Development and evaluation of a field-based high-throughput phenotyping platform

Andrade-Sanchez, Pedro and Gore, Michael A. and Heun, John T. and Thorp, Kelly R. and Carmo-Silva, A. Elizabete and French, Andrew N. and Salvucci, Michael E. and White, Jeffrey W. (2014) Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology, 41 (1). pp. 68-79. ISSN 1445-4408

Full text not available from this repository.


Physiological and developmental traits that vary over time are difficult to phenotype under relevant growing conditions. In this light, we developed a novel system for phenotyping dynamic traits in the field. System performance was evaluated on 25 Pima cotton (Gossypium barbadense L.) cultivars grown in 2011 at Maricopa, Arizona. Field-grown plants were irrigated under well watered and water-limited conditions, with measurements taken at different times on 3 days in July and August. The system carried four sets of sensors to measure canopy height, reflectance and temperature simultaneously on four adjacent rows, enabling the collection of phenotypic data at a rate of 0.84ha h-1. Measurements of canopy height, normalised difference vegetation index and temperature all showed large differences among cultivars and expected interactions of cultivars with water regime and time of day. Broad-sense heritabilities (H2)were highest for canopy height (H 2=0.86-0.96), followed by the more environmentally sensitive normalised difference vegetation index (H2=0.28-0.90) and temperature (H2=0.01-0.90) traits. We also found a strong agreement (r 2=0.35-0.82) between values obtained by the system, and values from aerial imagery and manual phenotyping approaches. Taken together, these results confirmed the ability of the phenotyping system to measure multiple traits rapidly and accurately. Journal compilation

Item Type:
Journal Article
Journal or Publication Title:
Functional Plant Biology
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
21 Oct 2015 05:01
Last Modified:
16 Sep 2023 01:14