € W; then

dim(77 (g - ¢;)) = dim(C - (¢; + X)) — dim(C - ¢;)
= dim(X) = dim(C - (¢; + X)) — dim(C - ¢;)
= dim(C - (¢; + X)) = dim(X) + dim(C - ¢;)

|

By the definition of C = G* N G¢, it is clear that g°(i) is C-stable. A description of the
submodules of g¢(7) with respect to the action of C is given in [LT11]. These submodules are

always irreducible for G5, F; and Eg; although this is not the case for E7 and Eg. One example
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of when g¢(¢) does not decompose into irreducible submodules is when e is contained in the
nilpotent orbit A3AsA; of Fg when the char(k) = 5. For more details see [LT11, §8].

We can represent the action of C' on the positive part of g¢ diagrammatically. An irreducible
submodule is represented by a connected graph with the highest weight vectors at the top. Let C'
have simple roots B, ..., 8,. Then [LT11] specifies the highest weight vectors of the submodules
of g°(¢) for the action of C. Then if two elements vy, v, in a submodule are such that v, = [eg, , v,]
then this can be represented by

Up

Br

Uq

Example 5.3.6
Consider the ;1; orbit of Fy which has representative e = eggg1. The reductive part ¢ = sl
has three simple roots where eg, = e1000, €3, = €0100 and eg, = e1242. Then g°(2) has
two submodules with maximal weight vectors v; = e300 and w; = eggo1. Then these

submodules can be represented pictorially via

U1

Example 5.3.7
Let g = F4 with characteristic p = 11. Consider the nilpotent orbit denoted C3 which has
representative e = egoo1 + €go10 + €0100- Then [LT11] tells us that ¢ = sl with simple root

ep, = e2342 and gives us the elements of g°(i) as follows.

9°(2) 9°(3) 9°(6) 9°(9) g°(10)
V1 = €1231 — €1222 T1 = €1342
Uy = €o W1 = €0120 — €0111 Y1 = €0122
o b1 o b1 o
V2 €2

Now sl; has one non-zero nilpotent orbit Oy with representative ¢; = eg,. Then we have

Mo = a1ur + vy + bava + crwi + dixy + dazo + 11

M1 =M, + ea,
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for a;, b;,- - € k. By considering M}! and M} we can show that Mg C Nj and My C N;.
In this case we have M ~ N(sly) x /\A/l?); however in general the relationship is more
complicated. In fact in this case g°NN; = gNN and by Lemma 2.3.4 it is irreducible. Now
dim(./\A/l/o) = dim(My) = 7 and since the dimension of the nilpotent orbit corresponding

to [2] in sly is 2 then dim(M;) = 7+ 2 = 9. Therefore g NNy = M, is irreducible of

dimension 9.
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Chapter 6

(Go Results

In this chapter we give the details of the computations to answer Questions 1 and 2 for G5. Each
section presents the details of a nilpotent orbit O, of G5. For each nilpotent orbit a representative
e, as given by [LT11], is stated along with the form of ¢ and its simple root elements eg,. For the
cocharacter A, as given by [LT11], the highest weight vectors of g¢(); j) = g°(j) for the action of
C on the positive part of g¢ are stated. Then we construct bases w1, ..., us for each g¢(j). We
represent this diagrammatically where an irreducible submodule is represented by a connected
graph with the highest weight vectors at the top.

For each nilpotent orbit O., of ¢, we give an explicit description of each M; as discussed in
Chapter 5. We define M; = {v; +a1U1 +---+a,U, : a; € k} where v; = p(¢;) and U; = p(u;) for
the minimal faithful representation p of g. We denote the set corresponding to the zero orbit in ¢
as My, therefore M, = v; + M, for each nilpotent orbit O, in ¢. We denote the representative
of the regular orbit of ¢ as c¢;.

For M; € M;, we also present the conditions on the coefficients given by M? = 0 which are

calculated using [GAP12|. Then M, =C- {vi+aiUi+...a.Uq- - : MP = 0}. At the end of

each section the arguments to determine the irreducible components of g¢ N N are presented.
The chapter concludes by presenting the arguments for determining the irreducible components

of C?ll(Gg)

6.1 Orbits G, and Gs(ay)

Since these orbits are distinguished, then by Corollary 2.3.4, if e € Nj then g¢ C AN; and so
g° NN = g¢. For these orbits ¢ is trivial therefore g¢ N N7 = My and so g NN, has one
irreducible component ./%.

Below is a table which contains a representative for each orbit, the characteristics p for which

e € N7 and the dimension of My. A basis for u® is not stated but can be found in [LT11].
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Orbit |Representative e|Characteristic p|Dimension of %

Ga(ar) eo1 + €31 p>>5 4

Go eio + eo1 p>7 2

6.2 Orbit A,

For this orbit g N N7 has one irreducible component /f\;l/l

€= €10
¢ = sl
€p; = €32

9°(2) g°(3)

U1 = €31
uy =e€
[ ]
V2

Mo =a1Up + b1V + b Vs

My =ep, + My

MP=0 dim(M;)=2+3=5

M =0 dim(Mo)=3

For any ¢;,¢; € ¢ NN; such that ¢; + u® € Nq, Lemma 2.3.5 states that if C'-¢; C C'- ¢; then
C - (c; +u®) C C-(cj+ue). Since My corresponds to the unique maximal orbit in Ni(c) and
eg, +u® C N then by Lemma 2.3.5 we have u® C eg, + u®. Therefore M, C M;.

For this orbit we have g¢ " N] = M.
e=eo
c= 5[2

€p, = €21

Uqg
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Mo=a1Ur+ -+ aUs + i1
M, = €p; + My

Mf:0©a4:0 dim(M1)=2—1+5=6
M§ =0 dim(Mo) =5

To show M, C le we first note that, by identifying C with S Lo, the cocharacter 3y : kX — C,
is given by 8Y(t) = (ét(}l). Now consider the set eg, + {u € u® : as = 0} C M then
Adgy ) (es, +{u € u® 1 ay = 0}) C M. By considering the action of 4) on g¢(1), which is a

4-dimensional irreducible C-module and so is isomorphic to S3(k?), we get:

t2651—|—{u6u6:a4:0}cx/lv1

:>{u€ue:a4:0}c.//\/lv1

We can denote an element of {u € u¢: ay = 0} by a series of column vectors as follows:
y

We can view k™ as the symmetric tensor S"~!(k?). Let wy = () and wy = (§). Then we consider

g(1) as S3(k?). To do this we identify u; (respectively uz, u3 and uy) with the symmetric tensor

w1 ®w ®wi (respectively wi Q@wi @ wa, w1 Qws ®we and ws ®ws @ws). This may require scaling

the u; by some (possibly different) factors. Now consider the element (3} ¢) € C, we want to
a

1
calculate (1 9)-( 2 ). Since (1 9)-w; =wi + Awz and (1 9) - wy = wy then
A1 13 Ml M

1
(w1 Rw K wl) = (w1 + )\WQ) (24 (w1 + )\w2) (24 (w1 + )\(UQ)
Al
= (w1 Qw1 ®w1) + 3\ (w1 Q@ wy ® ws)+
3)\2(601 ® wa @ o.)g) + /\3(WQ X wy @ LUQ)
1
(wl Rdwi (,L}g) = (w1 + )\wg) ® (w1 + )\WQ) & wo
Al
= (w1 & wq ®UJ2) =+ 2)\(&)1 & wo ®(AJ2) + )\2(0.)2 X wo ®w2)
1 0
(wl ®(JJ2 ®WQ) = (w1 —+ )\CL)Q) ®(JJ2 ®CU2
Al
= (w1 QW @ ws) + AMwa ® we ® wa)
1 0
(W2 @ws B wa) = wa ®ws ®wa
A

63



ax ai

1 0 a 3\a1 + a
Therefore . 2 = ! ?
Al as 3X2a1 + 2)has + as
0 )\3611 —+ )\2(12 —+ )\a3
Hence
ai
3)\&1 + ao —~

7b1 C M,
3)\2a1 + 2Xas + as

/\3a1 + /\2a2 + Aas

For all but finitely many a}, a}, a4 and af in k we can find A, a1, az and a3 such that a} = ay,

al, = 3Xay + as etc. Hence 7\/71 contains a dense subset of Mg, so My C 7\/71

6.4 Irreducible Components of C%(G;)

In this section we calculate the irreducible components of C7(G5). If O, C N is distinguished
then C;(0,) is an irreducible component of C?!(g). For the remaining orbits O, of G5 there
is an element in each irreducible component of g N A that is not contained in G - e;. In each
case g° NN is irreducible. To show that an element ¢’ € g N A is not contained in (G - e)
we find its Jordan normal form. This is done by considering the rank of successive powers of
its 7-dimensional representation. For the orbit A; the element eg; + e2; in g® NN has Jordan
normal form [32,1] and so is contained in orbit Ga(a;). Similarly for E the element e1g + €30
also has Jordan normal form [3%,1] and so also contained in Gz(a;). Therefore in both cases

g° NN ¢ G - e and so by Proposition 5.2.1 the irreducible components of C'!(Gy) are given by

p=>5: CMY(Gy) =C1(Ga(ay)).
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Chapter 7

Fy Results

In this chapter we give the details of the computations to answer Questions 1 and 2 for Fy. We
group the nilpotent orbits of Fj into sections; for each orbit in a given section the arguments
used to find the irreducible components of g¢ N N; are similar.

For each nilpotent orbit a representative e, as given by [LT11], is stated along with the form of
¢ and its simple root elements eg,. For the cocharacter A, as given by [LT11], the highest weight
vectors of g¢(A; j) = g°(j) for the action of C on the positive part of g¢ are stated. We represent
this diagrammatically where an irreducible submodule is represented by a connected graph with
the highest weight vectors at the top. There is also be an explicit description of each M; as
discussed in Chapter 5. At the end of each section the arguments to determine the irreducible
components of g¢ N N7 are presented.

The chapter concludes by presenting the arguments for determining the irreducible components

of C1"¥!(Fy) for each characteristic p = 5,7, 11.

7.1 Orbits F4, F4(CL1), F4(CL2) and F4(CL3)

First we consider the distinguished orbits of Fj. Since each of these orbits is distinguished, then
by Corollary 2.3.4 if e € N1, then g¢ C N; and so g¢ N A7 = g¢ For these orbits ¢ is trivial
therefore g¢ N N; = /\70 and so g NN has one irreducible component.

Below is a table which contains a representative for each orbit, the characteristics p for which

e € N7 and the dimension of My. A basis for u¢ is not stated but can be found in [LT11].

Orbit Representative e Characteristic p|Dimension of /T/l/o
Fy(as)|eo100 + €1120 + €1111 + €0121 p=5 12
Fy(az2)|e1110 + €ooo1 + €o120 + €0100 p=>7 8
Fy(ay)|eo100 + €1000 + €0120 + €0001 p=>11 6

Fy | e1000 + €o100 + €o010 + €0001 p=13 4
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7.2 Orbits AQ, :4;, BQ, Og(al), B3 and 03

For each of these orbits g® N7 has one irreducible component with the exception of Ay for p =5
and Z; for p=7. The ;(2 case for p = 7 is considered in Section 7.4. In the As case for p = 5,
the irreducible components of g¢ N N are .//\/lvl and //\/lvg (see below for details). Otherwise the

method to show that M, C ./r\/lv] is the same and is considered at the end of this section.

Orbit A,

€ = €1000 + €0100, f = 2flOOO + 2fOlOO

Cgﬁ[g,

€, = €001, €8, = €1231, €85 = [€4;, €p,]-

Uy = €1222

My=aUi+---+agUs + 01 Vi + - + bV + 1 W1 +di1 X
M1 :egl +652+M0
M2=€B3+M0

Characteristic p = 5:

M15:O<:)a6:b6:() dim(Ml):6—2+14:18
M =0 dim(Ms) =4+ 14 = 18
Characteristic p > 7:

MP =0 dim(M;)=6+14=20

For p = 5 we have dim(/\A/l/l) = dim(/\A/l/g) and clearly M =+ /\/;1/2 Therefore g¢ N N has two
irreducible components ./f\/lvl and ./f\/lvg .
Orbit A,

€ = €po10 + €0001, f = 2fOOlO + 2fOOOl

CgGg

€8, = €0111 — €0120; €8, = €1000
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U3

Uy =e ﬂl
[ ] V4
Us

Ve

v7

My = a1Uy +01Vi + b2V 4 b3V3 + by Vy + bsVs + bs Vi + b7 Vr

Nilpotent Orbit in ¢|Representative e of nilpotent orbit | M; label of e + Mj
Gy eg, +es, M,
G2 (a1) €8, 1 €38, 45, M
A s, M3
Aq €8, My

Characteristic p = 5:

Since N'(G2) = Og,(q,) for p =5, we do not consider the regular orbit.

M5 =0 dim(My)=10+8=18

Characteristic p = 7:

M{=0&b;=0 dim(M;)=12—-1+8=19
ME =0 dim(My) =10 + 8 = 18
Characteristic p = 11:

MY =0 dim(M;)=12+8=20

Orbit BQ

e = eg100 + €o0o010, f = 4fo100 + 3 foo10

¢ sl sly

€p, = €0122, €3, = €2342

g°(2) 9°(3) g°(4) g°(6)
T1 = €1342
U1 = e1231 Wi = €0121
Uy =e b ! Y1 = €0120
° B2 Jii} T2 T3 °
V2 W B1 Ba
ez
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Mo =a1Ui +01Vi + Vo + Wi +coaWo+di Xy + -+ du Xu + 11
My = eg, +eg, + My

My = eg, + M

Ms =eg, + My

Characteristic p > 5:

MP =0 dim(M;)=2+2410=14

Orbit 03 (0,1)

e = egoo1 + €o0120 + €o100, f = 3fo001 + 4fo120 + fo100

¢ = sl

€3, = €2342

9°(2) 9°(3)

U] = €1242 — €1222 W1 = €1232
s1 = 6011.0 + eoo11 t1 =.€0100 uy =e

[ ]
V2 w2
9°(4) 9°(5) g°(6)
Y1 = €1342
T1 = €0111 Z1 = €0122
° °
Y2

My =a151 + 0111 + U + di Vi + do Vo + g1 Wi + goWo + 61 Xy + 51Y1 + joYo + k1 2y
M, = €5, + My

Characteristic p > 5:
MP =0 dim(M;)=11+2=13
Orbit Bj;

e = e1000 + €0100 + €0010, f = 6f1000 + 10 fo100 + 6 f0010

¢ = sl

€3, = €1111 — €p121
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up =e€ w1 = €1220
® V3@ ®

V4@

Mo :a1U1+b1‘/i+"'+b5‘/},+01W1
My = eg, + M,
Characteristic p > 7:

MP =0 dim(M;)=2+7=9

Orbit Cs
e = egoo1 + €010 + €0100, f = 5fo001 + 8foo10 + 9fo100
¢ = sl
€3, = €2342

9°(2) 9°(3) g°(6) g°(9) g°(10)

V1 = €1231 — €1222 T1 = €1342
Uy ==¢€ w1 = €0120 — €0111 Y1 = €0122
) ° )
V2 X2

My =a Ui +01Vi +baVo+ i Wi + di Xy +do Xo + 1 Y1
M, = eg, + My
Characteristic p > 7:

MP=0 dim(M;)=2+7=9

In each of these cases we have M; = ¢; +u® C N for each j. If C'- ¢; C C - ¢; then by Lemma
2.3.5 we have C - (¢; + u®) C C'- (¢; +u®) i.e. M; C ./f\/lvj In particular since M corresponds to
the unique maximal orbit in Vi (c¢), (with the exception of A, for p = 5 where My, is the maximal

orbit), it follows that in each case g° N N; = M, except for ;{VQ for p =5 where g° N N7 = /\7_;
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7.3  Orbits A,A; and A,A,

For these orbits we have gc NN = le with the exception of AQZ for p = 5,7 where g¢ N N7 has
two irreducible components /% and //\\/l; For the cases A;Al for p =11 and A2:4V1 forp=5,7
the arguments are the same as in the previous section. For the remaining cases the required

results can be shown using the same argument as in Section 6.3.

Orbit A,A,

e = e1000 + €o0100 + €o001, f = 2f1000 + 2fo100 + Sfooor

¢ = sly

eg, = 2ep122 + €1220 — €1121

g°(1) 9°(2) 9°(3) g°(4)
U1 = €2342
)
Uy = €1232
)
Y1 = €1222
V2@
1 = €1111
uze@
wp = e
Y ) [ Y2
us e €2
Vi@ Ys
Us@
Us @

My=aUi+ -+ aUs + 0. Vi + -+ b05Vs + et Wi +di Xg +doXo + g1 Y1 + -+ g3)3
M1 = eﬁl + MO
Characteristic p = 5, 7:

MP=0sas=0, bs=a dim(M;)=2-2+15=15
MP =0 dim(M,) = 15
Characteristic p = 11:

MP1=0&a,=0 dim(M;)=2—-1+15=16
MP =0 dim(Mg) = 15
Orbit A,A,

e = ego10 + €ooo1 + €1000; f = 2fo010 + 2foo01 + f1o00-

¢ = sl

€, = €1222 — €1231
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U1 = €2342
®
Y1 = €1242
Use T1 = e1121 — 2€0122 21 = €1122
2
U1 = €1000 wp =€
® ® Y2
us e 2 22
Y3
us@

My =a Ui+ +asUs + b1 Vi + et Wy +di X1 +do Xo + g1 Y1 + -+ -+ g3Y3 + 0121 + 22
M, = €5, + My
Characteristic p = 5:

MP=0&a;=0 dim(M;)=2—-1+13=14
MZ =0 dim(Mg) = 13

Characteristic p = 7:

M{=0&as=0o0rdy=0 ./f\/lvl has two irreducible components of dimension 2-1+4+13=14
MZ =0 dim(M,) = 13
Characteristic p = 11:
MMY=0 dim(M;)=2+13=15

For Z;Al for p = 7 we have that le is the union of two irreducible components X; and X5 of

dimension 14, where

X1 =C-(eg, +{uecu®:as=0})

Xo=C"-(ep, +{uecuc:dy=0})

By the argument in Section 6.3 we can show /\A/l/o C X1, and therefore //\;l?) C /f\\/l/l Hence g® NN

has two irreducible components X; and X5.

7.4 Orbits A1A;, Ao when p=7, A; and A;.
For these remaining orbits each case is considered separately.

Orbit A, A,

€ = €1000 1 €0001; f = flOOO + fOOOl

¢ = sly @sly

€p; = €1242, €3, = €1110 — €0111-
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Y1 = €1122

[
Y2

My =a1Uy + -+ a1oUio + 01V + - + b5Vs + 1 Wi + d1 Y1 + d2Y>
M, =eg, +ep, + My

My = eg, + My

M3 = eg, + M.

Characteristic p = 5:

+2-3+18=19

M} =0 a9 =0, as = ag, bs = agas + dasas + 4a3 dim /\/l1 2
=2-3+18=17
2
18

(M)

M25 =0< a9g=a5 =0, bs = azag — asag dlm(./\/lg)

M3 = 0 & dagagaio + aga + a2aip + 3aragag + ai =0 dlm(/\/lg) =2-1+18=19
(Mo)

M =0 dim(M,

Characteristic p = 7, 11:

MP=0%a;0=0 dim(M;)=2+2—-1+18=21
M =0 dim(Ms) =2+ 18 =20
MP =0 dim(Ms) = 2 + 18 = 20

Characteristic p =5

Since M and M; have the same dimension we only need to check if M; - 7\/?1 and /\’/TO - /Cl?,
Note that /\/;l;, is irreducible as Mg is a hypersurface determined by an irreducible polynomial
in k[a1,...,a10] . This polynomial is irreducible because it is linear in a1 and the coefficient of
a1p has no common factors with the constant term. An element in C' which is contained in the
copy of SLy with root element eg, (resp. eg,) is subscripted by eg, (resp. eg,).

Firstly consider elements of M which have the form
eg, +eg, + {u € u®: a5 = ag, ayp =0, by = agas — agag — ag}.
Then applying Adgy 1) gives:

tPes, +eg, + {u € u°: a5 = tag, tajp =0, bs = azag — agag — t>a3} C M, Wt #0
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Therefore it we take the formal limit as ¢ — 0 we get
eg, +{u€u®:as =a9=0,b5 =aszag — asag} C ./f\;l/l
= My C M,
To show that My C M let P(ay,...,a10) = dagagaio + aga3 + a2aig + 3aragag + aj. Consider

elements in /\’/\l; of the form eg, +{u € u®: P(ay,...,a19) = 0}. Then applying Adgy ) gives

thﬂl"_{ueue:t3P(a1,...,a10):0}C/f\;l;)

:>{u€u5:P(al,...,alo)zo}C/\A/l/g,

Let this set be X. Then X is an irreducible subset of Mg of codimension 1. Then the dimension

of the set Ad( 10) (X): € k} is strictly greater than the dimension of X. Therefore its
Ay

closure is equal to ./\A/l/o and so /\76 - /\’/\l;, Therefore g¢ N A7 has two irreducible components

/\71 and /\/;l;7 both of dimension 19.

Characteristic p = 7,11

We just need to show that My C M; and Mz C M. The set es, +ep, +{ucu’:ap=0}is
contained in M;. We can denote elements of g(1) via (gt a2 0 ab). For eg, +ep, + (at 0 as))
to be in ] we require

ai ... as

(adey, )(ade,, )4 =0.
as ... Qo

Therefore for any non-zero nilpotent element 2 € O, the condition for x+eg, +(as = 4t ) € M

is given by
ay ... as
(ad:,[;)(owleﬁ2 )4 =0.
ae ... Qo
Now
(ad )4 aq . as - 24&5 0 0
. =
27\ e ... aw 24a1 0 0
So let z € O, be of the form z = (“5;“0 —a ) Then
1 ajg —asa1o0
24a5 0 ... O
ad, =0.
240,10 0 ... 0

Therefore since £x is also in (’)661 then &z + eg, + (as = a7y ) is contained in M for any £ # 0.
Taking the closure gives My C M.
To show that //\/lvg C //le first we consider
Adﬂ;’(t)(eﬁl +es, + {u ceu®ayy = 0}) c M,
= eg, +t2ep, + {u € u° : t*ay0 = 0} C My

:>651—|—{u€ue:a10=0}C//\/lv1
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Let this set be X. Then X is an irreducible subset of M3 of codimension 1. Then the dimension

of the set Ad( 10) (X): e k} is strictly greater than the dimension of X. Therefore its
ey,

closure is equal to //\713 and so ]\/l; C /f\/lvl Therefore g¢ N N; has one irreducible component of

dimension 21.

Orbit A, with p =7

The details of this orbit are presented in section 7.4. By the methods used in Section 7.2 we
can see that ./\’;IB - ./\71 C /’\/Tg C .//(/TQ, then g N N7 has one irreducible component of dimension
20. All that remains to be shown is .//\;l/g C //\;l/l To do this we consider a transverse slice to
e/ =eg, +e3p,+4, in ¢. By embedding ¢ = g in so7 via the action on the 7—dimensional module

we get
0 0 O

0 -1
0

o o o o
o o o o =
o o o o

20
0 0 0

o o o o ~ o o
=
Il
o o v O o o o
N O O o o
o o o o

0
0
0
0

Then the Slodowy slice to e’ in gy is (by a computer calculation):

00 0 0 100
00 -1 0 00 0
b 0 0 0 00 1

A= (" +e)nM = c =b 0 0 0 0 0 [:d®=40"+c%
00— 0 0 0 1 0
d 0 ¢ -2 00 0
0 d 0 —2¢ b 0 0

We can now parametrize 4. There is a surjective map given by

k[b, c, d]
(@ =4+ &)

— k[3s? 4 65712 — t1, 351 — 6522 — t*, 5t (35 + t1)]

which sends b — 3s* 4 6522 — t* etc. To see this we just have to check that these polynomials in
s, t satisfy the equation d? — 4(b3 + ¢3) = 0. Since the two k-algebras are integral domains of the
same Krull dimension, the kernel of this map must be trivial and so the rings are isomorphic.
Therefore let As; be the element of A with b = i(354 +65%2 —t1), c = —i(3s4 — 6522 — t1)
and d = 3st(3s* +t*) for s,t € k. For (s,t) # (0,0) we can show that A, is contained in Og,
by considering its Jordan normal form. Hence A, ; is conjugate to eg, +eg, for all (s,t) # (0,0).

The reductive part ¢ of g¢ acts on g°(4). For = € g°(4) the condition b; = 0 is equivalent to
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(ad(eg, + €5,))%(z) = 0. By considering v = (by, ba,...,b7)" as a vector this condition becomes
p(es, +ep,)%(v) = 0, where p is the representation of ¢ on g®(4).
Therefore we have
Agp+{ueut: A5, (v) =0, s,t €k, (s,t) # (0,0)} C M,

Then by a computation using [GAP12], the condition Agyt(v) = 0 gives us the following polyno-
mial

Py : (8% + 2st 4+ 3t3)2(s% 4 5st + 3t2)%by + (s + st + 3t2)%(s? — st + 3t2)by

— st(s 4 2t)(s + 5t) (8% + 4t*)by + (s* + st + 3t?)(s* — st + 3t?)bg
+ (8% 4 2st + 3t%)(s* + 5st + 3t*)by = 0

Now P, is an irreducible polynomial in k[s,¢,a1,b1,...,b7] since P, is linear in the b;’s and
their coefficients have no common factors. Therefore the set X = {(s,¢,a1,b1,...,b7) : Ps; =0}

is an irreducible hypersurface in A? of dimension 9. Now {(0,0,a1,b1,...,b7)} C X is a closed

subset of codimension 1 and so X\{(0,0, a1, b1,...,b7) is a non-empty open subset of X. Since all

non-empty open subsets of an irreducible variety are dense then X\{(0,0,a1,b1,...,07)} = X.

Therefore Agp+ X C //\/lvl and so ﬂ; C /f\;l/l

Orbit A,

€ = €1000> f = flOOO

¢ = spg

€3, = €0010, €3, = €0001, €353 = €1220-

g°(1) g°(2)

U1 = €2342

V4

Ps

Vs

b1

Ug

P2

V10

Uy =€

V14
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My =a1Vi +axVo+ -+ aaVia + 01Uy

Nilpotent Orbit in ¢|Representative e of nilpotent orbit | M; label e + My

[6] es, +ep, +ep, M,

[4,2] €p, €65 + €28,128,48; M,

[4,12] ep, + €py M3

[3%] es + e, M,

[23] ep, + es, M;

[22,17] €81+285+8s Mg

[2,14] €261 426285 My

Characteristic p = 5:
Since N1 (spg) = Ola,2) we do not consider the regular orbit for p = 5.

M3 =0= a4 =ayp =0, a3 = 2ag dlm(/\/lg) =16—3+15=28
M =0=a;=ajp=a14=0 dlm(M3)214 3+15=26
M} =0=a9g=a;3=0 dim(My) =14 — 2+ 15 = 27
MP=0=a;;=0 dim(Ms) =12 — 1+ 15 = 26
M =0 dim(Mg) = 10 + 15 = 25
Characteristic p = 7:
M7 =0= a1 =0, ay; =4ayy dim(M,;) =18 —2+15 =31
MI=0=a4=0 dim(Ms) =16 — 1+ 15 = 30
MI=0 dim(Ms) = 14 + 15 = 29
M =0 dim(My) = 14 + 15 = 29

Characteristic p = 11:
MM =0= a1, =0 dim(M;)=18—1+15=232
MMt =0 dim(My) = 16 + 15 = 31
Characteristic p =5

We claim that g¢ NN = .7\/\(/2 To see this we need to show that /\7; - /’\/\l; C /\’;lj; C /f\/\l; and
//\;l;, C /f\/\l/g The inclusion ./,\/lv7 C //\;l; holds by the same methods as demonstrated in Section
7.2.

To show that ./f\/E - .//\7; consider

eg, +ep; + €28, +28,+8; + {u cu®:ag=ay =0,a13 = 2a6} C ./\/7;
Now let 8Y(t) = 8Y (¢)B5 (¢) By (¢) for t # 0. By considering y-chains of weights in g¢(1) = L(ws3)
where v = 251 + 262 + 83 we get
Adlgv(t)(eg2 + ep; + €28, 128,48, + {u€u’:ayp=a4=0,a6 =3a13}) C ./,\/E

=ep, t+ep, + t262,31+2,32+53 + {u cu®:aig=ay =0,a¢6 = 3t2a13} C My
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By taking the limit as t — 0 we get

6;32—|—e;a3—|—{u€ue:a6:a10:a14:O}C//\/lv2

=>M3C./\r/\r2

To show that M, C My we consider a transverse slice of ¢/ = es, + ep, in c¢. Specifically, we
consider ¢’ + ¢/". With respect to the standard representation of elements of spg as six-by-six

matrices, we have

¢ = , f'= € ¢ = spg

A GAP computation shows that:

a 1 0 d 0 0

0 a 1 0 —-d O
A:(e’+cf')m/\/1: 0 0 a 0 0 d ca’?+db=0

b 0 0 —a -1 0

0 b0 0 —-a -1

0 0 b O 0 -—a

We get an isomorphism of k[a,b,d]/(2a% + 2db) with k[st, —t2, s?] since a® + db is irreducible.
Therefore let Ag; be the element in A with a = st, d = s* and b = —t? for (s,t) # (0,0), so

0 st 1 0 —s* 0
0 0 s 0 0 s
—t2 0 0 —st -1 0
0 t 0 0 —st -1
0 0 —t2 0 0 —st

Note that the calculation of the transverse slice and parametrization are independent of charac-
teristic greater than or equal to 5.
The reductive part ¢ acts on g¢(1), so for « € g°(1), the conditions a14 = a19 = 0 and a3 = 2ag

are equivalent to

ad(ep, + €p, + €28, +28,18,) (z) = 0

[ad(e/32 +teg; + 62,@1-'1-2/324'53)3(3:)7 .CC} =0
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Then considering v = (ay, ag, .. .,a14)t as a vector these conditions become

p(eﬁz +eg; + e251+252+/@3)4(v) =0

<p(652 +eg; + 62/31+2/32+53)3(’U>7U> =0

where (-, ) is the unique alternating C-equivariant form on g(1) = k'4. Here p is the represen-

tation of ¢ on g°(1). Let T' = p(As.); then by a [GAP12] calculation T%(v) = 0 implies

ag = sajs — stay (7.1)

a13 = Sta12 — t2a7 (72)
Now after substituting (7.1) and (7.2) then

s8aqy + 28%targ + 4s%taq1 + 3s*t3ay + 2s*t2as + 2s3t3a4
2s2a19 + 2s%a11 + staq + 3stas + ar
4s2%a19 + star
sPtaqy + 25*t%aqg + 4s*t%aq11 + 3s3t3a4 + 283t3a5 + 25%t%aq
3sPtayy + s*t2aq0 + 25*t2a11 + 483t3a4 + sPt3ass2ttay
2staqg + 2starr + t2aq + 3t2as + aqo
T(v) = 0
dstaqs + t2ar
0
2s*t2a14 + s t3arg + 253t3aqy + 4stray + s*ttasstPa;
0
0

3s3t3aq14 + s%tra1g + 252t a11 + 4st®aq + stPas + t8ay

So (T3(u),u) = 0 implies

45%?4 + 455tajpary + 28°tariars + 4 tPasayy + 2541&2(@0 + s*t?aj0a14 + 4s4t2a%1

+ $3t3a1a14 + 253 t3agar; + 433t3a5a10 + 53t3a5a11 + 352t4a1a10 + 4s2t4a1a11 + 5215461?1
+ 252t4a4a5 + 252t4a§ + 3stPajays + 3st5a1a5 + tﬁaf + 52(1?2 + 3starais + t2a$ =0

Letting t = £s gives a1z = £s5%a19 — £52ay, ag = s%a1s — £s%a7 and

s2a3y — 2¢s%arary + €25%a? + s5(4a?y + 4€aroars +...) =0

= a%Q —28araqs + §2a$ + 54(4a142 +4&arpara+...) =0

Therefore

Ages +{u€u®:arz = €s%arn — €s%ar,ag = s?arn — €s%ay,

(alg — £a7)2 + 84(4(1142 + 45&10&14 +.. ) = 0} C HQ
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Taking the limit at s — 0 we get
A070—|—{u cu’: a9 = a13 :O,alg =§a7} C ./\/7;
Therefore as £ varies then a2 can take any value as long as a7 does not equal zero. Hence

Ao’o—&-{ueue:ag:alg:O}CJ\A/l/g

= My C My
Next we show that /\’/\l; C /\A/l/4. Tt is straightforward to see by looking at the weight graph of L(ws)
that if ¢’ is of type [3?] then the condition e’ +z € N for z € g¢(1) is equivalent to ad(e’)*(z) = 0.
In particular, if we have € = eg, 18,48, + €28,+3, then this holds for x = ajus + ... if and only

if a14 = 0. Now

/

0 O Is 0

0 Is 0 0
f'_

then by a computer calculation a transverse slice of ¢’ in ¢ is given by

b 0 1 0 0
d 0 —-b 0 1 0
A= (" +e)nN; = 0 md om0 0 ca? +2bd =0
3bd 2ab 32 a b 0
2ad 4bd 2ab d 0 —b
3d> 2ad 3bd 0 —d —a

We get an isomorphism of k[a, b, d]/(a®+2bd) with k[st, 1 5%, —t?] since a®+2bd = 0 is irreducible.

Therefore let A, be the element in A with a = st, b= 32, d = —t? and (s,t) # (0,0) giving

st %,92 0 1 0 0
—t? 0 —%S2 0 1 0
0 t? —st 0 0 1
Asp = 3 3 1
—§$2t2 s3t 154 st 532 0
—2st3 —252¢2 3t —t2 0 7%52
3tt —2st3 —%s2t2 0 t? —st

Let p be the representation of L(ws) 2 k'* and let Ts ; = p(As+) and u = (aq,as,...,a14)". Now
the condition ad(e’)*(x) = 0 is equivalent to T%#(u) = 0. A computer calculation using [GAP12]
shows that T%(u) = 0 if and only if

P t4a7 + 2$t3ag + 52t2a10 +45%t%a11 + 4s3tars + 484a13 =0

Py : 3stPag + 452t as + 2533 a4 + 3533 a5 + 3s*t2ag + trar + 25°tas + stiag
+ 353ta12 + 54a13 + 25ta14 =0
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By rearranging and letting t = £s for some £ € k* considered as a constant, gives

Qe a3 = &ar +283%ag + E2arg + 4€%a11 + 4€arz

Qa5+ arq = 252 (Ear + 2€ag + aro + 4€arr + 4aia + 3ars + Eag + E3ar)
+ 25%(2ag + 3€ag + 36%a5 + 26%a4 + 4€3a3 + 3ay).

Therefore
Ases t{ueu® Qe = Qe =0} C My
jAO,OJF{UGHE2a14:0,1113:§4a7+~-:§€l<:X}C//\/lv4
As ¢ varies, a3 can take on any value (assuming a7, ag, ..., a2 are not all zero) and so taking

the closure we obtain Mgy C .AZ.
Next we want to show that Mg C Ms. Elements of the form eg, + eg, + {u € u® : ay; = 0} are

contained in ./\f/\l; Then

Adgy 1) (ep, +es, +{u€u®:ap =0}) = eg, +t%ep, + {ucu®: a1 =0} C Ms

= ep +{ucu®:a; =0} C Msast—0
Now let £ € k and consider
Ade_, (¢)(ep +{u€u a1 =0}) =ep, +{u€u®:ann =E&ag} C Ms

Then as £ varies aj; can take any value (assuming ag is not zero). Therefore eg, + u® C .//\/lvl

Since eg, € O then ./r\/\l/s C X/Tg,

€B1+282+83

Characteristic p =7

In this case we claim that g¢ N N; = //\\/l/l which requires us to show that //\\/l; and //\;1/2 are
contained in M and m is contained in /,\/T? The other inclusions can be shown using similar
methods to Section 7.2.

To show that My C M consider a transverse slice for ¢/ = 3ep, + 4eg, + €28, 428,43, i ¢. We
consider this element of the subregular orbit in ¢ instead of the representative e to make the

calculation slightly easier. Let

0000 0 1 0 00O 0 00O
003 0 0 O 0 00 0 00O

, 0004 0 O , 010 0 00O

e = = € ¢ = spg
0 000 -3 0 0 01 0 00O
0000 0 O 0 00 -1 00O
0000 0 O 100 0 00O
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Then by a computer calculation we get:

0 a 0 0 0 1
0 0 30 0 0

A= (" +e)nN; = 0 ‘ o0 : 160a?c + 250¢ 4252 = 0
a 0 c 0 -3 0
J %az + %02 0 —c 0 —a
—10¢ j a 0 0 0

We get an isomorphism of k[a, ¢, j]/(160a%c+250c® +25°) with k[}s%t%, —2(s* —t*), Zst(s' +1*)]

since —a%c — 2¢ + 242 is irreducible. Therefore let As+ be the element in A with ¢ = 522,

a=2(s*—t*) and j = 3st(s* +t*) for s,t € k and (s,t) # (0,0).

0 $(s* —t%) 0 0 0 1

0 0 3 0 0 0

s, 0 —252¢2 0 4 0 0

’ (st —th) 0 — 25242 0 -3 0
Bst(st 1) (st — ) + st 0 25720 —g(s* =1t

4522 2st(s* +t*) (st—th 0 0 0

Note that the computation of the intersection (¢/” +¢’)NN; and parametrization are independent
of characteristic greater than or equal to 7 although some coefficients disappear modulo 7.
The conditions a;4 = 0 and a1; = 4ay9 are easily seen to be equivalent to the condition ad(eg, +
ep, +ep,)%(x) = 0 for = € g°(1). By considering (a1, ...,a14)" as a vector this condition becomes
p(e")8(u) = 0 where p is the representative of ¢ of g¢(1). Using [GAP12], the condition 7% (u) = 0,
where T' = p(A, ), gives the polynomials

Py : (45717 + 35°1% 4+ 55t'%)ay + (255 + 50 + 4tV)ay + (257 + 5%t )az + 3553 ay

+ (25%t3)as + (s°t% 4 65t%)ag + (3st)ay + (4s%t + 35*t%)ag
+ (55t + 2t%)ag + (57 + 53t a1 + 353a1 + st?ai3 + Stagy = 0
Py (250 4 4555 + 35%t%) a1 + (457 + s5t* + 25t%)ag + (25*3 + 5t7)az + 45%t%ay
+ 28%t%a5 + (655t + s%t°)ag + 4s°tay + (35°t* + 4st%)ag + (55° + 2st*)ag

+ (684t3 + 6t7)a10 + 3t3a11 + 632ta13 + 5sa14 =0

Let Q1 = 5‘2@%52 and Qo = Sff;{;f? and set t = £s. By considering % we get

1
ayq = —552(6§a13 +38%ay, + (65457 + 65453)a10 +...)

2(@1—-Q2)—(Q1+Q2)
st

Similarly by considering § we get

a13 = f%(gw +3¢%an + 4agy + 57 ((6€° 4 56%)arg + (45°¢° + 3% )ag +...))
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Therefore

Tses + {u € u® : a14,a;3 are as above } C M, VE#£0

As £ varies a3 can take any value (assuming a1; and a7 are not both zero), therefore taking the
closure we obtain Ty o + {u € u®: ajq =0} C /\’/Tl and so Mgy C /T/lll
Next we want to show that My C My. By conjugating ep,+es,+e28,+28, 48, +{u € U : a14 = 0}
by (26142824 03)" (t), as we did for p = 5, we can show that eg, +eg, +{u € u®: a14 =0} C Mo.
Then for £ € k*
Ade_,, o s6)(€8, T es +{ucu®ais =0}) C M, for any € € k*
= ep, +ep, +{ucu:ayy =2as} C M, for any ¢

= Ms C M
Finally we need to show that ./f\;lz C /\7} To do this we need to consider the transverse slice of
e’ = eg, +ep, which is given in the p = 5 case. Now it is easy to see that the condition a4 = 0 is
equivalent to ad(eg, +€p, + €25, +28,+85)° (2) = 0. Therefore for v = (ay,...,a14)" this condition

is equivalent to p(eg, + €, + €28, 128,+5,)°(v) = 0 where p is the representation of ¢ on g(1).

Therefore we need to consider T°(v) = 0, for T' = p(As ), which gives
2tag = says
Therefore for £ € k*
Ast 4+ {u € u®: 2tag = sar3} C ,/f\/l\;
= Ases +{u € u®:2sag = saiz} C //\71/2 by t =&s
= Ases +{ucu®:26ag = a3} C M,

Then as £ varies a3 can take any value as long as ag does not equal zero. Therefore taking the

closure gives My C ./\72

Characteristic p = 11

In this case we only need to show /T/l/g C /\A/l/l since the other inclusions can be shown by the same
method as in Section 7.2, then g® N N7 has one irreducible component of dimension 32. To do
this we find the transverse slice of ¢’ = 3eg, + 4eg, + €25, +28,+8, i1 ¢. The computation of this
slice from the p = 7 case is also valid here. The condition that ai4 = 0 implies that T3, (u) = 0

which gives the condition

Py : st(4s™? 4+ 8 — 588 4 Tt12)ay + 8(s* + 1) (s* — t*)2ag + 7533 (s* — th)ag
+ 3522 (s* + t4) (s* — t4)ay + 8522 (s* 4 t1)as + st(8t° + s*t* + 85%)ag + Hst(s* — t*)az

+ 5(s* + 2t1) (st + 5t ag + s3t3a1; + s2t%ars + Tst(s* — tY)ays + 3(s* + tH)as =0
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Now P, is an irreducible polynomial in k[s,t,a1,...,a14] as it is linear in the a;’s and its coef-
ficients have no common factors. Therefore X = {(s,¢,a1,...,a14) : Ps; = 0} is an irreducible
hypersurface with dimension 15. The subset (0,0, a1, ...,a14) has codimension 1 in X, so its

complement is dense in X. Then it follows that Ag o+ u® = My is contained in M

Orbit ;17
e = egoot, f = fooo1
¢ sly

€, = €1000, €3, = €0100; €83 = €1242-

g°(1) g°(2)
w1 = €1222
Uy = €1111 V1 = €1232
® ®
B1 B3
Uz @ V2@
zZ1 =€
B2 B2 ®
us e (R ]
B3 b1
Us@ Vi@

My =a U+ +agUs+b1Vi+ -+ bgVa+ci Wy + -+ csWs +di1 23
My = eg, +eg, +eg, + My

My = eg, +eg, + My

Ms = eg, +eg, + My

My = eg, + M

Characteristic p = 5:

MP=0=by=a3=0, cg=a2+b2 dim(M;)=12-3+15=24
M =0=a3=>bs=0 dim(Mz) =10 — 2+ 15 = 23
M2 =0 dim(M3) = 8 + 15 = 23

Characteristic p = 7:

M/ =0=a2+b3=0 dim(M;)=12—-1+15=26
MI =0 dim(Ms) =10 + 15 = 25

Characteristic p = 11:

MP =0 dim(M;)=12+15=27

By similar methods as demonstrated in Section 7.2 we can show that g¢ NN = M when p = 11.
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Characteristic p =5

We have /f\% C /,\;1,4 C m by the same method in Section 7.2. Therefore we only need to show
.//\/lvg C //\/lvl and .//\7{/2 C M Then g° N N; has one irreducible component of dimension 24.

To show My C M then we consider the transverse slice of ¢/ = es, + e, where

01 0 O 0

, 010 I 20

e = =
0 0 0 2 0

0 0 00 O
Then by a computer calculation
j 1 0 0
, -3;2 5 1
A= +d)nN = J J( 81t +kl=0ck

-35% 205° j k

l 0 0 -3

We get an isomorphism of k[j, k,1]/(81j% + ki) with k[st, —81s* t*] since 81j* + ki = 0 is ir-

reducible. Therefore let As; be the element in A with j = st, k = —81s* and [ = t* for
(s,t) # (0,0).
st 1 0 0
—352¢2 st 1
As t = ) s,t € k
20533 —3s%t? st —8ls*
tt 0 0 —3st

Let € = e, + g, + €p,; for any u,v € g°(1) and w € g°(2), the conditions as = by = 0 and

c6 = a3 + b3 are equivalent to
ad(e)®(u) =0
ad(0)* (1) = 0
%ad(6)4(w) = [ad(€)* (u), ad(€) (u)] + [ad(€)?(v), ad(€) (v)]
Consider u = (a1, az2,as3,a4)t, v = (by, b3, ba,b1)t and w = (cq, ..., cq)! as vectors, the sy acts on

the left of u so ad(€)(u) = € - u. Similarly sl4 acts on the right of v given by ad(e)(v) = v(—e).

The conditions above, on replacing € by A, ., are equivalent to

A% (u) =0 (7.3)
(v)(=A3,) =0 (7.4)
ST () = A24(u) A Au(u) + (0) A2 A (0)(~ Ay ) (75)

where T, = A%(As4). A computer calculation using [GAP12]| shows that the conditions (7.3)
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and (7.4) hold if and only if

45%t3a; — st?as + tag — 27s3a4 =0

3sby — 35°thg + 1253t3by + 30, = 0
If we let ay = tx4 and by = sz; these become

as = —432t2a1 + stas + 2753x4
3b4 = 3Stb3 — 12S2t2b2 — tSIL’l
Next we find the condition which is implied by equation (7.5). First let U be the irreducible

module of g°(1) with highest weight wy, and let the other module of g¢(1) be V. Then the basis
for AU and A2V respectively are given by the diagrams below.

UL A Us v1 A\ Vg
| 72 B2
u A us —v1 A vs
fﬁ 8, _f53 _fﬁl
Uy N\ Uy Uz N\ Uz V9 N\ U3 V1 N\ Vg
f\/f *fﬁl *fﬁs
o Ug N Uy P —V9 A\ U4
‘ fﬁz ‘ _fﬁz
uz A Uy v3 A\ Uy

Hence vA2; Av(—As,) and A2 ,u A Agyu are respectively

(—2st%ay + tag + 95%24)%(—s%u1 A ug + 283tuy Aug — t2uy A ug + 25 2ug A us

— 25t3u9 A ug + 2%t uz A Ug)

(t2x1 + 185%thy — 95b3)2(—52u1 A us + 283tuy A us — t2ug A ug + 25 2 us A ug
+ 3st3us A uy + 28%t4us A Ug)

Finally we need to calculate the matrix 75 for A, acting on w. Let W be the irreducible 6-
dimensional module of g¢(2). Then we can consider W as A2U with basis given by: w; = uy Aua,

wo = Uy AUz, w3 = U AUy, Wg = Uy A Uz, W5 = Uz A ug and wg = uz A ug. Then

Agy-wy = (Agp - ur) ANug +ur A (Agp - us)
= (stuy + 252 t%uy + t*uyg) Aug + uy A (ug + stug + 252t%us)
= 2stwy + 282t2w2 — t4w5

Ast - wy = wy + 2stwy + 25212 w4 — t*wg

As,t C w3 = *54w2 + 3stws + 252t2w6

At - wy = wo + 2stwy
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Agt - ws = wg — stwg + 3stws + 25 t%wg

Ast - we = ws + 3stws

So let
2st 1 0 0 0 0
2522 2st —s? 1 0 0
0 0 3st 0 1 0
Ts,t =
0 2522 0 2st  —st 0
—t 0 2s%2 0 3st 1
0 —t4 0 0 2s%t? 3st
Then

Tft (w) = (252t401 + 2st3¢o + 25425 + At%cq + 383tes + 45206)

(25%wy + s3tws + 2t2ws + sH2wy + 4stPws + 32t4w6)

Therefore the condition (7.5) gives

Py 25%t4 ey + 2st3¢q + 23415203 + 4t%cq + 333t65 + 43206 =
— (t*21 4 185%thy — 9sb3)? — (—2st%a; + tag + 9s°x4)>

Letting t = £s gives the conditions

az = s2(—4&%s%ay + Eay + 275%x4)

3by = £5%(3b3 — 125%Eby — E2521)

1

?Ps’gs cdcg = —48%¢s — 81b§ — §2a§ + 32(—2543401 —2825%¢co + .. )

Therefore

Ages +{u€u®:ag = s*(—4€%say + Lag + 275 24),

3by = £5%(3bg — 1252Eby — E2521),Pscs} C My
Taking the limit at s — 0 gives
A()’O + {u ceu®:az3=bs=0,4c = —45204 - Slbg - §2a§} - M

As ¢ varies then cg can take any value, (assuming that ¢4 and as are not both zero). Therefore

taking the closure we obtain

A0,0+{u€ue:a3:b4:O}C/T/lll

= My C M,
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Finally we want to show that .A7; C /T/l/l To do this let

0010 0000
g_| 000 foo0o00
0000 1000
0000 0100

Then (f' +¢*) = {(48): A, B € SLy} and so

A B | det(B) = —3(detA)? trace(B) = 2det(A),

(f' +¢)NN =
I A [A,[A, B]] = —4(detA)(B + A?)
Now
r 0 —2? datfy
0 — —z2 ,
A= VT A0k c(f + NN
1 0 T 0
0 1 0 —x

Then (f' +¢)NN = {Ad\A: X = (} 2) ,g € SLy} since the conditions to define (f' 4+ )NN
are invariant under Ad(G). When x # 0 then it is easy to check that the elements of this set are

contained in Or¢4(sls). Let A be the element in A with = st and y = 2s* where s # 0 giving

st 0 —s%2 2t

0 —st 254 —s2t2
As,t =

1 0 st 0

0 1 0 —st

As in the previous calculation, the conditions ay = by = 0 and ¢ = a + b% are equivalent to

ad(e)3(u) =0 (7.6)
ad(e)3(v) = 0 (7.7
1
iad(e)‘L(w) = ad(e)?(v) A ad(e) + ad(e)*(u) A ad(e)(v). (7.8)
for e = eg, + ep, + ep,. Therefore the conditions A%, (u) = 0 and (v)A2, = 0 give respectively
42 43
a; = TGQ + sta3 — —Q4
s s

t3 t2
b1 = *64 — Stbg — beQ
S S

Now by the same method as the previous argument we can find the matrix 75, for A, ; acting

on w.
0 2s* —s%t2 22 2t 0
0 2st 0 0 0o -2t
Tst = 1 0 0 0 0 —52t2
-1 0 0 0 —2st 25t
0 0 1 -1 0 0
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Therefore
T;t(w) = 8(—stey + stey + thes — $33¢6) (s 3wy + trwa + sMws + stws)

Finally T2, (u) A Ts4(u) and (v)T2, A (v)Ts,; are as follows:

tt t
—4(53a3 — ta2)2(st3u1 Aug + —ur Aug + $3ug A ug + —ug A Uyg)
s s

—4(33b3 + tb2)2(st3u1 A ug + Z—zul Ausg + $2us Aug + EU3 A uy)
So the condition (7.8) is equivalent to
Pyt : 833 (—stey + steg +thes — s3t3cg) = —stP(s3ag — tag)? — st3(5%b3 + thy)?
Let t = &s; then we get
ay = —€%ay + £5°a3 — £5%ay
by = —523174 - 532b3 — &by

Pygs i &s%cr + stco + st es — €35%co = —(s%az — €az)? — (s%bs + Ebo)?
Therefore
As,Es+{u € u®: ay = —E2ay + £s2ag — E35%ay, by = —E2sby — E52b3 — Eby, P go} C My
= Ago +{ucu®:a; = —E%az, by = —E%by, a3 = b3} C M,

0 —
= Ad g (AO,O + {U cu: ap = —fzaz, b1 = —£2b2, b2 = 2&2}) C Ml
0 g

for g € SLy. Since {(g 2) 1g € SLQ} centralizes Ag o = f’ then to show M3 C le it suffices to

show that

0
Ad ) .gesmel fueue:a = —€2as, b1 = —€2b3, by = 25} = u°
g 0

Let z = a, y = —€as and let 7 be the map 7 : SLy x k% — k% x (k?)* which sends (g, (§)) to
(9(y).2(v=)g™"), where (k*)* represents the dual of k*. Then the fibre

x a 0 1/ax
71-71 ’2< y x ) = ) /
Y 0 1/« ay

The dimension of this fibre is 1 so by Theorem 5.3.4 the dimension of the image of 7 is greater
than or equal to 5 — 1 = 4. Since k% x (k?)* has dimension 4 then the dimension of the image of

T equals 4.

As we did in Section 6.3, we can represent an element in u® such that a1 = —&2aq, by = —&2by
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and by = 2a9 by a series of matrices as follows:

C1
—§2a2
C2
an 9
;( b4 b3 2a2 —2€ a9 )7 C3 Cy4
as
Cs
Gy
Ce
Therefore
C1
—§2a2
C2
g 0 az )
Ad 7( b4 bg 2(12 725 as ), C3 Cq
0 g as
Cs
Qay
Ce
_52 s
g
a2
- (o b ) 2(a o )om )+
as
g
Q4
C1
C2
g 0
Ad C3 C4
0 g
Cs
Ce

Then by the fibre argument this has dimension 14 and so is equal to u®.

Characteristic p =7

Now es, + eg, + €3, + {u € u® : a2 + b2 = 0} C My and let 8Y(t) = BY (£)BY (t2)BY (t3). Then

Adgv 4y gives

e, + ep, +t2eg, + {u € u : %2 + 1267 = 0} € M,

= e, +eg, + 2eg, +{ueut: thal + b3 =0} C My

Taking the limit at ¢ — 0 gives eg, + e, +{u € u®: by =0} C M. Then for ¢ € kX, Adgg, 4. (6)

gives
es, +652+{u€u6:b4:§b3}cj\4v1

Then by taking the closure we get My C //\/lvl
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7.5 TIrreducible Components of C}"/(F))

In this section we calculate the irreducible components of C7'(Fy). Above we have calculated
the irreducible components Xi(j ) of g% NN for each nilpotent orbit O, of Fy. Then by Lemma
5.1.1 we have

cril(g) = UG~ (ei,Xi(j)) fori=1,....m,j7=1,...,n;.
By Proposition 5.2.1, a necessary condition for G - (e;, Xi(j)) to be an irreducible component of
CMY(Fy) is that XZ-(j ) ¢ (G - ¢;). Now if O, C N is distinguished then C;(O,,) is an irreducible
component of C1"!(g). For the remaining orbits O, of F; we can verify computationally that

there is an element in each irreducible component of g N A7 that is not contained in G - ;.

Therefore the irreducible components of C}(F,) are given by

p=>5: CP"(Fy) = Ci(Fu(as))
p="T7: CP"(Fy) = Ci(Fa(as)) UCi(Falaz))

p=11: C"(Fy) = Ci(Fu(a3)) UCi(Fu(az)) UCi(Fu(ar))

An element in each irreducible component of g¢ NN which is not contained in G - e is specified in

Table 7.1. To show that an element is not contained in (G - e) we found its Jordan normal form.

This was done by considering the rank of successive powers of its 26-dimensional representation.
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Irreducible Nilpotent Orbit
Orbit | Characteristic| Component Element z in X JNF of = which
X contains z
5 Mo e, +ep, +eap 10,08 |[524%,3,221] Cs(a)
Ay 7 M, eg, +ep, + ea, [72,62] Cs
>11 M, ep, +ep, + €, 9,62, 5] Cs
A >5 M eo + €5, [33,26,17] A A,
LT - Mj es, + ep, [5,42733, 22| A A,
M3 eg, + e1100 3%, 1°] As
A . Mj e, + ep, [5,37] AE
Mo es, + €1110 [5,37] A,
i 5 /\E €0+ €s, + €38, 15, [5%,3%, 1] Fy(as)
>7 M, es, +e€g, [73,15] B3
[ T S N X T
M, eo + e1110 + €o111 [52,42,3,22 1] Cs(ay)
By >5 M, eo+es, + €, [53,33,17] Fy(as)
_ 5,11 M, eo + €3, [53,33,12] Fy(as)
Ao 7 X1, Xy € M, co+ e, 53,38, 12] Fi(as)
Cs(ay) >5 M eo + €3, [53,33,12] Fy(as)
. 7 M €0 +ep [7°, 5] Fi(az)
> 11 M, eo + eg, [9,7,52 Fy(az)
5, 7 E eo + ep, [73,5] Fy(as)
> 11 My eo + eg, [9,7,52] Fy(as)

Table 7.1: Example of an element in each irreducible component of g% N AN

which is not contained in (G - €;)
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Chapter 8

Eg Results

In this chapter we give the details of the computations for answering Question 1 for Fg (with the
exception of the last few cases). Asin Chapter 7, we group the nilpotent orbits of Eg into sections
where for each orbit in a given section the arguments for finding the irreducible components of

g° N N7 are similar.

8.1 Orbits Eﬁ(ag), E6(a1) and E@'

These orbits are all distinguished therefore by Corollary 2.3.4 we have g¢ C Nj when e € N.
Since ¢ is trivial then g N N7 = ./T/l/o. Below is a table with contains a representative for each
orbit, the characteristic for which e € N; and the dimension of //\;17) A basis for u® is not stated

but can be found in [LT11].

Orbit Representative e Characteristic p | Dimension of /f\;l/o

€01100 + €10000 + €01110
Eﬁ(a3) 1 0 0 P Z 7 12

+€00801 + 600%10 + 600(1)00

€10000 + €00001 + €01000 + €00010
Eg(aq) 0 0 0 0 p>11 8
+€00(1)10 + 601(1)00 + 600900

€10000 + €00000 + €01000
Fg 0 1 0

+e 00[1)00 + 600810 + 600801

8.2 Orbits D4(a1), D5(a1), D5 and A4A1

In each of these cases it is clear that g NN = J\A/l/g. In all of these cases My is irreducible with
the exception of A4A; in characteristic 5 and 7. In fact these orbits are almost distinguished

which means that ¢ is a torus.

92



Orbit D4((11)

gy

= 601800 + 600%00 + 600(1)10 + 600(1)00 + 600810

c=k?

9°(2): v1 = f11%11 - f11%11, V2 = €12221 +e€12321, V3 = f00811 - foo(1)11,
V4 = €o1111 — €01211, Us = f11100, Us = €11110,
1 1 0 1
U7 = 2€00000 — €00100 + €01100 + €00110, U8 = €00000 + €00010, Vg = €
i 1 0 0 1 0
9°(4): vio = f11(1)11, Vi1 = €12321, Viz = f00801, Vi3 = €01221; Vig = f10800,
V15 = 612%10, Vie = 2600%10 + 601%00 - 601(1)10

g%(6): vir = €o1110, V18 = €01210
My=a1Vi+--+a1gVis

Characteristic p > 5:
MP =0 dim(Mp) =18

Orbit A4A1

gy

= 610800 + 601800 + 600(1)00 + 600?00 + 600801

c=2k

s v = forro + foor1r — for111 —2f11110, V2 = €o1111 —€01210 —€ 11110 —2€ 11111
1 1 0 0 1 1 1 0
L vg = eongor, vy =€

DU = f01(1)10 - fooilo, Us = €01211 + €111

: v10 = foorto + fooorr, vi1 = e11211 + €12210
0 0 1 1
P U12 = €11100 — €01100

g°(1)
9°(2)
g°(3)
gé(4): vy = f01%21, vg = 612321, Vg = 611800 + 601(1)00 — 600%00
g°(5)
g°(6)
9°(7): vz = fo08107 V14 = €12211

g°(8)

t V15 = €11100

1
My =a Vi + -+ a15Vis
Characteristic p = 5, 7;

Mg =0=a;=0o0ray=0 /\/;IJO has two irreducible components of dimension 14

Characteristic p > 11:
M =0 dim(Mg) =15
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Orbit D5 ((11)

e= 610800 + 601800 + 600%00 + 600610 + 600?00 + 600810

c=2k

g°(1): v1 = fuir — for211, v2 = €111 + €o1221
0 1 1 1
9°(2): vg = € 00000 + €00010, V4 = €
g°(4): wvs =e11100 + €01110 — €01100 — 2€00110
0 0 1 1
g¢(5): we = f00811 - f00(1J11 ) U = e12221 + €231
g°(6): vs =e11100 — €11110 + 2€01110, Vg = €11100 + €01110 — €01210
1 0 1 1 1 i
9%(7): wvio = f00801, 1L = 12321
g¢(8): wia = €11110
9°(10): v13 = €12210

My=a1Vi + -+ ai3Vis

Characteristic p > 7:
M =0 dim(Mo) =13

Orbit D5
€ = €10000 + €01000 + €00100 + €00000 + € 00010
0 0 0 1 0
c=k
gé(2): v =e
g°(4): v = fmén - fOO%lla vs = e12211 +e11221
g°(6): w4 =eo1100 — €01110 — €11100 + 2€00110
1 0 0 1
g¢(8): w5 = €11110 + €11100
g°(10): vg = f00801 U7 = €12321 Vs = €11110 + €01210
g°(14): vg = 612%10

MO:a1V1+~~~+a9V9

Characteristic p > 11:

M =0 dim(Mg) =9
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8.3 Orbits A3, D, and A;

All of these orbits require similar arguments as those in Section 7.2. In each case g¢NAN; = M is

irreducible with the exception of A3 when p = 5 where g¢ N N; has three irreducible components

of dimension 21.

Orbit Ag

e = e10000 + €01000 + €00100
0 0 0
= 505Dk

€3, = e()0801, €3, = 611%10 + e()l%lO

9°(2) 9°(3) g°(4) 9°(6)
Ve ~N /—M
w1 = €12211
U1 = €11100 V1 = €12321 !
1 1
b1
Ba B2 wa
ti=e Uz b2 B2 T1 = €11100
. B1 51 w3 °
us U3 ﬂQ
B2 B2 (o
Uyg V4 ﬁl

Ws

Mo=a1Th +b1Us + -+ baUs + a1 Vi + - +eaVa+ diWi + -+ ds W5 + 1. Xa
M, =eg, + e, + My

My = e, + My

M3 = eg, + M

Characteristic p = 5:

le has two irreducible
M?=0=ds=0and (by =0or cy =0)

components of dimension 8-2+15=21

M =0 dim(My) = 6 + 15 = 21
Characteristic p > 7:

MP =0 dim(M;)=8+15=23

Orbit D,

€ = €01000 + €00100 + €00000 + €00010
0 0 1 0
c= 5[3

€8, = 611%00 +€11(1)10, €3, = 600%11 - 601(1)11, €B1+By = [651,6/32]
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9°(2) 9°(6) g°(10)
v =¢€ 12321

wp =€ 01%10
[ ]

The dashed ellipse indicates that v4 and

vs span the zero weight space

My =a Uy +0V1 + -+ bgVg + 1 Wy
M1 = egl +652 +M0
M,y = €81 +82 T Moy

Characteristic p > 7:

MP =0 dim(M;)=6+10=16

Orbit A;

e= 610800 + 601800 + 600(1)00 + 600810 + 600801

Cgﬁ[z

eg, =€ 12321

9°(2) g°(3) g°(4)
t1 = e12210 + €11211 + €01221
1 1 1

_ U1 = €11000 + €01100 + €00110 + €00011
S =¢ 0 0 0 0

°

ta
9°(5) 9°(6) 9°(8)

v = 612%11 + 611%21

w1 = €11100 + €01110 + €00111 X1 = €11110 + €01111
0 0 0 0 0
V2
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a°(9) g°(10)

Yy =€ 12?21

Z1 = €e11111
0
)

Y2

My =a151 + 01Ty +b2To + ciUs + di Vi +daVo + g1 Wi + b Xy + 61 Y7 + i2Yo + 123
M, = ep, + MO

Characteristic p > 7:

MP =0 dim(M;)=2+11=13

8.4 Orbits A%Al, AgAl, A4 and AgA%

The arguments for Ay A%, A3A; for p = 7, and Ay, AzA; for p > 7 are the same as in Section
7.2. Otherwise we use similar methods to those in Section 6.3 with the exception of AyA?,
A3A; and A3A; when p = 5. In the AyA? case, M is a union of three irreducible components
of dimension 22 and M) has dimension 24. Clearly MJ 7 M and therefore g N N has
4 irreducible components. This is the first example we have found for which g¢ N N; is not
equidimensional. For the A3zA; case, g¢ N N has three components, two of dimension 18 and

one of dimension 19. The final case A3A; is considered in Section 8.6.

Orbit A24,

€ = e10000 + €01000 + €00010 + €00001 + € 00000
0 0 0 0 1
¢ = sl

€p1 = €12210 + 1211 + €01221

g°(1) 9°(2)

g1 = €12321
2 S§1 = €12211 — €11221
Ty = 611%00 + 611(1)10 + 601(1)11 — 600%11 1 1

q2 '
=e
I So 1 00(1)00 u = e
qs T2 ° °
S3
q4
€ e
9°(3) 9°(4)
T1 = e12221
v1 = €e11110 + €o01111 1
1 1 _ _
w1 = e11110 + €11111 Y1 = €11000 + €00011
I I 1 0 0 0
xTo °
V2 w2
x3
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a°(5)
/—/%

Z1 =€ 11%11

N

My = a1Q1+ -+ asQs+b1 Ry +ba Ry 4151 + 252 + 353 +di 11 + g1 U + ha Vi + ha Vo +
IWW1 +ioWo + 71 X1 4+ joXo + 53 Xs + kY1 + 1121 + 1225
M, = eg, + My

Characteristic p = 5:

Mg =0 :>2a§a4b§ + a1a2a3b% + 2a1a2a4b1bs + 2a1a§b1b2 + a1a3a4b% — alblbg—l—
2a3b3 + 3aZazb1by + a3a4b? — azalb? + azbib3 — azbiby + asb] =0,
- a1a2a4b§ - a1a§b§ + 3a1asasb1by + 3a1aib% - all);1 + a§a3b§+
3a§a4b1b2 + 2a2a§b1b2 — a2a3a4bf + agblb‘;’ + 3a§b% — agbfbg + a4b‘;’b2 =0

Mf =0=a4 :bQZO, c3 = —azby

In this case M, has four components of dimension 19 (see §8.6) and M has dimension 2-
3+421=20. This case is considered in Section 8.6.
Characteristic p = 7:

MI=0

M17 =0 = by =0 and either a4 =0 or 5a2a4b% + a%b% + Basbics + 2a4b1co — agio + c% =0
Now dim(/\A/lB) =21 and M, has two irreducible components of dimension 2-2+421=21.
The final polynomial is irreducible in k[ai, ..., a4,b1,b2,...,11,12] because it is linear in a4 and
the coefficients of a4 has no common factors with the constant term. Therefore g¢ N A/ has three

irreducible components of dimension 21.

Characteristic p = 11:

Mt =0 dim(My) =21

Mlll =0=by=0o0rays =0 /T/E has two irreducible components of dimension 2-1+21=22

In this case we only need to show that ./\’;l?) C /f\/\l: This can be done with similar methods to

Section 6.3. Specifically

Adpgy ) (ep, +{u€u®:by=0}) C M,

= 25, +{u € u: thy =0} C M,
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Then by taking the limit as ¢ — 0 we get

{ueu®:by =0} C M
:Ads_ﬁl(g){ueueilh =0} c M for £ € k*

= {ueu®:by=&h}C M

As ¢ varies, by can take any value (assuming that by is not zero). Therefore taking the closure

gives /f\/lvo C J/\/lvl so g N N7 has one irreducible component of dimension 20.

Orbit A3A1

€ = €10000 + €01000 + €00100 + €00001
0 0 0 0
c=slhbdk

eg, =€ 12321

g°(1)

L= 611%11 + 601%11

1

€

9°(2)

n1 = foo11o + fooo11 P1 = €o1111 + €11110 g1 = €00001 _
0 0 0 0 0 n=e€
° ° ° °
e
9°(3)

§1 = €11100 t1 = e11211 + €12210 U1 = €e12321

1 1 1 1

521 tQI UQI
€
g°(4)
U1 = f00010 w1 = €11111 T1 = €11000 + €01100
0 0 0 0
) ) )
€ €
g°(5) g°(6)
/—/% /—/%
Y1 = 612%11
I 21 = €11100
0
°
Y2
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My = a1Li+asLlo+biNi+c1Pr+d1Q1+ g1 R+ h1S1 +hiSa + i Ty + 90T + j1Us + j2Us +
FiVi + 5 W +mi Xy + Y1 +neYo +p1 2y
M, = €5, + My

Characteristic p = 5:

MP =0 dim(Mo) = 18
Mf:0¢(a2:0)or(i2:b1:0)0r(i2:01:0)

—

In this case 7\;[/1 has three components, two of dimension 18 and one of dimension 19. Let Mgl)
be the cofl\n/ponent of dimension 19. Then by the same argument as A3A4; for p = 11 we can show
Mo C M 51). Therefore g¢ N N7 has three irreducible components.

Characteristic p > 7:

MP =0 dim(M;)=2+18=20

In this case we can show Mg C /\A/l/l by the same argument as presented in Section 7.2. Therefore

g° N N7 has one irreducible component of dimension 20.

Orbit A,A2

€ = €00000 + €00100 + €10000 + €00001
1 0 0 0
c=slhdk

eg, = 2e 111 + 601%10 + 611%10 - 601%11

g°(1) 9°(2)
U] = 612321
81 = 612%11 ty = 611%21 *
) ® v = 601%11 + 611%10
U2 @
520 to®
wp = ¢
us @ V2 [ J
S3@ ts®
Us @ U3
S4@ th@
Us @
8°(3) 9°(4)
z1 = 611%11

Ty = 611%00 y1 = 600%11

T2 Y2

z3
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My= a1S1+---+a3Ss+biT1+---+b3T54+ciUr+---+esUs +diVi+ - +dsVa + g1 Wi +
hiXy +heXo +01Y1 +02Yo + 5121 + - + jaZs
M, = €5, + My

Characteristic p = 5:

M§ =0
M? =0 = (ag = by =0, c5 = 4asbz, d3 = 3azbs — 3asbs) or
(ag =0, c5 = 3agby + 4agbs, ds = 4a1bs + 3azbs + 2azbs,
ha = 3a3by + 3ajasbs + a3bs + ajcy + ascs + asds + azcs + 4azdy) or
(bs =0, c5 = 4dasbs + 3asbs, ds = 3asbs + 2azby + aqby,
iy = 2a9b1b3 + 4agbd + 2a4b? + 4bicy + 4bacs + bads + 4bzco + 4bzdy)

In this case we have dim(/’\\/lB) = 24 and M, has three irreducible components of dimension

2-4+4-24=22.
Characteristic p = 7:

M17 =0= (b4 =0 and ¢5 = —asbs + 4a4b2) or (CL4 =0 and ¢5 = 4asby — a3b3)
M =

Then dim(My) = 24 and M has two irreducible components of dimension of 2-2+24=24.
Characteristic p = 11:

M{*=0=as=0o0rbys =0 ./f\/lvl has two irreducible components of dimension 2-1+24=25
M =0 dim(M,) = 24
In the cases when p = 5,7 then g¢ N N; = /T/l: u /%. For p = 11 we can show that My C M

by the same method as for A3A;.

Orbit Ay

€ = €10000 + €01000 + €00100 + €00000
0 0 0 1
c=slhdk

€g, = € 00801

9°(2)

Q= f01(1)10 — fOO%lO "= enin + €01210

I I S1=¢€
q2 2
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g°(4)

ty = f01%21 Uy = 612%21 U1 = 611800 + 601(1)00 - 600%00

° °
9(6) 9(8)
/—/%
wy = f00810 T1 = €12211
Y1 = €11100 — €01100 1= €11100
° °
w2 T2

My = a1Q1 + a2@Q2 + b1 R1 + ba Ry 4+ 151 + di 11 + g1Ur + hiVi + a1 Wy + oW +
X1+ pXo+ kY1 + 02,
M, = eg, + My

Characteristic p = 5:
ME =0 dim(M,) = 14
Mf =0=ay=0o0rby;=0 //\/l\/l has two irreducible components of dimension 2-14+14=15
Characteristic p > 7:
MP =0 dim(M;)=2+14=16

When p = 5 the method to show My C /T/ljl is the same as for A34; for p = 11. Whereas when

p > 7 then the argument required is the same as that in Section 7.2.

8.5 Orbits A,A4; and A,

For both of these orbits when p > 7 the methods are similar to those in Section 7.2. Otherwise
the methods are very similar and are considered below.
Orbit AgAl

e = €10000 + €01000 + €00000
0 0 1
(sl Dk

€41 = €00010,; €8, = €00001; €6+, = les, ; €8,]
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g°(1)

D1 = f01(1)00 — fooioo

d1 = €11111 — €01111
0 1

b1 Bs = f12:1)>21 $1= €12321
D2 q2 ) °
B2 b1
b3 q3
9°(2)
i = f01%10 ur = €12221
Bs B, V1= €00000 Wi — e
to (5] ° ! ! °
b1 B2
t3 us
9°(3) 9°(4)
/—/H
z1 = foo100 Y1 = €e11111
0 1
B 8o #1 = €11000
T2 Y2 .
B2 B1
z3 Ys

Mo= a1Pr+ - +a3Ps +b1Q1+ -+ 03Q3 + c1 Ry +diS1 + 111 + -+ + 93153 + aUs +
o+ h3Us + Vi + iWh + ki Xy + -+ ks Xs + LY + -+ 3Ys +raZy

M,
Mo

ep +ep, + My

€81+8; T My

Characteristic p = 5:
M§=0
M15=0:>b3=a3=()
M$=0=b3=0o0raz=0

Characteristic p = T7:

dim(M,) = 23
dim(M;) = 6 — 2423 =27

.A/;l_; has two irreducible components of dimension 4-1+23=26

M{ =0= (a3 =b3=0) or (a3 =c; =0) or (b3 =d; =0)

MI =0

Here M has three irreducible components of dimension 6-2+23=27 and dim(Ms) = 4423 = 27.

Characteristic p = 11:

MM =0 dim(M;) =6+ 23 =29

For p = 7, g° N N7 has 4 irreducible components of dimension 27 and for p = 11 it has one

irreducible component of dimension 29. The case when p = 5 is considered below.
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Orbit A,
€ = €10000 + €01000
0 0
¢ = sly Bslg
€p = 6008107 €8y = 600801’ €3 = 600(1)007 €4 = 612i>217 81482 = [651,652}, €B3+Bs = [6537654]

9°(2)

Uy = 611%11 U1 = 612%21

usz vy

g°(4) Yo
1 = €11000
0

Moy =a1Uy+ - +agUg +b6:V1 + -+ +bygVg +c1 Wi +d1 X1

Nilpotent Orbits of ¢ |Representative e of nilpotent orbit|M; label of e + M,

(3] + [3] es, +ep, +es, +ep, M,

3] +[2,1] ep, +ep, +€g,48, Mo

2,1] + [3] epi+p2 T €85 +€ps My

(3] + [1°] es, + ep, M,

[1%] + [3] ess + €4 Ms

2,1] +[2,1] €81+62 T €B3+8a Mg
[2,1] + [1°] €81+62 My

[1°] + [2,1] €Ba+8s Ms

Characteristic p = 5:

MP=0=ag=by=0 dim(M;) =646 — 2+ 20 = 30
M3 =0=ag=0o0rby=0 ./\7; has two irreducible components of dimension 6+44-1+20=29

Mé’ =0=a9g=0o0rby=0 ./\/;l/'g, has two irreducible components of dimension 4+46-1+20=29

M} =0 dim(My) = 6 + 20 = 26
M? =0 dim(Ms) = 6 + 20 = 26
Mg =0 dim(Mg) =4+4+20 = 28

Characteristic p > 7:
MP =0 dim(M;)=6+6+20=232

When p > 7 the g N A7 has one irreducible component of dimension 32.
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Characteristic p = 5:

We start with A1 As for p = 5; we need to show that /\76 - le and 'A,% - % The set Mj is

the union of two sets X; and X5 where

X1 =e,48, —&—{ueue:bg:()}

Xo =eg, 48, + {ucu®:a3 =0}

To show that X; C M consider eg, +ep, +{u € u® : az = b3 = 0} C M, and consider

BY(t) = BY ()35 (t?). Then

Adﬁvu)(e,@’l +ep, + {u cut:az3=bs = O}) C MN1

:>e/31+t3e/32+{u€ue:a3:b3:0}cf\/lv1
Taking the limit as ¢t — 0 gives
651+{u6ue:a3=b3:O}CMv1

As we did in Section 6.3, we can represent an element in eg, + {u € u®: ag = bs = 0} by a series

of matrices as follows:

01 0 ay
0 0 [, as 7(O by b1)7
0 0
Now consider ng, = (é _81 g) € C = SL3. Then
1 0 0 010 ar
Adl o o0 1 0 0 [ f] a [(0 b ) ||cM
0 -1 0 0 0
0 0 -1 ay
= 0o o |, 0 ,(o by —bg),... c M,
0 —aso

For ¢ € k then conjugating by &g, (&) gives

10 0 00 -1 @
Ad 1 ¢ 0o o |, 0 ,(0 by —b2>7... c M
1 0 g
00 -1 @
= 0 0 [ ] g | (0 b by ). [cM
0 —as
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As & varies then £ao can take any value as long as as does not equal zero. Therefore taking the
closure gives X; C M

For A5 A; all that remains is to show that My C /T/l} and X5 C /,\/Tl

For the A, orbit, elements in C' or ¢ corresponding to the copy of SLj3 with root elements eg,
and eg, is subscripted with a 1 otherwise it is subscripted with a 2. Both M5 and M3 have two
irreducible components, one with ag = 0 and one with by = 0. These are denoted as Ma(ag)
and M (bg) (resp. Mjz(ag) and Mjz(bg)). For this orbit we have //\/lvo - ./%, //\/lv7 C .//\71/6 and
./f\/\@ - ./T/l/ﬁ by the arguments in Section 7.2. We still need to show that M, C /T/l/g, Mg and M5
are contained in /T/l; and My (ag), Ma(bg), M3z(ag) and M3(bg) are contained in MNl

All these remaining inclusions can be shown using a similar method X; C /f\/lvl In each case we
conjugate by a cocharacter then by 1 or 2 elements in C'. These elements are presented in the

following table for each inclusion argument.

Orbit| Inclusion |Cocharacter|Elements in Centralizer
Xy C My | BY(1)BY (2) ng, and s, (€)

A AL X C My | BY(#2)BY (1) ng, and &, (€)
Mo C My | Ad(BY (1)) Epa(e)
Mo C Mz |BY(BY ()| np, and &,(8)
MiCMy | () Eps (€)
Ms C Ms By (1) Ep,(8)

Ay | Ma(ag) C My | BY (8)B3 (#2) ng, and s, (€)
Ma(bo) © My | BY ()85 (1) | np, and &,(§)
Ms(ag) C My | BY (£)BY (12) ng, and s, (€)
M (bs) € M| Ba(t)Ba(t) | mg, and E5,(¢)

Therefore for each orbit when p = 5 then g N A has one irreducible component.

8.6 Orbits A34; when p =5 and A3

Each of these cases is considered separately.

Orbit A34; when p =5

Recall that in this case /f\;l?) is the zero set of two complicated polynomials (which are stated in
Section 8.4). By considering the prime decomposition of the ideal defining My we can show that
M has four irreducible components. This was achieved using the MAGMA online calculator.

The dimension of each of these components is 19 and they are defined as follows:
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Mél) ={u € u®:a?a? + ajazazay + 20145 + 2a3a4 + 2a3a3 = 0,
arazbs + ayaqsby + 3a§b2 + asazby =0,
alaibl + 3a§a4b2 + 4a2a§b2 + 2a§b1 = 0,a1a4b2 + asazbs + asasby + 3a§bl =0,
a1b3 + asbibs + 2a3b? = 0, asbs + 3asbiby + 3aub? = 0}

./\/182) ={u € u®: ajaz + 3a1by + 3a3 + dashy + b3 = 0, ar1a4 + azaz + 4agby + azby + 4b1by = 0,
asay + 3a3 + asby + 2a4by + b3 = 0}

Még) ={u € u®: ajas + 2a1by + 3a3 + asby + b? = 0, a1a4 + asa3 + azby + dazby + 4b1by = 0,
asay + 3a3 + 4asby + 3ashy + b3 = 0}

MY ={u e : by =0,by =0}

The conditions for M3 = 0 are ay = by = 0 and c3 = —asby, s0
eg, +{ucu®:ay=0by =0, 03:—a3b1}C/T/lJl

Then considering Adgy ;) gives

t?es, +{u € u®: tPay = thy = 0, t?cz = —azh} C M,

= {uecu®:aqy =by =0, a3b1:0}C/T/l/1
Let by = 0; by considering Ad_g, (¢) for £ € k*, we get
{ucu®:ay=&Eay —E%ay +€az, by = by =0} C M, (by same method as §6.3)

:>{u€ue:b1:b2:0}=/\/ié4)c.7\/lv1

Alternatively if a3 = 0 then
Xlz{u€ue:a3:a4:b2:O}CMv1

Now X; C M((Jl) and it is easy to check that X; is not contained in M(()2),M83) and ./\/l((fl).

Since the set X3 is not stabilized by C and dim(X;) = 18 then dim(C - X;) > 18. Therefore

C-X;= /\//?(()/1) because dim(./\/l(()l)) =19, so ./\/l(()l) c M.

Now we show that ./\/lé2) and MéS) are not contained in ./T/l/l Let the 4-dimension irreducible
submodule of g¢(1) be U and the 2-dimensional submodule be V. We can consider U as S®V,
where 41 = w1 @ w1 O wy, Ug = w1 Qwi Qwa,... forwy = (§)andws = (9). fe+ut+v+...

is contained in le then the following conditions hold.

u=w; ® (aw; ® w1 + aswi ® wy + asws ® wa) for some ay,as,a3 € k

e-v=0
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Note that eg, = () and eg,w; = 0.

2

We can parametrize the set of nilpotent elements in sly by e’ = ( _sttz S ) . The non-zero elements

are all conjugate to eg,. Therefore for (s,t) # (0,0), ad(e’)(v) = 0 if and only if tby + sbs = 0,

in which case v can be expressed as

bl S
=¢ for some & € k
bo —t

Similarly we require u = w] ® (a1w] @ W] + asw] @ wh + aswh @ wh) where e’'w] = 0. Therefore

letting w] = swy — twsy gives
u = (swy — tws) @ (w1 ® wy + pew; ® wy + lzws ® we) for some p; € k

Therefore we require

a1 U1s
az | | p2s—tm
as Spg — tpg
ay — 3t

= t3a1 + st2a2 + s2ta3 + s3a4 =0
= —a b3 + agbi b3 — azbiby + asb? =0 (8.1)
Therefore ¢ +u +v--- € M, if equation (8.1) holds. By a MAGMA calculation we can show
that (8.1) is not contained in the ideals generated by the by the polynomials defining M(()Q) and
./\/183). Since the ideals ./\/léQ) and M(()?’) are prime they cannot be contained in M. Hence g¢ NN}

has three irreducible components namely le, M((J2) and M((JS) with dimensions 20, 19 and 19

respectively.

Orbit A2

e = €10000 + €01000 + €00010 + €00001
0 0 0 0
C=go

ep, = 611(1)00 + 601(1)10 + 600(1)11, €By = 600900, €38,+B2 = 612?21

g°(2) g°(4)

ur = e12211 + c11221 w1 = €12221
A1 B
U2 w2
B2 65
us w3
51 v =e B1 Ty = 611800 + 600811
(0 ° W4y °
65} A
us Ws
B2 B2
Ug We
B B
U7 wr
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Moy=a1Uy+ - +a; U+ 0V +c Wi+ -+ s Wr + di1 X1

Nilpotent Orbit of ¢|Representative e of nilpotent orbit | M; label of e + My
Gs es, + €s, M,
Ga(ar) €8y + €38,+4, My
A €261+ M;
Aq €8, My

Characteristic p = 5:
Since N'(g2) = Og,(ay) for p =5 we do not consider the regular orbit.

M}=0=ag=ar=0 dim(My)=10-2+16=24
MZ=0=a;=0 dim(M3) =8 — 1+ 16 = 23
M =0 dim(My) = 6 + 16 = 22

Characteristic p = 7:
M7 =0= a7 =0, ¢; = 2a4a6 + 6a2  dim(M;) =12 — 2+ 16 = 26
M =0 dim(My) = 10 4 16 = 26

Characteristic p = 11:
MM =0=a; =0 dim(M;)=12—1+16=27

For p = 7 the methods to find the irreducible components are the same as Section 7.2, in this
case g° N N7 has two irreducible components of dimension 26. For p = 11 the method to show
that g N A7 has one irreducible component, is the same as in Section 7.4. Below are the details

to show that g® N N7 has one irreducible component of dimension 24 when p = 5.

Characteristic p =5

The inclusion /T/l/o - ./T/lz holds by the same method as in Section 7.2. Therefore we need to show
My C Mz C M.

Let €’ be a nilpotent element in the orbit Og,(4,). Let u € u®; then for €’ 4+ u to be contained in
M, we require [e/,[¢/,u]] = 0 where u’ is the component of u in g°(2). To show M3 C My, we
consider M = eap, 1+, + sthg, + s%ep, — t2 f5,. This is because for (s,t) # (0,0), M is conjugate
to e2p, 18, + €8, € Ogy(ay)- Let p be the representation of ¢ on the highest weight module of G2
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of dimension 7. A [GAP12| computation gives

0 O 0o 2 0 0 0
0 st —s> 0 -1 0 0
0t —st 0 0 1 0
Msz=p(M)=f0 0 0 0 0 0 -1
0 0 0 0 st 2 0
00 0 0 —t* —st 0
0 0 0 0 O 0 0
By considering u = (uy,...,ur)" as a vector then M2, (u) = 0 implies

a7 =0 tas + sag =0

Then M, + {u € u®: a7 = 0,tas + sag = 0} C //\7; For fixed a5 = ¢ and ag = d, let t = —&d
and s = &c for some £ € k. Then the condition tas + sag = 0 holds and
Mee—ea+{ueu:a; =0} C M,

Therefore by taking the closure we get /\’;l;, C ./f\;l;
To show that My C J/\/\l; firstly note that fsg, 428, + u¢ C /f\/\l;. Let " = fap, 428, and €' =

€3s,+28,- Lhen consider the transverse slice:

st 8?2 2st? 4s%t 253 0 0

—t? —st =263 —dst?* —25* 0 0

0 0 2st 252 0 25%t 253

A=(f'+¢)N05 = 0 0 - 0 2 952 —9¢% |:stek

0 0 0 =22 —2st 2t 2st?

1 0 0 0 0 st s?

0 1 0 0 0 -2 —st

Let u € u® then for ¢/ + u to be contained in My we require [¢/,[¢/,u/]] = 0 where o’ is the

component of u € g¢(2). Then for an element A, in A with (s, t) # (0,0), A2, (u) = 0 implies

2ta; + 2sas + 2t2a3 + 4stay + 252(15 =0

= 2€ay + 2ay + 5(26%a3 + 4€2%a4 + 2a5) = 0 for t = €5, € € kX
Therefore
Ages +{u € u: 26ay + 2ay + s(26%as + 4¢%a4 + 2a5) = 0} C My
Then by taking the limit as s — 0 gives
Ago+{ueu®:ay =—a} C Ms

As ¢ varies, ao can take any value as long as ay is not zero. Therefore taking the closure gives

M4C.//VT3.
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8.7 Orbits A3, A? and A,

For these cases the irreducible components of g¢ A7 have not been found, but we have expressed
g° NN as a union of possible irreducible components X;. Some of the possible components have
been eliminated, however the remaining cases are more complicated and the standard methods
we have used throughout do not work. Due to time constraints we were unable to find alternative
methods for these cases. Note that not establishing the irreducible components of g¢ N N for
these orbits did not obstruct our work to find the irreducible components of C}*(FEg). This
is because each possible component of C}"(FEg) corresponding to X; can be eliminated using

Proposition 5.2.1.

Orbits A}

e = €10000 + €00100 + €00001
0 0 0
¢ = sl3 P sly

€py = €11000 +€01(1)00, €6, = €00110 + €00011; €55 = €12321, €446, = ey, €s,]

uip =€ 12§21
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U1 = €11111
0

T =e€ 11%11

L d B3

T2

My = a Ui + -+ -+ agUig + agUa1 + - - + a16Uag + 01 Vi + - +bg Vs + 1 Wi + di X1 + da X

Nilpotent Orbits of ¢|Representative e of nilpotent orbit | M; label of e + M
(3] + [2] ep, +ep, +eg, My
2,1] + 2] €61+62 T €55 My
[3] + [17] e+ ep, M
[2.1] + [17] €81+52 M,
[13] + 2] €, Ms

Characteristic p = 5:

M =0
M =0= ass =0, a1g = ass = asr, bs = araa1s + a15a18 + 4a16a24 + 4dar7ass + azaass
M3 =0 = asg = 0 then either
(a26 = 0 and either a;g = —ass or (a24—|—a25)(a24—a18)—|—a27(a16—a22) = O) or
(az7 = 0, and either a1g = aa4, or (azs + az4)(ags + a1s) — ase(arr + asz) = 0)
M3 =0= ass = ajs =0, bg = ajsaz6 + ai5a27 + 4aieazs + 4aizass
Mf:0:> (a18:a28:0) or
(a18a27 = aga17 and ai4Go8 + a15028 — A18G24 — Q18025 = A16G27 — a17a26) or
(a186126 = azga16 and ai4ao8 + A15a28 — A18G24 — 18025 = Q17026 — a16a27)
-

Mg = 0= 3ag1a24a28 + 3a21a25a28 + 221 A26027 + 2022023028 + 3022025027 + 3023024026 +

2a3,a25 + 2az4a3; =0

Then we have dim(/\%) = 27, dim(M;) = 6 + 2 — 4 + 27 = 31, M, has four irreducible
components of dimension 4 + 2 — 3 + 27 = 30, dim(/ﬂg) =6—3+427 = 30, M, has three
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irreducible components of dimension 4 — 2 + 27 = 29 and dim(Ms) =2 — 1 + 27 = 28.
Characteristic p = 7:
M7 =0= asx =0, ax = asr dim(M;) =6+ 2 — 2+ 27 = 33
.//\/lvg has two irreducible

Mg =0 = agg = 0 or 2as4a08 + 2as5a28 + bagsgasy = 0
components of dimension 4+2-1+27=32

Mg =0= alg(agﬁ — (127) — agg(am — a17) =0 dlm(.//\/l\;,) =6—1+27=32
M] =0 dim(M,) = 4+ 27 = 31
MI =0 dim(Ms) = 2 + 27 = 29

Characteristic p = 11:
MM =0=aps=0 dim(M;)=6+2—1+27=234
MMt =0 dim(My) =4+ 2427 =33
MM =0 dim(Ms) = 6 + 27 = 33
Characteristic p =5
We can show that M3 C /f\;l/l by considering
ep, +ep, +ep, +{u € u® :a08 =0, a15 = age = aor,
bs = a14a26 + a15026 + 4a16a24 + dar7azs + azaass} C My
Then applying Adgy () gives
e, +ep, +tles, + {u € u® itagg = 0,1 rasg = tass = tasy,
bs = a14a26 + a15a06 + 4a16a24 + darzass + t2azsass} C My
Taking the limit as ¢ — 0 gives
ep, +ep, +{u € u° :a15 = asg = 0, ags = aay,
bs = 14026 = 15026 + 4a16a24 + darrass} C My
Then Adg_, (¢) for € € k>, gives
eg, +ep, +{uecu®:ag =ass =0,a27 — a7 = ass — Eae,
bs = a14(azs — Ears) + ars(azs — Earg) + 4arg(azs — Eara) + darr(azs — Ears)} C My
= e, +ep, +{u € u®:ag =ax =0,a27 = aze — a1 + {arr,
bs = ar14a26 + 15027 + 4a16ass + darzazs} C My

j6/31+€/32+{u€ue:(118:(128:05

bs = a14026 + a15027 + 4a16a24 + 4arrass} C My
= M3 C /\71

The possible components of g N A7 are /\’;llo, /\7,57 /T/lJl, the three components of //\;lz and the

four components of /\A/l/g
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Characteristic p =7

The possible irreducible components of g¢ N N7 are ./f\/lvg7 ./f\/lvl and the two components of /f\/\lig
The arguments to show that .//\/\l; and 7\/1: are not components are given below.
To show My C My consider €s,+8, +ep; +{u € u® : agg = 0} which is contained in M. Then

Adgy () gives

teg,+8, + €3, +{u € u®:ag =0} C M
= eg, +{u € u®:agg =0} C My
Ads_, (¢)(ep, +{u € u®a =0}) C M,
:>e[33+{u€ue:a28:§a27}c./f\/\l/2
= M5 C My
Similarly we can show that My C M, by considering Adgy (1) then Ade_,_(¢)-

Characteristic p = 11

Most of the inclusions can be shown using the same methods as Section 7.2 with the exception
of ./\’;l; C .X\/l/1 and /’\/Tg C /T/l: Therefore g¢ N AN; has one irreducible component. Firstly to show
that /f\;l;, C /\A/l/l consider

es, +652+653+{u€ue:a28:0}cf/l/1
Then applying Adgy (1) gives

es, +ep, +12eg, +{u € u: ag =0} C M,
= Adé'_;sS(E)(e& +ep, + {u cu®:ag = 0} C ./,\/1\1

:>€ﬁ1+€ﬁ2+{u€ueiagg:fa18}c./f\\/l/1

As £ varies a1g can take any value as long as as7 does not equal zero. Therefore taking the
closure gives M3 C /f\;l/l
Similarly to show that Ma C M let Y (£) = BY (t2)BY (t). Then

Adgv(t)(ep, +ep, +ep, +{ucu’:ax =0})C M,
= t3ep, + €5, + €, + {u € U : agg = 0} C M,

= eg, + €5, +{u €U :agg =0} C My

= Ade_, . (eg, + e, + {u € u° s azs = 0}) C My
= eg, + e, +{u €U : ags = Lagr} C My

= ep, +€p, +u° C./r\/l\:
Applying the reflection ng, € SL3 C C gives My C M.
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Orbits A?

€ = €10000 + €00001
0 0
c=s507 Pk

€g, = 600(1)00, €3, = 600?00, €3y = 611(1)10 + 601(1)11

g°(1) 9°(2)

Uy = 612%11 U1 = 611%21 wy = 811%11
®

f1

w2 e

P2

w3 e

Bs _
xr1 =€
w4 @ [ ]

Bs

W5 @

P2

We @

1

wre

Mo =aUr + -+ asUs + b1 Vi + -+ bsVs + e Wi + - + s Wr + di Xy

Nilpotent Orbit of ¢°|Representative e of nilpotent orbit | M; label of e + M
[7] es +€p, +eps M,
[5,12] €p, + €p, My
[32,1] es, +eg, M3
3, 22] €s, My
[3,14] €8, Ms
(22,19 €s, Mg

Characteristic p = 5:

We do not consider the regular orbit since Ni(s07) = Oj5 12 for p = 5.

M3S =0= (ag = a5 =0, cg = 4asbg + azby + 4agbs + arbz) or
(bs = bs =0, ¢ = asbr + 4asbg + arbs + daghs)

M35 =0= (as =0 or by =0) and (a7 = 0 or by = 0)

M} =0

Here we have that /\7} has two irreducible components of dimension 16-3+424=37, ./f\;l/g has four

irreducible components of dimension 14-2+424=36 and dim(/%) =12+ 24 = 36.
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Characteristic p = 7:

M7 =0= as =bs =0, ¢; = asbr + 6agbs + azby dim(M;) =18 — 3 + 24 = 39
M =0 = asbs + agbs = 0 dim(My) =16 — 1 + 24 = 39
M =0 dim(Ms) = 14 + 24 = 38

Characteristic p = 11:

M{' =0=ag=0o0rbg=0 ./\7(1 has two irreducible components of dimension 18-1+424=41
MMt =0 dim(My) = 16 + 24 = 40

When p = 5 the possible irreducible components of g¢ N A/ are /\A/l;, the four components of /f\/l\;
and the two components of ./\/71/2 Similarly the possible components of g "7 when p = 7 (resp.

p=11) are /\’/\l;,, My and M; (resp. the two components of M; and ./\A/l/g) The other inclusions
all hold by the argument in Section 7.2.

OI‘bit Al

€ = €10000
0

c=slg

€3, = 600(1)007 €3, = 600(1)00, €33 = 600810, €g, = 600801 ; €85 = 612%10

g°(1) g°(2)

uy =e€ 11%21

v =€
[}

Uu20

My =a1Ui + - + agpUz + 01 11
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Nilpotent Orbit of ¢|Representative e of nilpotent orbit | M; label of e + My

[6] g, +ep, +ep, +ep, +ep, M,
[5,1] eg, +es, +es, +eg, My
[4,2] ep, +ep, +ep, +ep; M3
[4,12] es + ep, + ea, My
[32] ep, +ep, +ea, +ep, M
3,2, 1] es, +ep, +es, Mg
[3,13] es, +ep, M
[23] ep, + e, + s, Mg
[22,17] ep, + ep, My
[2,14] e, Mg

Characteristic p = 5:

Since N (spg) =

5 _ _ _ _ _
M3 = 0= a14 = az =0, ag = ag, a17 = a1

O[s,1) for p =5 we do not consider the regular orbit.

dim(My) = 28 — 4 + 21 = 45

M35 =0= a17 =0, a14 = a5, then either a5 =0 or asg =0

M} =0 = a14 = ai7 = 0, then either a5 = 0 or agy =0

M3 =0=aj9=a12=0 dlm(/\/l5):2 — 2421 =43
Mi=0=ag=0o0rag=0 dim(Mg) = 22 — 1 + 21 = 42
M2 =0 dim(M7) = 18 + 21 = 39

M =0=a;5=0 dim(Mg) = 18 — 1 + 21 = 38

In this case /\A/l; has two irreducible components of dimension 26-3+21=44 and /\A/l/4 has two

irreducible components of dimension 24-3+21=42.

Characteristic p = 7:

7 _ _ _ _
M{ =0= ax =0, aijg = 6a14 + a5, ar7 = ag

M27=O:>a14=a20:()

MI=0=a7=0
MI =0
M7 =0

Characteristic p = 11:

dim(M;) = 30 — 3 + 21 = 48
dim(My) = 28 — 2 4 21 = 47
dim(Ms) = 26 — 1+ 21 = 46
dim(My) = 24 + 21 = 45
dim(Ms;) =24 + 21 = 45

MM =0= a3 =0 dim(M;)=230—1+21=50

M3 =0

Characteristic p =5

dim(My) = 28 + 21 = 49

The possible components of g¢ N A are J\A/l;, J/\/\l/g, ]/l\;, J\A/l/g, the two components of /% and

the two components of .//\7;

The inclusions m - J/\/lvg - //\/lv7 hold by the same argument in
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Section 7.2. To show that My C Mg consider ep, +ep, +ep, +{u € u®: ajg = 0} which is

contained in /\/;1?3. Then Adgy (4 gives

eg, +e/32+t2654+{u€ue:a19:O}C./T/l/6

651+652+{U6U63a1920}cm
Then Adg_, (¢) for £ € k* gives
eg, +ep, +{ucu:ag=_=&ar} C M
= M7 C Mg
Characteristic p = 7,11

When p = 7 the possible components of g¢ N N7 are M5, My, M3, M5 and M;. Similarly
when p = 11 the possible irreducible components are /’\/lvl and M; The other components can

be eliminated using the argument in Section 7.2.
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Chapter 9

Irreducible Components of C?ﬂ (Eg)

In this chapter we calculate the irreducible components of CJ!(FEg) for p = 5 and 11. In the
p = 7 case we show that C"(Eg) = C1(D4(a1)) UC1(Egs(as)). However we do not know whether
C1(D4(a1)) C Ci(Eg(ar)).

When p = 5 and e € A4 A1, the set g° N N7 has two irreducible components X; and X5. We then
show that

C1"(Es) = G - (e, X1) UG - (¢, X2) UC1(Da(a1))

All of these components have dimension 76. Finally in the p = 11 case we have that C7"!(Eg)

has two irreducible components, namely
C1"(Es) = C1(Es(az)) U C1(Eg(a1))

For all but three of the remaining orbits O, in Fg we can verify computationally that there is an
element in each irreducible component X; of g¢ NN that is not contained in G -e. Therefore,
by Proposition 5.2.1, G - (e, X;) is not an irreducible component of C}*(Fg). These elements are
presented in Table 9.2 at the end of the chapter. The three remaining orbits are D5 and Dy(a;)
for p = 11 and A4A; for p = 7. For each of these orbits we show that they are contained in

another component of C}!(Eg) case by case.

9.1 Argument to show Ci(Dy4(a1)) C Ci(Fs(ar))UCi(Es(as)) for
p=11

Note that for p = 11, C1(D4(a1)) = C(D4(a1)). The same equality also holds for the distinguished
orbits of Eg. Therefore we use Proposition 4.2.2 to show this inclusion. A representative e of
orbit Dy(a;) in Eg is almost distinguished. We may assume that e is distinguished in [; where

I=1{2,3,4,5}. Then O, is subregular in [; and has corresponding weighted Dynkin diagram
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Therefore let J = {4} and the extended weighted Dynkin diagram is

[ 1\

2 0 2 2
° * °

|

2

This weighted Dynkin diagram corresponds to the nilpotent orbit Fg(a1) in Fg, therefore let € be
a representative of Fg(ai). Note that for p = 11, € C N;. When p = 5,7 then € ¢ N, therefore
this method only works for p = 11. Then by Theorem 4.2.2

C(D4(a1)) C C(Es(ar)) UC(Es(as))

Hence C;(D4(a1)) is not an irreducible component of CJ! (Eg).

9.2 Argument to show Ci(D5) C C1(FEg(aqr)) for p =11

We want to show that C(Op,) is not an irreducible component of C}*(Eg). To do this we

show that C(Op,) C C(Os,) ie. G- (ep,,gPs NN1) C G- (esr, g¢* NN7) where O, is the

subregular orbit of Fg. Since g¢ " N7 = g NN for both e = ep, and ey, then this is the same
as G- (ep;,9°Ps NN) C G- (esr, g%7). To do this we consider a transverse slice to Op, at [,
where f’ is given by

f/ = Sfal + 14fa3 + 18fa4 + 10f0¢5 + ]-Ofozz

€ =eq, +€as + €ay + €as + €an

We consider [’ + gel rather than e’ + gf, because we have a known basis of gel from [LT11]. The
centralizer of ¢’ as given by [LT11] has basis h € g(0) along with

h = 2he, + 3ha, + 4ha, + 6ha, + Shay + 4ha, e

v =€ €9(2)
vy = f01(1)11 - foo%n » U3 = €122 + €11221 €g(4)
V4 = €01100 — €01110 — €11100 + 2€ 00110 € g(6)

1 0 0 1

Us = €11110 + €11100 €9(8)
vg = f00801 U7 = €12321 Ug = €11110 + €01210 € g(10)
Vg = €12210 € g(14)
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Then the centralizer of f is given by

h, f, €9(-2)
Uy = 2601(1)11 - 5600%11 , Uz = 5f12%11 + 2f11%21 € g(—4)
Uy = 6f01}00 + 5f01(1)10 + 4f11(1)00 — 4f00%10 € g(—6)
us = f11(1)10 + f11%00 € g(—8)
ug = f12%21 , Uy = 600801 , uUg = 3f11%1o + 4f01%10 € g(—10)
ug = f12%10 € g(—14)

We cannot use the usual Slodowy slice f/ + g because g¢ N [f’,g] # {0} (see below). Therefore
we need to find an alternative linear space V' € g of dimension 10 such that V N [f’,g] = {0}. To
do this consider the following basis of g(8) :

wy =vs  wr=[fve]  wz=[fvs]  wa=[fv]  ws=I[f[f[f,v]]]/6

This basis for g(8) generates a subspace of g(6) i.e.
21 =—[f,w1]/8 z2=[f",wa]/180 =23 =[f",w3]/20 24 =f w4]/180 z5=[f ws]/336

(We divide by the constants in order to make the corresponding elements more manageable).

When p = 11 then —4z5 = vy therefore g¢ N [f',g] # {0}. Therefore we let V be similar to

g¢ but replacing the element vy. Consider the element e11100 € g(6)\ (w1, wa, ws, wy, ws) where
0

[, e11100] = 6e11100 . Therefore let
0 0
M:{fl+$oh+$1€'+ﬂc2vz+$3U3+$4e11(1)00 + x5v5 + - - + Tgvg : Xg, ..., T € k}

We want to know when an element of M belongs to Ogg(q,)- Let M be the 27 x 27 matrix

representation of an element of M with coordinates x, ..., 29. Using [GAP12], we show:
Tr(M?) =0= 2, =2
Tr(M®) =0 = x5 = 22 — x4
Then for M to be contained in O, (4,) we require M'" = 0. This holds if and only if
ry=xg=x7 =283 =0

Tg = 4x%x2m3

xg = T2T3

Now let zg = st, xy = s%, x5 =t for s,t # 0. Therefore the set M N Of,(,,) is the set of all

M; ; for s,t € k, where
Mgy = '+ sth+ s*t%¢’ + 550y + tOv3 + 255505 + 45550,
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It is easy to check in [GAP12] that M, € O, if (s,t) # (0,0). We now want to provide some
information about gMst. If y = y, + 9,12 + -+ - € g™t (where y; is the part of y with degree 1)
such that [y, M, ] = 0 then

[y7MS,t] = [yﬂ f/] + [yT-‘r?v f/] + [yTv Sth] +o.
——

deg(r — 2) deg(r)

Therefore y, € g/’. We want to show that (f’, g/ N N7) C {(e,g°) : e € Eg(a1)}. We show this

Ms,t

by studying the lowest degree terms y,. of elements of g . In the discussion which follows we

assume that (s,t) # (0,0).
Lemma 9.2.1 For an element y € gM=t, h is not the lowest degree term of y.

Proof. Suppose that y = h+y2 +ya + - -- € g™t where y; € g(i). Then each part of [Mj ]

with degree ¢ must equal zero. The part of [M, ,,y] with degree zero is given by
[f' y2] + [sth,h] = 0

Since [sth, h| = 0, then we must have that [f’,y2] = 0, specifically y, € g/’. Therefore, because

g/’ © 3 g(i), we have y, = 0
i<0
Now the part of [Mj,y] with degree 2 is given by

[f' ya] + [sth,ya] + [s°t%e0, h] = 0
Since [sth,y2] = 0 and [s?t?¢’, h] = 0 then by the same argument as above y; = 0.
Finally the part of degree 4 is given by
[f/ayﬁ] + [Sth7y4] + [82t26/7y2] + [861}2 + t6v37 h‘] =0
1", y6] + s%[va, h] + vz, h] = 0

[f/a yG] + 386”2 - 3t6v3 =0

= [ ys] = —3(s%2 — t%03)
Since [f’,g] N (h,€’,v2,v3,€11100, Vs, - .. v9) = {0}, we cannot have [f’,ys] = —3(sCvy — t0v3)
0
unless s =t = 0. So h cannot be the lowest degree term of an element in g, ]

Lemma 9.2.2 If the lowest degree term of y € g™t is auy + bug then (a,b) is a multiple of
(t°, s%).

Proof. Let y = aug+bus+y_2+yo+y2+... for a,b € k with (a,bd) # (0,0). We want to know
when y € gMst. Therefore consider the part of [M ¢, y] with degree —4.

[f/a y*?] + [Stha aug + bU3] =0
[f',y_2] + 3staug — 3stbuz = 0

= [f, y—2] = 3st(buz — aus)
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Since [f', [¢/,bus — aus]] = 4(bus — aus) then y_o = 2stle’, bus — aus] + &, where £ € g/’ (-2).

Since gf/(—2) = kf’, we can assume after subtracting a multiple of M, , that £ = 0. Therefore
Y_o = %st[e’, bus — aus).
Next we consider the part of [M;,,y] with degree —2.
[, yo] + [sth,y_o] + [s*t*€/, aug + buz] = 0
9
[ vol — 152152 [/, bug + aus] + [s*t%€’, auy + bus] = 0
[f',y0] — 252152[6/7 aug + buz] =0

Since aus + bus belongs to an irreducible highest weight module U for (h’,¢€’, f') with highest
weight 4 then we have

1
yo = =€, é32252[6’, aug + bus)] + A

6 4
= %sth ¢, [e’, aua + bug]] + Ak

Finally we consider the part of [Mj ;,y] with degree zero,

[f' y2] + [sthyyo] + [s°%¢’ y—a] + [s%v2 + t%v3, auy + bus] = 0

5 3
[f, y2] + gs3t3[e’, [€/, bus — aus]] + Zs3t3 [/, ¢/, bus — aus]] + [s%vs + t%v3, aug + bus] = 0
(£, y2] + [s%v2 + t%v3, auag + bus] = 0

Therefore [s6vy+t%v3, aus+bus] = as®[va, uz]+bt°[vs, us] € [/, 9(2)]. Now by direct computation

[UQ; UQ] = _7ha2 - 5a3 - 12(h’014 + ha5 + haG)

[v3,u3] = 12(hay + Pay + hag) + 1906, + 17hg, + 24h,,

Now Aoy s hagy Pags Pags has € [f, 8] and so [f',g] Nb = (ha,,...,has). Therefore an element of
b belongs to [f’,g] if and only if the coefficient of h,, is zero. Therefore [sSvy + tSv3, aus + bus)

can only belong to [f’,g(2)] if 12(as® — bt%) = 0. Therefore (a,b) is a multiple of (5, s%). |

Basis of gMst

Since dim(g/") = dim(g¢') = 10 and dim(g™+*) = dim(g®s(=1)) = 8§ then it follows that for any

y; € gf/(z') with i = —6, —8, —10, —14 there exists an element of g™+ of the form y; +vi42+....
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Therefore g™+t has a basis of the form

Xt =My, =f +...

X5 = t5uy + sSus + ...

)t
X3 =us+ ...
X5t =
4 =Uus+...
X3t =
g =uUg+...

Note that it is a consequence of our description of My, that in the expression for X " when
i # 2, all the higher degree terms are at least quadratic in s,¢. In X T all higher degree terms
are at least degree 8 in s, t.

For ay,...,ag € k we want to show that (f',a1f" + asus + asus + aqus + ...) is contained in

U  (Ms,,gMs+). Now assume that as # 0 and let p € k be such that uSas = a3. Consider
(,6)#(0,0)
(M;,Lt,t7 gM"’t‘t) then

Xt = 2

XE9Y = t%ug + puStOus +18(...)
pt,t
= 2526 ZUQ+MGU3+t2(...)

X§t7t :U4+t2()

Then let Y be
Y = a1Xft’t + %th’t + a4X§‘t’t + a5Xi‘t’t 4

= a1 fo + agus + azpluz + agug + - +3(..)

:alfo—f—aqu+a3U3—|—a4U4+'~+t2(...)

Therefore the set {(Mes, a1 X{"" +...) : t # 0} includes (f',a1f’ + asuz +...) in its closure.
So (flyalfl +.. ) - Cl(Eﬁ(al)).

9.3 Argument to show C;(A4A4;) C C1(Ds(ay)) when p =17

Now Ci1(A4A1) = G- (e/,g¢ NN1) has two components X; = G- (¢/,{u € u¢:ay =0}) and
Xo = (e/,{u € u¢ : a; = 0}). To show X; € C1(D5(ay)) consider

e = €a; T €as T €ay +€a, +eng
f/ :4f0£1 +6f043 +6f044 +4fa2 +fa6

h = dhg, + 6hay + 8hay + 12fa, + 10ha, + dha,
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Note that h, e/, f/ do not form an sly-triple. For v1 = fo1110 + fo0111 — fo1111 —2f 11110 contained
1 1 0 0

in g¢ (1) and v; = fo1221 contained in g¢ (4) let
1

ur = [f,v1] € g7 (—1) wr = [f 11 1 ve)]]) /576 € of' (—4)

M, = ¢ + t3uq — 30t%u; for t € k>
We can show that M; is contained in Op, (4, for any t € k*.
Lemma 9.3.1 For an element y € gMt, h is not the highest degree term of y.

Proof. Any element in the centralizer of M, is of the form y = y; +y;—1 +... where y; € gel (7).
Suppose that h +y_; +y_o € gM:. Then each part of [y, M;] with degree i must equal zero.
Firstly the part of [y, M;] with degree 1 gives

[y_1,€]=0=9y_1=0
Similarly the part of degree 0 part gives y_o = 0. Finally the part of [y, M;] with degree —1 gives

[y—3, €]+ [h,u1] =0

= [¢/,y_3] = —3t3u, since [h, t3u1] = —3t3u; € gf/(—l)

Since [¢/,g(—3)] N g/ (1) = {0} we cannot have [¢/,y_3] = —3t3u; so h cannot be the highest

degree term of an element on gM:. |
Lemma 9.3.2 For an element y € gMt, vy is not the highest degree term of y.
Proof. Suppose that y = vo +yo +y_1+--- € gMt. Now the part of [My,y] with degree 2 gives
[€/,y0] = 0 = yo = &h for some € € k
Similarly the part of [M;,y] with degree 1 gives
[y 1]=0=y1=0

Finally the degree 0 part of [M;,y] gives [¢/,y_a] = [v2,t3u;]. However by inspection [vg, t3u;]
is not contained in [¢/, g(—2)]. Therefore vy cannot be the highest degree term of an element in

ng. |
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Basis of g

By a [GAP12| calculation we can show that g™t N A} = gM* NN has basis of the form

Vi=u Ve =wg +3(...) Vi =13

Vi =w3 +13(...) Vi =wg +13(...) Vi =wva +13(..0)
Vi=wg +13(...) Vi = v1o Vi =v5 +13(...)
Vi =ws +13(...) Vi =vn +£2(..0)

Vi =y Viy = v +2(...)

Now (M, g™ NN1) C (epy(ar), 82510 NA) for all t # 0. So
(My,ar Vi + a3V + - + a15V5) C G+ (epy(ay), 8750 NNY) for all a; € k
Taking the closure we obtain

(e’,alvl + aszvs + - -+ a15v15) c@qG- (BDB(GI),geDf)(“l) ﬂN1> for all a; € k

(el’ {’LL - Zaivi cu’iag =ag = 0}) - (eDs(a1)7geD5(a1) ﬂ./\/l)

Now for £ € k consider exp(ad(Evs)) € G then

exp(ad(§va))(e’, {u € u® : az = ag = 0}) C G - (epy(ay), 7250 NN)
2
= (¢/,{u e u® 1 ay =0,a6 = az — %al}) C G- (eps(ay)s 87751 NNY)

Therefore by taking the closure we get that X is contained in C;(Ds(a1)). By a similar argument
using the element M] = e’ + t3us + 30t5ug we can show X5 is also contained in Ci(Ds(ay)).

Therefore C; (A4A1) is not an irreducible component of C}!(Eg).
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.21

Orbit |Characteristic | (Possible) Irreducible Component X Element z in irreducible component Nilpotent Orbit z is contained in
]\72 €0+ €qy + €ay + €as + €ag Ag A
X1, X5 € ]\Afg o+ €eqy, + €q, + €ay +€12%10 Dy(ay)
b=5 X1, X, € M, €0+ €ay + Coy + €as AsAq
A M; €0 + €az + €ay + €ag +€12210 AZA,
]\76 €0+ €ay + €ay + €aq As A
Mg €y + €a, +€a, T € 12210 Ay A2
M, €0+ €a, +€a, +€as +€ag +€ 12210 Eg(a3)
]\Afg €0+ €a, + €a, + €as + €aq Ag A
p=>7 Ms €0 + €ay + €ay + €as +€12%10 Dy(ay)
Z\Z €0+ €ay + €ay + €as Az Ay
]\?/5 eyt eqy, +€ay +€ag T € 12%10 A%Al
X1, Xo € My eo + eq, + €11110 + cotn Dy(ay)
pP=5 X1,...,X4 € M3 €0+ €ay + €ay Ay A3
]\74 €0 +611(1)10 +601611 Az
A;f ]\Z €0+ eay, + €ay +€11(1)10 +€01611 Ds(ay)
p="7 M, €0 + €a, +611610 +€01(1)11 Dy(ay)
M; €0+ €ay + €ay Ay A2
p=11 Xl,XiG M, €0+€a2+ea4+611(1)10 +€01(1)11 Ds(aq)
My eo + €eq, +611(1)10 +€01(1)11 Dy(ay)




8¢T

M, eo + €11000 + €01100 + €00110 + €00011 + €12321 Dy(ay)
0 0 0 0 b
2
X1, X5 € My eo +e11110 + €ot111 + €12321 A A7
p=>5 0 0 2
My eote 11110 + coitn Ay A7
A3 M; eo +er1111o0 +eotnn A Af
1 Q Q
M, eo+e 11000 + €01100 + €00110 + €00011 + e 12321 Dy(ar)
— v 2
p="7 My eo + €11110 + coutn + e 12321 Ax AY
M;3 eo + € 11000 + €01100 + €00110 + €00011 AzAy
=11 My €op + e11000 + €01100 + €00110 + €00011 + €12321 Dy(ay)
a 0 0 Q 5
Ag p>5 M, €0+ €ay + oy T € +€ 12%),21 D4(a1)
p=511 My €o + €eqy 1 €aq AzAy
A Ay ; X1, X0, X3 € M €0 + €ay + ey AsAq
b= —~
M, eo + € 00011 AsAq
Ms €y + €a, +€ 12321 Dy(ay)
p=95 M3 ey + 611(1)00 + 601(1)10 + 600(1)11 AsAq
e 2
A2 M4 €p + eaz A2A1
2 ——
M, €o +e11100 + €01110 + €00111 + €y Eg(as3)
p="1 0 0 0
Ms €0 + €a, +€ 12321 Dy(ay)
p=11 M, €o+611(1)00 +€01(1)10 +eoo(1]11 + €ay Eg(a3)




6¢T

5 X1,X5,X3 € ]\71 eo + 2e 11(1)11 + 601%10 + 611%10 - 601%11 Dy(ar)
b= —
M, e+ to + So Az Ay
A A7 . X1, X9 € My eo + 2e i + €01210 + €11110 — €01111 Dy(ay)
b= —
My eo +1t2+ 52 Az Ay
p=11 X1,Xo € M, eo+2€11(1)11 +601%10 +€11]110 —601%11 Dy(aq)
. X1, X2 € My €0 + €ag +611%10 +601%10 Ay
b= —
As M eo+e 11110 + €01210 Dy(ay)
p>7 M, €0 + €ag + €11110 + €01210 Ay
]\Z eo + e12210 + €11211 + €01221 Dy(ay)
p=>5 , o~ 1 1 1
9 MS )7M(§ ) e My eo +q1 + 83 Dy(ar)
A2A,
X1, X0 € My eo + e12210 + €11211 + €o01221 Dy(ar)
p>7 - 1 1 1
My eo +q1+s3 Dy(ay)
p=>5 X1, X2, X5 € M; eo + €12321 Dy(ar)
AzAy — 2
p=>7 M, eo+e 12321 Dy(ar)
4 p=>5 X1, X0 € My €y + €qaq Ag A
4 —
p=>7 M, €o + €qq AsAq
Dy p=>7 M €o+611%00 +611(1)10 +€00}11 +€01(1]11 Eg(as)
AgAq p=11 X1, X5 € My eg + vy + v2 E6(a1)
As p>T M, €o + € 12321 FEg(as)
Ds(ay) p=>7 M eo+v1 + v2 + vs Eg(as)
Table 9.2: Example of an element in each irreducible component of g¢ N A; which is not contained in (G - ;)




Chapter 10

Summary of Results

In this chapter we summarise the results of Questions 1 and 2 for g = Go, Fy and Eg. For each
Lie algebra g we state the number of irreducible components of g N7 along with the dimension
of each component in a table. This is followed by a description of the irreducible components of

crit(g).

10.1 G,

For the case when G = G5, we have found that g¢ NN is always irreducible. This is highlighted
by the table below.

Number of Irreducible
Orbit | Characteristic p Dimensions of Components
Components
Ga(ar) >5 1 4
Ay >5 1 5
Ay >5 1 9

Theorem 10.1.1 Let g be of type G2 and let p=5. Then the variety C7"'(G5) is irreducible of

dimension 14 = dim(g) where

CP(G2) = C1(Ga(ar))
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10.2 F}

When G = F, we have found that g N A7 is always equidimensional. In particular g¢ NN is

either irreducible or it had two components of the same dimension.

Orbit | Characteristic p Number of Irreducible Dimensions of Components
Components
5 1 28
7 1 31
Ay
11 1 32
> 13 1 33
1 24
A 1 26
> 11 1 27
5 2 19,19
A1 Ay 7,11 1 21
>13 1 13
5 2 18,18
Ao
>17 1 20
5 1 18
As 7 1 19
>11 1 20
5,7 2 15,15
Ay Ay 11 1 16
>13 1 17
B >5 1 14
5 1 14
A A, 7 2 14,14
>11 1 15
Cs(a1) >5 1 13
Fy(as) >5 1 12
B3 >7 1 9
Cs >17 1 9
Fi(az) > 7 1 8
Fy(a1) > 11 1 6
Fy >13 1 4
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Theorem 10.2.1 The variety C}'(Fy) is equidimensional of dimension 52 = dim(g) with re-

spectively 1, 2, 8 components given by

p=>5: CP"(Fy) = Ci(Fu(as))
p="T: CP(Fy) = C1(Fy(as)) UC1(Fy(az))

p= 11: C?ZI(F4) = Cl(F4(a3)) U Cl(F4(Cl2)) U Cl(F4(a1))

10.3 FEg

In this case we have not found the irreducible components of g¢ N A for nilpotent orbits A;, A?
and A$. The case when e is contained in the orbit A3 A? is the first example when g® N is not
equidimensional. This is because ¢ = sly & k and the dimension of the component corresponding
to the zero orbit has a higher dimension of the irreducible components corresponding to the orbit
O|g) in sly. There are two other cases when g° N N is not equidimensional, namely orbits A%A;

and A3A1 .

Number of Irreducible
Orbit | Characteristic p Dimensions of Components
Components
5 - -
7 - -
Aq
11 - -
>13 1 51
A2 ! - -
! 11 ] ]
>13 1 42
3 7 - i}
Ay
11 1 34
>13 1 35
5 1 30
Ao
>7 1 32
5 1 27
Az Ay 7 4 27,27, 27, 27
> 11 1 29
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5 1 24
2 7 2 26, 26
2 11 1 27
13 1 28
5 3 24, 22, 22
7 3 24, 24, 24
Ay A2
11 2 25, 25
> 13 1 26
A 5 3 21, 21, 21
3
>7 1 23
3 20, 19, 19
7 3 21, 21, 21
A3 A,
11 2 22, 22
> 13 1 23
5 3 19,18,18
A3A1
>7 1 20
D4(a1) Z 5 1 18
A 5 2 15, 15
4
> 7 1 16
Dy >7 1 16
A 5,7 2 14
441
>11 1 15
Ag >7 1 13
D5(a1) > 7 1 13
Eg(a3) > 7 1 12
Ds >11 1 9
Eg(al) Z 11 1 8
FEg > 13 1 6

Theorem 10.3.1 Forp =5 (resp. 11) the variety C}(Es) is equidimensional of dimension 76
(resp. 18) with respectively 8 and 2 components.

P = 5 C{L”<E6) =G- (e,Xl) UG- (e,Xg) UCl(D4(a1))

p=11: C{”l(EG) = Cl(EG(ag)) UCl(E6(a1)).
Here X1 and X5 are the two irreducible components of g¢ NN for the nilpotent orbit O, = A4 A;.
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When p = 7 we have C1'!(Eg) = C1(Eg(a3))UC1(D4(a1)); however we do not know if the inclusion
Cq (D4(a1)) cCy (EG (ag)) holds.

10.4 Further Work

We have calculated the irreducible components of C}*(Es) for p = 5 and 11. Therefore the next

step would be to find the irreducible components when p = 7. We have already shown that
C1"(Eg) = C1(Da(a1)) U C1(Eg(as))

Therefore we would need to establish whether C1(D4(a1)) C C1(FEs(as)). The method used in
Section 9.1, which utilizes Theorem 4.2.2, does not work in this case since the induced orbit Eg(a;)
is not contained in N;. For a transverse slice argument this would be the same as demonstrating
that C1(D4(a1)) C C1(Ds(a1)). The difference between the dimension of Ds(a1) and Dy4(aq) is
6, which is larger than any calculations computed in this thesis. Hence the transverse slice has
a more complex structure than others we have dealt with and therefore the methods we have
used in other cases do not apply. I expect that this inclusion does hold and that CT'"(Eg) is
irreducible of dimension 78 when the characteristic p is 7.

Another obvious extension to this work is to consider the irreducible components of g¢ N N
for the nilpotent orbits A;, A% and A} in Es. The polynomials describing the components of
g° N N7 are more complex than the other cases we considered. The standard methods we have
used throughout do not work and it is likely to be time consuming to establish these inclusions
as it was for the orbit A; in Fy. Note that not establishing the irreducible components of g¢ NN
for these orbits did not obstruct our work to find the irreducible components of C}*(Es). This
is because in each case we can express g° NN as a union of possible irreducible components X;.
Then each possible component of C7"!(Es) corresponding to X; can be eliminated using Theorem
5.2.1. This is less time consuming than establishing each inclusion. For these orbits I expect that
g° NN is equidimensional. Specifically I expect that g N A is irreducible for the orbit A3 of
dimension 31, 33 and 34 for p = 5,7 and 11 respectively. Similarly for A2, I expect that g° N A
has two irreducible components both of dimension 37, 39 and 41 respectively. Also for A, I
expect g¢ N N7 has two components of dimension 45 when p = 5 and is irreducible of dimension
48 and 50 for p = 7 and p = 11 respectively.

Finally it would be interesting to consider Question 1 and 2 for E; and Eg. There are three
main factors which means there is more work involved in these cases than there was for Go, Fy
and Eg. The first is the number of nilpotent orbits that need to be considered. For E7; there are
45 orbits and for Eg there are 70. This is considerably more that the 16 and 21 of F; and Fj.
Also there are nilpotent orbits in E; and Eg where g¢(¢) does not decompose into irreducible
submodules. Therefore a different method will be needed to tackle these cases.

The second factor is that the Coxeter number of E7 and Eg is larger than that of Fy and Fg at
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18 and 30 respectively. Therefore instead of just considering the cases when the characteristic p
is 5, 7 and 11 we would need to consider 5 different characteristics for E7 and 7 for Eg. Finally
the dimension of the minimal faithful representations of E7 and Eg are larger than the cases we
considered. For F; the dimension is 58 and for Fg it is 248. I expect that applying the same
[GAP12| code used in this thesis to an orbit in Fg will require more computing resources than
was available for this thesis.

The most time consuming work for Fy and Eg was demonstrating inclusions of irreducible closed
subsets when the standard strategies fail, for example establishing C1"!(D5) C C}(FEg(ay)) when

p = 11. There is no reason to believe that E7 and Eg would not have any of these cases.
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Appendix A

Appendix - GAP code

Here we present the [GAP12] code we have used in some of the calculations. The calculations in
Chapters 6 to 8 frequently require us to find solutions to sets of polynomials, usually the entries
of the p-th power of a matrix. Section A.2 explains how we have automated the process of solving
a single polynomial. In Section A.3 we apply this set-up to a collection of polynomials. Before

this we consider a method for inputting elements of a Lie algebra in Section A.1.

A.1 Elements of a Lie Algebra

The following code provides a method for inputting elements of a Lie algebra g = Fy. This code
was originally written by Daniel Juteau. We thank him for allowing us to publish it. Executing
e([a, b, ¢, d]) returns the element €qq;+bas+castda, i the Chevalley basis, where the roots are
labelled in the same order as given by the Dynkin diagrams in Figure 1.1. Similarly f([a,b,c,d)])
(resp. h([a,b,c,d]) gives the corresponding negative root element (resp. corresponding element
in the Cartan subalgebra).

The simple root elements of Fy in [GAP12] are defined in a different order to those labelled in
the Dynkin diagram in Figure 1.1. The following code defines the matrix J, which is used to
rearrange the GAP ordering to match that of the Dynkin diagram.

We can do something similar for g = G5 and FEg. For these cases the matrix J is not required.

R:=Rationals;

LF4 := SimpleLieAlgebra ("F",4,R);
RF4 := RootSystem(LF4);

CF4 := CartanMatrix (RF4);

BF4 := ChevalleyBasis (LF4);

B:=Basis (LF4);

Jg:=[(l0,0,0,11,[1,0,0,01,(0,0,1,0],[0,1,0,011;

e := function (v)
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return BF4[1] [Position (PositiveRoots (RF4), TransposedMat (CF4) x (Jxv)) ]1;

end;

f := function (v)
return BF4[2] [Position (PositiveRoots (RF4), TransposedMat (CF4) x (Jxv)) ]1;

end;

h := function (i)
if i=1 then return BF4[3][2];
elif i=2 then return BF4[3][4];
elif i=3 then return BF4([3][3];
elif i=4 then return BF4[3][1];
fi;

end;

A.2 Manipulating Polynomials

In this section we consider some methods for solving a single polynomial P = 0. It is assumed

that all polynomials do not have a zero degree term.

Method 1 If the polynomial is a single univariate monomial, i.e. of the form az™ = 0, then

this function returns [x,0] otherwise it returns false.

FindIndeterminatesWhichEqualZero := function (P)
if IsUnivariateMonomial (P) then
return [IndeterminateOfUnivariateRationalFunction(P), Px0];
fi;
return false;

end;

Method 2 This function checks if the polynomial P = 0 can be rearranged so that a single
variable x can be expressed in terms of others, i.e x = @ for some polynomial QQ which does not
contain the variable x. This is done by scanning over the linear univariate monomials of P, if
one exists with a variable x which is not present in any other monomial of P we can rearrange
P to find a value of x. If a value is found using this method it returns [variable,value] (i.e.

[z,Q)). Otherwise it returns false.

FindIndeterminatesInTermsOfOtherIndeterminates := function (P)

local monomials, univariateMonomials, nonUnivariateMonomials, monomial, 1i;

monomials := MonomialsOfPolynomial (P) ;
univariateMonomials := Filtered(monomials, IsUnivariateMonomiallinear);
nonUnivariateMonomials := Filtered(monomials, x—> not IsUnivariateMonomialLinear (x));

for monomial in univariateMonomials do
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i := IndeterminateOfUnivariateRationalFunction (monomial) ;
if ForAll (nonUnivariateMonomials, m —> not IsIndeterminateContainedInMonomial (i, m)
) then
return [i, (monomial - P) / CoefficientsOfUnivariatePolynomial (monomial) [2]];
fi;
od;
return false;

end;

Next we discuss a few methods for finding the factors of a polynomial P.

Method 3 This method checks if the monomials of a polynomial P have a common univariate
factor, i.e. if P = ax™Q for some polynomial Q. If this is the case it returns a record containing
these factors in the form rec(factor:= [ax™, Q]). Otherwise it returns false. Note that if P has a

single monomial it returns false.

FindHighestCommonUnivariateFactorOfPolynomial := function (P)
local gcd;
gcd := Gcd (MonomialsOfPolynomial (P));
if IsUnivariateMonomial (gcd) and Length (CoefficientsOfUnivariatePolynomial (gcd)) > 1
then
return rec( factors:= [gcd, P/gcd] );
fi;

return false;

end;

Method 4 The following function identifies whether a polynomial P is factorizable i.e. whether
P be expressed as P = Q1Q2...Q, for some polynomials Q;. If this is the case it returns
a duplicate free list of these factors in the form rec(factors:= [Q1,Q2,...,Qn]). Otherwise it

returns false.

FindFactorsOfPolynomial := function (P)
local factors;
factors:=Factors (P);
if Length(factors) > 1 then
return rec( factors:=DuplicateFreelList (factors) );
fi;
return false;

end;

Method 5 If a polynomial P has a single monomial, then method 3 does not work. This function

checks if a polynomial P has a single monomial and factorizes it via method 4.
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FindFactorsOfMonomial := function (p)
if Length (MonomialsOfPolynomial (p)) = 1 then
return FindFactorsOfPolynomial (p);
fi;
return false;

end;

If we have a polynomial expression @ for a variable x then this function substitutes this value
for  into a polynomial P. We input the polynomial P and the substitution as [z, @]. If P is the
zero polynomial then it returns P otherwise it returns P evaluated at x.
ApplySubstitution:=function (polynomial, substitution)

if not IsZero(polynomial) then

return Value (polynomial, [substitution[1]], [substitution[2]1]);
fi;
return polynomial;

end;

A.3 Solutions for a set of Polynomials

Now we present the code to solve the set of polynomials P, =0, ..., P, = 0 using the previous
functions. This function scans over Py, ..., P, and identifies any variables which we can find
a substitution for. This function returns a list of the substitutions along with the polynomials
Py, ..., P, with these substitutions made.

The code makes use of recursion in order to be able to find all the valid substituions for the
given set of polynomials. We input a list of polynomial Py,... P, and a list of substitutions of
the form [z, value]. Note that the supplied list of polynomials should already been evaluated at

the initial substitutions. Below is some pseudocode which outlines how this function works.

SubstituteIndeterminates (polynomials, substitutions)
beginning:
for each polynomial P; in polynomials
for each substitution_method in [methodl..method5]
result := substitution_method (F;)
if result.found_single_substitution
substitutions := substitutions + result.substitution
polynomials := evaluated(polynomials) # evaluated at found substitution
goto beginning
else if result.has_factors
for each factors_found_in(result) replace P; in polynomials with factor
SubstituteIndeterminates (polynomials, substitutions)

print polynomials + substitutions

The following is a [GAP12| implementation of the above pseudocode. This implementation adds

an optimization to avoid reprocessing polynomials for which substitutions have been found. This
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is done by supplying the position ¢ in polynomials to start processing from.

SubstituteIndeterminatesWithKnowledge:=function (polynomials, substitutions, 1)

local FindSubstitutionsUsingMethods, result;

# Copy polynomials and substitutions so we can make modifications on these
polynomials := ShallowCopy (polynomials) ;

substitutions := ShallowCopy (substitutions);

# Use the four substitution methods in order to attempt to find values for
# substitutions. This method either return false, indicating that it has
# found a substitution but we are not finished. This function should be
# called again to try and find more substitutions. Otherwise it returns a
# list of results, stating the substitutions found and polynomials
FindSubstitutionsUsingMethods := function ()
local p, res, subMethod, results, factor;
for subMethod in [FindIndeterminatesWhichEqualZero,
FindIndeterminatesInTermsOfOtherIndeterminates,
FindFactorsOfMonomial,
FindHighestCommonUnivariateFactorOfPolynomial,
FindFactorsOfPolynomial] do
for p in [i..Length(polynomials)] do
# The zero polynomial will not yield a substitution
if not IsZero(polynomials[p]) then
# Use the current sub method to find a substitution

res := subMethod (polynomials[p]);

if IsRecord(res) then
# We have identified that the current polynomial has factors which

# may be used for finding more substitutions. What we can do is:

# - Replace the polynomial in polynomials with current factor
# — Perform a SubstitutelIndeterminatesWithKnowledge with the
# modified polynomial list

# — Combine results and return

results := []; # Start with an empty 1list

for factor in res.factors do
polynomials[p] := factor; # Replace with the current factor
# Perform a recursive call to substitute indeterminates
Append (results, SubstituteIndeterminatesWithKnowledge (polynomials,
substitutions, p));
od;
return results;
elif IsList (res) then
Add (substitutions, res); # A single substition found. Save it
#Sub back in to all the polynomials and substitution values
polynomials := List (polynomials, p—> ApplySubstitution(p, res) );
substitutions := List (substitutions, s-> [

s[1l], ApplySubstitution(s([2], res)]);
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return false;
fi;
fi;
od;
od;
return [ rec( substitutions:=substitutions, polynomials:=polynomials ) ];

end;

# Keep calling FindSubstitutionsUsingMethods until we get a result

repeat
result := FindSubstitutionsUsingMethods () ;
i :=1; # Reset the 1 to 1;
until IsRecordCollection(result); # Have I got to the end?

return result;

end;
The following function finds the solutions to a set of polynomials P, = 0,..., P, = 0 with no
initial knowledge. It first sorts the polynomials P, ..., P, in increasing number of monomials so

polynomials which are likely to be easier to factorize is considered first. This function returns a

record with the substitutions and the polynomials P, ..., P, with these substitutions made.

SubstituteIndeterminates:=function (polynomials)

SortBy (polynomials, p—>Length (MonomialsOfPolynomial (p)));

return SubstituteIndeterminatesWithKnowledge (polynomials, [], 1);
end;
Given a set of polynomials P,..., P, and a number p, MultipleFreeList is a function which

removes any polynomials which are a multiple m of another polynomial where m is contained in
{1,2,...,p—1}

MultipleFreelList := function(list, p)
local multipleFree,i;
multipleFree := [];
for i in list do
if not ForAny([l..p-1] » i, x-> x in multipleFree) then
Add (multipleFree, 1);
fi;
od;
return multipleFree;

end;

Now let M be a matrix with polynomial entries defined over the finite field GF(p). Note that
if a matrix N is defined over the integers then to reduce N mod p let M = N x One(GF(p)).
The following function gives the polynomial conditions for M = 0. This is done by producing
a multiple free list of the elements in M then applying the function SubstituteIndeterminates

defined above.

FindUniqueSolutionsOfPolynomialsInMInCharP := function (M, p)

141



return DuplicateFreelList (SubstituteIndeterminates (MultipleFreelList (Flat (M),p)));

end;

# Given a list of solutions (such as those returned by SubstituteIndeterminates)
# factorize each of the polynomials in each of the solutions.
FactorizeUniqueSolutionPolynomials := function (solutions)

local i;

for i in solutions do

i.polynomials := List (i.polynomials, Factors);
od;
return solutions;

end;

The following function does the same as FindUniqueSolutionsOfPolynomialsInM CharP but then

the outputted polynomial conditions is factorized.
FindUniqueFactorizedSolutionsOfPolynomialsInMInCharP := function (M, p)
return FactorizeUniqueSolutionPolynomials (
FindUniqueSolutionsOfPolynomialsInMInCharP (M, p));

end;

Example A.3.1
Consider the orbit A3 A? in Eg as discussed in Section 8.4. Then the following code finds

the polynomial conditions for M{ =

#Set up for Lie Algebra E6, assuming already called function e, f,h as described
at the beginning of the chapter

R:=Rationals;

LE6 := SimplelLieAlgebra("E",6,R);
RE6 := RootSystem (LE6);

CE6 := CartanMatrix (RE6) ;

BE6 := ChevalleyBasis (LE6) ;

B:=Basis (LE®6) ;
V27:=HighestWeightModule (LE6, [0,0,0,0,0,17);

B27:=Basis (V27);;

#e0 is the representative of the orbit A 2A 172
e0:=e([0,1,0,0,0,0])+e([0,0,0,1,0,0])+e([1,0,0,0,0,0])+e([0,0,0,0,0,11);

# This is the root element of the reductive part c¢ of g”e where c=sl_2 +k
el:=2%e([1,0,1,1,1,1])+e((0,1,1,2,1,0])+e([1,1,1,1,1,0])-e([0,1,1,1,1,11);
fl:=£([1,0,1,1,1,1])+2«f([0,1,1,2,1,0])+£f([1,1,1,1,1,0])-£([0,1,1,1,1,1));

#Basis of g”e as given by Lawther and Testerman

sl:=e([1,1,2,2,1,1]1); s2:=sl*fl; s3:=(s2*fl)/2; sd:=(s3xfl)/3;
tl:i=e([1,1,1,2,2,1]1); t2:=tlxfl; t3:=(t2+£fl)/2; td:=(t3%£f1l)/3;
ul:=e([1,2,2,3,2,11); u2:=ul*fl; u3:=(u2+fl)/2; ud:=(u3x£fl)/3; ub:=(ud«fl)/4;
vl:=e([0,1,1,2,1,1]1)+e([1,1,1,2,1,0]); v2:=vlxfl; v3:=(v2*xfl)/2;
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xl:=e([1,1,1,1,0,0]); x2:=x1xfl;
yl:=e([0,1,0,1,1,1]1); y2:=yl«fl;
zl:=e([1,1,1,2,1,11); z2:=z1+fl; z3:=(z2xfl)/2;

#This finds representation \rho (x) for each element x where \rho is the
minimal faithful representation

EO:=MatrixOfAction (B27,e0);

El:=MatrixOfAction (B27,el);

S1:=MatrixOfAction (B27,sl); S2:=MatrixOfAction (B27,s2);
S3:=MatrixOfAction (B27,s3); S4:=MatrixOfAction (B27,s4);
Tl:=MatrixOfAction(B27,tl); T2:=MatrixOfAction (B27,t2);
T3:=MatrixOfAction(B27,t3); T4:=MatrixOfAction (B27,t4);
Ul:=MatrixOfAction (B27,ul); U2:=MatrixOfAction (B27,u2);
U3:=MatrixOfAction(B27,u3); U4d:=MatrixOfAction(B27,ud);
U5:=MatrixOfAction (B27,ub);

Vl1:=MatrixOfAction (B27,vl); V2:=MatrixOfAction(B27,v2);
V3:=MatrixOfAction (B27,v3);

X1:=MatrixOfAction (B27,x1); X2:=MatrixOfAction (B27,x2);
Yl:=MatrixOfAction(B27,yl); Y2:=MatrixOfAction (B27,y2);
Z1:=MatrixOfAction (B27,2z1); Z2:=MatrixOfAction (B27,z2);

Z3:=MatrixOfAction (B27,2z3);

#Define some indeterminates

R:=GF (7) ;

a:=X(R,"a"); b:=X(R,"b"); c:=X(R,"c"); d:=X(R,"d"); g:=X(R,"g"); h:=X(R,"h");

1:=X(R,"1"); J:=X(R,"3"); k:=X(R,"k"); 1:=X(R,"1"); m:=X(R,"m"); n:=X(R,"n");
p:=X(R,"p"); q:=X(R,"q"); r:=X(R,"r"); s:=X(R,"s"); t:=X(R,"t"); u:=X(R,"u");
vi=X(R,"v"); w:=X(R,"w"); x:=X(R,"x"); y:=X(R,"y"); z:=X(R,"z"); A:=X(R,"A");

#Define MO and M1
MO:=a*E0+b*S1+c*xS2+d*xS3+g*S4+h*T1+1i+«T2+J*T3+k*xT4+1+xUl+m+xU2+n*U3+p+«U4+g+U5S
+r*V1+s+V2+t+V3+urX1+vaX24+wxY1+x*Y2+y*«Z1+z2xZ2+A*Z3;

M1:=E1+MO;

FindUniqueFactorizedSolutionsOfPolynomialsInMInCharP (M1°7,7);

This outputs the following

rec (
polynomials = [ [ 0xZ(7) 1, [ 0xZ(7) 1, [ 0xZ(7) 1, [ 0%2(7) 1, [ 0%Z(7) 1,
[ 0x2(7) 1, [ O0x2(7) 1, [ Ox2(7) 1, [ O0xz2(7) 1 1,
substitutions := [ [ k, 0xZ(7) 1, [ g, —d*3+Z(7)"4xgxi 1 1),
rec (
polynomials = [ [ 0x2(7) 1, [ O0x2(7) 1, [ O0x2(7) 1, [ O0x2(7) 1, [ 0x2(7) I,
[ Oxz2(7) 1, [ O0x2(7) 1, [ Oxz2(7) 1, [ Oxz2(7) 1 1,
substitutions := [ [ J, 0%Z(7) 1, [ k, 0xZ2(7) 1, [ a, Z(7)"4*gxi ] 1 ),
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rec (

polynomials c= [ [ 0%2(7) 1, [ O0x2(7)
[ 0%x2(7) 1, [ 0xZ(7)

substitutions := [ [ j, 0%Z(7) 1, [ g,
rec (
polynomials = [ [ 0%2(7) 1, [ 0%Z(7)

[ 0xz(7) 1, [ 0x2(7)

substitutions := [ [ g, 0%xZ(7) 1,

[ a

[ 0xz(7) 1, [ 0x2(7) 1,
[ 0+2(7) 1 1,
Z(7)"4xcxk 11 ),

[ 0xz2(7) 1, [ 0x2(7) 1,
[ 0xz2(7) 11,

Z(7)~4xcxk=d*3j 1 1)

The first and last records gives that M{ = 0 if (k = 0 and ¢ = —dj + 4gi) or (g = 0 and

q = 4ck — dj). The second and third records are equivalent to one of these cases. In the

notation used in Section 8.4, this is equivalent to (by = 0 and c5 = —agzbs + 4agbs) or

(a4 =0 and Cy = 4a2b4 — a3b3).
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