Kania, Tomasz and Laustsen, Niels (2016) Uniqueness of the maximal ideal of operators on the ℓ p -sum of ℓ∞ n (n ∈ N ) for 1 < p< ∞. Mathematical Proceedings of the Cambridge Philosophical Society, 160 (3). pp. 413-421. ISSN 0305-0041
PDF (UniqueMaxIdealoflpsumoflinftyns)
UniqueMaxIdealoflpsumoflinftyns.pdf - Accepted Version
Download (383kB)
UniqueMaxIdealoflpsumoflinftyns.pdf - Accepted Version
Download (383kB)
Abstract
A recent result of Leung (Proceedings of the American Mathematical Society 2015) states that the Banach algebra B(X) of bounded, linear operators on the Banach space X which is the l1-direct sum of l∞n for n=1,2,... contains a unique maximal ideal. We show that the same conclusion holds true for the Banach space X which is the lp-direct sum of l∞n for n=1,2,... and its dual space X* whenever 1<p<∞.
Item Type:
Journal Article
Journal or Publication Title:
Mathematical Proceedings of the Cambridge Philosophical Society
Additional Information:
http://journals.cambridge.org/action/displayJournal?jid=PSP The final, definitive version of this article has been published in the Journal, Mathematical Proceedings of the Cambridge Philosophical Society, 160 (3), pp 413-421 2016, © 2016 Cambridge University Press.
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2600/2600
Subjects:
?? banach algebra maximal idealbounded, linear operatorbanach sequence spacegeneral mathematicsmathematics(all) ??
Departments:
ID Code:
75813
Deposited By:
Deposited On:
21 Oct 2015 04:59
Refereed?:
Yes
Published?:
Published
Last Modified:
27 Aug 2024 23:48