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Designing multi-arm multi-stage clinical
trials using a risk–benefit criterion for
treatment selection
Thomas Jaki*† and Lisa V. Hampson

Multi-arm clinical trials that compare several active treatments to a common control have been proposed as an
efficient means of making an informed decision about which of several treatments should be evaluated further in a
confirmatory study. Additional efficiency is gained by incorporating interim analyses and, in particular, seamless
Phase II/III designs have been the focus of recent research. Common to much of this work is the constraint that
selection and formal testing should be based on a single efficacy endpoint, despite the fact that in practice, safety
considerations will often play a central role in determining selection decisions. Here, we develop a multi-arm
multi-stage design for a trial with an efficacy and safety endpoint. The safety endpoint is explicitly considered
in the formulation of the problem, selection of experimental arm and hypothesis testing. The design extends
group-sequential ideas and considers the scenario where a minimal safety requirement is to be fulfilled and the
treatment yielding the best combined safety and efficacy trade-off satisfying this constraint is selected for further
testing. The treatment with the best trade-off is selected at the first interim analysis, while the whole trial is
allowed to compose of J analyses. We show that the design controls the familywise error rate in the strong sense
and illustrate the method through an example and simulation. We find that the design is robust to misspecification
of the correlation between the endpoints and requires similar numbers of subjects to a trial based on efficacy
alone for moderately correlated endpoints. © 2015 The Authors. Statistics in Medicine Published by John Wiley
& Sons Ltd.

Keywords: familywise error rate; multi-arm multi-stage (MAMS); multiple endpoints; safety; treatment
selection

1. Introduction

Prior to undertaking a confirmatory Phase III clinical trial, there is often uncertainty about which treat-
ment should be selected for evaluation from a number of candidates. Here, treatments could be different
doses of the same drug or different combinations of multiple drugs. Uncertainty about which treatment
to select often stems from the fact that early phase trials typically evaluate medicines in different popula-
tions, using different endpoints, to those that will be the focus of confirmatory studies. The current high
failure rate of Phase III trials of around 50% [1] combined with their substantial cost [2] make selecting
an appropriate treatment for evaluation in Phase III of paramount importance.

As an efficient solution to this problem, designs for seamless Phase II/III multi-arm clinical trials have
been proposed, which compare several active treatments with a common control group. Phase II of the
study is used to learn about all treatments. At the end of this first stage, one or more of the active treat-
ments is selected and taken forward with control for evaluation in Phase III. Data accumulated across
both stages of the trial are used to test whether the selected treatment(s) is(are) superior to control at
the end of the study. The simultaneous comparison of several treatments means that expected sample
sizes and durations of multi-arm trials are markedly smaller than the alternative of evaluating each treat-
ment separately. For added efficiency, solutions that incorporate a series of interim analyses to allow
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early stopping either for efficacy or to drop ineffective treatments have recently received attention [3–7].
The approaches discussed in the literature to date can be characterized by two main differences. The first
is the underlying statistical framework that either generalizes group sequential designs [8, 9] to accom-
modate multiple treatment arms [3] or makes use of p-value combination rules within closed testing
procedures [10]. The second difference is the way in which treatments are selected. In [3], for example,
only the best performing treatment is selected at the first interim analysis and subsequently compared
with control over multiple stages, while in [6], all treatments surpassing a threshold at each stage are con-
tinued. Meanwhile, Kelly et al. [11] advocate a rule that selects all treatments close to the best performing
treatment at the first interim analysis.

A further commonality of several of the approaches discussed in the literature is the assumption of
normally distributed data and the fact that a single endpoint is considered. However, there are exceptions.
For results for non-normal endpoints, see, for example, [12–14]. More generally, adaptive procedures
using p-value combination rules within closed testing procedures make no assumptions about the dis-
tribution of patient responses nor place any constraints on the form of the treatment selection rule: the
only constraint is that p-values for testing elementary and intersection null hypotheses must follow a
Uniform(0,1) (or stochastically larger) distribution under the null [5]. For procedures that consider more
than endpoint, see [15], which describes a seamless Phase II/III trial using a composite rule based on
two hierarchically ordered efficacy endpoints to guide treatment selection decisions, as well as relevant
safety data; to adjust for multiple testing, pairwise comparisons of selected treatments against placebo
are adjusted using a Bonferroni correction. Early phase oncology trials also often assess efficacy and
monitor toxicity, see [16] for a Phase I/II trial design combining time-to-response and time-to-toxicity
endpoints into a single statistic used for interim decision making, weighting pairs of outcomes according
to utilities elicited from experts. In other areas, such as mental health, co-primary efficacy endpoints are
measured, and no single measure is accepted as definitive. Although it is sometimes sensible to combine
different endpoints into a single test statistic, substantial gains in efficiency can be achieved if they are
evaluated jointly, especially when endpoints capture the effects of a treatment on different aspects of the
disease. Furthermore, combining information obtained on efficacy and safety endpoints into a single test
statistic will be inappropriate because good efficacy will not compensate for poor safety in practice.

Methods for two-arm group-sequential trials with multivariate normal endpoints [17, 18], two binary
endpoints [19] and a mixture of time-to-event and nonfailure endpoints [20] have been developed. In this
article, we develop a multi-arm multi-stage (MAMS) design for a trial with an efficacy endpoint and a
safety endpoint. The novelty of the proposed design is that it is based on a joint model for the efficacy and
safety outcomes, while information on both endpoints is incorporated into treatment selection decisions.
We consider the situation where a minimal safety requirement is to be fulfilled and the treatment with
the best combined safety and efficacy trade-off satisfying this constraint is selected for further testing.
Selection is made at the first interim analysis, while the whole trial is allowed to compose of J analyses.
Final decisions about a selected treatment are based on tests of efficacy and safety relative to control. In
Section 2, we show that the design controls the familywise error rate (FWER) in the strong sense and
discuss methods for sample size calculations. In Section 3, we illustrate the method through an example
and simulations based on the Telmisartan and Insulin Resistance in HIV (TAILoR) study, a multi-arm
trial of treatments to reduce insulin resistance in human immunodeficiency virus-positive patients. We
conclude in Section 4 with a discussion of our findings and avenues for future research.

2. Statistical framework

We propose MAMS designs that begin in Stage 1 by comparing K active treatments with a com-
mon control group. The overall objective of the trial is to select the ‘best’ of the K treatments and
then make comparisons with the control. Rather than be based solely on efficacy, treatment selec-
tion decisions will often reflect a compromise between the potential benefits and side effects of a
new therapy. For example, a new treatment may need to demonstrate non-inferior safety and supe-
rior efficacy to represent a clinically meaningful advantage over a well-understood control. We propose
designs that explicitly account for the impact of safety considerations on decision-making. Through-
out, we restrict attention to the case where a single treatment is selected at the first analysis. We begin
by focusing attention on a single-stage design and discuss the natural extension to multiple stages in
Section 2.4.
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2.1. Treatment selection rules

Suppose the trial proceeds in Stage 1 by measuring a bivariate endpoint on each patient. Labelling control
as treatment 0, let YEik and YSik represent the efficacy and safety responses, respectively, of subject i on
treatment k, which can be modelled as(

YEik
YSik

)
∼ N

((
𝜇Ek
𝜇Sk

)
,

(
𝜎2

E 𝜌𝜎E𝜎S
𝜌𝜎E𝜎S 𝜎2

S

))
, i = 1,… , n; k = 0, 1,… ,K,

where 𝜌 is the within-subject correlation, and we assume that the variance–covariance matrix of responses
is known. Let 𝜃Ek = 𝜇Ek − 𝜇E0 and 𝜃Sk = 𝜇Sk − 𝜇S0 measure the advantage of treatment k over control
for efficacy and safety, respectively, where we will assume that increases in response are desirable for
both endpoints. Thus, 𝜽 = (𝜽E,𝜽S) is a vector of length 2K containing the efficacy and safety effects
of the K treatments. For each treatment k = 1,… ,K, we define two hypotheses HEk ∶ 𝜃Ek ⩽ 0 and
HSk ∶ 𝜃Sk ⩽ 0. The null hypothesis we wish to test is H0k ∶ HEk ∪ HSk stating that treatment k is either
ineffective or unsafe in comparison with control; rejecting H0k implies that treatment k is both effective
and safe. The global null hypothesis H0 ∶

⋂K
k=1 H0k represents the case that all K treatments are either

unsafe or ineffective. For ease of presentation, we consider tests of superiority, although Jennison and
Turnbull [18] observe that it is straightforward to accommodate tests of non-inferiority in this frame-
work by subtracting the non-inferiority margin (for a difference in means) from patient responses on the
control treatment.

For presentational purposes, we assume a common 1:1 allocation of patients to each of the K active
treatments and control and denote the number of patient responses available on each arm by n. Thus, at
the end of Stage 1, for each k = 1,… ,K, Fisher’s information for 𝜃Tk takes a common value denoted
by T = n∕(2𝜎2

T ), for T ∈ E, S. In Appendix A.1 of the Supporting Information, we outline how the
procedure could be extended to accommodate a common r ∶ 1 allocation of patients to active treatments
and control. Define 𝜇̂Tk as the maximum likelihood estimator of 𝜇Tk. Accumulated data on each treatment
are summarized by the bivariate score statistic

(
ZEk
ZSk

)
=
(E

(
𝜇̂Ek − 𝜇̂E0

)
S

(
𝜇̂Sk − 𝜇̂S0

)) ∼ N

((E𝜃EkS𝜃Sk

)
,

( E 𝜌
√
(ES)

𝜌
√
(ES) S

))
. (1)

Only treatments meeting a pre-specified minimum safety requirement may be considered for selection.
Let N denote the number of treatments eligible for selection, which are indexed by the selection set
 = {k ∶ ZSk > c}. If N = 0, the test is stopped for futility without rejecting H0. Otherwise, we select
from  the treatment maximizing the objective function

Ok =
wEZEk√E

+
wSZSk√S

, (2)

where wE and wS are pre-specified non-negative weights satisfying w2
E + w2

S = 1. Unplanned deviations
from the pre-specified treatment selection rule could lead to inflation of the FWER above the nominal
level. One of the motivations of this design is, however, to formally include safety in the decision-making
so that such deviations become less frequent. Should unexpected modification be necessary, however,
conditional error principle [21] can be used to maintain FWER control. It is worth pointing out that we
incorporate the safety threshold because the objective function allows good efficacy to compensate for
poor safety. In practice, this would only be acceptable up to a certain point, which is defined by the
safety threshold. A natural choice for this threshold in our opinion is c = 0, that is, we only select from
treatments with comparable or better safety than control in stage 1, although in principle other values
could be used instead.

Let i⋆ index the treatment selected from Stage 1 on the basis of the objective function Oi⋆ =
maxk∈{Ok}. Because the selected treatment will only be declared preferable to control if we can reject
the null hypothesis H0i⋆ ∶ HEi⋆ ∪ HSi⋆ , a natural choice of weights is wE = wS =

√
0.5 as this ensures

consistency between selection decisions and the final analysis of the trial.
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We propose single-stage tests of H01,… ,H0K with stopping rules of the form:

If ZS1,… ,ZSK ⩽ c Stop and accept H0

Otherwise Select from  treatment i⋆ maximizing objective function O
and conduct the final analysis.

At the final analysis:
If ZEi⋆ ⩾ uE and ZSi⋆ ⩾ uS Stop and reject H0 in favour of H1i⋆ ∶ {𝜃Ei⋆ > 0} ∩ {𝜃Si⋆ > 0},
Otherwise Stop and accept H0.

(3)

At the final analysis of the proposed test, superiority can only be claimed for the selected treatment i⋆.
Consequently, we define the FWER of the procedure as P{Reject H0 in favour of a false H1i⋆ ; 𝜽}. This
probability depends on both the minimum safety requirement, c, and the stopping boundaries (uE, uS).
Our approach is to fix c = 0 and find the pair of critical values maintaining strong control of the FWER at
level 𝛼. This criterion stipulates that P{Reject H0 in favour of a false H1i⋆ ; 𝜽} ⩽ 𝛼 for all configurations
of 𝜽 with at least one 𝜃Tk ⩽ 0, for T ∈ {E, S} and k ∈ {1,… ,K}. If H01,… ,H0K are all true, a
familywise error is made if the test terminates with rejection of H0i⋆ whatever treatment is selected, and
the FWER is given by P{ZEi⋆ ⩾ uE,ZSi⋆ ⩾ uS,N ⩾ 1; 𝜽}. In the remainder of this section, we discuss
how to find (uS, uE) maintaining strong control of the FWER.

2.2. Specification of test boundaries

We propose choosing the boundaries of test (3) to ensure the FWER is controlled at level 𝛼 as we approach
the following two ‘worst-case’ limiting configurations of 𝜃: (1) 𝜽E = (∞,… ,∞), 𝜽S = (0,… , 0) and (2)
𝜽E = (0,… , 0), 𝜽S = (∞,… ,∞). We claim that specifying test boundaries according to this criterion
ensures strong control of the FWER and prove this claim using a combination of analytical arguments
and simulation. This result agrees with the findings of [18] for the case that K = 1. Let Γ represent a set
indexing treatments with positive efficacy and safety effects. We begin considering a subset of the null
parameter space comprising configurations of 𝜽 such that

(a) For all treatments k with k ∉ Γ, 𝜃Ek ⩽ 0 and 𝜃Sk ⩽ 0; or
(b) For all treatments k with k ∉ Γ, 𝜃Ek ⩾ 0 and 𝜃Sk ⩽ 0; or
(c) For all treatments k with k ∉ Γ, 𝜃Ek ⩽ 0 and 𝜃Sk ⩾ 0.

Under the global null hypothesis, Γ = ∅, and the constraints on 𝜽 configurations defined previously
correspond to assuming that effects of different treatments on the same endpoint have the same sign. We
claim that the FWER of procedure (3) under configurations of 𝜽 in this restricted global null parameter
space is maximized under constellations with 𝜽E = (𝛾E,… , 𝛾E) and 𝜽S = (𝛾S,… , 𝛾S), and furthermore
that local maxima of the FWER are attained in the limit as 𝛾S → ∞ and 𝛾E = 0, and in the limit as
𝛾E → ∞ and 𝛾S = 0.

To prove these claims, we begin by assuming that all treatments are always eligible for selection and
consider the configuration of 𝜽 with 𝜽E = (𝛾E,… , 𝛾E) and 𝜽S = (𝛾S,… , 𝛾S). Then, letting some elements
of 𝜽S fall below 𝛾S decrease stochastically the distribution of (ZEi⋆ ,ZSi⋆) as both statistics tend to take
lower values on average. To explain this, note that since all treatments remain competitive for efficacy,
treatments must perform well for ZS if they are to rank highly for the objective function O. Thus, selection
decisions are, in effect, driven primarily by safety data so that a treatment may beat its competitors on the
basis of O with lower values of ZE. Letting some of the 𝜃Sks drop below 𝛾S also decreases stochastically
the distribution of ZSi⋆ too: the treatment associated with the largest element of 𝜽S is now ‘safest’ by some
margin, meaning that on average, lower values of ZS will be sufficient for it to beat the weaker competition
to ensure selection. Similar arguments imply keeping 𝜽S fixed at 𝜸S and letting some elements of 𝜽E fall
below 𝛾E decreases stochastically the distributions of ZEi⋆ and ZSi⋆ . On the other hand, simultaneously
forcing elements of 𝜽E below 𝛾E and elements of 𝜽S below 𝛾S decreases stochastically the distribution of
(ZEi⋆ ,ZSi⋆): systematic differences between treatments imply that it is possible for a good safety profile
to compensate for poor efficacy (and vice versa) resulting in lower average values of ZE and ZS for the
selected treatment.

Letting 𝜽E = (𝛾E,… , 𝛾E) and 𝜽S = (𝛾S,… , 𝛾S), increasing 𝛾E or 𝛾S increases the probability of rejecting
H0. Thus, looking across the restricted global null parameter space, the probability of making a fami-
lywise error is maximized at the boundaries of the space, that is, in the limit as 𝛾S → ∞ and 𝛾E = 0,
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and in the limit as 𝛾E → ∞ and 𝛾S = 0. If for some treatment k, 𝜃Ek and 𝜃Sk are both positive so that
Γ ≠ ∅, this treatment will be more likely to be selected, in which case we cannot commit a family-
wise error and the FWER decreases. Therefore, controlling the FWER for all configurations of 𝜽 in the
restricted global null parameter space ensures the FWER is controlled over the wider null parameter space
defined previously.

So far, we have consider the case that all treatments are always eligible for selection, in effect setting
c = −∞. However, we claim that for general values of c, local maxima of the FWER are attained in the
limit as we approach the worst case configurations of 𝜽 identified previously. This is because under this
requirement, the expected size of  is determined by 𝛾S. Therefore, increasing 𝛾S increases stochas-
tically the distribution of (ZEi⋆ ,ZSi⋆) as the average number of treatments from which we can select
increases. In particular, as 𝛾S approaches ∞,  includes all K treatments almost surely and rejects H0 if
ZEi⋆ > uE. The probability of falsely rejecting H0 is then maximized for 𝛾E = 0. Similarly, setting 𝛾S = 0,
the FWER reaches a second local maximum as 𝛾E → ∞. To see this note that for 𝛾S = 0, inclusion of
treatments in the selection set is random so that the probability of rejection is maximized for maximal
effect on efficacy.

To complete our justification for designing test (3) to control the FWER under the ‘worst-case’ lim-
iting configurations of 𝜽, we go beyond the arguments stated previously to claim that this approach
ensures strong control of the FWER. In particular, tests defined in this way will control the FWER
for any configuration of 𝜽 with 𝜽E = (𝜃E1,… , 𝜃EK) and 𝜽S = (𝜃S1,… , 𝜃SK), where one 𝜃⋅i is zero
and the other ∞. While we cannot prove these claims analytically, we evaluate them via simulation in
Section 3.2. Assuming for now that these claims do hold, it is appropriate to choose boundaries (uE, uS) to
ensure that

lim
𝛾S→∞

P{ZEi⋆ ⩾ uE,ZSi⋆ ⩾ uS ∣ N ⩾ 1;𝜽E = (0,… , 0),𝜽S = (𝛾S,… , 𝛾S)} = 𝛼, (4)

lim
𝛾E→∞

P{ZEi⋆ ⩾ uE,ZSi⋆ ⩾ uS ∣ N ⩾ 1;𝜽E = (𝛾E,… , 𝛾E),𝜽S = 0} = 𝛼∕P{N ⩾ 1;𝜽S = 0}, (5)

because lim𝛾S→∞ P{N ⩾ 1;𝜽S = (𝛾S,… , 𝛾S)} = 1 and the probability that at least one treatment meets
the minimum safety criterion does not depend on 𝜽E. As 𝛾S and 𝛾E approach ∞, the bivariate probabilities
on the left hand sides (LHSs) of (4) and (5) converge to univariate probabilities. We find (uE, uS) so that the
limits of these marginal rejection probabilities are equal to the values required to ensure FWER control.
Limits of rejection probabilities are found by integrating the limits of the marginal conditional densities
of ZEi⋆ and ZSi⋆ derived in Appendix A.2 of the Supporting Information. It is important to note that these
marginal densities depend on the correlation coefficient 𝜌. So far, we have assumed that this parameter is
known. In Section 3.3, we explore the robustness of attained FWERs to misspecification of 𝜌. Marginal
densities of test statistics depend on variances only through the information levels E and S. The effect
of assuming a known variance has previously been investigated in similar settings [22], and the quantile
substitution approach described in [8] has been shown to work well.

2.3. Sample size calculations

We wish to calculate the sample size needed for test (3) to attain a disjunctive power, that is, probability
of rejecting at least one false null hypothesis [5, 23], of 1 − 𝛽 under the configuration of 𝜽 with 𝜽E =
(𝛿0,… , 𝛿0, 𝛿) and 𝜽S = (𝛾S,… , 𝛾S) with 𝛾S > 0. We may approximate further by letting 𝛾S → ∞, which
can be justified by the belief that a potentially unsafe treatment is unlikely to be included in the trial. In
this case, a test’s power simplifies to

lim
𝛾S→∞

P{ZEi⋆ ⩾ uE,ZSi⋆ ⩾ uS ∣ N ⩾ 1;𝜽E = (𝛿0,… , 𝛿0, 𝛿),𝜽S = (𝛾S,… , 𝛾S)}

= lim
𝛾S→∞

P{ZEi⋆ ⩾ uE ∣ N ⩾ 1;𝜽E = (𝛿0,… , 𝛿0, 𝛿),𝜽S = (𝛾S,… , 𝛾S)},
(6)

and limiting probabilities are found by integrating the limits of the marginal conditional density of ZEi⋆ .
Using the results of Appendix A.1 and following the workings of Appendix A.2.1 of the Supporting
Information, we can show that limiting rejection probability (6) is given by
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(K − 1)∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
fXE0∣XS0

(
x1 − 𝛿0E ∣ y

)
fXS0

(y) fXS0
(y − m)P

{
U ⩽ 𝓁4

}K−2
P
{

U ⩽ 𝓁5

}
× Φ

(
x1 −

√E∕S𝜌(y − m) − uE√
(E∕2)(1 − 𝜌2)

)
dx1 dy dm

+ ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
fXE0∣XS0

(
x1 − 𝛿E ∣ y

)
fXS0

(y) fXS0
(y − m)P

{
U ⩽ 𝓁4

}K−1

× Φ
⎛⎜⎜⎜⎝

x1 −
√E∕S𝜌(y − m) − uE√(E∕2

) (
1 − 𝜌2

)
⎞⎟⎟⎟⎠ dx1 dy dm,

(7)

where U ∼ N(0, wEwS𝜌 + 0.5),
√
(ES)𝓁4 =

√EwSy +
√SwE(x1 − E𝛿0) and

√
(ES)𝓁5 =√EwSy +

√SwE(x1 − E𝛿). For computational convenience, we proceed assuming that E = S = 1
and conduct a one-dimensional search to find the common information level ⋆

1 for which rejection prob-
ability (7) equals 1−𝛽; at each iteration of this search, boundaries for monitoring score statistics ZEi⋆ and
ZSi⋆ are updated to ensure strong control of the FWER at level 𝛼 under the proposed information level.
Because information level ⋆

1 typically corresponds to requiring fractions of subjects, in practice, we pro-
pose rounding up the total sample size to n⋆ = 2 max{𝜎2

E⋆
1 , 𝜎

2
S⋆

1 } patients per treatment arm. The test
is then applied with critical values calculated for information levels E = n⋆∕(2𝜎2

E) and S = n⋆∕(2𝜎2
S).

If a procedure’s power is monotone increasing in E and S, this sample size criterion will be conser-
vative in the sense that attained power will exceed 1 − 𝛽. In Section 3.2, we use simulation to evaluate
properties of tests designed according to the proposed sample size criterion.

2.4. Beyond single-stage designs

It is straightforward to extend our approach to find designs maintaining control of the FWER when mul-
tiple interim analyses are planned. Let ZTk,j denote the score statistic at interim analysis j for endpoint T
on treatment k. A multi-stage test of H01,… ,H0K has a stopping rule of the form:

At the end of stage 1:
If ZS1,1,… ,ZSK,1 ⩽ c Stop and accept H0

Otherwise Select from  treatment i⋆ maximizing objective function O
and conduct interim analysis 1.

At interim analysis j = 1,… , J:
If ZEi⋆,j ⩾ uEj and ZSi⋆ ⩾ uSj Stop and reject H0 in favour of H1i⋆ ∶ {𝜃Ei⋆ > 0} ∩ {𝜃Si⋆ > 0},
If ZEi⋆,j ⩽ lEj or ZSi⋆,j ⩽ lSj Stop and accept H0,
Otherwise Continue to interim analysis j + 1.

(8)

Multi-stage tests are defined with binding futility rules so that if either ZEi⋆,j ⩽ lEj or ZSi⋆,j ⩽ lSj, the
procedure must stop immediately at interim analysis j without declaring treatment i⋆ safe and effective.
Criteria (4) and (5) imply that we can uncouple the searches needed to find critical values for monitoring
efficacy and safety score statistics. Furthermore, for T ∈ {E, S}, increments ZTi⋆,2 − ZTi⋆,1,… ,ZTi⋆,J −
ZTi⋆,J−1 are independent and follow the same distribution as increments in score statistics generated by
a univariate group sequential test (GST) without selection [3]. Thus, we can find (lE1, uE1),… , (lEJ , uEJ)
as the boundaries defining a one-sided univariate GST monitoring {ZEi⋆,1,… ,ZEi⋆,J} with limiting con-
ditional type I error rate 𝛼 given N ⩾ 1 under 𝛾E = 0 and letting gammaS → ∞. Following [3], we
propose that an alpha-spending approach [24] be used to find the upper and lower boundaries at each
stage j = 1,… , J satisfying

lim
𝛾S→∞

P
{

ZEi⋆,1 ∈
(
lE1, uE1

)
,… ,ZEi⋆,j−1 ∈

(
lE(j−1), uE(j−1)

)
,ZEi⋆,j ⩾ uEj ∣ N ⩾ 1;𝜽E = 0,𝜽S

=
(
𝛾S,… , 𝛾S

)}
= fU

(
tj
)
− fU

(
tj−1

)
lim
𝛾S→∞

P
{

ZEi⋆,1 ∈
(
lE1, uE1

)
,… ,ZEi⋆,j−1 ∈

(
lE(j−1), uE(j−1)

)
,ZEi⋆,j ⩽ lEj ∣ N ⩾ 1;𝜽E

= 0,𝜽S =
(
𝛾S,… , 𝛾S

)}
= fL

(
tj
)
− fL

(
tj−1

)
,
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where tj is the fraction of EJ , the maximum information level for the efficacy treatment effect, accu-
mulated by stage j, and fU and fL are monotone increasing functions satisfying fU(0) = fL(0) = 0
and, for t ⩾ 1, fU(t) = 𝛼 and fL(t) = 1 − 𝛼. A similar process can be used to find the boundaries
(lS1, uS1),… , (lSJ , uSJ) for monitoring {ZSi⋆,1,… ,ZSi⋆,J}. Safety boundaries are determined using fL and fU
to spend error probabilities as a function of the observed information for 𝜃E,i⋆ ; this ensures that uEJ = lEJ
and uSJ = lSJ , so that procedure (8) terminates properly at analysis J with a final hypothesis decision for
any choice of EJ even when the variances of the efficacy and safety endpoints differ. To find the required
sample size, we follow Section 2.3 and search for the maximum information level EJ for which the test
has power 1 − 𝛽 according to criterion (6) under an anticipated information sequence E1,… ,EJ , set-
ting each Sj = 𝜎2

EEj∕𝜎2
S to account for differences between the rates at which information on safety and

efficacy effects accumulate. The test will recruit up to n⋆ = 2𝜎2
EEJ patients on the selected treatment

and control in the absence of early stopping.

3. Example

In this section, we will examine the operating characteristics of the proposed designs through a series of
examples motivated by the TAILoR study, a MAMS trial comparing several doses of telmisartan with
control for the reduction of insulin resistance in human immunodeficiency virus-positive patients receiv-
ing combination antiretroviral therapy [6]. The study, which is currently ongoing, uses the change in the
Homeostatic model assessment - Insulin resistance (HOMA-IR) index between baseline and 24 weeks as
the efficacy endpoint.

In this section, we imagine how the TAILoR study might have been designed as a single-stage pro-
cedure of the form shown in (3), using the methodology described in this paper to incorporate a safety
endpoint in addition to the efficacy endpoint used in the ongoing study. A plausible safety endpoint is
change in systolic blood pressure from baseline because telmisartan is licensed for the treatment of hyper-
tension. An excessive drop in blood pressure for patients without hypertension would be considered an
undesirable safety risk. With the exception of this modification, we will assume the design parameters
of the original TAILoR study. We therefore stipulate an FWER of 0.05 and seek designs randomizing
patients equally across treatment arms with power 0.9 to correctly reject one false null hypothesis. When
the TAILoR study was first designed, four doses of telmisartan were planned. For consistency with pre-
vious publications [22, 25], we consider the scenario that K = 4 active treatments are to be compared
with control, despite the ongoing study using three doses because of last minute changes to the study. The
standardized desirable effect for efficacy, 𝛿, used for sample size calculations is set as 0.545, and the mini-
mum clinically important difference is defined as 0.178. Under the assumption that all treatments are truly
safe, we do not require specification of an effect on safety when using (7) for sample size calculations.
However, if such an assumption is undesirable, Equation (6) in Appendix A.1 of the Supporting Informa-
tion can be used with the anticipated safety effect. Boundary calculations and sample size determinations
require us to numerically evaluate multi-dimensional integrals. For this purpose, we used the R package
cubature [26] and verified solutions for the obtained boundaries using 100 000-fold simulations.

3.1. Design options

Figure 1 shows how the required information per arm and safety/efficacy stopping boundaries vary as the
weight wE changes. The within-subject correlation of efficacy and safety responses is assumed to be 0.4.
The information required is largest when selection of the treatment is based only on the safety endpoint
(wE = 0), while it decreases as the weight on efficacy increases. Similarly, both the efficacy and safety
boundaries decrease as the required information decreases, as expected. There is, however, an apparent
difference between the efficacy and safety boundary, depending on the weight given to each endpoint. For
small weights on efficacy, the efficacy boundary is smaller than the safety boundary, while this pattern
reverses once more weight is attributed to efficacy for selection. For equal weights, the boundaries for
efficacy and safety are identical.

3.2. Error rates

In this section, we illustrate properties of tests of the form (3) designed and conducted with equal weights
wE = wS and correlation coefficient 𝜌 = 0.4. Under this setting, the information required per arm
is ⋆

1 = 47.148 (n = 94.296), and the stopping boundaries are uE = uS = 14.466. Empirical error
rates based on 10 000 simulation runs for each point on a grid of parameters are shown in Figure 2 for
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Figure 1. Information per arm, ⋆
1 (left), and safety/efficacy stopping boundary (right) needed for tests of the

form (3) to maintain strong control of the FWER at level 0.05 and attain limiting power 0.9 when 𝜽E =
(0.178, 0.178, 0.178, 0.545) and all treatments are safe. Designs are found for tests making treatment selection

decisions according to objective function (2) assuming 𝜎E = 𝜎S = 1 and 𝜌 = 0.4.
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Figure 2. Empirical FWERs over the null space (left) and power to correctly reject at least one false null hypothe-
sis (right) of tests of the form (3) designed to maintain strong control of the FWER at level 0.05 and to attain power
0.9 under 𝜽E = (0.178, 0.178, 0.178, 0.545) (when all treatments are safe). Tests are designed and conducted with
K = 4, w2

E = w2
S = 0.5, 𝜌 = 0.4 and 𝜎E = 𝜎S = 1. FWER and power are evaluated under configurations of 𝜽 with

𝜽S = (𝛾S,… , 𝛾S) and 𝜽E = (𝛾E,… , 𝛾E). Results are based on 10 000 simulations for each parameter configuration.

cases where all treatments have the same pair of effects (𝛾E, 𝛾S) versus control. The left-hand panel
clearly shows that the FWER of the design is maximized if one of the effects is at the boundary of the
null space and the other is large. As expected, the power of the design increases as at least one of the
effects increases.

Figure 3 provides empirical FWERs for parameter configurations of the from 𝜽E =
(𝜃E1,… , 𝜃EK), 𝜽S = (𝜃S1,… , 𝜃SK), where one parameter of each pair (𝜃Ei, 𝜃Si) is large and the other zero
to evaluate the conjecture made in Section 2.2, which designs will control these at the nominal level 𝛼.
For the purpose of this evaluation, the large effect was set to 1 million, and 100 000-fold simulations are
used. From the graph, it can be seen that the FWER is well controlled for any parameter configuration,
as conjectured.

Figure 4 shows how the power of the procedure changes as the safety of the experimental treatments
changes. Results are presented for one to four treatments exhibiting the desired effect for efficacy of
0.545, while the remaining have the minimum clinically important effect of 0.178. Power increases as
the safety of the treatments increases and reaches the desired level of 0.9 for a safety effect of around
0.5. Power also increases as the number of treatments with the desired efficacy increases, although this
increase diminishes somewhat with the number of efficacious treatments.
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Figure 3. Empirical FWER for different configurations of the true effects for tests of the form (3) designed to
maintain strong control of the FWER at level 0.05. Tests are designed and conducted with K = 4, 𝜌 = 0.4,
w2

E = w2
S = 0.5 and 𝜎E = 𝜎S = 1. Results are based on 100 000 simulations for each parameter configura-

tion. The dashed horizontal line corresponds to the nominal FWER and the dotted line to the upper bound for
simulation error.
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Figure 4. Empirical power to correctly reject at least one false null hypothesis of tests of the form (3) designed to
maintain strong control of the FWER at level 0.05 and attain power 0.9 under 𝜽E = (0.178, 0.178, 0.178, 0.545)
(when all treatments are safe). Tests are designed and conducted with K = 4, w2

E = w2
S = 0.5, 𝜌 = 0.4 and 𝜎E =

𝜎S = 1. Power is evaluated under configurations of 𝜽 with 𝜽S = (𝛾S,… , 𝛾S) and 𝜽E = (𝛿0,… , 𝛿0, 𝛿,… , 𝛿) such
that j treatments have the desired effect for efficacy (𝛿 = 0.545) and the remaining have the minimum clinically

important effect (𝛿0 = 0.178). Results are based on 100 000 simulations for each parameter configuration.

3.3. Misspecification of 𝜌

When specifying our model, we have so far assumed that response variances and their correlation are
known. In this section, we will investigate the robustness of our design to the assumption of known
correlation. Figure 5 shows the simulated FWER based on 100 000 simulations of tests as the correlation
between endpoints varies. Six different true parameter constellations are considered, namely, the global
null hypothesis and five ‘worst-case’ configurations (once again using 1 million instead of infinity for
simulation purposes). For all six settings, the FWER is controlled at the design value 𝜌 = 0.4, and the
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Figure 5. Empirical FWERs of tests of the form (3) designed to maintain strong control of the FWER at level 0.05
and attain power 0.9 under 𝜽E = (0.178, 0.178, 0.178, 0.545) (when all treatments are safe). Tests are designed
and conducted with K = 4, w2

E = w2
S = 0.5 and 𝜎E = 𝜎S = 1. Tests are also designed assuming 𝜌 = 0.4 but

conducted for a range of correlations. Empirical error probabilities are evaluated under configurations of 𝜽 with
𝜽S = (𝛾S,… , 𝛾S) and 𝜽E = (𝛾E,… , 𝛾E). Results are based on 100 000 simulations for each scenario.

procedure is conservative for all correlations below this. Under the global null hypothesis, only perfect
correlation results in an inflation of the FWER, while it is inflated once the true correlation is above the
design value for the worst-case configurations. The maximum inflation, achieved under perfect positive
correlation, is, however, small at 10% of the nominal value of the FWER.

Tamhane et al. [27] observe that typically either the correlation is assumed to be known (as performed
here) or a correlation of one is treated as the worst-case scenario. Given the relative conservatism of the
proposed procedure at reasonable values of the parameters, we believe the former is sufficient, although
the latter would certainly also be possible. A more elegant solution given in [27] overcomes this problem
by estimating the correlation mid-study and uses an approach due to Berger & Boos [28] to obtain an
upper bound for the FWER accounting for the sampling error of the sample correlation coefficient.

4. Discussion

In this paper, we have presented an approach for designing MAMS studies based on a joint model for
efficacy and safety data, which considers both endpoints when selecting the most promising treatment
for further investigation and tests the efficacy and safety of the selected treatment relative to control. The
main challenge with obtaining the relevant distributions of the test statistics arose from the requirement
to select from treatments satisfying a minimum safety requirement. We have shown that the FWER is
strongly controlled under the assumption that effects of different treatments for the same endpoint have
the same sign. Our simulation results show, however, that strong control of the FWER also appears to
hold when this assumption is not made.

In the presentation and derivations, we have made a number of assumptions that may not be appropriate
for specific settings. For example, single-stage designs are formulated assuming patient responses follow
a bivariate normal distribution with a common correlation between efficacy and safety responses across
the active and control treatments. In addition, calculations assume that at the end of Stage 1, there is a
common information level for 𝜃E,1,… , 𝜃E,K and a common information level for 𝜃S,1,… , 𝜃S,K . This joint
distribution will not in general apply if data do not follow a normal distribution because information
levels and correlation coefficients may depend on unknown parameters, such as response rates in the case
of binary data (see section 9 of [27]). One potential solution would be to approximate and derive test
boundaries setting the correlation coefficient and information levels to the values that would apply under
𝜽E = 𝜽S = 0. However, further simulations would be needed to verify whether this approach would
maintain strong control of the FWER at a level close to the nominal value.
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Another simplifying assumption we have made is to propose designs setting the safety threshold to be
zero, so that only treatments with better safety than control can be selected. A simple shift of the safety
test statistic can be used to allow for different thresholds to be used. Similarly, it may be desirable to select
treatments only based on efficacy provided that the treatment is safe enough. Simply setting the weight
on safety within the objective function to zero can accomodate this situation. Finally, as outlined before,
it may not be appropriate to test for superiority in terms of safety over control. Shifting the respective
test statistics for safety will allow non-inferiority hypothesis to be used instead. It is also easy to envis-
age application of this design in other settings, such as mental health trials, where there are co-primary
efficacy endpoints. In these cases, no minimal threshold would be applied to either efficacy endpoint –
the ideas of this work apply to this, somewhat simpler, situation setting the threshold c = −∞.

One great benefit of multi-stage clinical trials is their reduced expected sample size compared with
single-stage designs. Such gains can, however, only be realized, if the primary endpoint is observed
quickly relative to the recruitment time [29]. When this is not the case, it would be of interest to investigate
whether methods such as the one described in [30] can be extended to make selection decisions based on
intermediate endpoints in the setting discussed in this paper.

Another area for further work regards how to calculate confidence intervals on termination of tests
of the form (3). The procedure based around hypothesis testing described here allows almost formulaic
decisions about the superiority of experimental treatments over control. It is essential, however, that
confidence intervals should also be available to inform decision makers about the probable sizes of any
efficacy and safety benefits, in order to give a complete description of the evidence supporting a selected
treatment. A future work will be necessary to evaluate if related work [14, 31] can be utilized to obtain
interval estimates as well.
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