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ABSTRACT 

Biological communities are changing across the globe as a result of anthropogenic 

pressures; abundances of individuals are declining within populations and species 

are becoming extinct. Biological diversity and trophic complexity in grasslands 

and soil food webs are positively associated with the cycling of nutrients in soil and 

water, primary productivity and decomposition. Since these ecosystem processes 

underpin a number of goods and services to society, human-driven changes in the 

structure of ecosystems could negatively impact upon human wellbeing. However, 

the majority of our knowledge of the role of biodiversity in ecosystem functioning 

comes from studies conducted in temperate grassland systems. Consequently, our 

understanding of how of higher-level organisms influence ecological processes in 

different ecosystems is limited. This thesis aims to address these knowledge gaps 

by investigating how dung beetle traits and functional diversity influence the sec-

ondary dispersal of seeds and the emergence and survival of seedlings in the 

northeastern Brazilian Amazon. 

 

My first research aim was to understand the importance of intraspecific variability 

in dung beetle traits for the accuracy of functional diversity (FD) indices (Chapter 

2). This chapter demonstrates that intraspecific differences in dung beetle traits 

are small compared to between species differences. However, failure to include in-

traspecific variability resulted in large errors in the calculation of FD indices when 

describing small and/or species poor communities. Second, I investigated how 

dung beetle diversity influences secondary seed dispersal, and the role of envi-

ronmental context in modulating relationships. Here I reveal positive relation-

ships between dung beetle functional diversity and both the probability of seed 

burial and the dispersion of seeds throughout the soil profile. However, these pat-

terns were dependant on soil type and thus environmental context (Chapter 3). Fi-

nally, I explored the multitrophic significance of findings from Chapter 3 by test-

ing how dung beetle communities affect the burial of different sizes of seeds and 

emergence and survival of seedlings (Chapter 4). Results from this chapter 
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demonstrate how dung beetles could influence vegetation regeneration because 

beetle diversity negatively affected the likelihood that experimental seeds emerged 

from the soil surface, but positively impacted on the likelihood that emerged seeds 

survived until the end of the experiment period. Furthermore, I show that large 

seeds could be more vulnerable to anthropogenic driven changes in dung beetle 

communities than smaller seeds.  

 

These research aims were realised through field-based experiments from which I 

sampled and identified approximately 2,650 dung beetles from 180 naturally 

formed communities, collected more than 17,000 morphological trait measure-

ments and sieved approximately 11 tonnes of soil in search of 1800 seed mimics. 

Overall, this work demonstrates diversity in dung beetle communities is positively 

associated with the ecological processes they govern but that environmental con-

text is instrumental in modulating biodiversity-ecosystem functioning relation-

ships. I use the outcomes from this work to discuss the challenges in describing 

diversity-functioning relationships across trophic levels. Finally, I highlight that 

ecological processes are the product of complex species-specific interactions, de-

pendent on the biotic and abiotic environment. Therefore, predicting the conse-

quences of anthropogenic-driven species losses for the structure and functioning 

of natural systems is a major research challenge.   

 

Key words:  Functional diversity indices; invertebrate traits; animal-mediated func-

tioning; context dependency; soil; secondary seed dispersal; plant recruitment 

 

 

RESU MO 

Comunidades biológicas estão sofrendo alterações em todo o globo como resulta-

do das pressões antrópicas; as abundâncias de indivíduos em populações estão 

em declínio e espécies estão sendo extintas. A diversidade biológica e a complexi-

dade trófica em vegetações campestres e as teias alimentares edáficas são positi-

vamente relacionadas com a ciclagem de nutrientes no solo e na água, produtivi-
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dade primária e decomposição. Uma vez que estes processos sustentam uma ga-

ma de benefícios e serviços para sociedade, mudanças condicionadas pelo homem 

na estrutura do ecossistema poderia impactar negativamente o bem-estar huma-

no. Entretanto, a maioria da nossa compreensão do papel da biodiversidade no 

funcionamento do ecossistema é oriunda de estudos conduzidos em campos tem-

perados. Consequentemente, nosso entendimento de como organismos de nível 

superior influenciam processos ecológicos nos diferentes ecossistemas é limitado. 

Essa tese tem por objetivo tratar destas lacunas, investigando como os atributos e 

a diversidade funcional de besouros rola-bosta influencia a dispersão secundária 

de sementes, bem como a emergência e sobrevivência de plântulas no nordeste da 

Amazônia brasileira.  

 

Meu primeiro capítulo teve como objetivo entender a importância da variabilidade 

intraespecífica nos atributos de rola-bostas para a acurácia dos índices de diversi-

dade funcional (DF) (Capítulo 2). Esse capítulo demonstra que as diferenças intra-

específicas nos atributos de rola-bostas são pequenas quando comparadas com as 

diferenças entre espécies. No entanto, a omissão da variabilidade intraespecífica 

pode resultar em grandes erros no cálculo dos índices de DF ao descrever comuni-

dades pequenas e/ou pobres em espécies. Em segundo lugar, eu investiguei como 

a diversidade de rola-bostas influência a dispersão secundária de sementes, e o 

papel do contexto ambiental na regulação dessa relação. Neste capítulo eu mostro 

relações positivas entre a diversidade funcional de rola-bosta tanto com a probabi-

lidade de enterrio de sementes, quanto com a dispersão de sementes através do 

perfil do solo, porém esses padrões são dependentes do tipo de solo. Finalmente, 

eu explorei a significância multitrófica dos achados do capítulo 2 através de testes 

para mostrar como as comunidades de rola-bostas afetam o enterrio de semente 

de diferentes tamanhos e a emergência e sobrevivência de plântulas (Capítulo 4). 

Os resultados deste capítulo demonstram como os besouros-rola-bostas podem 

influenciar a regeneração da vegetação, já que a diversidade de besouros afetou 

negativamente a probabilidade das sementes experimentais emergirem na super-

fície, e impactou positivamente a chance de sobrevivência das sementes que bro-
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taram até o fim do período do experimento. Além disso, eu mostro que sementes 

grandes podem ser mais vulneráveis às alterações antropogênicas nas comunida-

des de besouros do que sementes pequenas.  

 

Estes objetivos da pesquisa foram realizadas por meio de experimentos em cam-

po, a partir do qual eu amostrei e identifiquei aproximadamente 2.650 besouros 

rola-bosta de 180 comunidades formadas naturalmente, coletei mais de 17.000 

medidas de atributos morfológicos e peneirei cerca de 11 toneladas de solo, na 

busca por 1.800 sementes mímicas. No geral, este trabalho demonstra que a diver-

sidade nas comunidades de rola-bosta está positivamente relacionada com os pro-

cessos ecossistêmicos que eles regem, mas o contexto ambiental é fundamental 

na modulação da relação entre biodiversidade e funcionamento do ecossistema. 

Eu uso os resultados deste trabalho para discutir os desafios em se descrever as re-

lações da diversidade com o funcionamento do ecossistema através dos níveis tró-

ficos. Finalmente, eu destaco que os processos ecológicos são o produto de com-

plexas interações espécie específicas, dependente do ambiente biótico e abiótico. 

Portanto, prever as consequências da perda de espécies conduzidas por ações an-

tropogênicas para a estrutura e funcionamento dos sistemas naturais é um grande 

desafio para a pesquisa.  
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1.1 BI O D I V E R S I T Y  D E C L I N E  A N D  I M P L I C A T I O N S  F O R  E C O S Y S T E M   
F U N C T I O N I N G 

 

Estimates suggest that the Earth is home to more than 450,000 species of plants 

and between 5 and 11 million species of animal, but that most organisms are cur-

rently unknown to science (Pimm et al. 2014). Whist we haven’t described the ma-

jority of species, nor is there a consensus of how organisms there are on the planet, 

there is agreement that species are disappearing from ecosystems up to 1000 

times faster than background extinction rates, largely because of human activities 

(Barnosky et al. 2011; De Vos et al. 2014). Of terrestrial animals, for example, cur-

rently 13% of birds, 41% of amphibians and 25% of mammals are threatened with 

extinction (IUCN 2014).  

 

With every species extinction comes an extinction of interactions between that 

species and its biotic and abiotic environment (Valiente-Banuet et al. 2014). Hu-

manity is reliant upon a number of goods and services provided by natural systems 

(MEA 2005) and these services are a product of ecological processes driven by spe-

cies interactions. There is increasing evidence that biological diversity is positively 

associated with a number of ecosystem functions; in particular, species richness in 

producer systems has been demonstrated to positively influence primary produc-

tivity and the cycling of nutrients in the soil and water (Cardinale et al. 2011, 2012; 

Hooper et al. 2012), and in decomposer systems, the loss of trophic complexity in 

soil food webs have been shown to impair soil functions (Bardgett & van der Putten 

2014). Since primary production, nutrient cycling and decomposition underpin a 

number of ecosystem functions and services (MEA 2005), declining species diversi-

ty and associated ecological interactions, has the potential to negatively impact 

human wellbeing (Cardinale et al. 2012).  

  

The majority of our understanding about how biodiversity influences the function-

ing of ecosystems comes from the investigations into biomass assimilation in 

temperate grassland systems (Balvanera et al. 2006; de Bello et al. 2010; Cardinale 

et al. 2011). This means that our knowledge of the role of higher trophic level or-
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ganisms in influencing a variety ecosystem processes in other habitats is limited. 

This bias towards biodiversity-ecosystem functioning (BEF) research in temperate 

grasslands should be addressed for a number of reasons. First, higher-level organ-

isms are the agents of a number of important processes and services (e.g. 

Andresen & Levey 2004; Lavelle et al. 2006; Blouin et al. 2013), yet our understand-

ing of BEF relationships governed by animal communities is based on a limited 

number of empirical investigations (Slade et al. 2007a; Dangles et al. 2011; 

Griffiths et al. 2015). Second, tropical forests are home to a large proportion of the 

Earth’s biodiversity; the Amazon rainforest alone hosts more than 50,000 species 

of vascular plants (Hubbell et al. 2008) and c.15,000 species of tree (ter Steege et al. 

2013). The role of diversity in governing ecosystem processes in these hyper-

diverse systems could differ from less speciose environments. Therefore, inferring 

BEF relationships in tropical systems from work conducted in the temperate re-

gions may not be meaningful. Third, while the erosion of species and populations 

is globally pervasive, tropical forests are experiencing higher current rates of losses 

of animal species than any other terrestrial ecosystem (Stork 2009; Dirzo et al. 

2014). Humid tropical forests are globally important ecosystems; covering around 

11 million km2 of the Earth’s surface (Mayaux et al. 2005), they sequester and store 

huge amounts of carbon (Saatchi et al. 2007; Berenguer et al. 2014) and influence 

regional and global weather systems (Gedney & Valdes 2000; Werth & Avissar 

2002). However, we currently know very little about how declining biodiversity in 

these regions will impact the ecological processes that maintain tropical forests 

and thus their associated benefits to human societies. 

 

Given the rate at which we are changing animal communities (Pimm et al. 2014; 

Dirzo et al. 2014) and the importance of tropical forests for global ecosystem ser-

vices (e.g. Saatchi et al. 2007) it is critical that the gaps in our knowledge outlined 

above are addressed. This will not only further our theoretical understanding of 

ecological systems, but will also allow us to more accurately predict the conse-

quences of human-driven declines in biodiversity. This thesis therefore uses a 
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trait-based approach to investigate how functional diversity in dung beetle com-

munities influences the secondary seed dispersal in a tropical rainforest.  

 

1.2 FU N C T I O N A L  D I V E R S I T Y 
 

Functional traits are any behavioural, physiological, phenological or morphologi-

cal characteristic measurable at the individual level (Violle et al. 2007). They form 

the fundamental building blocks of functional diversity (FD), which is described as 

the value, range and relative abundance of functional traits in a given ecosystem 

(Díaz & Cabido 2001). The collection of functional traits generally represents a 

greater investment in time and resources than simply counting the number of 

species in an assemblage. However, a functional approach can be justified because 

there is growing evidence that FD is a better predictor of ecosystem processes than 

taxonomic diversity (de Bello et al. 2010; Clark et al. 2012; Griffiths et al. 2015; 

Gagic et al. 2015). This is likely because not all species contribute equally to all 

functions i.e. the relationship between taxonomic and functional diversity is not 

predictable and linear. It will vary depending on the function or trait under con-

sideration and is likely to be largely unique to the each system (Naeem & Wright 

2003). One species may be functionally redundant when considering one process 

while singular (or distinct) when another is examined. These complexities are not 

captured with taxonomic indices. Consequently seeking a general relationship be-

tween taxonomic and functional diversity or using one as a proxy for the other may 

not yield useful results for BEF research (Díaz & Cabido 2001; Naeem & Wright 

2003; Mayfield et al. 2010; Cadotte, Carscadden & Mirotchnick 2011). Therefore, a 

functional approach could increase the accuracy with which we link organisms to 

the ecological processes they govern and thus the accuracy with which we predict 

the consequences of species losses. 

 

Since the beginnings of BEF research in the mid 1990s (e.g. Naeem et al. 1994; 

Tilman et al. 1997; Grime 1998) the mathematical sophistication and variety of in-

dices available to calculate functional diversity has grown alongside interest in the 

concept. Reviews of the various indices, describing their evolution and providing 
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critiques and recommendations for usage are provided by Petchey & Gaston 

(2006), Mouchet et al. (2010), Schleuter et al. (2010), and Casanoves et al. (2011). 

However, below I provide a brief summary of each multi-trait index used through-

out this thesis. These have been categorised into richness, evenness, divergence, 

and dispersion as first suggested by Mason et al. (2005) and built upon by Villager, 

Mason, & Mouillot (2008) and Laliberté & Legendre (2010). Using an index from 

each category should complementarily describe the distribution of species and 

their abundances within functional space (Mouchet et al. 2010).  

 

1.2.1 Functional richness -  FRic 

Functional richness describes the functional space occupied by a community (Fig. 

1.1 (a)).  This can be applied to a single trait approach by assessing the difference 

between the maximum and minimum trait values within a community (Mason et 

al. 2005). In order to do so for multiple traits (T), however, the minimum volume 

occupied by all species in the community in the T dimensional trait space is calcu-

lated (Villéger et al. 2008). This volume is known as the convex hull and was first 

proposed by Cornwell, Schwilk, & Ackerly (2006). It provides a multidimensional 

measure of the range in trait values in a community; is heavily influenced by the 

extreme values; it does not take into consideration species abundances; is not in-

dependent from species richness; and requires there to be more species (points) 

than traits (dimensions). 

 

1.2.2 Functional evenness -  FEve 

Functional evenness is regularly of spacing between species and evenness in dis-

tribution of abundance in functional space (Fig. 1.1 (b)). The importance of incor-

porating a measure of species abundances in evenness measures of functional di-

versity was first highlighted, and the means to do so presented, by Mouillot, 

Mason, Dumay, & Wilson (2005). However, their Functional Regularity Index (FRO) 

is constrained in its capabilities as it allows for only the assessment of a single trait 

within a community. An alternative, multi-trait approach was suggested by 

Villager, Mason, & Mouillot (2008) in which the distribution of species in T dimen-
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sional trait space is converted onto a single axis using a minimum spanning tree 

(MST). To do this, the minimum distance between all the points (species) in the 

functional space are linked and then summed. Abundances are incorporated into 

the computation by dividing each branch by the sum of the abundances of the 

species that it connects (EW); the EW value for each branch is then divided by the 

sum of all other EW values in the MST, giving the PEW. A final calculation using 

the sum of the PEW values provides the functional evenness index (for full math-

ematical explanation see Villager, Mason, & Mouillot 2008). This measure decreas-

es when distances between points are less regular or when abundance is distribut-

ed less evenly between species.  

 

1.2.3. Functional divergence – FDiv  

Functional divergence quantifies the distribution of abundances of functional 

traits within functional trait space (Fig. 1.1 (c)). As with the abovementioned indi-

ces there exists a single trait equivalent (FDvar), in this case, it was put forward by 

Mason et al. (2005). FDvar is a descriptor of how the abundance-weighted traits are 

spread within the range of traits occupied by the community. If the most abundant 

species are close the centre of the range, FDvar will be low, while if the dominant 

species display traits that are at extreme of the range it will be high. This concept is 

applied to a multi-trait model through assessing how the abundances of traits are 

distributed within a T dimensional functional volume (similar to the convex hull): 

Functional Divergence (FDiv) (Villéger et al. 2008). It is calculated based on the 

mean distance of all the species from centre of the functional trait space, and the 

sum of the abundance-weighted distances of all the points from the mean. Like 

FDvar, FDiv decreases if the most abundant species are close to the centre (relative 

to rare ones) and increases when dominant species are distant from the centre. All 

the indices developed by Villager, Mason, & Mouillot (2008) are independent from 

one another.   
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!
Figure 1.1| Multi-trait functional diversity indices used in throughout this thesis: functional rich-

ness (a), functional evenness (b), functional divergence (c) and functional dispersion (d). Indices 

and diagrams (a) – (c) were developed by and taken from (Villéger et al. 2008) and (d) by (Laliberté & 

Legendre 2010). 

 

1.2.4 Functional dispersion – FDis 

Functional Dispersion calculates the mean distance of all species from the abun-

dance-weighted centroid (Fig. 1.1 (d)). A criticism of FDiv presented by Laliberté & 

Legendre (2010) is that it takes into account the distribution of the species within 

the T dimensional trait space without considering the actual volume of the convex 

hull (this is inevitable because a goal of Villager, Mason, & Mouillot [2008] was to 

ensure independence between their indices). It is therefore not a measure of dis-

persion and as such cannot discriminate between the distributions of species in a 

small trait space compared to similarly distributed species in a larger trait space. 

As an alternative the authors present functional dispersion (FDis) that is concep-

tually similar to Rao’s quadratic entropy (Rao’s Q) (Rao 1982) another commonly 

used multidimensional measure of functional diversity (e.g. Ricotta 2005; Ricotta 

a) FRic b) FEve

c) FDiv d) FDis

Trait 1

Tr
ai

t 2
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& Moretti 2011). Rather than being calculated using the divergence of each point 

from the mean distance to the centroid, FDis is a product of the abundance-

weighted mean distance of each point to the abundance-weighted centroid (i.e. the 

centre of the trait space is pulled towards the most abundant species and weight is 

given to the distances between this point based on abundances of species). Be-

cause both FDis and Rao’s Q both calculate dispersion traits within a community 

weighted by their abundances, the two measures are strongly correlated. A correla-

tion was also found by Laliberté & Legendre (2010)  between FDis and FRic, FDis 

and FEve and FDis and FDiv.  

 

1.3 FU N C T I O N A L  T R A I T S   
 

A common approach in functional diversity/ecosystem functioning studies is to 

categorise organisms into functional groups or guilds based upon shared behav-

ioural, physiological, taxonomic, or morphological traits, and using the number of 

different groupings present (functional group richness) as an approximation of 

the functional diversity of the community (e.g. Díaz & Cabido 2001; Tilman et al. 

2001; Vulinec, Lambert, & Mellow 2006; Slade et al. 2007; Barragán et al. 2011). 

However, this assumes that those traits most important in predicting ecosystem 

functioning are discrete rather than continuous (Naeem & Wright 2003), can result 

in loss of information (Villéger et al. 2008), and increases the level of subjectivity 

within the investigation (through the experimenter’s classification of organisms 

into groups based on arbitrary thresholds) (Petchey, Hector & Gaston 2004). These 

shortfalls can be avoided through directly measuring continuous traits of the study 

organisms rather than using discrete functional groupings (e.g. Vandewalle et al. 

2010; Hidasi-Neto, Barlow, & Cianciaruso 2012; Spasojevic & Suding 2012).  The use 

of continuous traits for the calculation of functional diversity indices is growing in 

popularity, however, this approach remains comparatively uncommon in 

non-producer focused investigations (de Bello et al. 2010).  

 

Trait selection is of critical importance for the outcome of any functional diversity 

study utilising any of the above mentioned FD indices because the metrics are a 



C h a p t e r  1  –  G e n e r a l  i n t r o d u c t i o n  

!

!
!

10!

product of the numbers used to generate them; the traits. The greater the number 

of traits included, the greater the ability to differentiate between species (each spe-

cies has an increased likelihood of being functionally singular), whereas the 

smaller the number included, the greater the incidence of functional redundancy 

(Petchey & Gaston 2006; Cadotte et al. 2011). Furthermore, inclusion of functional-

ly uninformative traits or those that are positively correlated will increase the arti-

ficial congruence between taxonomic and functional diversity, while negative cor-

relation between traits will lead to inflation of functional diversity values (Naeem & 

Wright 2003; Cadotte et al. 2011). It is important, therefore, that the investigator 

avoids, where possible, correlation between the traits (Cadotte et al. 2011) and 

considers only those that are linked to the function of interest.  As a result, an un-

derstanding of how the community under scrutiny interacts with its environment 

and clear definition of the focal ecological process is necessary in order to select 

only appropriate traits (Petchey & Gaston 2006). 

 

1.4 ST U D Y  T A X A  – D U N G  B E E T L E S  
 

With just over 5,900 recognised species, belonging to 236 genera and inhabiting 

every continent except Antarctica, dung beetles (Coleoptera; Scarabaeidae) are a 

large, diverse and widely distributed group (ScarabNet 2008). The Scarabaeidae 

family is divided into two subfamilies, namely the Coprinae and Scarabaeinae, 

which are further divided into six tribes in each. Coprinae contains the tribes of: 

Coprini, Dichotomiini, Oniticellini, Onitini, Onthophagini and Phanaeini; Scara-

baeinae contains: Canthonini, Eucraniini, Eurysternaini, Gymnopleurini, Scara-

baeini and Sisyphini. True dung beetles appear in the fossil record around 40 mil-

lion years BP, but the evolution of the group is thought to have coincided with the 

expansion of large mammals at the end of the Mesozoic period around 66 million 

BP (Hanski & Cambefort 1991). 

 

The tropics are home to the highest generic and species rich assemblages of dung 

beetles where they are most abundant in savannah and forest environments (Davis 

& Scholtz, 2001; Hanski & Cambefort, 1991). Tropical forest dung beetle communi-
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ties are known to be sensitive to land use change, which has been shown to lead to 

the differential loss of large bodied species (Larsen, Williams & Kremen 2005; 

Larsen, Lopera & Forsyth 2008) and result in reductions in abundances as well as 

taxonomic and functional diversity (Halffter & Arellano 2002; Larsen et al. 2005, 

2008; Gardner et al. 2008b; Barragán et al. 2011). Furthermore, these changes in 

community structure have been demonstrated to impact upon beetle-mediated 

functioning as measured by dung burial rates and seed dispersal (Larsen et al. 

2005; Santos-Heredia, Andresen & Stevenson 2011; Slade, Mann & Lewis 2011; 

Braga et al. 2013; Nichols et al. 2013b). Because dung beetles are the agents of a 

number of ecological functions (reviwed in Nichols et al. 2008), are sensitive to dis-

turbance, are a cost effective indicator group of biodiversity change and can be 

manipulated in field investigations (Barlow et al. 2007a; Slade et al. 2007a; Gardner 

et al. 2008b), they are an ideal focal taxa for elucidating the impact of human pres-

sures on biodiversity and ecosystem functioning.  

 

1.5.1 Dung beetle meditated ecosystem processes 

Dung beetles use mammalian dung resources for feeding and nesting purposes 

and most species fit into one of three broad nesting strategies: tunneler species 

(paracoprids) bury brood balls in vertical (or near vertical chambers) below to 

dung deposition site; roller species (telecoprids) create brood balls that are moved 

horizontally away from the dung before burial beneath the soil surface; dweller 

species (endocoprid) lay eggs within the dung mass, without relocating material 

under the soil (Halffter et al. 1982). Through the movement and burial of dung in 

these ways, dung beetles are the agents of a number of ecological processes, which 

are outlined below 

 

Secondary seed dispersal 

Dung beetles often relocate seeds from their deposition site within mammalian 

dung to beneath the soil surface (Andresen & Feer 2005) and in doing so can bene-

fit relocated seeds in the following ways: (i) placement in a more suitable micro-

climate for emergence and establishment (Shepherd & Chapman 1998; Andresen 
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& Levey 2004); (ii) escape from predation and pathogen mediated mortality 

(Estrada & Coates-Estrada 1991; Shepherd & Chapman 1998; Feer 1999); and (iii) 

reduction in clumping and associated implications for seedling competition and 

density dependant mortality (Andresen & Feer 2005; Lawson, Mann & Lewis 2012). 

By influencing seed and seedling survival in these ways, dung beetle activity could 

have far reaching impacts upon forest regeneration and community composition.  

 

However, despite the demonstrated advantages of secondary seed dispersal by 

beetles, complex species-specific and size (of both beetles and seeds) dependent 

processes determine if a beetle-seed interaction will result in net benefits to seed 

fitness. The size and composition of a seed’s reserves reflects species-specific life-

history strategies through differing mechanisms for germination, establishment 

and seedling growth (Vazquez-Yanes & Orozco-Segovia 1993; Poorter & Rose 2005; 

Gilbert et al. 2006; Soriano et al. 2011). Large seed reserves allow a longer period 

before seedling autotrophy is necessary (Kitajima 2002; Poorter & Rose 2005) 

whilst simultaneously increasing attractiveness to predators (Shepherd and 

Chapman 1998). Burial by dung beetles is one mechanism for predator escape (e.g. 

Estrada and Coates-Estrada 1991, Feer 1999), but can also lead to mortality 

through placement of individuals in unsuitable locations for germination and es-

tablishment. Estrada and Coates-Estrada (1991), for example, demonstrated that 

seeds avoided predation through burial by dung beetles, but Shepherd and 

Chapman (1998) showed that seeds buried too deep are unable to germinate and  

that only large seeds were able to survive when buried at depths greater than 10cm. 

This suggests that for each species there exists an optimal and unique microsite at 

which the probability of predation is significantly decreased whilst germination 

and establishment is maximised.  

 

Large beetles bury large seeds whereas small beetles do not, and generally, they 

bury all seeds deeper (Feer 1999). These size mediated beetle-seed interactions 

suggest that in the absence large beetles, large seeds will not be buried/won’t be 

buried sufficiently deeply to avoid predator detection, and if is the case, they could 
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suffer comparatively higher rates of seed predation (Estrada & Coates-Estrada 

1991; Feer 1999). Large seeds that are not buried may therefore have lower survival 

probabilities than smaller unburied seeds. As large bodied dung beetle species are 

disproportionately sensitive to anthropogenic disturbance (Larsen et al. 2005, 

2008; Gardner et al. 2008c), this could lead to a differential reduction in survival of 

large seeded species, creating a filter effect (Grime 1998) on the seedling commu-

nities.  

 

Soil properties 

Given that nutrient availability is commonly a limiting factor for plant growth 

(Vitousek 2004), dung beetles, through the re-location of nutrient rich animal ex-

creta, can instigate edaphic changes with important implications for vegetation. 

Dung beetle activity has been shown to: 1) increase the rate at which inorganic ni-

trogen, potassium and plant available phosphorous is lost from dung (Yamada et 

al. 2007); 2) increase plant available nitrogen in residual surface dung and the soil 

beneath dung (Yokoyama et al. 1991a; Yamada et al. 2007); 3) and reduce the loss 

of nitrogen as ammonia (NH3) from dung to the atmosphere (volatilization) 

(Yokoyama, Kai & Tsuchiyama 1991b). These changes are postulated to be a con-

sequence of the aeration of dung pats and brood balls creating more favourable 

conditions for the microorganisms responsible for nitrogen mineralization and 

nitrification, as well as the incorporation of dung into the soil (thus reducing the 

area exposed to the atmosphere).  In addition to these nutrient cycling effects, 

Bang et al. (2005) provide the only empirical evidence that bioturbation as a result 

of tunnelling by tunnelling species alter soil physical properties and, in doing so 

significantly increased surface soil permeability on pasture-land.  

 

Investigations linking these observed edaphic changes to a net positive response 

in plant growth are provided by Bang et al. (2005) and Yamada et al. (2007). These 

investigations demonstrate that dung beetle activity can result in both an increase 

in above ground crop yield and available digestible nutrients within plant tissues 

(if beetles were present before the sowing of seeds in a glasshouse experiment). 
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The only field-based study demonstrating the positive influence of naturally as-

sembled beetle communities on non-crop plants reveals a similar pattern as the 

aforementioned works, with a significant plant growth enhancement effect in a 

heathland system (Borghesio, Luzzatto & Palestrini 1999) (although soil properties 

were not investigated so a mechanistic link cannot be made). It is not possible 

from these studies, however, to disentangle the mechanisms behind the observed 

changes in plant growth response, i.e. the relative contribution of increased aera-

tion and permeability (physical changes) compared to altered nutrient availability.  

 

There is, to date, no in situ manipulative experimental studies examining the in-

fluence of beetles on edaphic qualities in tropical forests. A descriptive investiga-

tion of howler monkey latrines (Dos Santos Neves et al. 2010) does, however reveal 

how dung (and inferred beetle activity) can impact upon soil properties beneath 

large quantities of mammalian dung; carbon and nitrogen was distributed evenly 

through the top 6cm of soil in the latrines, whereas nutrients decreased rapidly 

past the first 2cm in the controls.  

 

While these studies do highlight the ways in which beetles may influence soil 

properties and thus vegetation, this is unlikely to be the most significant role car-

ried out by dung beetles in tropical rainforests because: 1) investigations into the 

effect of dung and beetles on the nutrient content of tropical soils have exclusively 

been carried out in latrine areas (Pouvelle, Feer & Ponge 2008; Dos Santos Neves et 

al. 2010) where nutrients are likely to be of unusually high concentrations. This not 

typical of the majority of land area in a rainforest system where dung pats are usu-

ally small, patchily distributed resources (e.g. Peck 1984; Horgan 2005) and thus 

the impact of dung beetles is likely to be significantly less pronounced than re-

ported in these areas; 2) in contrast, leaf litter is ubiquitous on the floor of tropical 

rainforests, commonly exceeding 12mg/ha (see Vitousek 1984). The decomposi-

tion of which is therefore likely to be the primary route for the transfer of nutrients 

above to below ground rather than the redistribution of faeces.  
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Parasite suppression 

Another important ecosystem processed performed by dung beetles, that is not 

addressed in this thesis, is parasite surpression. Nichols & Gómez (2014) provide a 

recent review into the possible mechanisms by which dung beetles influence 

parasite transmission. These include competitive interctions over resouces 

(Hughes et al. 1975), damage to spores, larvae and eggs (Miller 1961; Bishop et al. 

2005), and alteration of conditions within dung pats and brood balls (Ridsdill-

Smith & Hayles 1987). Dung beetle activity has therefore been shown to reduce 

abundance of enteric parasites of livestock (e.g. Fincher 1973, 1975; Mathison & 

Ditrich 1999) and, in experimental manipulations, result in elevated dung-fly 

mortality (Bornemissza 1970; Bishop et al. 2005). Conversely, dung beetles as hosts 

of livestock parasites has also been suggested (Fincher, Stewart & Davis 1969; 

Fincher 1982), although this relationship is less well established (see Nichols et al. 

2008). Evidence of these associations in tropical forest ecosystems are, to my 

knowledge, lacking in the literature.  

 

1.5 ST U D Y  S I T E 
 

The Amazon rainforest spans nine South American Countries and covers more 

than 6.5 million km2. It is the largest expanse of tropical forest on Earth, home to 

around 25% of terrestrial species (Dirzo & Raven 2003), stores 86 Pg of carbon 

(Saatchi et al. 2007) and influences weather patterns across the Americas (Werth & 

Avissar 2002; Malhi et al. 2008). The biome therefore plays a vital role in the provi-

sion of a number of regional and global services.  

 

This project was carried within the 17,000km2 landholding of Jari Florestal, located 

in the state of Pará in the north-eastern Brazilian Amazon (0o53S, 52o36W). The re-

gion contains roughly 530km2 of Eucalyptus urophylla plantations and more than 

500km2 of regenerating native vegetation in areas that were cut and subsequently 

abandoned. These plantations and secondary forests are embedded within a ma-
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trix of undisturbed terra firme primary forest (Barlow et al. 2007b). Within this 

landscape, experiments were established in three primary forest sites.  

 

1.6 RE S E A R C H  O B J E C T I V E S   
!

The overarching aim of this thesis is to better understand how diversity in higher 

trophic level organisms influences the ecological processes they govern. This was 

addressed in the following three topics: 

 

1.7.1 Chapter 2 – Intraspecific variability in dung beetle traits and 
implications for functional diversity indices 

The use of mean trait values in functional indices assumes that traits are robust, in 

that greater variability exists between than within species. While the assertion of 

robust traits has been explored in plants, there exists little information on the 

source and extent of variability in the functional traits of higher trophic level or-

ganisms. Consequently researchers adopting a trait-based approach to investigate 

animal mediated ecosystem functioning must make methodologically important 

decisions regarding the level of precision to employ without any empirical guide-

lines. Therefore, the first research objective was to assess the source and extent of 

variation in two functionally relevant dung beetle traits. 

  

Chapter 2 research questions: (1) What is the relative contribution of between vs. 

within species differences in trait values? (2) How does sampling site influence in-

traspecific trait differences? (3) What sample size is needed to provide representa-

tive species mean trait values? (4) What impact does omission of intraspecific trait 

information have on the calculation of functional diversity indices from naturally 

assembled communities?  

 

1.7.2 Chapter 3 – Functional diversity, dung beetle mediated second-
ary seed dispersal and environmental context 

Biodiversity-ecosystem functioning research is dominated by studies carried out in 

temperate grassland systems under homogenous environmental conditions. We 
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therefore have limited understanding of how diversity in higher trophic level or-

ganisms influence ecosystem processes in other habitats or the role of environ-

mental conditions in shaping BEF relationships. The second research aim was 

therefore to explore dung beetle mediated BEF relationships in a tropical forest 

under real, heterogeneous field conditions.  

  

Chapter 3 research questions: (1) How does dung beetle taxonomic and functional 

diversity influence the probability of seed burial and the dispersion of seeds 

throughout the soil profile? (2) What impact does environmental context have on 

the strength and/or direction of observed BEF relationships? 

 

1.7.3 Chapter 4 – The influence of tropical forest dung beetle com-
munities on the emergence and survival of seedlings 

We have a very limited understanding about how species extinctions or popula-

tions declines in one trophic level could impact on the ecological functions gov-

erned by organisms in other trophic levels. Consequently our knowledge of the 

possible cascading effects of the modification of biological communities is lim-

ited. The final research aim was to address this by investigating how diversity in 

naturally formed dung beetle communities could impact upon the germination 

and survival of seedlings in a field experiment. 

 

Chapter 4 research questions: (1) Are seeds of different size classes differentially 

vulnerable to the cascading effects of defaunation? (2) Does dung beetle diversity 

impact on vegetation regeneration through influencing seedling emergence and 

survival? (3) What is the species-specific optimal burial depth of experimental 

seeds to allow emergence from the soil?  

 

1.7. TH E S I S  S T R U C T U R E 
  

Each of the data chapters of this thesis have been written for publication: Chapter 

2 has been submitted to PLOS ONE, Chapter 3 is in press in Ecology, and I intend 
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to submit Chapter 4 to Journal of Animal Ecology in due course. Therefore, this 

thesis is made up of stand-alone chapters linked by a common theme of dung bee-

tle functional traits and diversity and their relevance for the secondary seed dis-

persal in tropical forests. Chapter 5 summarises the key findings resulting from 

each experimental chapter and highlights future research needs.  
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2.1 AB S T R A C T  
 

Functional diversity indices are used to facilitate a mechanistic understanding of 

many theoretical and applied questions in current ecological research. The use of 

mean trait values in indices assumes that traits are robust, in that greater variabil-

ity exists between than within species. While the assertion of robust traits has been 

explored in plants, there exists little information on the source and extent of varia-

bility in the functional traits of higher trophic level organisms. Here we investigat-

ed variability in two functionally relevant dung beetle traits, biomass and back leg 

length, to address the following questions: (i) what is the contribution of between 

vs. within species differences in trait values; (ii) how does sampling site influence 

intraspecific trait differences; (iii) what sample size is needed to provide repre-

sentative species mean trait values; and (iv) what impact does omission of intra-

specific trait information have on the calculation of functional diversity indices 

from naturally assembled communities?  The error associated with calculating the 

FD of small and/or species poor communities, without inclusion of intraspecific 

variability was unpredictable, varying between 4 and 55%, and this error increased 

with a decrease in community size. However, at a larger scale, population level in-

terspecific trait differences explained the majority of variability. Our findings sug-

gest that the importance of inclusion of intraspecific variability for accuracy in FD 

indices increases as community size decreases. This is the case even when using 

traits that display very low within species differences at the population level. Con-

sequently, complete sampling to capture variance information may be necessary 

when investigating the FD of small, naturally formed communities, such as in 

mesocosm or enclosure experiments. In these cases, the exclusion of intraspecific 

variability could ultimately lead to an underestimation of the role of biodiversity 

for ecosystem functioning.  

 

Key words: Functional diversity indices; invertebrate traits; mesocosm experi-

ments; phenotypic plasticity; robust traits 
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2.1 IN T R O D U C T I O N 
 

Understanding how biological diversity influences ecosystem processes is crucial 

if we are to predict and thus mitigate the consequences of anthropogenic driven 

species losses (Barnosky et al. 2011). Functional diversity (FD) quantifies the value, 

range, and relative abundance of functional traits in a given ecosystem (Díaz & 

Cabido 2001) and has been used to link biodiversity with a suite of ecosystem func-

tions and services (Hooper et al. 2005, 2012; Balvanera et al. 2006; Cardinale et al. 

2011; Clark et al. 2012; Griffiths et al. 2015). Furthermore, FD has improved our 

understanding of species interactions and community assembly rules (McGill et 

al. 2006), as well as species responses to disturbance (Mouillot et al. 2013).  Addi-

tionally, it has been proposed that FD and its links to ecosystem processes could 

be of value for defining a planetary threshold for biodiversity loss (Rockstrom et al. 

2009; Mace et al. 2014). Functional diversity, therefore, has the capacity to facilitate 

a mechanistic understanding of the impact anthropogenic disturbances on bio-

logical communities and the processes they govern (McGill et al. 2006), and could 

ultimately inform conservation management and policymaking decisions.  

 

Functional traits (physiological, morphological or phenological characteristics 

measurable at the individual level that impact upon fitness; (Violle et al. 2007) are 

the building blocks of FD and are generally incorporated into indices through the 

use of species mean trait values. This assumes that traits are ‘robust’, i.e. that 

greater variability exists between than within species (Garnier et al. 2001; McGill et 

al. 2006; Albert et al. 2011; Violle et al. 2012). There is, however, growing evidence 

that this is not necessarily the case (Lecerf & Chauvet 2008; Hulshof & Swenson 

2010; Albert et al. 2010b; Messier, McGill & Lechowicz 2010), especially when con-

sidering the traits of individuals originating from spatially discrete locations 

(Lecerf & Chauvet 2008). Furthermore, intraspecific trait variability is increasingly 

recognised as an important component of diversity driving ecosystem functioning 

(Lecerf & Chauvet 2008) as well as functional responses to disturbances (Jung et al. 

2014), and recent work has demonstrated that the failure to consider intraspecific 

trait variability in FD investigations has the potential to influence findings (Albert 
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et al. 2010a, 2012; de Bello et al. 2011). There is, therefore, a clear need to better 

understand the magnitude and source of variability in the traits of functionally 

relevant organisms (Albert et al. 2010b, 2012; de Bello et al. 2011).  

 

It is often not feasible, or necessary, to gather information on every trait, from eve-

ry individual within a given community (Baraloto et al. 2010). Consequently, quan-

tifying intraspecific trait variability (Albert et al. 2010b; de Bello et al. 2011) and 

understanding when and how it should be measured (Albert et al. 2011) has re-

ceived reasonable attention in recent years. Concurrently, investigations have fo-

cussed on methods of incorporating within species variability into FD indices 

(Cianciaruso et al. 2009) and the impact of doing so for interpretation of results 

(Albert et al. 2012). However, to our knowledge, this work has been exclusively car-

ried out on plant traits (Hulshof & Swenson 2010; Messier et al. 2010; Albert et al. 

2011, 2012), likely because the use of functional traits as a tool to investigate diver-

sity-functioning relationships in non-producer systems is comparatively uncom-

mon (Slade et al. 2007b; Dangles, Carpio & Woodward 2012; Griffiths et al. 2015). 

Researchers adopting a trait-based approach using higher trophic level organisms 

must, therefore, make methodologically important decisions regarding the level of 

precision to employ without any empirical guidelines.  

 

Here we investigated variability in invertebrate functional traits. Using data from 

the Chapter 3 biodiversity-function experiment (Griffiths et al. 2015), where mor-

phological measurements were collected from dung beetle individuals (n = 1962), 

we quantified the source and extent of variation in two functionally relevant traits: 

biomass and back leg length. In doing so, we ask the following questions: (1) what 

is the relative contribution of between vs. within species differences in trait values; 

(2) how does sampling site influence intraspecific trait differences; (3) what sam-

ple size is needed to provide representative species mean trait values; and (4) what 

impact does omission of intraspecific trait information have on the calculation of 

functional diversity indices from naturally assembled communities?  
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2.3 MA T E R I A L S  A N D  M E T H O D S 
 

2.3.1 Field sites and sampling strategy 

Sampling was carried out during July and August 2012 in the 17 000km2 landhold-

ing of Jari Florestal, located in the State of Pará in the north-eastern Brazilian Am-

azon (0o53S, 52o36W). Dung beetles were sampled from three terra firme primary 

forests as part of a biodiversity-ecosystem functioning experiment (Griffiths et al. 

2015); full permission was granted by the private land-owner, Jari Florestal, to carry 

out work at these sites, sampling did not involve any endangered species and per-

mission to collect zoological material was granted to JL by the Instituto Brasileiro 

do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). All sites were 

within 100km of one another, classified as dense lowland tropical rain forest, were 

subject to the same regional climatic conditions and contained distinct dung bee-

tle communities (Fig. S2.1 for multidimensional scaling ordination plots of beetle 

communities).  

 

Dung beetle communities were collected from within ninety 50 cm x 50 cm exper-

imental plots baited with a 100g mixture of 50:50 human and pig dung, protected 

from the rain by a plastic cover. After baiting the plots were left open for colonisa-

tion by beetles for either 12 or 24 hours. Following colonisation, plots were closed 

to ensure beetles could not escape. Un-baited pitfall traps (13.5cm width, 9cm 

depth), buried flush with the ground surface and filled with salt and water were lo-

cated inside each of the plots; these were opened when the plots were closed to 

capture the beetle communities following emergence from the soil. Internal pitfall 

traps were left in place for seven days in site 1 and site 3 but because logging oper-

ations in site 2 restricted access to the area, beetles were removed after two weeks 

at this site. More detailed sampling design and rationale are presented in Chapter 

3. 
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2.3.2 Trait selection and measurement  

Beetles were identified to species level using a reference collection held at the Uni-

versidade Federal de Lavras (UFLA) in Brazil and region-specific classification keys 

developed by F. Z. Vaz-de-Mello and T. A. Gardner (unpublished). Using traits to in-

form biodiversity-ecosystem functioning investigations involves defining the func-

tion of interest, identifying predictive traits for that function, and gathering repre-

sentative values for those traits (Petchey, Gorman & Flynn 2006). The ecological 

functions provided by dung beetles result from the burial of mammalian dung 

(Nichols et al. 2008). We therefore measured morphological traits relevant to exca-

vation and burial (Inward et al. 2011) from every individual (n = 1962); namely pro-

notum volume (pronotum area multiplied by pronotum height), front leg area, 

back: front leg lengths (Fig. 3.2 [Chapter 3]; measured using a Leica M250 micro-

scope and Life Measurement software); and dry biomass (determined using a 

Shimatzu AY220 balance with precision to 0.0001g). Biomass, back: front leg 

lengths, biomass adjusted pronotum volume and biomass adjusted front leg area 

where used in Chapter 3 to successfully predict seed burial and dispersion 

throughout the soil profile. We therefore selected these traits for use in this study. 

However, as the non-biomass-adjusted traits are co-linear (Fig. S2.2) we present re-

sults from the two least correlated traits in the main text: biomass and back leg 

length (Pearson’s ρ = 0.89). All other results are detailed in Appendix S2.1 (Fig. S2.3 

– Fig. S2.6)  

 

Sixty-one species and morphospecies were recovered during sampling, the abun-

dance of each varied from 1 – 239 individuals. However, in order to assess the 

magnitude and source of variability of measured traits, we selected only the spe-

cies from the complete dataset for which we collected 50 or more individuals (n = 

13). To investigate the impact of sampling site on trait values we used only species 

from which we collected at least 15 individuals from each location (n = 2; Table 

S2.1 for species abundances at each site). 
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2.3.3 Statistical analyses  

All analyses were carried out in R version 3.0.2 (R Core Team 2013). The first aim of 

this investigation was to quantify the extent and source of variability (intra vs. in-

terspecific) in dung beetle functional traits. To do this, we performed variance 

component analyses following methods presented by Messier, McGill & Lechowicz 

(2010). Each trait was log10 transformed to normalise the data and general linear 

mixed models (lme) from the ‘nlme’ package (Pinheiro et al. 2013) were fitted to 

the variance within and between species. Individual was nested within species and 

included as random factors in the models. A variance component analysis 

(varcomp) from the ‘varComp’ package (Qu 2013) was performed on each model. 

To explore the impact of sampling location on intraspecific differences in trait 

values we performed analysis of variance models (using the aov function) for each 

trait and each species including site as a predictor. Where site significantly affect-

ed trait values, Tukey’s HSD tests were performed to assess the source of the dif-

ferences.  

 

Our third objective was to determine the number of individuals from which meas-

urements should be taken in order to provide a representative value for each dung 

beetle functional trait. This was achieved through resampling (with replacement) 

the complete data set to create sub-sets containing 3 to 100 individuals for each 

species (n = 1000 per sub-set). This was possible up to a sub-set size of 50 individu-

als for every species, but where the target sub-set size was larger than the number 

of individuals collected for a particular species, re-sampling was stopped. From 

each resampled dataset the standard error (SE) of each trait was calculated and 

from these we created a mean SE for each sub-set size. These mean standard error 

values were compared to the overall mean trait value calculated using every indi-

vidual in the dataset for each trait and each species. The number of individuals 

needed to create a mean standard error within 5% of the overall sample mean was 

considered the minimum necessary to provide a representative trait value. To as-

sess if sample size can be reduced when considering a single population, this pro-

cess was repeated but using only individuals collected from one of the experi-
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mental sites. Site was selected for each species based on where they occurred in 

the greatest abundance (Table S2.1 for species abundances at each site). The mean 

standard errors generated during resampling were compared to site-specific spe-

cies mean trait values.  

 

The final goal of this study was to better understand how omission of intraspecific 

trait variability influences functional diversity indices when assessing naturally 

formed communities. Our focal traits are used in Chapter 3 to calculate multi-

dimensional functional diversity indices. However, in a plant-based investigation 

Albert et al. (2010a) demonstrated that functional traits are likely to display une-

qual variance. Combining multiple traits together to calculate multidimensional 

indices could, therefore, mask the differences in traits and species that we are 

seeking to better understand (de Bello et al. 2011). Consequently, for the purposes 

of this study we calculated functional diversity using two single trait indices: 

community weighted mean (CWM) and functional richness (FRic). Community 

weighted mean is the mean value of a trait within a community, weighted by the 

relative abundances of the species carrying that trait (Garnier et al. 2004; Violle et 

al. 2007). FRic describes the volume of functional trait space occupied by a com-

munity; when using single traits it is the range in values (Mason et al. 2005).  

 

These two indices were calculated twice for each community, once using individu-

al trait values from each beetle captured within experimental plots (inclusion of 

intraspecific trait variability) and subsequently using median species trait values 

(omission of intraspecific trait variability). We recognise that mean trait values are 

most commonly used in the calculation of FD indices (e.g. Albert et al. 2012) but 

because the median values of these traits were used Chapter 3, for consistency, 

here we use median values. Furthermore, the mean and median values are highly 

co-linear, we are therefore confident that use of median rather than mean traits 

does not impact upon conclusions drawn. Following methods presented in 

Lavorel et al. (2007), when calculating CWM traits with the inclusion of intraspecif-

ic variability, we calculated a mean for each community using values measured 
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from each individual. Linear regressions were performed to assess the relation-

ships and to estimate the possible bias in calculating FD indices without intraspe-

cific trait information. R2 values from these models provide the percentage of in-

formation excluded from the FD indices when intraspecific trait information is 

omitted (Albert et al. 2012). 

 

2.4 RE S U L T S 
 

2.4.1 Extent of trait  variability  

The complete measurement of biomass, pronotum volume, front leg area and 

back and front leg lengths from all 1962 dung beetle individuals amounted to 

around 480 hours of researcher time. We found large interspecific variability 

across both the biomass and back leg lengths of the thirteen focal species studied 

(Fig. 2.1). Species median values ranged from 0.006g to 0.847g for biomass (FRic = 

0.841g; Fig. 2.1(a)) and from 2.34mm to 15.92mm for back leg length (FRic = 

13.58mm; Fig. 2.1(b)). When individual, rather than median trait values were con-

sidered, variability increased by 73.2% for biomass, ranging from 0.003g to 1.460g 

(FRic = 1.457) and by 18.9% for back leg length, ranging from 1.68mm to 17.83mm 

(Fric = 16.15). This greater influence of intraspecific variability on the range in bi-

omass values is reflected in differences in the coefficients of variation (CV) for 

both traits. The mean CV of all species for biomass was consistently larger than 

that of back leg length; 0.33 compared to 0.1, respectively (Fig. 2.1).  

 

2.4.2 Source of trait  variability 

The partitioning of variance in the two traits revealed interspecific variance ac-

counted for the vast majority of variability compared to intraspecific differences. 

Between species differences were responsible for 94% and 96% of variability for bi-

omass and back leg length respectively, whereas intraspecific variation accounted 

for just 5% and 3% for biomass and back leg length. 
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F I G U R E  2 . 1 |  Extent of intraspecific variability in dung beetle biomass (a) and back leg length (b). 

Violin plots display (i) the density of data estimated by kernel method (grey areas); (ii) the median 

value (black horizontal lines in the centre of violins); and (iii) the interquartile range (between the 

top and bottom of the vertical black lines). Results are presented by species, ordered by their medi-

an trait values and the coefficients of variation (calculated as the SD/mean) are given for each spe-

cies below the violin. The horizontal dashed line on panel (a) shows the median biomass value 

(0.057) of all species collected during sampling (61 species). For clarity, the inset within the bio-

mass panel (a) displays violins for species that had no individuals greater than the median biomass 

value. 
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2.4.3 Spatial differences in trait  values  

Biomass of Eurysternus caribaeus and Dichotomius lucasi, the two species collect-

ed in sufficient abundances (minimum of n = 15 per site), differed significantly 

across sites (F2, 137 = 17.47, P < 0.0001 and F2, 226 = 10.76, P < 0.0001 respectively, Fig. 

2.2), whereas back leg length was unaffected. Post-hoc tests revealed that the bio-

mass of E. caribaeus differed significantly between site 1 and site 3 (P < 0.0001) 

and between site 2 and site 3 (P < 0.0001); biomass was significantly higher at site 3 

than at site 1 and site 2.  The biomass of D. lucasi was significantly higher at site 3 

than site 2 (P < 0.0001).    

 

 

 
Figure  2.2  |  Sampling site differences in dung beetle biomass (a) and back leg length (b). Medians 

(central vertical lines) interquartile ranges (boxes) and outliers (black points) are displayed for spe-

cies collected from site 1 (white boxes); site 2 (light grey boxes) and site 3 (dark grey boxes).   

 

2.4.4 Sample size selection 

Between 35 and 60 individuals were needed to reduce the mean SE of biomass to 

within 5% of the total sample mean when individuals from all populations were 

included in resampling (Fig. 2.3). When analyses were repeated using individuals 

from just one population, 5 or 10 fewer individuals were required for 5 of the focal 

species (dashed lines Fig. 2.3). This resulted in between 30 and 60 individuals 

needed to attain an accurate estimate of the population mean. In both cases, 35 

individuals was most frequently required sample size (Fig. 2.3). 
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The mean SE of back leg length fell to within 5% of the total sample mean when 

considering just 3 individuals for the majority of species (10 out of 13; Fig. 2.3). The 

3 species with the highest CV for back leg length: A. murrayi, O. carinifrons and D. 

boreus (Fig. 2.2 (b)) required 5 (A. murrayi) or 10 (O. carinifrons and D. boreus) in-

dividuals to reduce mean SE to within our threshold value. For these same 3 spe-

cies, a comparatively large number of individuals were also needed to attain mean 

SE within the 95% confidence intervals of biomass: 45, 60, and over 50 individuals 

(A. murrayi, O. carinifrons and D. boreus respectively; Fig. 2.3). Examining just one 

population did not reduce the number of individuals required to accurately esti-

mate mean leg length in any species.  
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Figure 2.3 |  Resampling of dung beetle biomass and back leg length. Total population mean (sol-

id horizontal black lines; calculated using all individuals from each species, n = 51 - 229) and mean 

standard error (grey ribbons; calculated using resampled data from all populations) of dung beetle 

dry biomass (left panel) and back leg length (right panel) with species photographs. Photographs 

are scaled to each other; smallest species, Trichillum pauliani, length: 5.5mm; largest species, Di-
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chotomius boreus, length: 24mm length.  Data were resampled to create new datasets containing 3 

to 100 (n = 1000 datasets per sample size) individuals and the mean standard error was calculated 

from the new datasets. Vertical lines indicate the number of individuals needed to create a mean 

standard error within 5% of the total population mean when considering individuals from every 

site (thin solid lines), one population only (dashed lines) and when there was no difference in the 

numbers needed between all and one population, thick solid lines are used. Histograms display the 

frequency with which each sample size created a mean standard error below the 5% threshold us-

ing all populations (light grey) and one population (dark grey). Results are presented by species, or-

dered by their median trait values.  

!

2.4.5 The influence of intraspecific trait  variability on functional di-
versity indices 

Community!weighted!mean!(CWM)!was!more!sensitive!to!the!omission!of!intraspecific!trait!

variability! than! functional! richness! (FRic)! for!both!biomass! and!back! leg! length! (Fig.! 2.4).!

The!error!associated!with!calculating!CWM!biomass!without!considering! intraspecific! trait!

information!was!27%!and!55%!for!biomass!and!back!leg!length!respectively!(Fig.!2.4(a)!and!

(c)),!whereas! the! error!made! in! calculating! FRic!without! individual! trait! information!was!

16%!and!6%!for!biomass!and!back!leg!length!(Fig.!2.4(b)!and!(d)).!The!strength!of!relation5

ships!between!the!indices!calculated!without!and!without!intraspecific!trait!variability!were!

both!strongest!(R2!=!0.96)!and!weakest!(R2!=!0.45)!when!considering!back!leg!length,!even!

though!this!trait!displays!the!lowest!intraspecific!variability!(Fig.!2.1(b)).!
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Figure 2.4 |  Associations between functional diversity indices calculated with and without the in-

clusion of intraspecific trait variability. Community weighted mean (CWM) of biomass (a), func-

tional richness (FRic) of biomass (b), CWM back of back leg length (c) and FRic of back leg length 

(d). Linear model outputs are displayed: regression lines (solid back lines), standard errors (grey 

ribbons, calculated using the predict function in R) and the inverse of R2 values to describe the loss 

of information as a result of exclusion of intraspecific trait information. 
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trait diversity for whole populations, but clearly demonstrate the importance of 

considering within species trait differences when linking the functional diversity 

of small communities to the ecological processes they perform. 

 

2.5.1 Are dung beetle functional traits robust?  

We tested the assumption that dung beetle functional traits are robust, i.e. that 

they vary more between than within species (Garnier et al. 2001). Within species 

differences in trait values were responsible for between 2.6% and 5% of total varia-

bility for pronotum volume (Appendix S2.1; Fig. S2.3) and biomass, respectively. 

We are therefore confident that the assumption of robust traits in dung beetles is 

valid, at least at the spatial scale of this study. This finding is in contrast to a num-

ber of plant based studies that report greater (Lecerf & Chauvet 2008), equal 

(Messier et al. 2010) or less, but non-negligible contributions (Albert et al. 2010b; 

a) of intra, compared with interspecific variability.  

 

Aside from sampling differences between this study and those of plant-based in-

vestigations, there are well-established biological reasons as to why the traits of an-

imals should display less intraspecific variability than those of plants. Namely, 

most animals can move in response to environmental cues or pressures whereas 

plants cannot. Therefore, many plant species can quickly respond physiologically 

to changes in, for example, resource availability (Zhang et al. 2013; Bardgett & van 

der Putten 2014).  Phenotypic plasticity (the capacity of a given genotype to adopt 

different phenotypes under varying environmental conditions; (Valladares, Gianoli 

& Gómez 2007) is therefore recognised as of a greater evolutionary advantage in 

sessile plants than in mobile animals. The differences in levels of phenotypic plas-

ticity between plants and animals, in combination with results presented here, 

suggests that inclusion of intraspecific variability should be less important in an-

imal based functional investigations compared with similar producer-focussed 

studies. However, to more thoroughly test our assertion that dung beetle function-

al traits are robust, further work is needed to quantify variability in traits derived 

from individuals originating from geographically distant sites, as well as sites dis-
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tributed along longer gradients of environmental conditions, including anthropo-

genic disturbance (Mouillot et al. 2013). 

 

Although not specifically tested, our findings caution against the categorisation of 

species based on continuous traits, unless the distribution of values within a 

community show clearly discrete clusters of species within which a threshold can 

be reasonably placed. This is because the median trait value of one species can 

frequently represent a small or large value of an individual from a species of a simi-

lar size, which is apparent from consideration of the violin plots of biomass. Fur-

thermore, D. lucasi, E. caribaeus, O. carinifrons and C. triangularis all display bio-

mass values that traverse the median value of all species collected. A number of 

previous dung beetle functional diversity investigations have categorised species 

as small or large based on thresholds such as body length (Escobar et al. 2008; 

Barragán et al. 2011; Braga et al. 2013) or ability to fit through a certain size mesh 

(Slade et al. 2007b; Dangles et al. 2012). Our threshold value artificially categorises 

three species as either large or small when in fact individuals have a high probabil-

ity of displaying trait values that places them in a different category. Therefore, 

gathering species into groups artificially imposes a discrete structure on function-

al differences that are generally continuous, resulting in loss of information 

(Petchey & Gaston 2006). This could ultimately compromise efforts to determine 

patterns between organisms and the ecosystem processes they govern if the miss-

categorisation of individuals involved leads to an underestimation of relation-

ships.  

 

2.5.2 How many individuals are enough? 

We have demonstrated that intraspecific trait variability in dung beetle traits is 

negligible, suggesting that average values should accurately represent species 

functional characteristics. But how many individuals per species should be as-

sessed to provide a realistic estimation of the actual sample mean, whilst minimis-

ing sampling effort? Our results suggest that this depends on the trait and species 

of interest. Biomass was the most variable, and consequently the trait from which 
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most individuals must be measured in order to provide a reliable mean. Consider-

ing individuals from just one population reduced the sample size needed to esti-

mate biomass, but had no impact on the numbers needed for back leg length. This 

implies that caution is needed when designing a sampling regime based on the 

assumption that individuals will display less intraspecific trait variability if origi-

nating from the same population. While this may be true (for some traits), it ap-

pears that this does not necessary translate into a large reduction in the numbers 

of individuals needed to gain a representative estimate of mean trait values.  

 

An explanation for the different levels of variability in traits, and thus the number 

of individuals required in sampling, could lie in differing levels of plasticity dis-

played by each trait. Biomass can change in response to short term environmental 

cues, and as such it displays phenotypic plasticity (Valladares et al. 2007). Morpho-

logical characteristics such as leg length or leg area are, however, determined dur-

ing larval development (Hunt & Simmons 1997) and are fixed during adult life. 

Thus, fluctuations in resources over very small spatiotemporal scales (e.g. weeks or 

kilometres) would have little impact on the variability of these fixed traits com-

pared with biomass. This is supported when considering pronotum volume and 

front leg area (Fig. S2.3 – Fig. S2.5), both of which, like back leg length, are non-

plastic traits in adult beetles. The number of individuals needed for these traits to 

reduce variability to within 5% of the total sample mean was also fewer than was 

needed for biomass. These findings are further supported by the significant influ-

ence of site on the biomass of both species tested, compared to the generally non-

significant effect of sampling location on the other traits.  Trait databases (e.g. 

Kattge et al. 2011) are increasingly important tools in facilitating large-scale func-

tional investigations in plant-focussed studies (e.g. Pietsch et al. 2014) but equiva-

lent trait collections are lacking for higher trophic level organisms. Further work is 

therefore needed to understand the ability of plastic versus fixed traits to predict 

animal-mediated ecosystem functioning. This would facilitate the targeted devel-

opment of much-needed trait databases for non-producer organisms. 
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2.5.3 The influence of intraspecific variability on functional diversity 
indices  

Our final objective was to assess how the omission of intraspecific information in 

dung beetle traits influenced the accuracy with which functional diversity indices 

described naturally formed communities. Interestingly, despite the very low con-

tribution of intraspecific compared to interspecific trait variability at the popula-

tion level, ignoring within species differences in trait values at the small-scale 

community level led to non-negligible loss of information. In development of their 

‘spatial variance partitioning’ hypothesis Albert et al. (2011) suggest that at broad-

er spatial scales, interspecific variability will be relatively more important than in-

traspecific variability. This is because increasing the area over which a study is 

conducted will generally increase the genetic and environmental variability that is 

included. In this investigation, individuals were collected from three locations 

separated by between 48 and 90km. When we examine the structure of variability 

in traits over this relatively large spatial scale, intraspecific variation appears in-

significant, but it has important impacts on the outcome of a finer scale investiga-

tion. Moreover, our results are in agreement with those of Baraloto et al. (2010) 

who proposed that investment in complete sampling is necessary in order to quan-

tify vital variance  at a local scale. It is, after all, the individuals that carry out the 

functions of interest. Our results suggest that increasing accuracy in trait infor-

mation will increase the precision with which organisms can be linked to ecologi-

cal processes when sample sizes are small (e.g. in mesocosms or other enclosure 

experiments). However, in larger scale population studies, the significant invest-

ment involved in complete sampling may not be necessary.  

 

For all traits CWM was more sensitive to the omission of intraspecific trait variabil-

ity (ITV) than FRic. This is incongruent with the findings of Albert et al. (2012) who 

report CWM to be less sensitive than FRic to the exclusion of ITV. Albert et al. 

(2012) calculated FD with and without varying levels intraspecific trait variability 

for communities consisting of between 22 and 51 species, covering an area of 1% - 

87% of the sampling plots. In contrast, this investigation considered communities 
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containing between 1 and 11 species with abundances of between 1 and 95 indi-

viduals. It is feasible, therefore, that the differences we see in the sensitivity of the 

indices to the exclusion of intraspecific trait information between this study and 

that of Albert et al. (2012) could arise from a reduction in precision of metrics as 

community size decreases; a possibility that has not been previously explored. 

Species richness was closely related to species abundance (Fig. S2.7), both of which 

were negatively correlated to the residuals from models assessing relationships 

between indices with and without intraspecific information (Fig. S2.8). Therefore, 

we cannot disentangle the mechanism behind the decrease in the influence of in-

traspecific variability on functional diversity indices with increasing species rich-

ness and numbers of individuals. Nevertheless, these findings concur with previ-

ous studies, suggesting that the inclusion of intraspecific information increases in 

importance with a decrease in the scale of the investigation (Albert et al. 2011). 

Further work on which index performs best under contrasting community size and 

diversity will provide useful guidelines for the investigator faced with the choice of 

multiple functional diversity indices (e.g. Mouchet et al. 2010). 

 

A surprising outcome was the high sensitivity of CWM of back leg length to omis-

sion of intraspecific trait information. This is counterintuitive given that back leg 

length is the trait for which every species displayed the lowest coefficient of varia-

tion (CV). The relatively poor association between CWM back leg length with and 

without the inclusion of intraspecific trait information is a result of an over esti-

mation of the CWM back leg lengths of a small number of communities. This re-

sult further demonstrates the increased importance of quantifying and including 

intraspecific variability in functional investigations dealing with small communi-

ties. We demonstrate that the stochastic occurrence of individuals displaying ex-

treme species trait values appear to influence the accuracy of indices in unpredict-

able ways, resulting in large losses of information. 
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2.5.4 Conclusion 

Our exploration into the sources of trait variability in a functionally important in-

vertebrate group has demonstrated that using dung beetle mean trait values when 

dealing individuals from the same geographic region is likely the most ecologically 

meaningful approach (Albert et al. 2011). To accurately estimate mean trait values, 

however, we urge thoughtful consideration of the variability of the focal traits and 

the sampling location(s) from which individuals are collected. We reveal that con-

sidering small communities with low species richness and/or abundances without 

incorporating intraspecific trait variability risks the loss of potentially large 

amounts of information. This is the case even when using traits that display very 

low intraspecific variability at the population level, and is particularly important in 

the growing number of mesocosm or mesoclosure studies that involve small natu-

rally assembled or experimental communities (Lahteenmaki et al.). If the aim of an 

investigation is to describe links between organisms and the ecological processes 

they govern this could have large implications for the accuracy of results. The im-

portance of functional diversity is increasingly recognised as a tool for predicting 

the consequences of human impacts on ecosystems (Dirzo et al. 2014; Mace et al. 

2014), and functional traits are the fundamental building blocks of this fast devel-

oping field. Research efforts should therefore be directed at increasing the accura-

cy with which we describe species characteristics in order to develop functional 

ecology into a more quantitative and predictive science (McGill et al. 2006). 
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2.8 SU P P L E M E N T A R Y  I N F O R M A T I O N 
 

 
Figure S2.1 |  Non-metric multidimensional scaling (MDS) ordinations of dung beetle communi-

ties in site 1 (open circles); site 2 (closed circles); and site 3 (crosses). Stress value = 0.23. 
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Figure S2.2 |  Associations between dung beetle functional trait values: bivariate plots (lower 

panels), distributions (diagonal), and Pearson’s ρ (upper panels). Biomass and pronotum volume 

were cube-rooted, and front leg area square-rooted to convert values to the same scale. Trait abbre-

viation definitions: bio.cube.root: cube-root dry biomass; pron.vol.cube.root: cube-root pronotum 

volume; sqrt.f.leg.area: square-root front leg area; front ll: front leg length; back ll: back leg length. 
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Appendix S2.1 – Analyses on front leg area and pronotum volume 

 

 
 

Figure S2.3 |  Extent of intraspecific variability in dung beetle pronotum volume and front leg ar-

ea for thirteen dung beetle species collected from the north-eastern Brazilian Amazon, state of Pa-

rá. Violin plots display (i) the density of data estimated by kernel method (grey areas); (ii) the medi-

an value (black horizontal lines in the centre of violins); and (iii) the interquartile range (between 

the top and bottom of the vertical black lines). Results are presented by species, ordered by their 

median trait values and the coefficients of variation (calculated as the SD/mean) are given for each 

species below the violin. 
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Variance partitioning 

 

Interspecific differences were responsible for 96.6% and 96.7% of variability for 

pronotum volume and front leg area respectively, whereas intraspecific variation 

accounted for just 2.6% in both traits.  

 

S p a t i a l  d i f f e r e n c e s  i n  t r a i t  v a l u e s   

Pronotum volume of Eurysternus caribaeus did not differ significantly between 

sites, but that of Dichotomius lucasi did (F2, 137 = 6.63, P  = 0.002; Fig. S2.4); con-

versely the front leg area of D. lucasi was unaffected by site, but the leg area of E. 

caribaeus differed significantly (F2, 226 = 3.507, P  = 0.033; Fig. S2.4). Post-hoc tests 

revealed that the pronotum volume of D. lucasi differed significantly between site 

1 and site 2 (P = 0.001) and between site 1 and site 3 (P = 0.003). The front leg area 

of E. caribaeus differed significantly between site 2 and site 3 (P = 0.03).    

 

 

 

 

 

 

 

 

Figure S2.4 |  Median pronotum volume (a) and front leg area (b) and interquartile range of two 

dung beetle species for which more than 15 individuals were collected from each sampling loca-

tion in Brazil, State of Pará; site 1 (white boxes); site 2 (light grey boxes) and site 3 (dark grey boxes).  
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Figure S2.5 |  Total population mean (solid horizontal black lines; calculated using all individuals 

from each species (n = 51 - 229) and mean standard error (grey ribbons; calculated using resampled 

data) of dung beetle pronotum volume and front leg area with species photographs. Photographs 

are scaled to each other; smallest species, Trichillum pauliani, length: 5.5mm; largest species, Di-
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chotomius boreus, length: 24mm length.  Data were resampled (with replacement) to create new 

datasets containing 3 to 100 individuals (n = 1000 datasets per sample size) and the mean standard 

error was calculated from the new datasets. Vertical dashed back lines on each panel show the 

number of individuals needed to create a mean standard error within 5% of the total population 

mean. Histograms in the bottom right corners display the frequency with which each sample size 

created a mean standard error below the 5% threshold. Results are presented by species, ordered by 

their median trait values.  

 

 

 

Figure S2.6 |  Associations between single trait functional diversity indices calculated without the 

inclusion of intraspecific trait variability (ITV): community weighted mean (CWM) pronotum vol-

ume (a), functional richness (FRic) of pronotum volume (b), CWM front leg area (c) and FRic front 

leg area (d). Linear model outputs are displayed: regression lines (solid back lines), standard errors 

(grey ribbons, calculated using the predict function in R) and the inverse of R2 values to describe 

the loss of information as a result of exclusion of ITV information. 
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Figure S2.7 |  Associations between dung beetle species richness and abundance: bivariate 

plot (lower panel), distributions (diagonal), and Pearson’s ρ (upper panels).   
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Figure S2.8 |  Associations between dung beetle abundance and the absolute residuals from 

models assessing the relationship between functional diversity indices calculated with and without 

inclusion of intraspecific trait information. Linear model outputs are displayed: regression lines 

(solid back lines), standard errors (grey ribbons, calculated using the predict function in R). 
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3.1 AB S T R A C T 
 

Biodiversity-ecosystem functioning (BEF) literature is dominated by investigations 

conducted in temperate grassland ecosystems under homogenous environmental 

conditions. Consequently, studies concerned with the functional importance of 

higher trophic levels, or with the role of environmental conditions in shaping BEF 

relationships, are comparatively uncommon. To address this, we assessed dung 

beetle diversity-functioning relationships in situ, in a field experiment in the Bra-

zilian Amazon. Dung beetles perform a number of ecological functions in habitats 

across the globe; in tropical forests they play a key role in the secondary dispersal 

of seeds. We therefore experimentally tested how the functional diversity of dung 

beetle communities affects seed dispersal and how BEF relationships varied with 

environmental context, by replicating the experiments under contrasting soil con-

ditions.  Relationships between dung beetle diversity and function were examined 

using diversity indices calculated using continuous morphological traits of the in-

dividuals involved in experiments, and functioning was measured as the disper-

sion of artificial seeds throughout the soil profile and the probability of burial. 

Ninety experimental plots were established across three distinct primary forest 

sites. We collected, identified and measured almost 2000 beetles, and sieved 

around eleven tonnes of soil to quantify the dispersion of 1800 seed mimics. There 

was a significant effect of dung beetle functional diversity on both seed dispersion 

and seed burial, although this depended on environmental context, with the 

strength or direction of responses differing across the contrasting soils. Regard-

less of soil type, functional richness, but not species richness, predicted seed dis-

persion. We therefore advocate the use of functional diversity indices over taxo-

nomic approaches in dung beetle focused BEF investigations. Furthermore, we 

highlight the difficulties in generalising BEF relationships, even considering a 

single function within the same ecosystem. 

 

Keywords: Functional diversity; animal-mediated functioning; context dependency; 

BEF; secondary seed dispersal; functional traits; dung beetles: soil; functional diversi-

ty indices 
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3.2 IN T R O D U C T I O N 
 

Species are disappearing from the planet at a faster rate than would be expected 

from the fossil record (MA 2005, Barnosky et al. 2011), and this trend is likely to 

continue throughout the 21st century (Pereira et al. 2010). These high extinction 

rates are largely a result of human activities (Steadman 1995; Dirzo & Raven 2003), 

but aside from moral considerations, a key issue in ecology is, does it matter? This 

question sparked the initial biodiversity-ecosystem functioning (BEF) studies (e.g. 

Naeem et al. 1994; Tilman & Downing 1994), and there is now a wealth of research 

demonstrating that biodiversity in producer systems matters for the maintenance 

of primary productivity,  as well as the cycling of nutrients and water in soil 

(Cardinale et al. 2011, 2012; Hooper et al. 2012). This has important implications 

because primary production and nutrient cycling underpin the provision of a 

number of goods and services to society (Cardinale et al. 2012). Disruption of 

them, therefore, has the potential to negatively impact upon human well-being 

(MA 2005).  

 

Despite progress made in our understanding of the role of diversity for ecosystem 

functioning (Hooper et al. 2005; Cardinale et al. 2012), three key areas remain un-

der-represented in the literature. First, there is a clear bias towards the role of di-

versity on resource capture (particularly biomass assimilation) in terrestrial plant 

communities (Balvanera et al. 2006; de Bello et al. 2010; Cardinale et al. 2011). Our 

knowledge of diversity effects in higher trophic levels is therefore patchy, being 

based on a limited number of investigations (e.g. Slade et al. 2007, Dangles et al. 

2011, 2012, Braga et al. 2013, Nichols et al. 2013b).  As higher trophic level organ-

isms are the agents of many ecosystem processes and services (e.g. Andresen and 

Feer 2005, Blouin et al. 2013), the functional importance of non-producers merits 

further research. Second, the majority of investigations to date have been conduct-

ed in temperate regions (e.g. de Bello et al. 2010, Cardinale et al. 2011; but see also 

Slade et al. 2007, Dangles et al. 2011, Gray et al. 2014), yet tropical forests are expe-

riencing globally high rates of species losses (Stork 2009). Given that diversity ef-

fects vary across habitats (Schmid et al. 2009), our understanding of the impact of 
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biodiversity loss in tropical forests may not be accurately inferred from BEF re-

search conducted primarily in temperate systems. Third, individual BEF studies 

have typically focussed on how species influence ecosystem processes in single 

sites with homogenous environmental conditions (Roscher et al. 2004; Clark et al. 

2012), but there is growing evidence that the size and direction of diversity effects 

depend on environmental context (Lensing & Wise 2006; Dangles et al. 2012; 

Steudel et al. 2012).  

 

Dung beetles (Coleoptera: Scarabaeinae) are a practical group of organisms for use 

in ecological investigations (Slade et al. 2007b; Gardner et al. 2008a). Through their 

movement and burial of mammalian dung for feeding and nesting purposes 

(Hanski & Cambefort 1991), they perform a number of  ecosystem functions 

(Nichols et al. 2008). In tropical forests, one of their key roles is the secondary dis-

persal of seeds by relocating them from their deposition site in mammalian dung 

to beneath the soil surface (Andresen & Feer 2005). This can result in the following 

benefits to the relocated seeds: (i) placement in a more suitable microclimate for 

emergence and establishment (Shepherd & Chapman 1998; Andresen & Levey 

2004); (ii) escape from predation and pathogen mediated mortality (Estrada & 

Coates-Estrada 1991; Shepherd & Chapman 1998; Feer 1999); and (iii) reduction in 

clumping and associated implications for seedling competition and density de-

pendant mortality (Andresen & Feer 2005; Lawson et al. 2012). By influencing seed-

ling survival in these ways, dung beetle activity could have far reaching impacts 

upon forest regeneration and community composition. 

 

Although dung beetles have previously been used as a model system for animal 

mediated BEF research (Slade et al. 2007b, 2011; Dangles et al. 2012; Braga et al. 

2013; Nichols et al. 2013b), we are not aware of any studies that have established 

direct links between an ecological process of interest and the community that was 

directly responsible. For example, previous field-based dung beetle investigations 

(e.g. Slade et al. 2007, Dangles et al. 2012) sampled communities associated with 

the location of the experiment, but not the actual individuals that were involved in 
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the manipulations and that therefore performed the function. Moreover, the func-

tional diversity indices calculated to express the BEF relationships have been ex-

clusively derived from categorical trait information based on nesting behaviour, 

diet, diurnal activity, and size (e.g. Slade et al. 2007, Barragán et al. 2011, Dangles et 

al. 2012). This is despite the fact that categorising species in this way could over-

look important morphological traits, and risks loss of information (Petchey & 

Gaston 2006; Villéger et al. 2008). 

 

The overarching aim of this study was to explore dung beetle mediated BEF rela-

tionships in a tropical forest under real, heterogeneous field conditions. Specifi-

cally we tested two hypotheses. First, in accordance with positive relationships re-

ported between diversity and functioning in previous investigations (e.g. Slade et 

al. 2007, Cardinale et al. 2011, Dangles et al. 2011), we hypothesised that dung bee-

tle diversity positively impacts secondary seed dispersal. We used seed mimics to 

measure both the likelihood that seeds were buried and, uniquely, the variety of 

depths and distances that seeds were moved. We advance realism by calculating 

our beetle functional diversity metrics using detailed morphological traits that 

were measured from the individuals responsible for seed burial, i.e. the communi-

ties that assembled within our experimental treatments. Second, we hypothesised 

that the strength and/or direction of BEF relationships depend on environmental 

context, in this case contrasting soil conditions in different primary forest sites. 

Previous dung beetle BEF studies have investigated the relationship between di-

versity and functioning either through exclusion of different functional guilds 

(Slade et al. 2007b; Dangles et al. 2012) or through correlative associations between 

proxy communities (sampled either temporally or spatially close to experimental 

plots) and an ecological process of interest (Slade et al. 2011; Braga et al. 2013; 

Nichols et al. 2013b). However, to our knowledge, this is the first study to assess 

dung beetle mediated diversity-functioning relationships using the realised, natu-

rally assembled communities that were directly responsible for functioning. 
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3.3 MA T E R I A L S  A N D  ME T H O D S 
 

3.3.1 Study site 

The study was carried out in the 17 000km2 landholding of Jari Florestal, located in 

the state of Pará in the north-eastern Brazilian Amazon (0o53S, 52o36W). This area 

consists of a matrix of Eucalyptus plantations, regenerating secondary forests, and 

large expanses of largely undisturbed primary rainforest. Within this landscape, 

experiments were established in three terra firme primary forests sites with differ-

ing soil conditions: Clay soil site: clay textured Oxisol (mean clay content ± SE: 67.3 

± 1.5%, silt: 14.4 ± 1%, sand: 14.1 ± 1.1%), with aluminium sesquioxides; Sand soil 

site 1: sand textured Oxisol (mean clay content ± SE: 5.8 ± 0.2%, silt: 1.5 ± 0.2% sand: 

86.3 ± 1%) with aluminium sesquioxides; Sand soil site 2: medium textured Oxisol 

(mean clay content ± SE: 8.2 ± 0.7%, silt: 2.8 ± 0.2%, sand: 77.8 ± 1.9%) with alumini-

um sesquioxides. The sites are all within 100km of one another (distance between 

Clay and Sand 1: 90km; Clay and Sand 2: 38km; Sand 1 and Sand 2: 75km), classi-

fied as dense lowland tropical rain forest and subject to the same regional climatic 

conditions.  

 

3.3.2 Experimental design 

During July and August 2012 we established a grid of thirty experimental plots 

separated by 100m at each experimental site (n = 90 in total). Within this grid, plots 

were created by burying nylon netting 10cm into the forest floor in a 50cm x 50cm 

square (Fig. 3.1, Fig. S3.1). Each plot contained a non-baited pitfall trap (13.5cm 

width, 9cm depth), buried flush with the ground surface and filled with salt and 

water.  Experimental plots were baited with a 100g mixture of 50:50 human and pig 

dung containing 20 plastic seed mimics (hereafter referred to as seeds) of 4 differ-

ent sizes: 2 large (20mm diameter, 4.12g), 6 medium (10mm diameter, 0.50g), 6 

small (5mm diameter, 0.09g), and 6 very small (2mm diameter, 0.06g).  The dung 

and seeds were placed on the floor in the centre of the plots. We used artificial, ra-

ther than real seeds, because they were easier to find in the soil during destructive 

sampling. Threads we not attached to the seeds to facilitate their location (e.g. 
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Andresen and Levey 2004, Santos-Heredia et al. 2010) because it appeared to alter 

beetle behaviour in pre-experimental trails. Previous investigations indicate that 

there are no differences in removal rate or burial depths between seed mimics and 

real seeds (Koike et al. 2012). The quantity of dung and number, size, and “species 

richness” of seeds were based on mean values from howler monkey (Alouatta se-

niculus) defecations reported by Feer (1999) and Andresen (2002).   

 

To test our hypothesis that dung beetle diversity positively influences seed disper-

sal we attempted to manipulate dung beetle diversity across the experimental 

plots whilst retaining naturally assembled mixtures of species. To achieve this, we 

randomly assigned plots to three different dung baiting procedures: at each site, 

plots were either baited and left open for beetle colonisation for 12 hours during 

the day (n = 10), 12 hours during the night (n = 10), or 24 hours (baited either dur-

ing the day, n = 5; or night, n = 5). Differences in plot opening times are henceforth 

referred to as community manipulation, and the effect of these treatments on the 

dung beetle community attributes can been seen in Fig. S3.2 and Fig. S3.3. We took 

this approach because of the known difficulties in artificially manipulating biolog-

ical communities to create realistic and meaningful assemblages whilst disentan-

gling species effects from functional diversity effects (Huston 1997; Naeem & 

Wright 2003). Baiting involved placing dung pats containing seeds on the ground 

in the centre of each plot, and protected from rain by a plastic cover. After 12 or 24 

hours, the experimental plots were closed, using pegs to hold the netting together 

in a way that ensured the beetles could not leave and prevented further colonisa-

tion by beetles that had not buried the dung (Fig. S3.1). At the same time, the in-

ternal, non-baited pitfall trap was opened to capture the beetle community that 

had carried out the function following emergence from the soil. Plots were opened 

and closed between 06:30 and 08:30 or 18:00 and 20:30. 
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F IGURE 3.1 |  Experimental plots were created by the burial of nylon netting 10cm into the soil in a 

50 x 50cm square (grey vertical lines) and baited with dung and seeds (star above the centre of plot). 

For plotting purposes seed depth and horizontal movement data were pooled (n = 1800) for all plots 

(n = 90) and each seed was assigned a random horizontal movement value within the section from 

which it was recovered. Seed size is represented with different circle sizes. Seeds that were not 

found during destructive sampling were given a size and site specific burial depth, which were the 

median values of seeds found below 10cm in section three of experimental plots (Clay site, very 

small seeds: 19cm, small seeds: 13cm, medium seeds: 15.25cm; Sand site 1, very small seeds: 21cm, 

small seeds: 19cm, medium seeds: 17.5cm; Sand site 2, very small seeds: 21cm, small seeds: 

22.75cm, medium seeds: 18cm). 

After closure, plots in the Clay and Sand 2 sites were left for seven days before they 

were destructively sampled. Because logging operations in Sand 1 restricted access 

to the area, destructive sampling took place two weeks after the establishment of 

the experiments at this site. We divided the forest floor within the plots into three 

sections: section one formed a central 5cm x 5cm square; section two was the sur-

rounding 25cm x 25cm square (minus section one), and section three the 50cm x 

50cm surrounding section one and section two (Fig. 3.1). Dung that remained on 

the soil surface was washed to locate seeds within. Following this, seeds visible on 

the leaf litter surface were removed. Finally, leaf litter, fine roots and soil were re-

moved in approximately 1cm layers and sieved using a sieve with 1mm2 metal 
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mesh to a soil depth 50cm. In total, around eleven tonnes of soil was screened in 

search of 1800 seeds. When a seed was located, the section, and depth at which it 

was found (if it was in the soil) was recorded. Any beetles recovered from the soil or 

the internal pitfall traps were assumed to have been involved in the dung and seed 

burying process. This was justified by the length of time that experimental plots 

were open for colonisation (either 12 or 24 hours), during which time casual visi-

tors that were only feeding on the dung (and therefore not contributing to the 

function of interest, seed dispersal) were expected to feed and leave. This was sup-

ported by observational studies of beetle behaviour during experimental design 

and by reports of reduced visitation time at dung pats by beetles when they are 

feeding rather than nesting (Halffter & Edmonds 1982). All individuals were then 

oven dried and stored for laboratory processing.  

 

3.3.3 Beetle traits 

Beetles were identified to species level using a reference collection held at the Uni-

versidade Federal de Lavras (UFLA) in Brazil and region-specific classification keys 

developed by F. Z. Vaz-de-Mello and T. A. Gardner (unpublished). We measured 

pronotum area, front tibia and femur area, and front and back leg length (Fig. 3.2) 

using a Leica M250 microscope and Life Measurement software; with digital calli-

pers (0.01mm resolution) we measured pronotum height; and dry biomass was de-

termined using a Shimatzu AY220 balance with precision to 0.0001g. All traits were 

measured from every individual captured in the study (n = 1962). Front tibia and 

femur area were summed to provide a total front leg area, and pronotum height 

and area were multiplied to estimate pronotum volume. As these traits were co-

linear with biomass and correlated traits should not be used in the calculation of 

functional diversity indices (Naeem & Wright 2003; Cadotte et al. 2011), we divided 

front leg area and pronotum volume by the dry biomass of the same individual (bi-

omass adjusted traits), and back leg length was divided by front leg length (back: 

front leg length). Biomass, biomass adjusted front leg area, biomass adjusted pro-

notum volume, and back: front leg length were then used in the calculation of the 

multi-trait diversity metrics described below. Median (rather than mean) traits 
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(calculated using values from every individual in a species, n = 1 – 239) were used 

because they did not always display a normal distribution (see Fig. S3.4 for species 

biomass distributions). Because these morphological traits may not fully capture 

all functionally relevant behavioural information (Inward et al. 2011) we also in-

cluded three categorical traits: nesting strategy (roller, tunneller, or dweller, for de-

scription see Hanski and Cambefort 1991), activity period (nocturnal, diurnal, cre-

puscular, or generalist), and diet (coprophagous or generalist). Categorical trait 

information was gathered from Nichols et al. (2013a) and Beiroz (2013). Where in-

formation on a species was unavailable, we assumed behavioural traits to be 

common between the species belonging to the same genus. This was necessary for 

18 species for diet and 19 for activity period (Table S3.2 for species list, abundances 

and median trait values). 

 

3.3.4 Calculation of diversity metrics 

We used seven traits (biomass, biomass adjusted front leg area, biomass adjusted 

pronotum volume, back:front leg length, nesting strategy, diet and diurnal activity) 

to calculate four diversity metrics using the “FD” package (Laliberté, Shipley & 

Laliberté 2012) for R (R Core Team 2013). Each metric describes a different func-

tional aspect of biological communities: (1) functional richness (FRic) is the range 

of traits in a community quantified by the volume of functional trait space occu-

pied; (2) functional evenness (FEve) is the regularity in spacing and abundances of 

species in trait space; (3) functional divergence (FDiv) is the distribution of abun-

dances in trait space relative to an abundance weighted centroid (Villéger et al. 

2008); and (4) functional dispersion (FDis) is the distribution of abundances in 

trait space relative to an abundance weighted centroid, and the volume of space 

occupied (Laliberté and Legendre 2010). For calculation of each of the indices, 

traits were given equal weighting and species were weighted by their relative 

abundance. Species richness and total biomass were also calculated for each 

community.  
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F IGURE 3.2 |  Dung beetle trait measurements collected using Leica M250 microscope and Life 

Measurement software. Dorsal measurements (top panel): pronotum area and elytra area; ventral 

measurements (bottom panel): front and back leg length, femur area, tibia area. The scale bar rep-

resents 2mm, the species shown is Cathidium deyrollei. 
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3.3.5 Seed dispersal 

We quantified seed dispersal in two ways. First, we used a binomial metric of bur-

ied or not to assess the probability of burial. Second, we created a novel metric of 

seed dispersion that provides an indication of both the mean horizontal and verti-

cal distance that seeds were moved from a central point and quantifies the volume 

of soil occupied by all seeds. This was carried out using the FD package in R to cal-

culate the “Functional Dispersion” (Laliberté & Legendre 2010) of seeds in the soil. 

We included seed burial depth and horizontal movement (section 1, 2, 3, or 4) as 

“traits”, and treated each plot as a separate community. Each seed represented a 

separate “species” of equal abundance.  

 

Of the 1800 seeds used in this study, 284 (15.78%) were not recovered from the soil 

(2.2% were lost from the clay site; 5.7% from Sand 1; and 7.9% from Sand 2;  Table 

S3.3). We are confident that lost seeds were unrecovered because dung beetles 

moved them beyond the 50cm x 50cm
 
sampling area below the 10cm deep plot 

walls (Fig. 3.1) and not because they were buried deeper than 50cm (just six seeds, 

0.38% of the total, were found below a depth of 40cm), removed by seed predators 

(Appendix 3.1 for details of additional experiments to test this possibility), or re-

mained undetected during soil screening (1mm
2
 sieve mesh size was smaller than 

the diameter of the smallest seed 2mm). To incorporate these missing data points 

into analyses, each unrecovered seed was given a horizontal movement value of 4 

(the section outside the outer edges of the plots) and a size and site specific burial 

depth, which was the median depth of seeds found below 10cm in section 3, calcu-

lated separately for each seed size class within each site. Seed dispersion with and 

without imputed values were highly correlated (Pearson’s ρ = 0.84) and inclusion of 

plausible missing values was considered better than the removal of them, which 

could reduce the seed dispersion values of the plots with the most variability. See 

Appendix 3.1 for further justification for this approach, Fig. S3.5 for associations 

between seed dispersion with and without imputed seeds and Table S3.4 and Fig. 

S3.6 for the influence of imputation on model results. 
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3.3.6 Statistical analyses 

Statistical analyses were carried using R version 2.14.1 (R Core Team 2013). We 

used generalised least squares models (gls) in the “nlme” package (Pinheiro et al. 

2013) to quantify the effect of community manipulation (opening period and 

opening time), site (Clay, Sand 1, Sand 2) and the two-way interaction between the 

two factors on the dung beetle community attributes (species richness, functional 

diversity indices and biomass). We also used gls models to examine how the dung 

beetle community attributes, site and the two-way interaction between each of the 

community attributes and site affected seed dispersion.  For gls models, appropri-

ate variance structures were applied for site and community attribute (using the 

varIdent function as described by Zuur et al., 2009) to account for heteroscedastic 

variance in model residuals. Species richness and total beetle dry biomass were 

log10-transformed to ensure models satisfied assumptions of normality.  

 

To explore how dung beetle communities influenced probability of seed burial, we 

used generalised linear mixed effects models (glmm) in the “lme4” package 

(Bates, Maechler & Bolker 2012). Seeds were assigned a 0 if they were buried and 1 

if they remained on the soil surface; as such a binomial error distribution was 

specified with a logit link function. Bead size was nested within plot as random 

factors.  Plots from which three or fewer beetles were recovered were removed (n = 

4) from models with functional diversity as a predictor because no functional di-

versity index could be calculated. From models exploring seed dispersion and 

probability of burial we also removed plots in which no seeds were moved either 

horizontally or vertically (n = 3).  

 

We used a top-down approach to arrive at the best descriptive model for each of 

the response variables (Zuur et al. 2009). Models were created including all fixed 

effects and interactions, which were then sequentially removed, until a reduced 

minimum model was attained, containing only significant terms with P < 0.05. 

Chi-squared likelihood ratio tests (LRT) were used for the gls and glmm models to 
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assess the loss of explanatory power following the removal of an interaction or a 

single term predictor. 

 

3.4 RE S U L T S 

 

3.4.1 Beetle communities 

A total of 1962 individuals of 61 dung beetle species and morphospecies were re-

covered from 90 experimental plots within the three sites (Table S3.2 for species 

list, medium trait values, and abundances). Eighty-nine per cent of beetles were 

collected from internal pitfalls within the plots, the rest were found in the soil dur-

ing destructive sampling. The beetle community attributes (total biomass, species 

richness, FRic, FEve, FDiv, FDis) across the experimental plots were uncorrelated, 

except for species richness and FRic (Pearson’s ρ = 0.79, n= 90, Fig. S3.7); however, 

because species richness is the most commonly used diversity index, we retained it 

in the analyses. Species richness was highest in Sand 1, FEve was lowest in Sand 1 

and biomass was lowest in the Clay site (Table S3.1, Fig. S3.2 and Fig. S3.3).  

 

The beetle community manipulation helped enhance the variation in community 

attributes across plots. Opening period (whether plots were opened during the day 

or night) significantly affected species richness, FDiv and FDis: plots that were 

opened during the day displayed higher values in these diversity indices than those 

open during the night. There was a significant interaction between opening period 

and site on FRic: it was higher in plots opened during the day in Clay 1 and Sand 2, 

but lower in plots opened during the day in Sand 1 (Table S3.1, Fig. S3.2). Opening 

time (whether the plots were open for 12 or 24 hours) significantly affected species 

richness, FRic and biomass: plots that were open for 24 hours had higher values 

than those that were open for 12 hours. FDis was involved in a weakly significant 

interaction with site: in Clay and Sand 2 FDis is higher in plots opened for 24 hours 

whereas in Sand 1 opening time had no effect on FDis (Table S3.1, Fig. S3.3).  
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3.4.2 Dung beetle diversity and seed dispersal  

FDiv and total beetle biomass had a consistent positive effect on the likelihood of 

seed burial across all sites (Table 3.1; Fig. 3.3, (d) and (f)), whereas species richness 

and FRic had a significant positive effect on burial in the clay soil site only. FEve 

and FDis had no effect on burial probability. The only dung beetle community at-

tribute that impacted upon seed dispersion was FRic, which, in accordance with its 

effect on burial (Fig. 3.3, (b)), had a positive effect, but only in the clay soil site (Ta-

ble 3.1; Fig. 3.4).  

T ABLE 3.1  |  Model outputs to assess the influence of dung beetle community, site and the interac-

tion between beetle community and site on the probability of seed burial (determined by general-

ised linear mixed effects models; top section) and seed dispersion (determined by generalised least 

squares models; bottom section). Significant predictors are highlighted in bold. 

  Effect terms 

Model tested 
Beetle community   Site   Beetle community × site 

LRT df P   LRT df P   LRT df P 

glmm (seed burial ~ 

effect terms) 

                      

                      

Species richness 0.37 1 0.5450   39.40 2 <0.0001   6.67 2 0.0360 

FRic 0.00 1 0.9600   39.40 2 <0.0001   11.17 2 0.0040 

FEve 0.76 1 0.3831   39.40 2 <0.0001   4.12 2 0.1280 

FDiv 3.98 1 0.0460   39.40 2 <0.0001   1.52 2 0.4670 

FDis 0.11 1 0.7444   39.40 2 <0.0001   2.94 2 0.2301 

Total  biomass 4.60 1 0.0320   39.40 2 <0.0001   1.04 2 0.5934 

gls (seed dispersion 

~ effect terms) 

                      

                      

Species richness 0.64 1 0.4228   21.68 2 <0.0001   1.28 2 0.5264 

FRic 0.11 1 0.7389   21.68 2 <0.0001   9.38 2 0.0086 

FEve 0.00 1 0.9686   21.68 2 <0.0001   4.42 2 0.1100 

FDiv 3.83 1 0.0505   21.68 2 <0.0001   3.15 2 0.2066 

DFis 0.01 1 0.9348   21.68 2 <0.0001   1.66 2 0.4361 

Total biomass 2.65 1 0.1038   21.68 2 <0.0001   1.03 2 0.5963 
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Figure 3.3 |  The effect of six different dung beetle community attributes on the probability of 

seed burial in Clay (left panel), Sand 1 (middle panel) and Sand 2 (right panel) forest sites. Models 

were generalised linear mixed effect models with binomial error distributions. Predicted values 

(solid black lines) ± SE (ribbons, calculated using the predict function in R) are displyed for all 

models. In cases where dung beetle community attribute did not impact upon seed burial 

(functional evenness and functional disperion) but site did the percentage of seeds bured in each 
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site is!marked!on!plots! (horizontal!dashed! line)! in!addition! to! the!direction!of! response.! Individual!
seeds!(small!black!points)!are!displayed!on!plots!as!either!buried!(1)!or!not!buried!(0).!
 

3.4.3 Environmental context: soil  conditions and biodiversity-
ecosystem functioning relationships 

In cases where all other terms and interactions were removed from models during 

stepwise deletion, site always remained as the only significant fixed term influenc-

ing seed burial and had a consistent significant effect in all other models (Table 

3.1). The probability of seed burial was almost twice as high in the sandy soil sites 

(61.4% and 62% in Sand 1 and Sand 2 respectively) than in the clay soil site (33%) 

(Fig. 3.3, (c) and (d)). Moreover, the highest probability of burial in the clay soil (≈ 

40%, at FRic = 0.42) was lower, or roughly equal to, the lowest probability of burial 

in both of the sandy soils sites (Fig. 3.3, (b)). Site also significantly affected the 

magnitude and variability in seed dispersion values; the median was 13% and 17% 

lower in the clay soil site than in Sand 1 and Sand 2 respectively (Table 3.1, Fig. 

S3.8), while the interquartile range in the clay soil site was 63% and 70.4% higher 

than in Sand 1 and Sand 2 (Fig. S3.8).   

 

The direction of the influence of species richness and FRic on probability of seed 

burial differed between sites as demonstrated by a weakly significant species rich-

ness × site and a stronger FRic × site interaction (Table 3.1; Fig. 3.3, (a) and (b)). We 

found a similar effect of FRic on seed dispersion in that it was involved in a signifi-

cant interaction with site (Table 3.1); in the clay soil FRic increased the dispersion 

of seeds, whereas in sandy soils there was no effect (Fig. 3.4). In contrast, FDiv had 

a consistent positive effect on the likelihood of burial across all soils (Table 3.1), 

but the strength of these relationships differed. The strongest effects were seen in 

the clay soil site where seeds were roughly 25% more likely to be buried at the 

highest compared the lowest FDiv values, whereas the probability of burial in-

creased by only around 10% and a little under 20% at the highest compared to the 

lowest FDiv values in Sand 1 and Sand 2 respectively (Fig 3, (d)).  
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Figure 3.4  |  Model predicted values (solid black lines) and SE (ribbons, calculated using the 

predict function in R) for the significant interaction between dung beetle functional richness and 

site; Clay (left panel), Sand 1 (middle panel) and Sand 2 (right panel) on the dispersion of seeds in 

the soil after dung beetle burial. 

 

3.5 DI S C U S S I O N 

 

By using a functional trait-based approach, our study provides new insights into 

dung beetle mediated BEF relationships. In particular, we reveal a significant posi-

tive effect of dung beetle functional diversity on the secondary dispersal of seeds in 

soil, although we also demonstrate how the strength and direction of relationships 

can depend on soil type and hence environmental context. Our results show that, 

under certain soil conditions, a reduction in diversity in this key group of organ-

isms can result in both a decreased likelihood of seed burial in soil and a reduc-

tion in the variety of depths and distances that seeds are moved from a central 

point.  

 

3.5.1 Context dependency in biodiversity-ecosystem functioning      

relationships 

Context dependency in BEF relationships is not a new concept (Lensing & Wise 

2006; Dangles et al. 2012; Steudel et al. 2012), but has been generally overlooked in 

both producer and animal focussed investigations. Our results demonstrate that 

the functional consequences of increasing dung beetle species richness and func-

tional richness (FRic) on the probability of seed burial varied in contrasting soil 

types. The effects were negligible or negative in sandy soils, but positive in clay soil, 

and, although functional divergence (FDiv) and total biomass positively influenced 
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burial across all sites, the effects were stronger in clay soil. This implies an enhanc-

ing effect of diversity on functioning in the clay soil site, but suggests functional 

redundancy (Harrington et al. 2010) in sandy soils, raising the possibility that dung 

beetle diversity is of most importance for ecosystem functioning where processes 

are harder to deliver.  

 

Properties of sandy soils, such as increased pore space and reduced cohesion 

(Marshall, Holmes & Rose 1996), are likely responsible for the generally higher 

proportion of seeds buried in the sand sites compared with the clay site. These 

qualities could create favourable, less energetically demanding digging conditions 

compared with clay soils, and this could lead to the generally higher proportion of 

seeds buried in the sandy soil sites; a finding in keeping with previous investiga-

tions that report reduced dung removal by beetles in clay versus sandy soils (Davis, 

Doube & McLennan 1988; Davis 1996a). Furthermore, given that clay soils have 

been found to increase in hardness with depth (Davis 1996b), it is possible that 

digging extensively in these soils could be restricted to certain species. The re-

duced importance of FRic for seed dispersion in sandy soils could, therefore, be 

because a larger number of species were able to utilise a greater variety of nesting 

depths within this soil type, whereas fewer species could access a full range of 

depths in the heavier clay soils. Thus a community with low FRic could fully exploit 

the soil profile in the sandy soil sites, but only a diverse community could achieve 

the same levels of functioning in clay soils. These results, considering processes 

mediated by the same focal taxa in the same ecosystem, demonstrate the difficul-

ties in generalising BEF relationships across systems and taxon.  

 

3.5.1 Potential implications for forest regeneration 

The positive association between FRic and the variety of seed placements in the 

soil could affect plant regeneration in a number of ways. Previous investigations 

have demonstrated that burial by dung beetles is a mechanism for seed predator 

escape (e.g. Estrada and Coates-Estrada 1991, Feer 1999), but can also lead to mor-

tality through placement of individual seeds within the soil in unsuitable locations 
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for germination and establishment (Estrada & Coates-Estrada 1991; Shepherd & 

Chapman 1998; Andresen 1999; Andresen & Levey 2004; Koike et al. 2012). This 

suggests that for each species there exists an optimal and unique microsite at 

which the probability of predation is significantly decreased, whilst germination 

and establishment is maximised. Decreasing beetle diversity could, therefore, de-

crease the probability that any particular seed is relocated to its optimal species-

specific site for predator avoidance, germination, establishment, and survival. Giv-

en that dung beetle taxonomic and functional diversity is known to be sensitive to 

land use change in the tropics (Barlow et al. 2007a; Nichols et al. 2007; Gardner et 

al. 2008c; Barragán et al. 2011; Beiroz 2013; Edwards et al. 2013; Gray et al. 2014), 

our results suggest that such changes in community composition could translate 

into changes in forest regeneration. However, we acknowledge the limitations of 

artificial seeds, and additional work is needed that follows real seeds from disper-

sal to germination and establishment. Although this would undoubtedly be chal-

lenging, it would increase our understanding of the multi-trophic links between 

secondary dispersers and plant communities in tropical forests.  

 

3.5.2 Which community attributes link to ecological function? 

Of the indices considered in this investigation, FRic alone significantly impacted 

on the dispersion of seeds in the soil. This unique association between FRic and 

the variety of depths and distances that seeds were moved from a central point is 

likely because FRic represents a multivariate range, describing the volume of mul-

tidimensional trait space filled by species. In contrast to the other functional di-

versity metrics explored here, it is unaffected by species abundance (for a full 

description of indices seeVilléger et al. 2008 and Laliberté and Legendre 2010). For 

a dung beetle community to bury seeds within the soil, resulting in a large range in 

depths and distances in final seed placements, it seems reasonable to hypothesise 

that individual beetles within that community should display a large range of 

morphological characteristics. As long as this community displays a wide variety of 

different traits, the abundance of each species could be comparatively less influen-

tial in this process. This could explain why the other indices such as FEve and FDiv 
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did not associate with seed dispersion; they place emphasis on the distribution of 

abundances within a species assemblage, at the expense of describing the range in 

values. For the process of distributing seeds widely throughout the soil profile, our 

results indicate that a large range in functional traits is more important than the 

distribution of the abundances of traits within the community.  

 

The incorporation of abundance information in dung beetle community attributes 

may also explain some of the relationships with seed burial. The relative numbers 

of functionally similar species exploiting the same resource within a biological 

community could describe levels of competition experienced by individuals within 

the assemblage, which in turn is known to alter seed burial behaviour. When com-

petition is high, seeds are more frequently buried by dung beetles in brood balls, 

despite the fact that they represent contaminants by occupying space that would 

otherwise be filled with food for the developing larvae (Nichols et al. 2008). Howev-

er, in less competitive environments, beetles have been observed to ‘clean’ the 

dung of seeds prior to burial (Andresen & Feer 2005). This could shed light on the 

tendency for FEve to negatively associate (although not significantly) with seed 

burial and dispersion. A community displaying low FEve is one in which species 

traits are unevenly distributed, which could increase competitive interactions, re-

sulting in high levels of seed burial. The converse would be true when FEve is high.  

The discrepancy between the ability of species richness and FRic to predict seed 

dispersion is also noteworthy given that the two measures of diversity are closely 

correlated (Pearson’s ρ = 0.79; Fig. S3.7) and inherently linked (Cadotte et al. 2011). 

Making inferences about ecosystem functioning using a taxonomic approach is, 

however, problematic because although a speciose community is more likely to 

display a wider variety of trait values than a species poor community, not every spe-

cies in that group is necessarily functionally singular. This can result in a non-

linear relationship between functional and taxonomic measures meaning that a 

reduction in taxonomic diversity will not always equate to equal reductions in 

functional diversity (Naeem & Wright 2003). Our results therefore present im-

portant validation for functional approaches (c.f. Clark et al. 2012), which is im-
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portant because the collection of detailed traits is, in most cases, more costly and 

time consuming than calculating species richness.   

 

3.5.3 Conclusion  

Our field-based investigation into the effects of biodiversity on animal-mediated 

ecosystem functioning has taken a unique approach to mechanistically link dung 

beetle communities to secondary seed dispersal, which is an important ecological 

process in tropical forests. In doing so, we have demonstrated that reductions in 

dung beetle functional diversity could reduce both the likelihood that seeds are 

buried and the variety of depths and distances that they are moved in the soil. We 

also show the importance of environmental context in modulating observed pat-

terns, given that effects of dung beetle functional richness and species richness 

differed between clay and sandy soils, highlighting the need for further research to 

provide a more precise description of the mechanisms driving seed burial in dif-

ferent environmental contexts.  

 

An emerging area of interest in BEF research is focussed on understanding how 

diversity at one trophic level impacts upon diversity or functioning at another 

(Lavorel et al. 2013, Moretti et al. 2013). Our study provides some interesting in-

sights into how invertebrate functional diversity could impact upon vegetation re-

generation via secondary seed dispersal in a species rich tropical system. In partic-

ular, the use of detailed continuous trait values measured directly from the 

naturally assembling community responsible for the process of interest provides a 

novel platform for further experimental work to examine linkages between inver-

tebrate communities and the functions they perform. 

 

The idiosyncratic patterns reported here between dung beetle mediated seed dis-

persal, soil type and diversity metric demonstrate the need for continued research 

into the effects of biodiversity on ecosystem processes in varying environmental 

conditions, performed by a greater diversity of organisms. These divergent associ-

ations are of particular interest because, at present, a precise description of the 
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mechanisms driving these patterns eludes us. Our results therefore highlight im-

portant avenues for future investigation, because the concurrent examination of 

relationships between contrasting diversity metrics, environmental context and 

ecological processes allows precise hypothesis testing centred around which as-

pects of community composition matter for functioning, under different abiotic 

conditions. 
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Figure S3.1 |  Examples of experimental plots created by burying nylon letting 10cm into the soil 

in a 50cm x 50cm square on the forest floor. Photo a) shows a plot open for colonisation by dung 

beetles, b) is an example of a plot closed using pegs following dung beetle colonisation; no beetle 

can enter or leave. Photographs taken by H.M. Griffiths. 
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Figure S3.2 |  The effect of opening period (day: black bars, or night: grey bars) and site (Clay, 

Sand 1 and Sand 2) on dung beetle community attributes ± SE (SD/√n) 

 

 

Figure S3.3 |  The effect of opening time (12 hours: black bars, or 24 hours: grey bars) and site 

(Clay, Sand 1 and Sand 2) on dung beetle community attributes ± SE (SD/√n) 
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Figure S3.4 |  Non-normal distributions in dung beetle dry biomass.  Log10 median dry biomass 

and interquartile range of 44 dung beetle species collected from the Brazilian Amazon, Pará. Only 

species for which more than one individual was collected are displayed. 
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Table S3.3 |  Number of seeds unrecovered from in each site and size class with values imputed to 

calculate seed dispersion 

Site Bead 
Number 
below 
10cm 

Number 
lost 

Median depth of 
seeds below 10cm 

Max depth in 
section 3 

Imputed 
value 

Clay Med 1 7 NA 20.5 15.25 

Clay Small 7 7 13 28 13 

Clay Very small 2 25 NA 28 19 

Sand 1 Med 25 17 17.5 37 17.5 

Sand 1 Small 27 32 19 35.5 19 

Sand 1 Very small 11 53 21 44 21 

Sand 2 Med 34 5 18 30 18 

Sand 2 Small 44 57 22.75 46 22.75 

Sand 2 Very small 32 81 21 41 21 
 

 

Appendix S3.1. U nrecovered seed information and calculation of seed 
dispersion 

The assumption that seeds were buried outside of the 50cm x 50xcm sampling ar-

ea was based on observed burial depths of seeds within the plots. As only 6 seeds 

(0.38%) were found deeper than 40cm it is unlikely that a significant proportion of 

the unrecovered seeds were within the sampling area but below 50cm depth. Fur-

thermore, seeds were generally buried progressively deeper, the further from the 

central dung pat they travelled (main text, Fig. 3.1). Seeds in the section three, 

therefore, were those most likely to be buried deeper than the 10cm limits of the 

plot edges.  

 

Appendix S3.2 Trials to assess seed removal by seed predators 

Following completion of destructive sampling at site Sand 2, a trial was estab-

lished to assess the possibility that unrecovered seeds were not found because of 

removal by seed predators (birds, other vertebrates, or invertebrates). Ten plastic 

pots containing 100g of dung and twenty beads from the four size classes were 

placed on the forest floor and left for 24 hours (the maximum time that experi-
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mental plots remained open during the study). Dung beetles could not the bury 

dung and beads because the base of the pots prevented excavation. After 24 hours 

dung was washed to locate the seeds. All 200 seeds from the ten pots were recov-

ered, indicating that seed predators did not remove beads in experimental plots. 

 

 
Figure S3.5.  |  Associations between seed dispersion values calculated with and without imputed 

values for missing seeds. Bivariate plots (bottom left panel), distributions (top left and bottom right 

panels), and Pearson’s ρ (top right panel).  
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Figure S3.6 |  The effect of FEve on seed dispersion in the three experimental sites when seed dis-

persion is calculated with (top panels) and without (bottom panels) imputation of missing seed 

value with standard errors (ribbons, calculated using the predict function in R) 

 

0.6

0.8

1.0

1.2

0.8 0.9
 

S
ee

d 
di

sp
er

sa
l w

ith
ou

t i
m

pu
te

d 
va

lu
es

 ±
 S

E

1.0

1.1

1.2

1.3

0.6 0.7 0.8
Dung beetle functional evenness

 

1.1

1.2

1.3

0.5 0.6 0.7 0.8 0.9
Dung beetle functional evenness

 

Dung beetle functional richness 

S
ee

d 
di

sp
er

si
on

 w
ith

ou
t i

m
pu

te
d 

va
lu

es
 

0.6

0.8

1.0

1.2

0.8 0.9
Dung beetle functional evenness

Se
ed

 d
is

pe
rs

al
 w

ith
 im

pu
te

d 
va

lu
es

 ±
 S

E

1.0

1.1

1.2

1.3

0.6 0.7 0.8
Dung beetle functional evenness

Se
ed

 d
is

pe
rs

al
 w

ith
 im

pu
te

d 
va

lu
es

0.9

1.0

1.1

1.2

1.3

0.5 0.6 0.7 0.8 0.9
Dung beetle functional evenness

Se
ed

 d
is

pe
rs

al
 w

ith
 im

pu
te

d 
va

lu
es

Clay Sand 1 Sand 1 
S

ee
d 

di
sp

er
si

on
 w

ith
 im

pu
te

d 
va

lu
es

 



Chapter (3 (– (Supplementary ( in format ion (

(

( 114(

 

 

Figure S3.7 |  Associations between dung beetle community attributes: bivariate plots (lower pan-

els), distributions (diagonal), and Pearson’s ρ (upper panels).  
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Figure S3.8 |  Seed dispersion and interquartile range of seeds buried by dung beetles in the three 

sites in Brazil, Pará; Clay, Sand 1, and Sand 2. Outliers are displayed (open circles) 
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4.1 AB S T R A C T  
 

There is a growing consensus that anthropogenic activities are causing widespread 

species extinctions across the globe, raising concerns about the ecological conse-

quences of changes in animal community composition. Yet we have a very limited 

understanding about how species loss in one trophic level could impact on the 

ecological functions governed by organisms in other trophic levels. Here we ex-

plore the complexity of multitrophic species interactions by analysing data from 

field experiments in the Brazilian Amazon that examined the effect of dung beetle 

communities on seed burial and the emergence and survival of Myrciaria dubia 

seeds. We found that biomass positively influenced the probability of seed burial 

of all size classes, but had a stronger effect on the burial of larger seeds. This sug-

gests that large seeds may be differentially vulnerable to the loss of their secondary 

dispersers through anthropogenic driven reductions in large bodied dung beetles. 

However, dung beetle diversity and biomass negatively influenced the emergence 

success of M. dubia, suggesting that secondary seed dispersal has the potential to 

inhibit rather than promote the emergence of some species. These findings con-

trast with the results from seedling survival experiments where dung beetle com-

munity attributes positively affected the survival of emerged seedlings. This study 

therefore advances our understanding of the idiosyncratic nature of plant re-

sponses to changes in the community composition of their secondary dispersers 

in tropical forests. Furthermore, our findings demonstrate for the first time that 

small-scale soil modification by dung beetles could influence seedling recruit-

ment. We thus present a novel way in which dung beetle communities could influ-

ence tropical forest regeneration and ultimately influence future vegetation com-

position. 

 

Key words: defaunation; plant recruitment; biodiversity-ecosystem functioning; 

soil environment; animal-mediated ecosystem processes 
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4.2 IN T R O D U C T I O N 
 

Human activities over the past 500 years have caused the known loss of 322 verte-

brate species and many more animals are threatened with extinction (Dirzo et al. 

2014). The complete loss of species or populations of wildlife is of concern for the 

maintenance of ecosystem processes that provide vital goods and services to hu-

manity (Cardinale et al. 2012). So too is the on-going decline in the abundances of 

animals that remain. Defaunation describes both the extinction of species or pop-

ulations as well as local declines in abundances (Dirzo et al. 2014). The well-

established primary drivers of defaunation include overexploitation, land-use 

change, and the associated impacts of species losses and gains due to invasive 

species (Hoffmann & Al. 2010; Wardle et al. 2011). These anthropogenic drivers of 

change in biological communities are likely to continue throughout the 21st Cen-

tury (Pereira et al. 2010), but will be compounded by emerging global threats to bi-

odiversity such as climate change (Sala et al. 2000), and disease resulting from the 

introduction of novel pathogens (Smith, Sax & Lafferty 2006). The ecological con-

sequences of this biological erosion are not fully understood, but it is increasingly 

recognised that they will lead to the extinction of species interactions and a loss of 

associated ecosystem processes (Cardinale et al. 2012; Hooper et al. 2012; Valiente-

Banuet et al. 2014).  

 

The geographic pattern of defaunation is non-random (Pimm et al. 2014), with 

tropical forests displaying the highest documented rates of population declines in 

bird and mammal species (Dirzo et al. 2014). Unsustainable hunting, in conjunc-

tion with habitat loss and modification, has been identified as one of the primary 

causes of vertebrate species loss in tropical forests (Corlett 2007; Peres & Palacios 

2007; Fa & Brown 2009). Hunting often affects vertebrate species differentially as a 

function of their body size, with large-bodied mammals such as ungulates and 

large primates being most at risk because they are preferred game species (Peres & 

Palacios 2007; Kurten 2013). They also display a suite of life history traits such as a 

low reproductive rate and large home range that increase their vulnerability to ex-

ploitation and habitat loss (Cardillo et al. 2005; Öckinger et al. 2010).  
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The disproportionate removal of large-bodied species from tropical forest ecosys-

tems can have indirect and cascading effects on ecosystem ecology. First, density 

compensation can occur, where the abundances of medium and small bodied ver-

tebrates increase as they are released from competitive interactions for food and 

habitat (Peres 2000; Wright 2003). This structural modification of the tropical for-

est vertebrate community may then impact upon plants, through changes in the 

abundance of frugivores, granivores and/or folivores. Consequently, defaunation 

alters animal-plant interactions, such as seed dispersal, predation, herbivory and 

trampling, altering plant demography and community composition (Harrison et 

al. 2013; Kurten 2013) via changes in seedling recruitment (Wright et al. 2000; 

Galetti et al. 2006), survival (Asquith et al. 1999; Guariguata, Adame & Finegan 

2000) and distribution (Wright & Duber 2001). There is growing evidence that this 

ultimately alters seedling density (Terborgh et al. 2001; Nunez-Iturri & Howe 2007; 

Harrison et al. 2013), abundance (Royo & Carson 2005; Beck, Snodgrass & 

Thebpanya 2013) and diversity (Wright, Hernandéz & Condit 2007; Stevenson & 

Aldana 2008; Harrison et al. 2013).  

 

The secondary dispersal of seeds by dung beetles represents an extra layer of com-

plexity in the linkages between vertebrates and plants (e.g. Culot, Huynen & 

Heymann 2014). Seeds contained within mammalian dung are frequently relocat-

ed to beneath the soil surface because dung beetles move and bury faeces for feed-

ing and nesting purposes (Hanski & Cambefort 1991). This can benefit buried 

seeds by placing them in a more suitable microsite for germination and growth 

(Shepherd & Chapman 1998; Andresen & Levey 2004), or through the avoidance of 

density dependent competition and mortality (Andresen & Feer 2005; Lawson et al. 

2012) as well as escape from seed predation (Estrada & Coates-Estrada 1991; 

Shepherd & Chapman 1998; Feer 1999). Because dung beetles are dependent on 

mammalian faeces, they are sensitive to changes in dung resource availability fol-

lowing defaunation (Andresen & Laurance 2007; Nichols et al. 2009, 2013b; Culot 

et al. 2013). Changes in dung beetle community composition have been reported 

in defaunated forests where the abundance of small-bodied species increase as 
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large-bodied species decline (Culot et al. 2013). Both seed burial and the disper-

sion of seeds throughout the soil profile are positively linked to dung beetle taxo-

nomic and functional diversity (Slade et al. 2007b; Braga et al. 2013; Griffiths et al. 

2015), and large-bodied beetles have a disproportionally important role in seed 

and dung burial (Slade et al. 2007b; Gregory et al. 2014). Therefore, it seems likely 

that the cascading effect of mammal defaunation on dung beetle diversity and 

community structure could impact upon the germination and establishment of 

secondarily dispersed seeds. However, to our knowledge this has not yet been em-

pirically tested.  

 

The aim of this investigation was to explore how dung beetle taxonomic and func-

tional diversity influences the burial, germination and survival of seeds in a tropi-

cal forest under realistic field conditions. To do this, we carried out mesocosm ex-

periments in which naturally assembled communities of beetles buried either 

seed mimics or live seeds to test the following hypotheses. First, because large 

bodied dung beetles are instrumental in the dispersal of large seeds (Feer 1999), 

we predicted that large seeded species are more sensitive to reductions in dung 

beetle biomass and diversity than smaller seeds. Second, we build upon previous 

work from Chapter 3 where dung beetle diversity positively influenced the likeli-

hood of seed mimic burial and dispersion throughout the soil profile (Griffiths et 

al. 2015). Because our ability to make inferences about the consequences of these 

patterns was limited by the use of artificial seeds, we carried out experiments using 

real seeds. We tested the hypothesis that dung beetle diversity positively influences 

seedling emergence and survival because: 1) burial decreases seed predation 

(Estrada & Coates-Estrada 1991; Shepherd & Chapman 1998; Feer 1999) and 2) the 

greater the variety of depths and distances a seed community is dispersed from a 

central point, the higher the likelihood that each individual seed will be placed in 

its optimal species-specific microsite for germination and growth. These experi-

ments were complemented by germination trials where experimental seeds were 

placed at different depths within the soil profile, either with or without dung. This 

allowed us to examine the optimal burial depth of seeds and investigate how the 
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presence of dung influences emergence and survival. Here, we hypothesised that 

highest germination would occur in microsites near the surface (from 1cm to 

4cm), that are deep enough to reduce predation, yet shallow enough to avoid soil 

depth preventing emergence following germination (c.f. Shepherd & Chapman; 

1998 and Andresen & Levey; 2004).  

 

4.3 ME T H O D S 
 

4.3.1 Study site  

The study was conducted from July to August 2012 and February to June 2014 in 

the 17 000-km2 Jari Florestal landholding, located in the State of Pará, north-

eastern Brazilian Amazon (0o53S, 52o36W). This area consists of a matrix of Euca-

lyptus plantations, regenerating secondary forests, and large areas of largely un-

disturbed primary terra firme rainforest. Within this landscape, experiments were 

established in three primary forests sites, classified as dense lowland tropical rain 

forest and subject to the same regional climatic conditions (see Chapter 3 for de-

tailed site description). 

 

4.3.2 Seed mimic burial in mesocosms  

During July and August 2012 we established a grid of thirty mesocosms, separated 

by 100m, at each experimental site (n = 90 in total). Mesocosms were created by 

burying nylon netting 10cm into the forest floor in a 50cm x 50cm square and were 

baited with 100g mixture of 50:50 human and pig dung containing 20 plastic seed 

mimics (beads) of 4 different sizes: 2 large (20mm diameter, 4.12g), 6 medium 

(10mm diameter, 0.50g), 6 small (5mm diameter, 0.09g), and 6 very small (2mm di-

ameter, 0.06g). The dung and seed mimics were placed on the floor in the centre of 

the plots and protected from the rain by a plastic cover. After baiting, mesocosms 

were closed using pegs to hold the netting together in a way that ensured the bee-

tles could not leave and prevented further colonisation by beetles that had not bur-

ied the dung. Each mesocosm also contained an internal, non-baited pit-fall trap 

(13.5cm width, 9cm depth), buried flush with the ground surface and filled with a 
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salt-water solution. Internal traps were opened when mesocosms were closed to 

capture the beetle community that had carried out the function following emer-

gence from the soil. After closure, mesocosms were left for between 7 and 14 days 

before the soil beneath the dung was destructively sampled to a depth of 50cm in 

search of the seed mimics buried by the beetles. Internal pitfall traps were re-

moved and the beetles were oven dried and stored for laboratory processing. See 

Chapter 3  for detailed experimental design and rationale. 

 

4.3.3 Seed emergence and survival in mesocosms 

Following the procedure described above, in February 2014, we created a further 

90 mesocosms in one of the experimental sites characterised by clay textured 

Oxisols (mean clay content ± SE: 67.3 ± 1.5%, silt: 14.4 ± 1%, sand: 14.1 ± 1.1%) with 

aluminium sesquioxides (0°38`46.418"S, 52°34`11.125"W). This site was selected 

based on findings from Chapter 3 that demonstrated a stronger influence of dung 

beetle diversity on secondary seed dispersal in this site compared with other sites 

in the region (Griffiths et al. 2015). Each mesocosm was baited with 100g of human 

and pig dung containing two seeds each of five animal-dispersed, commercially 

important Amazonian fruit species: Genipa americana, Malpighia emarginata, 

Myrciaria dubia, Psidium guajava and Rubus chamaemorus. These species were 

chosen based on local availability and to approximately represent the range in siz-

es of seed mimics used in the previous investigation (Table S4.1 for species mean 

weights and dimensions).  These species were chosen based on local availability 

and to approximately represent the range in sizes of seed mimics used in the pre-

vious investigation (Table S4.1 for species mean weights and dimensions).  The 

quantity of dung and number, size, and species richness of seeds were based on 

mean values from howler monkey (Alouatta seniculus) defecations reported by 

Feer (1999) and Andresen (2002). Furthermore, 20 seeds (and not a greater sample 

size) were selected as an appropriate number for placement in baits because dung 

beetles are known to reject a dung food source if too many seeds are present, pre-

sumably because this represents too small a dung: seed (contaminant) ratio (pers 

comm. J. N. Louzada).                         
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Dung and seeds were placed on the forest floor at the centre of the mesocosms be-

tween 07:00 and 09:00 and were protected from the rain by a plastic cover. To en-

hance variation in the diversity of dung beetle communities, we randomly as-

signed mesocosms to one of three experimental treatments (n = 30 in each): 

control: baited and closed immediately, using pegs to hold the nylon netting to-

gether, thus preventing any beetles from accessing dung and seeds; exclusion 

treatment: a 50cm x 50cm wire cage was placed over the dung and seeds (mesh size 

15mm x 8mm) within the mesocosms, preventing the largest beetles from entering 

plots (see Slade et al. 2007; Dangles, Carpio & Woodward 2012); open treatment: 

baited and left open for colonisation by all beetles. During the establishment of 

mesocosms, nine were baited each day for 10 days (n = 3 per treatment, per day). 

The exclusion and open treatments were left for 24 hours following baiting before 

closure.  

 

Internal pitfall traps were opened when mesocosms were closed to capture the 

beetle community that had buried dung and seeds following their emergence from 

the soil. Mesocosms were left closed in this way for two weeks, during which time 

internal pitfall traps were emptied of beetles and refilled with saltwater once. After 

two weeks, we removed the pitfall traps and nylon netting covering mesocosms to 

prevent light level or microclimate interference within and to allow seed predator 

and herbivore access to seeds/seedlings. All beetles recovered from within the 

mesocosms were dried and stored for laboratory processing. After initial baiting, 

mesocosms were monitored weekly for 18 weeks to assess emergence and survival 

of seedlings. The binary metric of dead/alive (survival) was based on an emerged 

seedling remaining present and alive until the end of the 18-week monitoring pe-

riod. 
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4.3.4 Germination trials 

Concurrently with the seed emergence and survival experiments in 2014, we creat-

ed nine plots in the field to assess how burial depth and the presence of dung in-

fluenced emergence and survival of experimental seeds and seedlings. In each 

120cm x 200cm plot we planted seeds at 10 different depths (n = 40 per species; n = 

200 seeds per plot). The burial mesocosms (carried out in 2012) demonstrated that 

seed mimics were more frequently buried near the soil surface compared with 

deeper placements in the soil profile (Griffiths et al. 2015). We therefore chose a 

higher resolution between planting depths near the soil surface to reflect this, 

namely: above the leaf litter, below the leaf litter, 1cm, 2cm, 3cm, 5cm, 7cm, 10cm, 

15cm and 20cm. At each depth, seeds were either planted alone or in the centre of 

a 1g ball of 50:50 human and pig dung (n = 2 per treatment, per depth). Plots were 

divided into 10cm2 sections, seeds were assigned a depth x treatment (dung or 

alone) and placed randomly within the plots. This resulted in the planting of 1800 

seeds in total (200 seeds x 9 plots). Following planting, germination plots were 

monitored weekly for emergence and survival of seedlings.  

 

4.3.5 Dung beetle traits and diversity metrics 

We identified beetles to species using a reference collection held at the Univer-

sidade Federal de Lavras (UFLA), Brazil, and region specific identification keys de-

veloped by T. A. Gardner and F. Z. Vaz-de-Mello. To calculate functional diversity, 

we used four continuous morphological traits: biomass, biomass adjusted prono-

tum volume, biomass adjusted front leg area, back: front leg length; as well as 

three categorical behavioural traits: nesting strategy (tunneller, roller, dweller), di-

urnal activity (diurnal, nocturnal, crepuscular, or generalist) and diet (copropha-

gus or generalist). These seven traits were selected because they were linked to 

dung beetle mediated seed dispersal in Chapter 3 (Chapter 3; Griffiths et al. 2015). 

Furthermore, dung beetle body size, diurnal activity and nesting strategy have 

been previously linked to beetle mediated processes, with large nocturnal tunnel-

ling beetles being more instrumental in dung and seed removal than other guilds 

(Slade et al. 2007). We selected pronotum volume because this is the part of beetle 
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anatomy where the muscles responsible for moving the front legs and therefore, 

the digging apparatus are located; front leg area was selected as the front legs are 

the dung beetle digging tools (along with head area, but as this was collinear with 

leg area, we selected only one trait to describe digging capacity); and back : front 

leg length was selected as an measure of the dung beetle’s capacity to roll dung 

balls (rolling and tunnelling beetles have a larger back : front leg ratio compared to 

tunnelling beetles; Inward et al. [2011]). All traits were measured from every indi-

vidual sampled from the 2012 bead burial experiments (n = 1962) and where pos-

sible, we used these data for the species median trait values and categorical infor-

mation for beetles collected in the 2014 emergence and survival trials. However, 

biomass displays the greatest intraspecific variability in dung beetle traits, there-

fore information is required from a greater number of individuals compared with 

other traits in order to accurately summarise species trait values (Chapter 2). As 

such we measured the biomass of every individual collected in 2014 (n = 1-88 per 

species) and combined these data with the biomass values of individuals collected 

in 2012 and created new species median values. Additionally, where species medi-

an pronotum volume, front leg area and leg lengths were calculated from fewer 

than 15 individuals in 2012, if additional individuals were collected during 2014, 

we measured these traits from sufficient individuals to create a sample size of n = 

15 for all species where possible (Table S4.2 for species abundances and trait in-

formation). See chapter 3 for details of trait measurements. 

 

Species richness and total biomass were calculated for all mesocosms that con-

tained beetles. Median biomass, biomass adjusted pronotum volume, biomass ad-

justed front leg area, back: front leg length, nesting strategy, diurnal activity and 

diet were used to calculated functional richness (FRic), which is a multidimen-

sional measure of the range of traits in a biological community (Villéger et al. 

2008). We selected FRic because out of four functional diversity metrics previously 

assessed for their association with beetle mediated seed dispersal, FRic was con-

sistently the strongest predictor of seed burial and dispersion of seeds through the 

soil profile (Chapter 3; Griffiths et al. 2015). Additionally, we calculated community 
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weighted means (CWM) of the individual traits used to calculate FRic: biomass, ad-

justed pronotum volume, adjusted front leg area and back: front leg length for 

each beetle community. These describe the mean value of each trait in the com-

munities, weighted by the relative abundances of the species carrying that trait 

(Garnier et al. 2004; Violle et al. 2007). Functional richness and CWM traits were 

calculated using the “FD” package in R 3.0.2 (Laliberté et al. 2012; R Core Team 

2013). 

 

4.3.6 Focal seed species 

Fifty-seven per cent of M. dubia seeds emerged from within mesocosms and 18% 

from within germination plots, compared to an emergence success of less than 

10% and 5% from within mesocosms and germination plots respectively for the 

other four species (Fig. S4.1). Therefore, although we used five seed species in ex-

periments, we focus results on only M. dubia (similar in dimensions to the medi-

um bead used in burial trials; Table S4.1) because emergence of the other species 

was too low to allow analyses. M. dubia (HBK) McVaugh, is a small, dicotyledonous 

tree, belonging to the Myrtaceae family. It is widely distributed across the north-

eastern Brazilian Amazon, Peru and Venezuela where it forms high density con-

specific stands (Peters et al. 1989). It grows to a height of between 3-8m, and pro-

duces spherical fruits 2-5cm in diameter. Each fruit contains 2 seeds (Cavalcante 

1996, see Table S4.1 for average weight and dimensions of seeds). The flowers of 

M. dubia are largely pollinated by Apidae, Anthophorida and Halictidae bees, and 

the fleshy fruits are exploited by primates and other forest vertebrates (Gressler, 

Pizo & Morellato 2006). M. dubia fruits are also an economically important non-

timber forest product, used both locally in the preparation of fruit juices and alco-

hol (Peters et al. 1989) and exported on international markets because of high lev-

els of nutritionally important minerals (Akter et al. 2011).  

 

4.3.7 Statistical analyses  

Analyses were carried out in R version 3.0.2 (R Core Team 2013). Our first objective 

was to test the hypothesis that large seeds are more vulnerable than smaller seeds 
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to reductions in beetle biomass and diversity. To do this we used generalised line-

ar mixed effects models (glmm) from the “lme4” package (Bates et al. 2012) to in-

vestigate if bead size, dung beetle community metric (species richness, functional 

richness, total biomass and CWM traits) and the interaction between the two fac-

tors affected the probability that beads were buried (2012 experiment). Each 

community metric was included in a separate model and mesocosm was nested 

within site as random factors.  

 

Our second aim was to examine if dung beetle diversity positively influences seed-

ling emergence and survival until the end of the 18-week monitoring period. First, 

we used linear models (lm) to assess if treatment (with or without exclusion cage) 

had succeeded in enhancing the variety in beetle community metrics across meso-

cosms (2014 experiment). Three of the mesocosms (one open, and two exclusion 

cage treatments) were not colonised by any beetles; these were removed from 

analyses because they created a distribution in values that could not be fitted to 

models (Fig. S4.2 for distributions of community metrics). We used glmms to as-

sess how the presence (open and exclusion cage treatments pooled, n = 60) or ab-

sence (closed treatments, n = 30) of beetles, and beetle community metrics within 

mesocosms influenced the probability of seed emergence and survival until the 

end of the 18-week experimental period. Mesocosm was included as a random fac-

tor. 

 

Our final goal was to assess the optimal burial depth of M. dubia seeds and to in-

vestigate if the presence of dung influences seedling emergence or survival. First, 

we tested if burial depth influenced the week that seeds emerged from the soil us-

ing linear mixed effects models (lmer) from the “lme4” package (Bates et al. 2012). 

Second, we used glmms to ascertain if burial depth, the presence of dung and the 

interaction between the two factors influenced probability that seeds emergence 

from the soil and subsequently survived until the end of the 18-week monitoring 

period. Third, glmms were also used to investigate if the week that seedlings 
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emerged influenced the likelihood that they survived until the end of the experi-

mental period. Germination plot was a random factor in lmers and glmms.  

 

Within glmm models assessing the likelihood of bead burial, beads were assigned 

a 1 if they were buried and a 0 if they remained on the soil surface; in seed emer-

gence models, seeds were assigned a 1 if they emerged from the soil surface and a 

0 if they did not; in models assessing the likelihood of survival, seedlings that 

emerged where assigned a 1 if they survived until the end of the monitoring period 

and a 0 if they did not. As such a binary error distribution with a logit link function 

was specified for all glmms. All community metrics were log10-transformed to en-

sure models satisfied assumptions of normality. Models were created using all 

fixed terms and interactions, we then used a top-down approach to arrive at the 

best descriptive model (Zuur et al. 2009) in which only significant terms (P < 0.05) 

remained. Chi-squared likelihood ratio tests (LRT) were used for glmm models 

and anovas for lm models to assess the loss of explanatory power following remov-

al of an interaction or a single term predictor.  

 

4.4 RE S U L T S 
 

4.4.1 Seed mimic burial in mesocosms  

Bead size had a highly significant impact on the likelihood that dung beetles bur-

ied beads (LRT = 398.99, Df = 6, P < 0.0001) and significantly affected the depth at 

which they were placed within the soil (LRT = 325.91, df = 7, P < 0.0001). Both the 

proportion of beads buried and burial depth decreased with increasing bead size 

(Fig. 4.1). Biomass and CWM back: front leg length were the only dung beetle 

community metrics that significantly affected the probability of bead burial. Bio-

mass had a consistent positive effect on the likelihood that beads of all size classes 

were buried (LRT = 4.53, df = 7, P = 0.033). However, the effect was stronger for the 

burial of medium sized seeds: the probability of burial increased from around 20% 

at the lowest biomass values to around 70% at the highest values for medium seeds 

compared to an increase from 70% to 90% for very small seeds and a 60% to 80% 
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increase for small seeds (Fig. 4.2 (a)). There was a significant interaction between 

CWM back: front leg length and bead size (LRT = 9.23, df = 10, P = 0.0264). An in-

crease in CWM back: front leg length had a negative effect on the likelihood that 

small and very small beads were buried (a reduction of 80% to 55% and 90% to 65%, 

respectively, but did not affect the probability that medium seeds were buried (Fig. 

4.2 (b)).  

 

 
Figure 4.1 |  The proportion of seed mimics of different size classes buried by dung beetles (a) 

and mean burial depths ± SE (SD/√n) (b) the 2012 mesocosm experiments 
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4.4.2 Beetle communities in emergence and survival in mesocosms 

A total of 690 dung beetles of 45 species were collected from pitfalls within the 60 

mesocosms that were open for beetle colonisation (open and exclusion cage 

treatments). No beetle activity was recorded within the 30 closed treatment meso-

cosms. Associations between beetle community metrics varied from Pearson’s ρ = 

0.07 (CWM biomass and species richness) to Pearson’s ρ = 0.85 (FRic and species 

richness; Fig. S4.2). Mesocosm treatment (presence or absence of an exclusion 

cage) was successful in enhancing the variation in community attributes across 

the mesocosms: treatment significantly influenced the FRic, species richness, total 

biomass and CWM leg area of the beetle communities within (Table S4.3). Alt-

hough there was a continuous distribution in community metric values between 

the treatments, mesocosms with exclusion cages had significantly lower FRic, spe-

cies richness and total biomass, but significantly higher CWM front leg area values 

(Fig. 4.3). 
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Figure.  4.2 |  Significant effects of dung beetle total biomass (a) and CWM back: front leg length 

(b) on the probability of burial from 2012 burial experiments of very small beads (left panels), small 

beads (middle panels) and medium beads (right panels). Significance determined by generalised 

linear mixed effects models. Predicted values (solid black lines) ± SE (ribbons, calculated using the 

predict function in R) are displayed along with individual seeds (black points), which were either 

buried (1) or remained on the soil surface (0). 

 

 

 

Figure 4.3 |  Frequency distributions of dung beetle community metrics collected from meso-

cosms with exclusion cages (clear ribbons) and without exclusion cages (Open: grey ribbons).  Spe-

cies richness (a); functional richness (b); total biomass (c) and community weighted mean front leg 

area (d). Boxplots in top right corners display significant effects of treatment on community met-

rics. 
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4.4.3 Seedling emergence and survival in mesocosms 

The presence or absence of beetles had no effect on the emergence or survival 

rates of M. dubia within mesocosms. The closed mesocosm treatments (no bee-

tles) were therefore removed from further analyses. Functional richness, species 

richness and total biomass had a significant negative effect on the likelihood of M. 

dubia emergence. Eighty per cent of seeds emerged from mesocosms displaying 

the lowest FRic, species richness and total biomass values, compared to around 

20% emergence from mesocosm displaying the highest values for FRic, species 

richness and total biomass. Community weighted mean biomass, pronotum vol-

ume, front leg area and back: front leg length had no significant effect on emer-

gence success (Table 4.1; Fig. 4.4 (a) – (c)). In contrast, CWM back: front leg length, 

total biomass and species richness had a significant positive affect on the likeli-

hood that emerged seedlings survived until the end of the 18-week monitoring pe-

riod (Fig.4.4 (d) – (f)). The strongest predictor of survival was CWM back: front leg 

length (Table 4.1): 0% of seedlings buried by beetle communities displaying the 

lowest CWM back: front leg length values survived until the end of the monitoring 

period whereas 100% of seedlings within mesocosms with the highest values were 

alive at the end of the experiment. Functional richness, CWM biomass, CWM front 

leg area and CWM pronotum volume had no effect on seedling survival (Table 4.1), 

nor did the week that seedlings emerged from the soil surface (LRT = 1.19, d.f. = 1, 

p = 0.275). 
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Table 4.1 |  Generalised linear mixed effects model outputs to assess the influence of dung beetle 

community attributes on the probability of seed emergence (left section) and seedling survival un-

til the end of the 18-week experimental period (right section). Significant predictors (P < 0.005) are 

highlighted in bold 

 

glmm(seed emergence ~ 
beetle community) 

LRT df P   
glmm(seedling sur-
vival ~ beetle com-
munity) 

LRT df P 

FRic 6.3 3 0.0124   CWM back: front 
leg length 

8.4 3 0.0038 

Total  biomass 5.7 3 0.017   Total  biomass 6.5 3 0.0107 

Species richness 4.6 3 0.0326   Species richness 3.9 3 0.0495 

CWM biomass 0.3 3 0.6119   CWM front leg area 1.8 3 0.18 

CWM pronotum volume 0.1 3 0.7924   CWM biomass 1.3 3 0.2598 

CWM front leg area 0.1 3 0.7416   CWM pronotum vol-
ume 0.9 3 0.3373 

CWM back: leg length 0 3 0.9733   FRic 0.7 3 0.3994 
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Figure 4.4 |  Significant negative effect of dung beetle functional richness (a), total biomass (b) 

and species richness (c) on the probability of seed emergence (top panels) and the significant posi-

tive effect of community weighted mean (CWM) back: front leg length (d), total biomass (e), and 

species richness (e) on the likelihood that emerged seeding survived until the end of the 18-week 

experimental period (bottom panels). Significance determined by generalised linear mixed effects 

models. Predicted values (solid black lines) ± SE (ribbons, calculated using the predict function in 

R) are displayed along with individual seeds (black points), which either emerged (1) or did not 

emerge (0); and survived (1) or died after emergence (0). 

 

4.4.4 Seedling emergence and survival in germination plots 

There was a significant positive effect of burial depth on the week that M. dubia 

seeds planted within the germination plots emerged (LRT = 59.2, df = 11, P < 
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emerge as seedlings than those placed above or below the leaf litter: there was a 

44.4% and 52.8% emergence rate for seeds above and below the litter respectively, 

compared to between 19.4% and 5.6% for seeds buried at 1cm and 20cm respec-

tively (Fig. 4.5) No factor or interaction had a significant effect on the probability of 

seedling survival. No seeds emerged from mesocosms after week 16 or from ger-

mination plots later than week 14 (Fig. S4.4.), and as such we are confident that all 

emergence events were captured during the monitoring period.  

 

 

Figure 4.5 |  Percentage M. dubia that emerged from the soil surface after being experimentally 

planted to ten different depths, n = 36 at each depth; left panel) and percentage of emerged M. du-

bia seedlings at each burial depth that survived until the end of the 18-week experimental period 

(right panel). The soil surface is shown with a horizontal dashed line. 
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4.5 DI S C U S S I O N 
 

The aim of this investigation was to explore the multitrophic consequences of 

changes in dung beetle communities for secondary seed dispersal and the emer-

gence and survival of tropical seedlings. We found a stronger positive effect of bee-

tle biomass on the likelihood of burial for medium sized beads compared to 

smaller beads. This suggests that large-seeded species may be more vulnerable to 

the loss of their secondary dispersers than smaller seeds. Furthermore, dung bee-

tle diversity and biomass negatively affected the likelihood that experimental 

seeds emerged from the soil surface. Therefore, secondary seed dispersal has the 

potential to inhibit rather than promote the emergence of some species. Converse-

ly, seedling survival was positively influenced by beetle diversity, biomass and the 

CWM of back: front leg length. This demonstrates that changes in the composition 

of dung beetle communities may influence tropical soil environments at a small 

scale, which could impact upon seedling recruitment and ultimately affect future 

vegetation composition. To our knowledge this is the first study to link naturally 

assembled dung beetle communities to the emergence and survival of seedlings. 

We therefore provide novel insights into how defaunation could impact tropical 

forest plant regeneration through cascading changes in multitrophic species in-

teractions. 

 

Although we found a positive association between dung beetle biomass and the 

probability that beads of all size classes were buried, effects were strongest for the 

burial of medium beads. Previous work has demonstrated that large beetles are 

functionally more efficient in the removal of dung and seeds compared to smaller 

species (Larsen et al. 2005; Slade et al. 2007) and that they are instrumental in the 

movement of large seeds (Feer 1999). It is likely, therefore, that the stonger 

relationship we observed between biomass and medium bead burial, compared to 

small bead burial, is driven by the presence of large beetles in high biomass 

communities driving the burial of large seeds. Large-bodied dung beetle species 
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are known to be more prone to extinction and decline in response to human 

modifcation and defaunation (Larsen et al. 2005; Gardner et al. 2008c; Culot et al. 

2013). These results, therefore, support our first hypothesis, that changes in dung 

beetle community structure are likely to differentially affect the secondary 

dispersal of seeds depending on their size. This adds weight to suggestions that 

large seeded species are most at risk from the extinction of complex animal-plant 

interactions as a result of human pressures (c.f. Harrison et al. 2013).  

 

Secondary dispersal by dung beetles has been demonstrated on a number of occa-

sions to be beneficial to buried seeds (Shepherd & Chapman 1998; Feer 1999; 

Andresen & Levey 2004; Nichols et al. 2008; Santos-Heredia et al. 2010). However, 

for the first time, and contrary to our predictions, we show that the functional 

richness (FRic), species richness and total biomass of dung beetle communities 

negatively influence emergence success, suggesting that dung beetle activity may 

be detrimental for some species. Previous beetle-mediated seed dispersal experi-

ments in tropical forests demonstrate that burial depths of between 1cm and 4cm 

result in increased germination success compared to seeds that remained on the 

soil surface or were buried to deeper depths (Shepherd & Chapman 1998; Feer 

1999; Andresen & Levey 2004). We show that M. dubia emergence rates within the 

germination plots were highest when seeds were placed either above or below the 

leaf litter, but immediately reduced by over 50% when seeds were buried within the 

soil profile. Therefore, it seems likely that the negative relationship between beetle 

community attributes and emergence of M. dubia seeds is a consequence of high-

er biomass and diversity resulting in higher rates of seed burial (c.f. Braga et al. 

2013; Nichols et al. 2013b; Griffiths et al. 2015) and net disadvantages to the fitness 

of this species. Furthermore, results from the 2012 bead burial experiments 

demonstrate that small seeded species are buried deeper (mean ± SE: 10.93 cm ± 

0.41) than larger seeds. Shepherd & Chapman (1998) demonstrated that only the 

largest seeds were able to germinate from burial depths of 10cm or more, we there-

fore also expect negative consequences of beetle activity for other, smaller seeded 

species. Yet caution(must(be(taken(when(generalising(results(based(on(just(one(speD
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cies.(This(is(perhaps(particularly(relevant(when(one(considers(the(ecology(of(M.#du&

bia,(a(largely(riparian(species.(M.#dubia(is(known(to(be(dispersed(by(a(wide(range(of(

forest( vertebrates,( including(primates( (Gressler et al. 2006),(which(means( that( the(

seeds(of(this(species(are(likely(to(be(secondarily(dispersed(by(dung(beetles(from(time(

to(time.(However,(seeds(that(are(primarily(water(dispersed,(such(as(those(of(M.#dubia(

often( display( greater( germination( success( on( the( soil( surface( (Lopez( 2001);( enviD

ronments(where(they(would(naturally(come(to(rest(having(been(transported(by(waD

ter.(This(then(could(offer(some(explanation(as(to(why(dung(beetles(had(natively(imD

pacted( upon( the( germination( success( of(M.#dubia.#A( different( outcome,(more( inline(

with( previous( dung( beetle,( seed( dispersal( investigations( (e.g.( Shepherd( et# al.#1998)( may(

have( been( realised( using( a( different( species(with( a( different( ecology.#Had( greater(

number(of(the(other(experimental(seeds(used(in(this(investigation(germinated,(furD

ther(testing(of(the(generality(of(results(for(other(seed(species(would(have(been(posD

sible. 

 

It is likely that the need for the secondary seed dispersal function will vary along 

gradients of anthropogenic impact. In this investigation, we established emer-

gence and survival experiments in a primary forest with no recent logging, relative-

ly low hunting pressure and therefore a full complement (but probably a reduced 

density) of large mammals (Parry, Barlow & Peres 2007).  More heavily disturbed 

forests differ in that they can harbour elevated populations of seed predators 

(Adler 1996; Bodmer, Eisenberg & Redford 1997; Terborgh et al. 2001) and higher 

seed predation pressure (Asquith, Wright & Clauss 1997). Seed predator escape is a 

key mechanism underpinning the increased germination success observed in 

seeds secondarily dispersed by dung beetles in tropical forests (e.g. Shepherd & 

Chapman 1998; Feer 1999; Andresen & Levey 2004). If seed predation pressure was 

sufficiently high, burial by beetles could impart net benefits rather than disad-

vantages to M. dubia and other large-seeded species.  

 

Anthropogenic disturbance may also affect the ability of dung beetles to deliver 

the secondary seed dispersal function. Dung beetle diversity often declines in re-
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sponse to defaunation or forest degradation (Andresen & Laurance 2007; Gardner 

et al. 2008; Culot et al. 2013). This could have major implications for the survival of 

seeds because beetle diversity is positively associated with secondary seed disper-

sal (Braga et al. 2013; Nichols et al. 2013b; Griffiths et al. 2015). The combination of 

increased seed predation and reduced beetle diversity means that beetle mediated 

seed dispersal could be least likely in disturbed sites where it has the potential to 

be more important for predator escape compared intact forests. However, further 

work is needed to investigate relationships between dung beetles communities 

and seedling emergence in forests with differing levels of defaunation and dis-

turbance. This is important because it will facilitate an understanding how biolog-

ical communities and anthropogenic disturbance indirectly influence dung bee-

tle’s ecological role as efficient seed dispersers or agents of seed mortality.  

  

We found a positive affect of dung beetle total biomass, species richness and CWM 

back: front leg length on the probability that emerged seedlings remained present 

and alive until the end of our 18-week monitoring period. There are myriad pro-

cesses acting both above and below ground that influence whether a seedling lives 

or dies following germination (e.g. Khurana & Singh 2001). However, the most 

plausible way in which beetles could influence seedling survival is through their 

impact on soil nutrients and physical properties (reviewed Nichols et al. 2008). Due 

to their small root system, seedlings are reliant on the nutrient and water availabil-

ity in their immediate surroundings (Poorter & Hayashida-Oliver 2000) and nitro-

gen is a mineral element that can become insufficient in seed reserves (Fenner 

1986). Dung beetle activity and abundance has been shown to positively influence 

N mineralisation, raising concentration of inorganic N in the soil as well as the 

concentrations of other limiting nutrients such as P and K (Yokoyama et al. 1991a; 

Yamada et al. 2007). It is possible, therefore, that through altering soil nutrients at 

a stage when seed reserves are becoming exhausted, dung beetles could create fa-

vourable conditions for seedling growth and thus positively influence survival.  
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The impact of dung beetles on soil physical structure may offer additional insights 

into the positive relationships between seedling survival and beetle community at-

tributes. Bang et al. (2005) demonstrated that the activity of large bodied dung bee-

tles has a positive effect on soil permeability in surface layers, which is positively 

associated to air and water movement and greater soil pore space (Marshall et al. 

1996). These soil characteristics could facilitate root and shoot growth and result 

in benefits to seedling survival. However, studies investigating the effect of dung 

beetle activity on soil nutrients and structure have been exclusively carried out in 

grassland or heathland systems. Different minerals are limited in the soils tropical 

forests compared to grasslands and heaths, and nutrients are added to the soil via 

different pathways within each of the systems (Townsend et al. 2007; Vitousek et 

al. 2010). Therefore, making inferences about the role of dung beetles in modify-

ing tropical soils based on evidence from temperate systems is problematic. Inves-

tigations are needed to elucidate the small scale impact of dung beetles on tropical 

soils where highly heterogeneous distributions in soil nutrients are important fac-

tors structuring plant communities (John et al. 2007).  

Intriguingly, CWM of back: front leg length was positively associated with seedling 

survival and involved in a significant interaction with bead size on the probability 

of seed mimic burial. The abundance of dwellers within these dung beetle com-

munities was positively related to CWM back: front leg length (Fig. S4.5), and as 

such an increase in the ratio between back to front leg length indicates an increase 

in the number of dweller species present. Dwelling species of dung beetle do not 

bury dung or seeds, but feed and nest within it. The burial of medium beads (of 

similar dimensions and weight to M. dubia; Table S4.1) was low compared to 

smaller beads and was always unaffected by leg length. Therefore it is unlikely that 

the relationship we found between seedling survival and CWM back: front leg 

length is a consequence of dwellers decreasing the likelihood that seeds are bur-

ied. Instead it is possible that mixing and breakdown of dung on the soil surface 

increases with an increase in the abundance of dwelling species. This could give 

raise to similar processes described above where altered biochemical cycling and 

structural changes in seed substrates provide benefits to seedling growth and thus 
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survival. No study to date has investigated how the morphological traits of dung 

beetles influence nutrient cycling, soil structure and plant growth. Therefore, 

while mechanisms suggested here are speculative, our results illuminate exciting 

avenues for further research into the role dung beetle diversity and functional 

traits on ecosystem processes spanning multiple trophic levels. 

 

4.5.1 Conclusion 

This investigation aimed to better understand the ecological consequences of de-

faunation for dung beetle-mediated secondary seed dispersal in tropical forests. 

Conceptual frameworks predict that large seeded species are most at risk from the 

negative impacts of defaunation due to the extirpation of their large-bodied pri-

mary dispersers (Wright 2003; Stoner et al. 2007). We show that large seeds may al-

so be differentially vulnerable to the loss of their secondary dispersers through an-

thropogenic driven reductions in large bodied dung beetles (Larsen et al. 2005; 

Gardner et al. 2008c; Culot et al. 2013). However, we demonstrate that decreases in 

dung beetle biomass and diversity could result in net advantages to some seed 

species, if seed burial negatively impacts upon their emergence success. Further-

more, we present intriguing novel evidence suggesting that dung beetle activity 

could modify conditions within the soil and/or dung in a way that promotes seed-

ling survival. However, a mechanistic explanation of this eludes us because no 

studies to date have investigated the contribution of diversity versus key traits or 

species in driving dung beetle’s impact on the soil environment in temperate or 

tropical systems.  

 

The benefits imparted on seeds via two-phase dispersal are context dependent, 

driven by of a variety of interrelated biotic and abiotic factors (Culot et al. 2014) 

and the outcomes for plant fitness are governed by species-specific requirements. 

Therefore, to understand the idiosyncratic responses of tropical plant communi-

ties to defaunation (reviewed in Kurten 2013) further work is needed using a great-

er variety of seed species in sites subject to varying and different types of disturb-

ance. However, here we demonstrate that investigation of plant responses under 
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realistic field conditions is challenging because the functional changes underpin-

ning patterns observed are often a product of complex, multitrophic species inter-

actions. Experimental work aimed at gaining a mechanistic understanding of the 

processes driving the outcomes of these ecological interactions is vital if we are to 

appreciate the consequences of human modification of biological communities.  
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Table S4.3 |  Model outputs to assess the influence of mesocosm treatment (presence or ab-

sence of an exclusion cage, mesh size 15mm x 8mm) on dung beetle community metrics (de-

termined by linear models). The metrics that were significantly (P < 0.05) affected by treatment 

are highlighted in bold.  

 
 

 

Community metric df f P 

Species richness 1 10.8 0.0018 

FRic 1 15.3 0.0002 

Total  biomass 1 8.7 0.0045 

CWM biomass 1 1.5 0.2221 

CWM pronotum volume 1 3.2 0.0784 

CWM leg area 1 9.0 0.0040 

CWM leg ratios 1 0.0 0.9776 
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Figure S4.1 |  Emergence (dark grey bars) and survival (light grey bars) of seed species within 

germination plots (a) (n = 360 per species) and mesocosms (b) (n = 180 per species). 
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Figure S4.2 |  Associations between dung beetle community metrics within seedling emergence 

and survival mesoscosm (2014 experiment): bivariate plots (lower panels), distributions (diagonal) 

and Pearson’s ρ (upper panels). 
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Figure S4.3 |  Model predicted values (solid black lines) and SE (ribbons) for the significant effect 

of burial depth on the emergence week of Myrciaria dubia seeds within germination trials 
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Figure S4.4 |  Numbers of seeds that emerged per week within germination plots (a) and meso-

cosms (b), grouped by species 
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Figure S4.5 |  The significant positive relationship between community weighted mean back: 

front leg length and the number of dwellers in dung beetle communities (F1, 88 = 25.2, P < 0.0001) 

as determined by a linear model ± SE (ribbon, calculated using the predict function in R). Although 

longer back compared to front legs are generally indicative of rolling dung beetle species (see 

Hanski & Cambefort 1991 for dung beetle resource use strategies), dwelling species are morpholog-

ically indistinguishable from rolling species in the Neotropics (Inward et al. 2011) 
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Chapter 5 

GENERAL DISCU SSION 
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5.1 KE Y  F I N D I N G S 
 

The aim of this thesis was to better understand how anthropogenic modification of bio-

logical communities influences the structure and functioning of ecosystems. In particu-

lar, given that the majority of biodiversity-ecosystem functioning (BEF) research has been 

conducted in temperate grassland systems, I sought to investigate these relationships in a 

non-producer tropical system. To do this, I developed new methodologies to carry out in 

depth investigations into the role of dung beetle traits and functional diversity for the sec-

ondary dispersal of seeds in tropical rainforests. Overall, each chapter combines to 

demonstrate that continuous, morphological traits in dung beetle communities can be 

used to successfully predict ecosystem processes. Using this framework, emergent cross-

chapter findings reveal that relationships are complex and dependent on biotic and abiot-

ic environment, and that the consequences of dung beetle mediated BEF relationships for 

vegetation regeneration is unpredictable and species-specific. This work therefore pro-

vides several novel advances of how diversity in animal communities can influence the 

ecological processes they govern. Below I outline the key findings from each experimental 

chapter that contribute to these overall outcomes:  

 

5.1.1 Variability in dung beetle traits and implications for functional 
diversity indices (Chapter 2)  

Chapter 2 research questions: (1) What is the relative contribution of between vs. within 

species differences in trait values? (2) How does sampling site influence intraspecific trait 

differences? (3) What sample size is needed to provide representative species mean trait 

values? (4) What impact does omission of intraspecific trait information have on the cal-

culation of functional diversity indices from naturally assembled communities?  

 

A key outcome of Chapter 2 was that omission of intraspecific trait information could re-

sult in large errors in the calculation of functional diversity (FD) indices, even when using 

traits with very low variability. These errors were negatively associated with community 

size and/or species richness, suggesting that the smaller the community, the greater the 

importance of incorporation of within species trait information. Therefore, if the aim of 

an investigation is to describe links between organisms and the ecological processes they 

govern at the community scale, complete sampling of individual traits may be necessary. 

Failure to do so could have impact on the accuracy of results and ultimately conclusions 
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drawn. This has methodological implications for the growing number of mesocosm or 

mesoclosure studies that involve small naturally assembled communities (such those 

sampled employed by Gregory et al. [2014] and in Chapters 3 and 4) and for methods high-

lighted by Lahteenmaki et al. (in press). In this chapter, I also demonstrate that intraspe-

cific variability in dung beetle functional traits is insignificant compared to between spe-

cies differences. Therefore, at the scale of this investigation, dung beetle functional traits 

appear to be robust, suggesting that at the population level complete trait sampling of all 

individuals is probably unnecessary. Finally, this chapter provides practical information 

on number of individuals from which measurements should be taken in order to accurate-

ly summarise dung beetle trait information. These findings provide useful guidance to fu-

ture researchers adopting a trait-based approach when working with this key group of or-

ganisms.  

 

5.1.2 Functional diversity, dung beetle mediated seed dispersal and 

environmental context (Chapter 3)  

Chapter 3 research questions: (1) How does dung beetle taxonomic and functional diversi-

ty influence the probability of seed burial and the dispersion of seeds throughout the soil 

profile? (2) What impact does environmental context have on the strength and/or direc-

tion of observed BEF relationships? 

 

In Chapter 3 I link, for the first time, the functional diversity of naturally formed dung bee-

tle communities to the secondary dispersal of seeds across contrasting soil conditions. 

The most striking outcome of this study was the significant role that environmental con-

text played in modulating the BEF relationships observed; the effect of diversity on seed 

burial and dispersion throughout the soil profile was stronger in sandy soils compared to 

clay soils. Patterns were context dependent despite the fact that I investigated the same 

processes, carried out by a single focal taxa, in just one ecosystem. Aside from highlighting 

the clear need to consider BEF relationships under varying environmental conditions; 

these results demonstrate the difficulties in generalising BEF relationships across biomes 

and taxa, thus illustrating some of the challenges in scaling up relationships to describe 

relationships over large spatial scales. Additionally, I show that decreases in dung beetle 

diversity as a result of anthropogenic pressures is likely to reduce both the probability that 

seeds are buried and the range in the depths and distances that they are moved from a 
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central point. This has the potential to influence the seed community that successfully be-

comes established following dung processing by beetles. Therefore, this chapter demon-

strates the possible impact that changes in beetle composition could have on future forest 

regeneration. Finally, these positive BEF relationships are also important from a theoreti-

cal perspective because studies empirically linking functional diversity in animal com-

munities to the ecological processes they govern are conspicuously uncommon in the lit-

erature (but see Slade et al. 2007). I therefore provide evidence that the patterns emerging 

from two decades of BEF research in producer systems can apply to higher trophic level 

organisms. 

 

5.1.3 The influence of tropical forest dung beetle communities on the 

emergence and survival of seedlings (Chapter 4)  

Chapter 4 research questions: (1) Are seeds of different size classes differentially vulnera-

ble to the cascading effects of defaunation? (2) Does dung beetle diversity impact on vege-

tation regeneration through influencing seedling emergence and survival? (3) What is the 

species-specific optimal burial depth of experimental seeds to allow seedling emergence 

from the soil?  

 

In this final experimental chapter, I sought to understand how the diversity-functioning 

patterns observed in Chapter 3 translate across trophic levels to influence seedling emer-

gence and survival. In accordance with previous dung beetle-seed dispersal experiments I 

demonstrate that large seeds are more vulnerable to the loss of large bodied dung beetles 

than smaller seeds (Feer 1999). This adds weight to the suggestion that large seeded spe-

cies are most at risk from the extinction of complex plant-animal interactions as a result 

of human pressures (Harrison et al. 2013). However, an unexpected outcome was that 

dung beetle diversity resulted in net disadvantages for the fitness of Myrciaria dubia by 

negatively impacting on the probability of seedling emergence from the soil. This was be-

cause the optimal burial depth for germination of this species was on the soil surface, ei-

ther above or within the leaf litter. I therefore demonstrate that for some species of ani-

mal-dispersed seeds, anthropogenic reductions in dung beetle communities could be 

beneficial. This is noteworthy because, in general, it is thought that endozoochorously 

dispersed seeds will suffer from the loss of their primary and secondary dispersers due to 

defaunation and habitat modification (Harrison et al. 2013; Kurten 2013). Therefore, I 

provide a further example of the idiosyncratic and species-specific nature of plant re-
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sponses to defaunation. The final key finding from this chapter was the positive relation-

ship between dung beetle community attributes and the survival of seedlings over the 

timescale (18 weeks) of this experiment. This is the first time that beetle activity has been 

linked to the survival of seedlings and suggests that small-scale soil modification by dung 

beetles could influence seedling recruitment. I therefore present a novel way in which 

dung beetle communities could influence tropical forest regeneration and ultimately in-

fluence future vegetation composition. 

 

5.2 FU T U R E  R E S E A R C H  N E E D S 

 

In addition to increasing our knowledge of BEF relationships, this thesis also illuminates 

several areas in which more work would further our understanding of diversity-

functioning relationships and thus help predict and mitigate the consequences of an-

thropogenic changes to natural systems. In this section I discuss six key research priori-

ties. Development of the first three will facilitate the implementation and/or accuracy of 

future BEF investigations, while exploration of the final three will advance our under-

standing of complex BEF relationships.  

 

5.2.1 Development of a large-scale dung beetle trait  database 

Trait databases (e.g. Kattge et al. 2011) are increasingly important tools in facilitating 

large-scale functional investigations in plant-focussed studies (e.g. Pietsch et al. 2014), but 

equivalent collections are lacking for most higher trophic level organisms. I have demon-

strated that the use of dung beetle morphological traits can be successfully linked to the 

ecological processes they govern and that a functional approach is often a better predictor 

of processes than a taxonomic approach (Chapter 3; Griffiths et al. 2015). Dung beetles are 

known to be a cost effective indicator taxa in tropical forests (Gardner et al. 2008a) and 

they are the agents of a number of key ecosystem processes (Nichols et al. 2008). There-

fore, the development of a large-scale dung beetle trait database would facilitate the rapid 

assessment of the influence of human activities on biological communities and allow us 

to predict the consequences of change in beetle community structure for ecosystem pro-

cesses. Efforts should therefore be directed at collating trait information into global data-

bases to ensure that the time and financial resources spent on projects such this doctoral 

research are not wasted. Findings from Chapter 2 highlight the need for work focussed on 

understanding the ability of plastic versus fixed traits to predict animal-mediated ecosys-
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tem functioning. This would facilitate the targeted development a dung beetle trait data-

base. Furthermore, investigation into intraspecific trait variability between individuals 

originating from geographically distant sites, with contrasting environmental conditions 

is needed to test the assertion that dung beetle traits are robust. Finally, a measure of in-

traspecific variability associated with each species and trait would increase the utility of 

trait information within trait databases (see section 5.2.2 below) as well as allow assess-

ment of the accuracy with which average values summaries species information. 

 

5.2.2 Intraspecific variability in functional diversity indices  

In Chapter 2 I show that the omission of intraspecific trait information can result in large 

errors in functional diversity indices yet, to my knowledge, there is currently no straight-

forward way to incorporate within species trait variability into multi-trait diversity metrics. 

Plants traits, in general, display greater variability than animal traits (Albert et al. 2010b; 

Messier et al. 2010). Therefore failure to include intraspecific trait information in indices 

is likely to have even greater consequences than reported here, for the accuracy of results 

in producer-based investigations. The complete trait sampling of large numbers organ-

isms from an ecological investigation is time and resource intensive (for example, I spent 

more 480 hours collecting almost 17,000 measurements for these investigations). Fur-

thermore, if the use of large-scale trait databases is to be employed, trait information from 

individuals sampled within a study may not be available. Therefore, rather than including 

trait information from every individual in a community, the calculation of indices should 

allow an extra component, which describes the level of variability in each trait (c.f. 

Cianciaruso et al. 2009). This would greatly improve the accuracy with which we link or-

ganisms to the ecological processes they govern and has been addressed previously by 

Cianciaruso et al. (2009). The authors present a possible method to do so, however, the 

process requires a level of programming not shared by all ecologists and a solution is only 

offered for a single FD index. An extension to the FD package (Laliberté et al. 2012), for ex-

ample, in R (or development of a new package) to allow the incorporation of the level in-

traspecific trait variability into a functional diversity indices seems to be a key next step. 

This would encourage a greater number of investigators to consider within species trait 

differences and would help to develop functional ecology into a more precise and predic-

tive science.  
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 5.2.3 Which functional diversity  index? 

A key challenge facing any investigator using functional diversity indices is the selection 

of an ecologically meaningful index for their study system given the large number availa-

ble (e.g. Schleuter et al. 2010). Although some are related (e.g. Rao’s quadratic entropy; 

Rao [1982] and functional dispersion; Laliberté & Legendre [2010]), others are not, and 

therefore they cannot all be associated with a particular ecological process. Indeed, in 

Chapter 3 I show that of the four indices I used, the strength, direction and predictive 

power of their link to seed dispersal depended on the index. At present, there is a lack of 

academic discourse regarding the complexities associated with choice of index. Moreover, 

I am not aware of any investigation into the mechanisms driving these idiosyncratic re-

sponses. For example, I posit that competition within a community is negatively associat-

ed with functional evenness (FEve), which underpinned the negative association (alt-

hough not significant) between FEve and seed burial in Chapter 3. However, I am not 

aware of any information about how known changes in community structure actually 

translate into changes in FD indices. This information, in combination with a taxa-

specific understanding of the mechanisms driving diversity-functioning relationships, is 

important for the selection of the appropriate metric and would allow more meaningful 

interpretation of results and the construction of robust conclusions. Additionally, in 

Chapter 2 I demonstrate that community size and/or species richness impacts upon the 

accuracy with which an index describes a community, and that different indices perform 

better than others with small communities. Biodiversity-ecosystem functioning investiga-

tions are conducted at a range of spatial scales, from square meters (Lahteenmaki et al. in 

press) to landscapes (Pietsch et al. 2014). Therefore work into which index performs best 

under contrasting community size and diversity would provide useful guidelines for the 

investigator based on the specifics of their study system.  

 

5.2.4 Environmental context and diversity-functioning relationships 

Global ecosystem models (Harfoot et al. 2014) and the concept of planetary boundaries 

(Rockstrom et al. 2009) seek to describe and predict biome- or global-scale ecological pro-

cesses and the responses of biological communities to anthropogenic habitat modifica-

tion. However, the usefulness of these global concepts has been questioned because of the 

large spatial heterogeneity in the drivers and responses of biodiversity loss (e.g. Brook et 

al. 2013). Results from Chapter 3 further illustrate the difficulties in scaling up BEF rela-

tionships from small-scale experiments because I report contrasting relationships when 
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studying just one ecological process in different soils within a single ecosystem. Establish-

ing a well-replicated, robust experimental design in which diversity-functioning relation-

ships can be empirically tested, whilst also investigating the role of environmental hetero-

geneity in driving patterns observed is undoubtedly challenging. Therefore, a large 

proportion of our understanding of BEF relationships originates from experiments car-

ried out at single homogenous experimental sites (e.g. from experiments such as the Ce-

dar Creek grassland experiment in Minnesota, US, and the Jena Diversity Experiment in 

Germany). Despite challenges, however, in order to truly appreciate how biological diversi-

ty influences the functioning and maintenance of ecosystems, future BEF investigations 

should specifically investigate relationships under realistic, heterogeneous environmen-

tal conditions. This would increase realism in the development of global models and allow 

for greater accuracy in predicting the ecological consequences anthropogenic species ex-

tinctions.  

 

5.2.5 Diversity-functioning relationships between trophic levels 

Ecological systems are the product of interactions between multiple trophic levels. How-

ever, most BEF investigations focus on how diversity influences biophysical processes di-

rectly linked to a focal group and do not consider how species assemblages at one trophic 

level influence diversity and functioning at another (but see Moretti et al. 2013; Dinnage et 

al. 2012). The unexpected results from Chapter 4 demonstrate the complex, species-

specific nature of multitrophic BEF relationships. Further experimental work is needed to 

better understand of the ecosystem-level response to current and future changes in bio-

logical communities.  

 

5.2.6 Dung beetle effects on tropical soils  

The most commonly investigated ecological function carried out by dung beetles in tropi-

cal forests is their role as secondary seed dispersers, but what are the other subterranean 

consequences of beetle activity? Currently, there exists no information on how beetles 

modify the biophysical environment of tropical forest soils, probably because dung is 

patchily distributed in forest environments (Peck & Howden 1984) compared to leaf litter, 

which can exceed 12mg/ha (Vitousek 1984). Therefore, the decomposition of leaves is like-

ly the primary source of nutrient cycling in these systems. However, in Chapter 4, I reveal 

novel data that suggests that dung beetles could influence soil properties in a way that in-

fluences local-scale seedling establishment. This indicates that in addition to seed burial, 
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beetles could impart additional benefits to secondarily dispersed seeds in the tropics. 

However, at the moment this is speculative as my study does not provide firm insights into 

this process, but the results do highlight an exciting avenue for future work. Finally, all ex-

perimental work to date has investigated the effect of the presence/absence or abundance 

of beetles on soil properties without considering the role of diversity (e.g. Yokoyama et al. 

1991; Bang et al. 2005; Yamada et al. 2007). Consequently, a mechanistic explanation of 

what aspects of beetle communities are driving the observed effect of beetles on soils are 

lacking. These knowledge gaps could be addressed concurrently through the design of 

field and complementary laboratory experiments that link dung beetle mediated edaphic 

changes in tropical soils to the functional characteristics of the community responsible. 

 

5.3 CO N C L U D I N G  R E M A R K S 
 

This thesis provides just one example of the overwhelming complexity integral to natural 

systems. It also empirically demonstrates how diversity in invertebrate communities can 

drive ecosystem processes and influence organisms belonging to different trophic levels. 

Ecosystems are a product of their abiotic environment and the biophysical processes gov-

erned by multitrophic species interactions. Since human activities are almost certainly 

erasing species from the planet before they are known to science (Giam et al. 2012; Lees & 

Pimm 2015), we must also be erasing species interactions (and therefore processes) before 

they have been observed. It is becoming increasingly apparent that the loss of ecosystem 

processes has the potential to negatively impact upon human wellbeing through disrup-

tion of the ecosystem services upon which we rely (Cardinale et al. 2012; Hooper et al. 

2012). It is probable that we are unaware of countless species interactions underpinning 

these services. Therefore, since we are unlikely to describe the full array of diversity-

functioning relationships prior to their expiration, the continued loss of species will likely 

have unforeseen, negative consequences for the functioning and maintenance of ecosys-

tems in their current states.  

 

The study of functional ecology allows us to document associations between organisms 

and facilitates a mechanistic understanding of how biological communities shape their 

environment. However, understanding the role of diversity in maintaining ecosystem pro-

cesses will not prevent the loss of functioning associated with anthropogenic species ex-

tinctions. In order to mitigate the consequences of human-driven alternations of ecosys-
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tems and prevent or even reverse cascading ecological changes, the field must continue to 

develop to more precisely describe biological communities and the processes they govern. 

This will undoubtedly be challenging given the complexities illustrated in this thesis. 

However, the continued development of functional ecology will allow the formation of ev-

idence-based conservation and policy decisions. This is essential for the persistence of di-

verse, functioning and self-sustaining ecosystems in an increasingly human-modified 

world. Finally, the erosion of biological diversity and ecological interactions represents a 

great loss to all those who are captivated by the startling intricacy of natural systems. The 

examination of species functional role in ecosystems increases our ability to describe the-

se complexities, and in doing so increases in our appreciation of what we are unravelling. 
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