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Geostatistical methods are increasingly used in low-resource settings where disease reg-

istries are either non-existent or geographically incomplete. In this thesis, which is com-

prised of four papers, we address some of the common issues that arise from analysing

disease prevalence data. In the first paper we consider the problem of combining data

from multiple spatially referenced surveys so as to account for two main sources of vari-

ation: temporal variation, when surveys are repeated over time; data-quality variation,

e.g. between randomised and non-randomised surveys. We then propose a multivariate

binomial geostatistical model for the combined analysis of data from multiple surveys.

We also show an application to malaria prevalence data from three surveys conducted

in two consecutive years in Chikwawa District, Malawi, one of which used a more eco-

nomical convenience sampling strategy. In the second paper, we analyse river-blindness

prevalence data from a survey conducted in 20 African countries enrolled in the African

Programme of Onchocerciasis Control (APOC). The main challenge of this analysis is

computational, as a binomial geostatistical model has to be fitted to more than 14,000

village locations and predictions carried out on about 10 millions locations across Africa.

To make the computation feasible and efficient, we then develop a low rank approxima-

tion based on a convolution-kernel representation which avoids matrix inversion. The

third paper is a tutorial on the use of a new R package, namely “PrevMap”, which pro-

vides functions for both likelihood-based and Bayesian analysis of spatially referenced

prevalence data. In the fourth paper, we present some extensions of the standard geosta-

tistical model for spatio-temporal analysis of prevalence data and modelling of spatially

structured zero-inflation. We then describe three applications that have arisen through

our collaborations with researchers and public health programmers in African countries.
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Chapter 1

Introduction

In this thesis we address some of the issues related to disease prevalence mapping with a

particular focus on its application in low-resource settings. In the first paper we extend

the standard geostatistical model (Diggle, Tawn, and Moyeed, 1998) for prevalence data

to allow for temporal and data quality variation across surveys. In the second, we de-

scribe an application to a large spatial data-set on river blindness prevalence data. In the

third paper we illustrate how to use newly developed statistical software for prevalence

mapping. In the fourth paper, we present additional extensions of the standard geo-

statistical model to model spatio-temporal variation in disease prevalence and spatially

structured zero-inflation.

1.1 The standard geostatistical model for prevalence data

Let X = {x1, . . . , xn} ⊆ R2 denote a set of n distinct spatial locations that represent the

geographical coordinates of sampled households or villages in a prevalence survey. At

each of the locations xi, we then samplemi individuals and perform a test on each of them

for the disease of interest. Let Yi denote the resulting number of positive tests at location

xi. Conditionally on a spatial stochastic process S(xi) and mutually independent zero-

mean Gaussian latent variables Zi, we assume that Yi are mutually independent binomial

variables with probability of having a positive test pi. A logit-link function is then used

for pi, assuming the form

log{pi/(1− pi)} = d(xi)
>β + S(xi) + Zi, (1.1)

where d(xi) is a vector of explanatory variables which are often obtained by remotely-

sensed images (e.g. temperature, rainfall, NDVI, population density) or represent house-

hold specific information (e.g. material of the house wall, type of roof, ownership of

1



Introduction 2

bed-nets, Socio-Economic-Status). Each of these are associated with regression coeffi-

cients given by the elements of the vector β. The spatial random effect S(xi) is used

to account for unmeasured spatially structured risk factors which induce residual spatial

correlation amongst the observations. The unstructured residuals Zi, often referred to

as “nugget effect”, can be dually interpreted either as small-range spatial variation (on a

range smaller than the observed minimum distance between locations) or extra-binomial

variation within households (e.g. genetic variation). It is generally difficult to disentan-

gle the two effects without multiple observations at each location xi, which are often

not available. However, the main concern of almost any geostatistical analysis is in the

prediction of S at an unobserved location x while Z is usually a nuisance.

The model in (1.1) can also be modified to allow for individual-specific information. We

then introduce an additional subscript j to denote the j-th individual within the i-th

household (or village). The response variable Yij is now a binary indicator of the test

outcome for each individual and takes value 1 if the test is positive and 0 if negative.

Conditionally on S(xi) and Zi, Yij now follows a Bernoulli distribution with probability

of a positive test pij . The logit-link function then assumes the form

log{pij/(1− pij)} = d>ijγ + d(xi)
>β + S(xi) + Zi, (1.2)

where dij are individual-specific covariates, e.g. age and gender, with associated vector

of regression coefficients γ.

We also assume that S(x) is a zero-mean, stationary and isotropic Gaussian process,

i.e. with invariant distribution under translation and rotation. In this thesis, we restrict

our attention to the class of Matérn (1986) covariance functions, given by the following

expression

cov(S(xi), S(xj)) = σ2{2k−1Γ(κ)}−1(uij/φ)κKκ(uij/φ), (1.3)

where uij is the Euclidean distance between xi and xj , σ2 is the variance of S(x), φ is a

scale parameter and Kκ(·) is the Bessel function of the second kind of order κ > 0. The

parameter κ determines the smoothness of the process S(x) which is then dκe − 1 times

differentiable, with dae indicating the smallest integer not less than a. Since estimating

κ is generally difficult, a practical approach is to fix κ at a plausible value. In the case

κ = 1/2, (1.3) simplifies to the exponential covariance function, i.e.

cov(S(xi), S(xj)) = σ2 exp{−uij/φ}, (1.4)

which corresponds to a mean-square continuous process.
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1.2 Structure of the thesis

In Chapter 2 (Paper 1), the specific research questions that we address are the following.

• How to account for spatially structured bias inherent to data from non-randomised

surveys?

• How to account for temporal variation across surveys that are repeated over time?

• What is the gain in accuracy of prevalence estimates when combining the data in a

joint model with respect to a marginal analysis of unbiased prevalence data only?

To answer these questions, we develop a multivariate binomial geostatistical model for

the joint analysis of data from multiple spatially referenced surveys. An important

assumption of our approach is that there is at least one “gold-standard” survey able

to deliver unbiased estimates of prevalence. In our application, we analyse data from

three malaria prevalence surveys two of which are “gold-standard” but conducted in two

consecutive years, whilst the third, at the time of the second “gold-standard”, uses a more

economic, but potentially biased, convenience sampling approach. The resulting model

for the data is then characterised by a tri-variate process (S1(x), S2(x), B(x)) where:

S1(x) and S2(x) correspond to temporally correlated spatial random effects for the first

and second “gold-standard” surveys, respectively, and B(x) is spatially structured bias

inherent to the convenience survey. We then compare the accuracy in the estimates of

S2(x) obtained by using the proposed joint approach with two simpler approaches that

only make use of “gold-standard” data.

In Chapter 3 (Paper 2) we present an application to river-blindness prevalence data from

20 countries enrolled in the African Programme of Onchocerciasis Control (APOC). A

standard geostatistical model is used to analyse the spatial variation in river-blindness

prevalence in 14,309 villages across Africa. Given the high dimensionality of the resulting

random effect structure, standard fitting algorithms are very inefficient. Indeed, evalua-

tion of the likelihood function would require the inversion of a 14,309 by 14,309 covariance

matrix. To circumvent the problem of matrix inversion, we then propose to approximate

the spatial process S(x) using a low-rank approximation based on convolution kernel

representations (Higdon, 1998; Higdon, 2002), i.e.

S(x) ≈
k∑
j=1

K(x− x̃j)Zj , (1.5)

where x̃j for j = 1 . . . , k is a set of pre-defined spatial knots, K(·) is a suitable kernel

function and Zj are independent identically distributed zero-mean Gaussian variables
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with variance σ2. An additional advantage of (1.5) is that prediction of S(x) at un-

observed locations can be carried out without computing the cross-covariance matrix.

In our case, this would be computationally infeasible, as we have more than 10 million

prediction locations across Africa.

Chapter 4 (Paper 3) is a tutorial paper on a newly developed R package, “PrevMap”,

that fits the models given by (1.1) and (1.2) using both likelihood-based and Bayesian

methods of inference. More details on the fitting algorithms used in Paper 1 and Paper

2 are given. We also illustrate the use of the package through the analysis of Loa-

loa prevalence data from Nigeria and Cameroon and show an example of the low-rank

approximation in (1.5) for a large simulated spatial data-set. Other functionalities of the

package include fitting of linear geostatistical models that can be used as a faster but

approximate procedure based on logit-transformed empirical prevalence data.

In Chapter 5 (Paper 4), we first review the standard geostatistical model and available

open-source statistical software. We then describe three extensions of the standard geo-

statistical model to address four specific methodological questions: combining data from

multiple spatially referenced surveys (see also Chapter 2); spatio-temporal modelling of

disease prevalence; estimating the impact of control interventions, such as distribution

of insecticide treated nets and indoor residual spraying in the case of malaria control;

geostatistical modelling of zero-inflated prevalence data. For each of these we show ap-

plications that have arisen from our collaborations with researchers and public health

programmers in African countries. More specifically we analyse: malaria prevalence

data from a community survey and a school-based, hence potentially biased, survey,

both conducted in Nyanza Province, Kenya; malaria prevalence data from a continuous

Malaria Indicator Survey conducted in Chikwawa District, Malawi, from May 2010 to

June 2013; a subset of the river-blindness prevalence data of Chapter 3 corresponding to

Mozambique, Malawi and Tanzania.

Chapter 6 is a concluding discussion where we briefly explore possible extensions of the

developed methodology in the previous chapters.

References

Diggle, P. J., J. A. Tawn, and R. A. Moyeed (1998). “Model-based geostatistics (with

discussion)”. In: Applied Statistics 47, pp. 299–350.

Higdon, D. (1998). “A process-convolution approach to modeling temperatures in the

North Atlantic Ocean”. In: Environmental and Ecological Statistics 5, pp. 173–190.



Introduction 5

Higdon, D. (2002). “Space and space-time modeling using process convolutions”. In:

Quantitative methods for current environmental issues. Ed. by C. W. Anderson, V. Bar-

nett, P. C. Chatwin, and A. H. El-Shaarawi. Springer-Verlag, New York, pp. 37–56.

Matérn, B. (1986). Spatial Variation. Second. Springer, Berlin.



Chapter 2

Paper 1. Combining data from

multiple spatially referenced surveys

using generalized linear

geostatistical models

E. Giorgi1, S. S. S. Sanie2, D. J. Terlouw2 and P. J. Diggle1

1 Lancaster Medical School, Lancaster University, Lancaster, UK
2 Liverpool School of Tropical Medicine, Liverpool, UK

6



Paper 1. Combining data from multiple prevalence surveys 7

Summary

Data from multiple prevalence surveys can provide information on common parameters

of interest, which can therefore be estimated more precisely in a joint analysis than by

separate analyses of the data from each survey. However, fitting a single model to the

combined data from multiple surveys is inadvisable without testing the implicit assump-

tion that all of the surveys are directed at the same inferential target. In this paper we

propose a multivariate generalized linear geostatistical model that accommodates two

sources of heterogeneity across surveys so as to correct for spatially structured bias in

non-randomised surveys and to allow for temporal variation in the underlying prevalence

surface between consecutive survey-periods. We describe a Monte Carlo maximum likeli-

hood procedure for parameter estimation, and show through simulation experiments how

accounting for the different sources of heterogeneity among surveys in a joint model leads

to more precise inferences. We describe an application to multiple surveys of malaria

prevalence conducted in Chikhwawa District, Southern Malawi, and discuss how this

approach could inform hybrid sampling strategies that combine data from randomised

and non-randomised surveys so as to make the most efficient use of all available data.

Keywords: convenience sampling; generalized linear geostatistical models; malaria

mapping; Monte Carlo maximum likelihood; multiple surveys; spatio-temporal models.
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2.1 Introduction

In studies of spatial variation in disease prevalence, it is often necessary to combine in-

formation from multiple prevalence surveys. This is particularly the case in low-resource

settings, where disease registries typically do not exist. A methodological challenge in

these circumstances is that survey designs are severely constrained by cost constraints.

The available surveys may therefore be of variable quality and/or conducted at differ-

ent times. In this paper, we propose a class of generalized linear geostatistical models

(GLGMs) to address two specific issues. The first is variation in quality, for example

between randomised and non-randomised surveys, in which case our proposed methodol-

ogy assumes that at least one of the surveys provides an unbiased “gold-standard”. The

second is variation in the underlying prevalence when surveys are conducted at different

times. In this case, by modelling the underlying prevalence over time we are able to use

data collected at all times to estimate the underlying prevalence surface at the specific

time of interest, typically the time of the most recent survey.

Methods for the combined analysis of data from multiple surveys have previously used

meta-analysis and small area statistics approaches; see Moriarity and Scheuren (2001),

Elliot and Davis (2005), Lohr and Rao (2006) and Turner et al. (2009). More recently,

Manzi et al. (2011) used Bayesian hierarchical models to combine smoking prevalence

estimates from multiple surveys. They noted that commercial surveys are often ignored

in constructing official estimates because of poor information about the sampling designs

used, but argued that these surveys can nevertheless provide useful additional informa-

tion because they are more frequently updated than official surveys.

Raghunathan et al. (2007) noted the potential benefits that might accrue from spatial

modelling of multiple survey data, but to the best of our knowledge, explicit spatial mod-

elling of biases and/or temporal variation in the outcome of interest has not previously

been addressed, except in a few specific applications. For example, Wanji et al. (2012)

established a logit-linear calibration relationship between estimates of Loa loa prevalence

in part of equatorial Africa based on two different methods, finger-prick blood sampling

and a short questionnaire instrument. Crainiceanu, Diggle, and Rowlingson (2008) in-

corporated this calibration relationship into a bivariate geostatistical model for the two

corresponding prevalence maps.

As discussed in Turner et al. (2009), if information from multiple surveys is to be com-

bined, it is important to understand the limitations of their designs in order to take

account of potential biases in the associated estimates of prevalence. As a minimal

condition, the study subjects in each survey should be drawn from the same target pop-

ulation. One potential source of bias is that some members of the target population may
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be less likely than others to be included. Convenience samples provide an example of this.

In resource-poor settings, the relatively low cost of convenience sampling is tempting,

but its potential to produce biased estimates is clear. In a non-spatial context, Hedt and

Pagano (2011) propose a hybrid prevalence estimator that combines information from

randomised and convenience surveys. They demonstrate that, with suitable adjustment

for the bias, their hybrid estimator can give better prevalence estimates than would be

obtained by using only the data from the randomised surveys.

A second source of heterogeneity amongst multiple prevalence surveys is temporal varia-

tion in prevalence. When spatially referenced prevalence surveys are repeated over time

it is usually of interest to estimate changes in prevalence over time. When the outcomes

from consecutive surveys are correlated, there is also a potential gain in efficiency if

comparisons are made through the use of a joint model. This is especially advantageous

when the surveys do not use the same set of sampling locations, because a joint analysis

can then exploit both the temporal and spatial correlation structure of the combined

data.

In Section 2.2 of the paper we propose a class of generalised linear geostatistical models

(GLGMs) for the combined analysis of data from multiple prevalence surveys. The model

allows both for biased sampling and temporal variation in prevalence provided that one

of the surveys delivers unbiased “gold-standard” estimates of prevalence. In Section 2.3

we describe the methods that we use to fit the model. In Section 2.4 we report the results

of simulation experiments that illustrate how a joint model leads to gains in efficiency of

estimation and spatial prediction. In Section 2.5 we describe an application to malaria

prevalence data from three surveys conducted in Chikhwawa District, Southern Malawi.

Section 2.6 is a concluding discussion. All computations for the paper were run on the

High End Computing Cluster at Lancaster University, using the R software environment

(R Core Team, 2012).

2.2 A multivariate generalized linear geostatistical model

The ingredients of a univariate GLGM are the following. Random variables Yj and

explanatory variables dj are associated with sampling locations xj in a region of interest

A ⊆ R2. Each dj is a vector of length p ≥ 1. Conditional on the realisation of a zero-

mean latent Gaussian process S(x) and a set of mutually independent zero-mean latent

Gaussian variables Zj , the Yj follow a classical generalized linear model (McCullagh and

Nelder, 1989), hence:



Paper 1. Combining data from multiple prevalence surveys 10

(i) the Yj are mutually independent conditional on the S(xj) and Zj , with conditional

expectations µj = mjg
−1(ηj), where mj is a known scalar and g(·) a known link

function;

(ii) ηj = d>j β + S(xj) + Zj ;

(iii) the conditional distribution of the Yj falls within the exponential family.

In the remainder of the paper, we assume that the conditional distributions in (iii)

are binomial, with the yj representing the number of positives amongst mj individuals

sampled at location xj . We also adopt the standard logistic link function, g(µ/m) =

log{µ/(m − µ)}, but other link functions could also be used. We specify the Gaussian

process S(x) to have covariance function Cov{S(x), S(x′)} = σ2ρ(x, x′;φ), and the mu-

tually independent Zj to have variance τ2. The Zj have a dual interpretation as either

non-spatial extra-binomial variation or spatial variation at scales smaller than the small-

est distance between sampling locations; the two interpretations can only be disentangled

unambiguously if repeated measurements are taken at coincident locations. Finally, we

write dj = d(xj) to emphasise its spatial context.

1

S1

2
*

B2

2

S2

Figure 2.1: Representation of the multivariate generalized linear geostatistical model
(2.1) as a directed acyclic graph; S1 and S2 represent prevalences at times t1 and t2 > t1;
B2 represents bias; Y1, Y2 and Y ∗2 are observed prevalences from unbiased surveys at
times t1 and t2, and a biased survey at time t2, respectively. The target for predictive

inference is S2.

We now extend the model to accommodate multiple surveys taken at possibly different

times, some of which may be biased. To motivate the extension, consider a prevalence
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survey that includes a community at a particular location x in which the odds for disease

is rd(x) but a member of the community that participates in the survey has a relative

risk of the disease rp(x) with respect to those who do not participate. Then, the odds for

disease within the survey is rc(x) = rd(x)rp(x), hence log rc(x) = log rd(x) + log rp(x) =

S(x) + B(x), say. Under randomised sampling rp(x) = 1 for all x. Otherwise, provided

that rp(x) is either known or can be modelled as a function of the design and/or observed

covariates, standard methods can be used to obtain unbiased estimates of rd(x). In our

context, we want to allow both S(x) and B(x) to vary spatially, and potentially to depend

on both observed and unobserved covariates.

Now, let i = 1, . . . , r denote the index of the survey and xij : j = 1, . . . , ni the cor-

responding set of sample locations. We replace the single process S(x) by a set of r

processes Si(x) which relate to the true prevalence at different times. We assume that

at least the first of the surveys (i = 1) is known to be unbiased, define B to be the index

set of the potentially biased surveys and introduce an additional set of latent Gaussian

processes Bi(x) : i ∈ B to represent the spatially varying biases. Finally, we assume

that data from different surveys are generated by conditionally independent univariate

GLGMs, with link functions

gi(µij/mij) = ηij = d(xij)
>β1 + Si(xij) + I(i ∈ B)[Bi(xij) + d(xij)

>βi] + Zij ,

j = 1, . . . , ni; i = 1, . . . , r. (2.1)

On the right-hand-side of (2.1), we assume that the marginal properties of each Si(x)

are the same as previously specified for S(x), and add a set of cross-covariance func-

tions, Cov{Si(x), Si′(x
′)} = σ2αii′ρ(x, x′;φ), where −1 < αii′ < 1. The parameters

αii′ capture the temporal correlation between the true prevalence surfaces at different

times, hence if surveys i and i′ are taken at the same time, Si(x) = Si′(x) for all x and

αii′ = 1. Note that if r > 2, some combinations of αii′ result in a non-positive-definite

variance matrix. If r is small, this can be handled by setting the likelihood to zero for

all such combinations. When r is large the issue can be avoided by imposing a spatio-

temporally continuous parametric structure. This has the incidental benefit of making

the model more parsimonious. One such example would be an exponentially decaying

cross-covariance structure with αii′ = exp{−|ti − ti′ |/ψ}, where ti is the time at which

the ith survey is taken. The processes Bi(x) in (2.1) are assumed to be independent,

with zero mean and covariance functions Cov{Bi(x), Bi(x
′)} = ν2i ρ(x, x′; δi). Finally,

the random variables Zij are again assumed to be mutually independent and Normally

distributed with common mean 0 and variances τ2i .

As already noted, when all surveys are taken at the same time Si(x) = S1(x) for all i,

which formally corresponds to αii′ = 1 for all (i, i′). When all surveys are unbiased but
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are taken at different times, B is the empty set and the terms [Bi(xij) + d(xij)
>βi] in

(2.1) are omitted; formally, this corresponds to ν2i = 0 : i = 2, . . . , r. If it is appropriate

to use different explanatory variables to model the true prevalence and the bias, this is

accommodated by setting some elements of the βi to zero. The dependence structure of

the model is illustrated by the directed acyclic graph in Figure 2.1 for the special case

of two gold-standard surveys conducted at two different times and a biased survey at

the second time period. This scenario corresponds to the case study analysed in Section

2.5, where the aim is predictive inference for S2(x). In this case, the potential gains in

efficiency by jointly modelling the data from all three surveys stem from the direct links

between S2 and both Y2 and Y ∗2 and the indirect link between S2 and Y1 via S1.

2.3 Inference

In this section, we focus on the case r = 2. The generalization to more than two surveys is

straightforward. We set B1(x) = 0, write B(x) in place of B2(x) and write the parameters

of this bivariate version of (2.1) as β> = (β>1 , β
>
2 ) and θ> = (σ2, ν2, τ21 , τ

2
2 , φ, δ, α).

2.3.1 Likelihood

Let y>i = (yi1, . . . , yini) denote the outcome data from surveys i = 1, 2 and let Di be

the ni by p matrix whose jth row contains the values d(xij)
> = (d1(xij), . . . , dp(xij)).

Similarly, let Ti denote the vector of the ni values of the linear predictor for survey i,

hence Ti = Di{β1 + I(i = 2)β2}+Wi, where W>i = (Wi1, . . . ,Wini) and

Wij = Si(xij) + I(i = 2)B(xij) + Zij . (2.2)

Now, let T denote the (n1 + n2)-element vector T> = (T>1 , T
>
2 ) and D the (n1 + n2) by

2p matrix,

D =

[
D1 0

D2 D2

]
. (2.3)

Also, write Rii′(φ) for the ni by ni′ matrix with (h, k)th element ρ(xih, xi′k;φ) and Rb(δ)

for the n2 by n2 matrix with (h, k)th element ρ(x2h, x2k; δ). Then,

T ∼ MVN(Dβ, V (θ)) (2.4)

where

V (θ) =

[
σ2R11(φ) + τ21 I σ2αR12(φ)

σ2αR21(φ) σ2R22(φ) + ν2Rb(δ) + τ22 I

]
. (2.5)
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The conditional distribution of Y given T = t is a product of independent binomial

probability mass functions. We write this as

f(y|t) =

2∏
i=1

ni∏
j=1

f(yij |tij). (2.6)

Combining (2.3), (2.4), (2.5) and (2.6) then gives the likelihood function as the high-

dimensional integral

L(β, θ) =

∫
h(t;Dβ, V (θ))f(y|t) dt, (2.7)

where h(·|µ, V ) is the density function of a multivariate Normal distribution with mean

µ and covariance matrix V .

2.3.2 Conditional simulation

We propose to use Monte Carlo methods to evaluate the high-dimensional integral in

(2.7). These methods require us to simulate from the conditional distribution of the

spatial random effect T given the data Y = y. Using Bayes’ formula, this conditional

density is

π(t|y) ∝ h(t|Dβ, V (θ))f(y|t). (2.8)

To simulate from (2.8), Christensen, Roberts, and Sköld (2006) propose a Langevin-

Hastings (LH) Markov chain Monte Carlo (MCMC) algorithm. This operates by updat-

ing a linear transformation of T , chosen to make the components of T |y approximately

independent. Christensen, Roberts, and Sköld (2006) use a Gaussian approximation to

the distribution of T |y, with mean Dβ and covariance matrix

Ṽ = {V (θ) + Λ(t̂)}−1. (2.9)

In (2.9), Λ(t) is a diagonal matrix with entries −∂2/∂t2i log f(y|t) and t̂ is a typical value

of T such as the mode of f(y|t). For the binomial model with logistic link, this gives

Λ(t̂) = diag{yi(1 − yi/mi)}. Christensen, Roberts, and Sköld (2006) demonstrate that

updating the centred random variable T̃ = Ṽ −1/2(T − Dβ) gives better mixing and

convergence properties than the analogous MCMC algorithms based on either T or on

T̄ = V −1/2(T −Dβ), as suggested by Christensen and Waagepetersen (2002).



Paper 1. Combining data from multiple prevalence surveys 14

2.3.3 Monte Carlo Maximum Likelihood: estimation and spatial pre-
diction

The Monte Carlo Maximum Likelihood (MCML) method (Geyer and Thompson, 1992;

Geyer, 1994; Geyer, 1996; Geyer, 1999) uses conditional simulations of T given Y to

obtain a computationally efficient approximation to the intractable likelihood function.

From (2.7), the likelihood function can be written as

L(β, θ) =

∫
h(t|Dβ, V (θ))f(y|t) dt =

∫
h(t|Dβ, V (θ))f(y|t)

f̃(y, t)
f̃(y, t) dt

∝
∫
h(t|Dβ, V (θ))f(y|t)

h̃(t)f(y|t)
f̃(t|y) dt = Ef̃

[
h(t|Dβ, V (θ))

h̃(t)

]
. (2.10)

In (2.10), f̃(t, y) = f(y|t)h̃(t), where h̃(t) is any fixed density function with support

in Rn, and Ef̃ denotes expectation with respect to f̃(·|y). MCML estimates are then

obtained by maximizing

Lm(β, θ) =
1

m

m∑
h=1

h(th|Dβ, V (θ))

h̃(th)
, (2.11)

where t1, . . . , tm are samples from f̃(·|y).

The accuracy of the approximation for a given value ofm depends critically on the choice

of h̃(·). A suitable choice is h(th|Dβ0, V (θ0)), where β0 and θ0 are as close as possible to

the maximum likelihood estimates, β̂ and θ̂. In practice, we embed the maximisation of

Lm(β, θ) within the following iterative procedure as suggested in Geyer and Thompson

(1992) and Geyer (1994): let (β̂1, θ̂1) denote the values that maximise Lm(β, θ) using an

initial guess at suitable values (β0, θ0); repeat the maximisation with (β̂1, θ̂1) replacing

(β0, θ0); continue until convergence.

For the numerical maximization of (2.11) we use a similar procedure to the one presented

in Christensen (2004). Write V (θ) = σ2V (ψ) where ψ = (ν2/σ2, τ21 /σ
2, τ22 /σ

2, φ, δ, α)>

For a given value of ψ, the first and second derivatives of (2.11) with respect to β and σ2

are analytically tractable and we use an iterative Newton-Raphson algorithm. We then

plug into (2.11) the values β̂(ψ) and σ̂(ψ)2 and maximize with respect to ψ using direct

numerical optimization with a further re-parameterisation to remove any restrictions on

the permissible ranges of the parameters; we use a log-transformation for all elements of

ψ except α, for which we use log{(1+α)/(1−α)} to correspond to the range −1 < α < 1.

We also consider a variety of starting values to guard against false convergence to either

a local maximum or an arbitrary point on a plateau of the likelihood surface.
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We now consider the prediction of T ∗> = (T (xn+1), . . . , T (xn+q)) at q additional predic-

tion locations that are not included in any of the prevalence surveys. This requires all

relevant explanatory variables to be available at the prediction locations. We include the

mutually independent random variables Zij in (2.2) as part of our target for prediction.

Note that in a linear Gaussian geostatistical model, the Zij would be conflated with

Normally distributed measurement errors, whereas in a GLGM for prevalence survey

data the analogue of measurement error is binomial sampling variation and is formally

distinguishable from the extra-binomial variation induced by the Zij .

Zhang (2002) gives approximate expressions for the minimum mean square predictor

E[T ∗|y] and its variance using samples from the conditional distribution of T |y generated

by conditional simulation. For prediction of non-linear functionals of the prevalence

surface, we first use our MCMC algorithm to generate samples th : h = 1, ...,m from the

conditional distribution of T |y, then simulate samples t∗h : h = 1, ...,m directly from the

multivariate Normal conditional distribution of T ∗|T = th. This has expectation

D∗β + C>V −1(th −Dβ), (2.12)

where D∗ is the matrix of covariates at the prediction locations, and covariance matrix

V ∗ − C>V −1C, (2.13)

where V ∗ is the covariance matrix of T ∗ and C is the cross-covariance matrix between

T and T ∗. Finally, we transform the sampled values t∗h to predicted prevalences,

p∗h = g−1(t∗h)> = (g−1(t∗n+1,h), . . . , g−1(t∗n+q,h)),

where g−1(·) is the inverse link function. Typically, the prediction locations will form a

fine grid to cover the area of interest, A, so as to approximate a set of predicted surfaces,

P∗ = {p∗h(x) : x ∈ A} which can then be summarised according to the needs of each

application. For example, we might want to map pointwise means, or selected quantiles,

or predictive probabilities of the exceedance of policy-relevant thresholds.

2.4 Simulation study

We have conducted a simulation study of our proposed methodology with three aims:

to show that the parameters in (2.1) are identifable; to illustrate the finite sample prop-

erties of the MCML estimators; and to demonstrate the potential gains in predictive

performance that can be obtained by combining data from unbiased and biased surveys.



Paper 1. Combining data from multiple prevalence surveys 16

Throughout, we consider a generalized linear mixed model with a binomial response and

logistic link.

2.4.1 Identifiability and finite sample properties

For this part of the simulation study we simulated data from two surveys, the first of

which was unbiased, the second biased. We specified the covariance structure of the

model to correspond to the MCML estimates that were obtained in the analysis of

malaria prevalence data to be reported in Section 2.5. We also used the same sample

sizes as in the malaria application, hence n1 = 425 (to correspond to the second of the

two randomised surveys) and n2 = 249 (to correspond to the convenience survey), and

the same binomial denominators mij . We specified constant means β1 for the first survey

and β1 +β2 for the second survey. We generated the sampling locations for the unbiased

Table 2.1: Estimated means and relative biases (RB) of the MCML estimators for the
covariance parameters, and ordered eigenvalues (EV) of their correlation matrix under

three scenarios.

(1) (2) (3)
True value Mean RB EV Mean RB EV Mean RB EV

β1 1.000 0.997 -0.003 1.677 1.011 0.011 1.677 0.998 -0.002 1.811
β2 -1.000 -1.011 0.011 1.287 -1.013 0.013 1.425 -0.980 -0.020 1.472
σ2 2.186 2.132 -0.025 1.173 2.093 -0.042 1.298 2.005 -0.083 1.141
τ2 0.558 0.465 -0.166 0.903 0.476 -0.148 0.840 0.486 -0.130 0.835
ν2 0.672 0.900 0.339 0.772 1.011 0.504 0.715 1.193 0.776 0.806
φ 0.017 0.016 -0.045 0.695 0.016 -0.033 0.577 0.016 -0.085 0.503
δ 0.004 0.005 0.249 0.492 0.006 0.496 0.468 0.008 1.037 0.433

survey as an independent random sample from the uniform distribution in the rectangle

[34.700, 34.900]× [−16.170,−15.880]. The usefulness of the data from the biased survey

may depend on the degree of overlap between the two sets of sampling locations. For

this reason we generated the sampling locations for the biased survey from each of three

inhomogeneous Poisson processes, with intensity λ(x) = exp{−‖x − x0‖/0.02} and x0

set to each of the three following locations: (34.800,−16.025), the center of the the

rectangle; (34.700,−16.170), the lower left corner of the rectangle; (34.600,−16.315), a

point outside the rectangle. Figure 2.2 shows an example of simulated locations for the

biased survey under each of these three scenarios. For each simulation we computed the

mean and relative bias of the MCML estimates of the covariance parameters and the

eigenvalues of their correlation matrix, based on 1000 replications of each of the three

scenarios. The results are shown in Table 2.1. The estimates of β1, β2, σ2, τ2 and φ

are approximately unbiased under all three scenarios whereas the estimates of ν2 and

δ, which relate to the process B(x), become increasingly biased as the overlap between
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Figure 2.2: Example of simulated locations from a biased survey under three different
scenarios as defined in Section 2.4.1; the dashed lines encompass the region within which

locations of an unbiased survey are uniformly generated.

the two sampled areas decreases. Under all three scenarios, the smallest eigenvalue of

the correlation matrix corresponds to about 6% of its total variation as measured by

the sum of the eigenvalues. Also, the off-diagonal elements of the correlation matrix are

never greater than 0.47 in absolute value, this largest value representing the correlation

between the estimates of τ2 and φ in the third scenario.

The overall conclusion from this part of the simulation study is that all of the model

parameters are identifiable, and that the parameter estimates are approximately unbiased

provided that there is a substantial overlap in the spatial coverage of the unbiased and

biased surveys. This is as expected, because without such overlap the two surveys can

only estimate the properties of the sum, S(x) +B(x), in the area covered by the biased

survey.

2.4.2 Quality variation and temporal variation

In this part of the simulation study we focus on predictive performance. Our main

objective is to indicate to what extent the inclusion of data from a biased survey can im-

prove predictive inference, under circumstances similar to those that hold in our malaria

application. A secondary objective, as suggested by a reviewer, is to demonstrate the
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unreliability of a naive analysis that ignores bias and temporal variation. We therefore

conducted three analyses of each simulated data-set as follows.

• Joint (J). The combined data are analysed using the bivariate GLGM as specified

in Section 2.2.

• First-survey-only (FSO). Only the data from the first, unbiased survey are used.

• “Naive” (N). The data from the two surveys are analysed using a GLGM that does

not account for bias or temporal variation.

We consider a quality variation (QV) scenario, in which one survey is unbiased and the

other biased, and a temporal variation (TV) scenario, in which both surveys are unbiased

but at different times, with predictions required for the first time period.

The following features are common to both scenarios. The processes Si(x) : i = 1, 2

have mean β1 = 1, variance σ2 = 1 and correlation function ρ(u) = exp(−u/φ) with

φ = 0.15. Locations of unbiased surveys are uniformly generated in the unit square

centred on x0 = (1/2, 1/2). Both surveys have the same number of sampling locations,

n1 = n2 = 300. The binomial denominators at each sampling location are all set equal to

1. Our primary focus is on prediction of prevalence at x0 but we also consider estimation

of the parameters β1, log σ2 and log φ that define the model for the underlying prevalence

process S1(x).

In the QV scenario, S1(x) = S2(x) for all x and the process B2(x) has mean β2 = −1

and correlation function ρ(u) = exp(−u/δ) with δ = 0.15. Locations from the biased

survey are generated from a Poisson process with intensity λ(x) = exp{−‖x−x0‖/0.15}
so that points closer to x0 are more likely to be sampled, as might occur when using a

convenience sampling strategy and x0 is the location of a health-care facility. Finally, we

consider four values, ν2 = 0.5, 1, 2, 4, for the variance of the process B2(x), corresponding

to increasingly severe spatial variation in the bias.

In the TV scenario, the cross-correlation function between S1(x) and S2(x) is α exp(−u/φ).

We consider three values, α = 0.2, 0.5, 0.8, to correspond to weak, moderate and strong

correlation between the two prevalence surfaces.

The results are summarised in Tables 2.2 and 2.3. These show estimates of the root-

mean-square-error (RMSE) and coverage of nominal 95% confidence intervals (CIC) for

MCML estimates of the parameters β1, log σ2 and log φ, and for the minimum mean

square error predictors of S1(x0) and β1 + S1(x0). Each entry is calculated from 1000

independent replicates of the simulation model.
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Table 2.2: Estimated RMSE, bias, SD and 95% CIC for the MCML estimates of β1,
log σ2, log φ, for the minimum mean square error predictor of S1(x0) at location x0 and

β1 + S(x0), under QV scenarios.

Model Parameter RMSE CIC
ν2 ν2

0.5 1 2 4 0.5 1 2 4
J 0.37 0.36 0.36 0.36 0.95 0.95 0.95 0.94

FSO β1 0.37 0.36 0.35 0.35 0.95 0.95 0.95 0.95
N 0.50 0.52 0.51 0.48 0.82 0.79 0.83 0.77
J 0.94 0.60 0.63 1.33 0.99 0.94 0.95 0.99

FSO log σ2 1.08 1.14 1.04 0.99 0.97 0.97 0.97 0.97
N 0.78 0.49 0.52 0.54 0.99 0.96 0.95 0.91
J 0.84 0.81 0.98 0.95 0.92 0.90 0.92 0.92

FSO log φ 1.45 1.42 1.32 1.44 0.94 0.94 0.92 0.94
N 0.69 0.68 0.66 0.70 0.92 0.90 0.88 0.83
J 0.80 0.79 0.88 0.86 0.95 0.95 0.95 0.95

FSO S1(x0) 0.91 0.86 0.92 0.85 0.95 0.95 0.95 0.94
N 0.93 0.96 1.13 1.21 0.80 0.80 0.77 0.76
J 0.72 0.73 0.82 0.83 0.95 0.95 0.95 0.95

FSO β1 + S1(x0) 0.83 0.80 0.84 0.81 0.95 0.94 0.95 0.94
N 1.10 1.15 1.33 1.35 0.78 0.78 0.75 0.74

Table 2.3: Estimated RMSE, bias, SD and 95% CIC for the MCML estimates of β1,
log σ2, log φ, for the minimum mean square error predictor of S1(x0) at location x0 and

β1 + S(x0), under TV scenarios.

Model Parameter RMSE CIC
α α

0.2 0.5 0.8 0.2 0.5 0.8
J 0.35 0.35 0.35 0.95 0.93 0.94

FSO β1 0.36 0.36 0.35 0.94 0.93 0.93
N 0.63 0.63 0.64 0.29 0.38 0.42
J 0.60 0.68 0.69 0.94 0.94 0.93

FSO log σ2 1.04 1.46 1.47 0.97 0.96 0.96
N 1.18 0.95 0.87 0.91 0.92 0.95
J 0.93 0.92 0.91 0.91 0.93 0.93

FSO log φ 1.47 1.56 1.75 0.92 0.93 0.94
N 1.32 1.09 1.02 0.92 0.94 0.94
J 1.37 1.30 1.28 0.95 0.95 0.94

FSO S1(x0) 1.37 1.30 1.31 0.94 0.93 0.92
N 1.39 1.32 1.28 0.87 0.91 0.92
J 1.34 1.28 1.26 0.96 0.96 0.94

FSO β1 + S1(x0) 1.35 1.27 1.27 0.95 0.95 0.94
N 1.50 1.39 1.36 0.86 0.90 0.91



Paper 1. Combining data from multiple prevalence surveys 20

Overall, J outperforms FSO, which in turn outperforms N. Under the QV scenario, the

main benefits of J are in the prediction of S1(x0) for values of ν2 smaller than 4. The

N approach yields much higher values of RMSE for the estimates of β1, S1(x0) and

β1 + S1(x0) and very poor CIC. Under the TV scenario, the biggest gains achieved by J

over FSO are in estimating the parameters log σ2 and log φ. Both J and FSO perform

similarly with respect to prediction of S1(x0) and β1 + S1(x0). The N approach, which

in this scenario consists of combining the data under the assumption that S1(x) = S2(x)

for all x, i.e. α = 1, has the worst performance.

2.5 Application: malaria prevalence mapping

In this Section, we use our proposed methodology to construct malaria prevalence maps

for an area of Malawi by combining information from three surveys. All three sur-

veys were directed at the same target population, covering a 400 square km area within

Chikhwawa District, Southern Malawi. Two of the surveys were “rolling” Malaria Indica-

tor Surveys (MIS) (Roca-Feltrer et al., 2012), that used two different practical strategies

to obtain random, and therefore unbiased, samples from the population at risk. The

third was a facility-based survey that used a convenience sampling strategy, in which

recruitment took place at a central child-vaccination clinic at the main hospital in the

centre of the study area. We refer to this as the Easy Access Group (EAG) study. All

three surveys recorded the numbers of participating children from each community and

the number of those who tested positive using a rapid diagnostic test (RDT) for malaria

parasites.

2.5.1 Data

Two population-level continuous malaria indicator surveys were conducted over the pe-

riod May 2010 to April 2012. Both surveys recruited children aged less than five years in

a sample of 50 village communities in order to monitor the malaria intervention coverage

and childhood burden of malaria in a designated area containing the sampled villages,

which was chosen to represent the catchment area of the Chikhwawa District Hospital

(CDH).

The two surveys differed in the sampling strategy used, as described below. We refer to

these two surveys as the rMIS, covering the period May 2010 to April 2011 and the eMIS,

covering the period May 2011 to April 2012. Throughout the two-year period seven or

eight villages were randomly selected per month so as to sample all 50 villages twice

yearly, once during the high-transmission season and once during the low-transmission
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Figure 2.3: Sampled locations for (a) rMIS, (b) eMIS and (c) EAG. Coordinates
are of individual houses for rMIS and eMIS, and of the villages for EAG; in (c), the
radius of each circle is proportional to the number of the sampled households from the
respective village and the black solid point corresponds to CDH village. The light blue

lines represent waterways, with the thicker line corresponding to Shire river.

season. Within sampled villages, selection of households was as follows. In the rMIS,

households were randomly selected within each village from a list of households, with

sampling probability proportional to village population size, based on a population enu-

meration exercise. In the eMIS, a more economical “spin-the-bottle” method was used

to identify a random set of households within villages. A bottle was placed in the center

of a village and used to select random directions. A virtual line was drawn in each cho-

sen direction to the border of the village, the households that intersected this line were

counted, and from these a random household number was chosen as the starting point.

The number of houses selected within each village was proportional to the estimated
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village population size. Figures 2.3 (a)-(b) show the sampled locations for the rMIS and

the eMIS.

The third survey is a continuous facility-based MIS in children attending the immu-

nization clinic at the CDH, conducted from May 2011 to April 2012. The objective of

this study was to determine if estimates of uptake of control interventions and the bur-

den of malaria from convenience sampling were comparable to those from a randomised

MIS conducted within the same catchment area of CDH. Children from 3 months of

age who attended the vaccination clinic, and any accompanying sibling below 5 years,

were recruited. Between 30 and 50 children were recruited per month. Village of origin

was extracted by direct questioning. If the village was not one of the 50 eMIS/rMIS

villages for which the location was already known, its coordinates were determined ret-

rospectively. The results for villages within 15km of CDH were extracted to make the

catchment area of the EAG comparable to that of the rMIS and eMIS. Malaria control

efforts by the national control program during the first period included a district-wide

household indoor residual spraying campaign between February and April 2011. Practi-

cal difficulties resulted in this campaign being conducted at the end of the rainy season

rather than, as would have been ideal, before the start of the rainy season. This will have

reduced its potential impact. Insecticide-treated net control efforts were stable over the

three months of the campaign, with distribution to women attending antenatal clinics

and mother and child clinics.

2.5.2 Results

The response from each child was a binary indicator of the outcome of the RDT used

to test for the presence of malaria from a finger-prick blood sample. Six explanatory

variables were considered, as defined in Table 2.4. Socio-Economic-Status (SES), an

indicator of household wealth taking discrete values from 1 (poor) to 5 (wealthy), was

derived by an application of principal component analysis as discussed in Vyas and

Kumuranayake (2006).

Table 2.4: Explanatory variables used in the analysis of the Chikhwawa malaria
prevalence surveys

1 intercept
2 at least one treated bed-net in the household (yes/no)
3 indoor residual spraying in the past two months (yes/no)
4 high-transmission season (January-June/July-December)
5 distance from the closest waterway (km)
6 Socio-Economic-Status (SES, 1 to 5)
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It was thought that health facility utilization might be associated with SES as previously

observed in Gahutu et al. (2011), where children with relatively high SES were more likely

to attend a CDH. Table 2.5 shows the average SES observed in each of our three surveys.

Enrolled children in the EAG study show a higher average SES than those in the two

other surveys. Additionally, Table 2.6 shows that the relationship between SES and the

distribution of the number of RDT positive results per household differs between the two

gold-standard surveys and the convenience survey. We therefore allowed SES to have a

direct effect on the spatially structured bias of the EAG survey in addition to its possible

association with prevalence.

Table 2.5: Mean and standard deviation (SD) of SES in the three surveys.

SES
rMIS eMIS EAG

Mean 2.76 2.50 3.45
SD 1.45 1.37 1.39

Table 2.6: Distribution (percentage) of the number of positive RDTs per household
for each value of SES, in the convenience survey (EAG, left-columns) and in the gold-

standard surveys (rMIS and eMIS, right columns)

SES (EAG) SES (rMIS and eMIS)
1 2 3 4 5 1 2 3 4 5

0 75.76 80.56 77.50 79.10 89.04 54.58 63.09 71.72 73.29 83.74
RDT 1 21.21 19.44 20.00 20.90 10.96 40.49 33.56 25.25 22.60 15.45

positives 2 3.03 0.00 2.50 0.00 0.00 4.58 3.35 3.03 3.42 0.81
3 0.00 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.69 0.00

The resulting model for the combined data therefore included seven regression parame-

ters, β1, β2, ..., β7. Let β> = (β1, . . . , β6) and denote by d(xij) the vector of covariates

associated with location xij . Use i = 1, 2, 3 to denote rMIS, eMIS and EAG, respectively.

Then, the linear predictor is

ηij = d(xij)
>β + Si(xij) + I(i = 3)[B(xij) + β7SESij ] + Zij ,

i = 1, . . . , 3; j = 1, . . . , ni,

where n1 = 475, n2 = 425 and n3 = 249. Note that in the joint model for S1(x),

S2(x) and S3(x), α23 = 1 because the EAG study took place over the same period as

the eMIS. We therefore use α to denote α12 and set S3(x) = S2(x). We also assume

equal variances τ2 for the nugget term Z across all three surveys. Finally, we define

Cov{S1(x), S2(x
′)} = σ2α exp{−‖x− x′‖/φ) where σ2 > 0, φ > 0 and −1 < α < 1.
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Table 2.7: Monte Carlo maximum likelihood estimates and 95% confidence intervals.

Term Estimate 95% confidence interval
β1 -0.272 (-1.382, 0.862)
β2 -0.439 (-0.623, -0.277)
β3 -0.399 (-0.621, -0.189)
β4 0.415 (0.206, 0.598)
β5 -0.373 (-0.970, 0.116)
β6 -0.151 (-0.233, -0.072)
β7 -0.096 (-0.222, 0.021)
σ2 2.186 (0.955, 3.155)
τ2 0.558 (0.089, 1.231)
ν2 0.672 (0.525, 0.802)
α 0.859 (0.483, 0.924)
φ 0.017 (0.006, 0.032)
δ 0.004 (0.001, 0.025)

Table 2.7 shows the Monte Carlo maximum likelihood estimates of the model parameters

together with 95% confidence intervals. Each evaluation of the log-likelihood used 5000

simulated values, obtained by conditional simulation of 110000 values and sampling

every 20th realization after discarding a burn-in of 10000 values. Figure 2.4 shows two

diagnostic plots for the average random effect: convergence of the MCMC algorithm

appears to be satisfactory.

The confidence intervals in Table 2.7 were calculated using the following parametric boot-

strap procedure. Using the parameter estimates in Table 2.7 we simulated 1000 data-sets

from the model, applied to each simulated data set the Monte Carlo maximum likelihood

method with 5000 conditional simulations, and computed the empirical quantiles of the

1000 resulting estimates of each parameter. Although this procedure introduces addi-

tional Monte Carlo error, it allows us to compute confidence intervals without relying on

questionable Normal approximations for the distribution of the Monte Carlo maximum

likelihood estimates.

From Table 2.7, we see that the ownership of at least one treated bed net, the presence of

residual indoor spraying and an increase in SES are all associated with a reduction in the

prevalence of a positive RDT. The distance from the closest waterway is not significant,

although the sign of the regression coefficient suggests that prevalence decreases with

increasing distance. The period January to June, which is known to be a period of

high malaria transmission, is associated with a significant increase in prevalence, by an

estimated factor of exp(0.415) ≈ 1.51.
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Figure 2.4: Diagnostic plots for the convergence of the posterior average of the random
effect. Left panel: correlogram of the 5000 simulated values. Right panel: empirical
cumulative density function for the first (black line) and second (red line) 2500 simulated

values.
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Figure 2.5: Predicted bias surface B(x) (a) without the interaction term of SES and
(b) including the effect of SES on the spatial bias.

The regression coefficient β7, which represents the additional effect of SES on the bias

of the EAG data, is not significant, but its inclusion nevertheless makes a noticeable

difference to the predicted bias surface. Figures 2.5(a) and 2.5(b) show the minimum

mean square error predictions of the bias with and without including the regression on

SES.

The estimate α̂ = 0.859, albeit with a wide confidence interval, indicates a strong corre-

lation between prevalences in the two sampling periods, 2010-2011 and 2011-2012.
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Figure 2.6: Predictions of (a) d(x2j)
>β and (b) d(x2j)

>β + S2(x2j) at observed
locations; (c) predicted surface of the unexplained spatial variation S2(x). The same

colour scale has been used for the point predictions.

Figures 2.6(a) and (b) show the contributions of the linear regression and of the unex-

plained spatial variation to the predicted log-odds of prevalence at each of the observed

locations. Figure 2.6(c) shows the unexplained component, Ŝ(x), of the predicted preva-

lence as a spatially continuous surface. The clear and substantial difference between

adjacent areas to the east and west of the river Shire strongly suggests the existence of

one, or more, social or environmental risk-factors that are not captured by the available

explanatory variables.

Figure 2.7 shows pairwise scatter plots to compare the prediction standard deviations for

S2(x) at the sampling locations. Figure 2.7 (a) shows that analysing rMIS and eMIS data

in the joint model for temporal variation results in substantially better precision than

using only the eMIS; Figures 2.7 (c) and (d) show the further, but more modest, gains

resulting from addition of the data from the EAG; in contrast, Figure 2.7 (b) suggests

little or no benefit from adding the EAG data to the eMIS data, with predictive standard

deviations decreasing at some locations but increasing at others.

2.6 Discussion

We have developed a class of multivariate GLGMs for the combined data from mul-

tiple spatially referenced surveys, and associated Monte Carlo methods for maximum

likelihood estimation and spatial prediction within the proposed class of models.

The model as defined by (2.1) is the minimally parameterised model that captures the

essential features of our motivating application: variation in data-quality arising from

non-randomised sampling; variation in prevalence over time; binomial and extra-binomial

sampling variation. We have shown that all of the model parameters are identifiable from

surveys of comparable size to the ones available to us for the application. If substantially
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Figure 2.7: Scatter plots of the prediction standard errors for S2(x) at sampled
locations x, using models fitted to the data from: (a) eMIS against eMIS and rMIS; (b)
eMIS against eMIS and EAG; (c) eMIS, rMIS and EAG against eMIS; (d) eMIS, rMIS

and EAG against eMIS and rMIS.. The solid line represents the identity line.

larger data-sets were available, it would be of interest to extend the model in various

ways, for example by relaxing the assumption of common parameters for the prevalence

surfaces Si(x) at different times or by allowing cross-correlation between the Si(x) and

their paired bias surfacesBi(x). Additionally, if a large number of surveys were conducted

at irregularly spaced time-points within partly overlapping time periods, the use of a

structured spatio-temporally continuous process S(x, t), as mentioned in Section 2.2,

would be more appealing than a discrete set of processes Si(x) at specific times ti.

The Monte Carlo maximum likelihood estimation procedure is computationally intensive,

primarily because of the need to use parametric bootstrapping to compute standard errors

reliably. For this reason, we are currently developing a much faster Monte Carlo method

for approximate evaluation of the likelihood function.
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In our application to malaria prevalence surveys, we combined data from three surveys,

two of which were unbiased and conducted in two consecutive years,whilst the third was a

potentially biased convenience survey conducted over the same time-period as the second

unbiased survey. We obtained substantial gains in the precision of spatial predictions by

combining the data from the two unbiased surveys and further, but smaller, gains from

combining the data from all three surveys.

One of the limitations of our approach is that it assumes that at least one of the available

surveys represents an unbiased gold-standard. This is a reasonable assumption when,

as in our application, at least one of the surveys uses a properly randomised sampling

scheme. When we cannot assume that one of the surveys is unbiased by design, it is

difficult to see how any method could deliver reliable predictions without additional

assumptions that would be difficult or impossible to validate empirically.

The problem that we have addressed in this paper is related to, but distinct from, the

problem of preferential sampling as formulated in Diggle, Menezes, and Su (2010). In

both settings, the goal is to predict the realisation of a latent spatial process S(x) using

data obtained by a potentially biased sampling scheme. In preferential sampling, the

bias arises from a direct relationship between the value of S(x) and the probability that

the location x will be sampled. In the present paper, the bias is a function of the location

x itself, rather than of the value of S(x). In the context of disease prevalence mapping,

properties of a location could be intrinsic to that location (e.g. height above sea-level),

or to a person who happens to live at that location (e.g. age). In our application a

relationship between a child’s location x and the probability, say p(X), that they present

at the CDH would not result in bias unless at least one of the factors that affect p(X)

is both unmeasured and related to malaria risk. The bias surface B(x) allows for the

possibility that the sub-population of children who present at the CDH differs from the

general population with respect to their exposure to unmeasured risk-factors for malaria.

Our approach is of potentially wide application to disease monitoring and control in low-

resource settings, where registry data are typically not available. The ability to combine

data from surveys that vary in their level of bias and timing can inform more accurate,

local-area burden maps, allowing for improved risk stratification of high burden areas

and identification of transmission hot-spots. For example, although substantial progress

has been made over the past decade with malaria control by homogeneous scaling up of

interventions at national level, it is increasingly recognized by funders and policy makers

that a more targeted approach focused on high-burden areas or hot-spots may be more

cost-effective. Furthermore, apart from its potential to optimize the use of available data,

our approach can also inform improved prospective data collection, by using the fitted

model in simulation studies to identify efficient prospective hybrid sampling approaches
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that combine convenience and random sampling strategies in ways that acknowledge

and exploit spatial and/or temporal heterogeneity as revealed by analyses of the kind

described in Section 2.5.

In conclusion, our proposed approach provides a way of making use of mixed source

prevalence data to improve estimates of spatial predictions. These are urgently needed

to support control programmes and develop more accurate local spatio-temporal risk

stratification maps that can inform more targeted control efforts. Malaria is one of a

number of diseases that bring a high public health burden in low-resource settings, whilst

exhibiting highly heterogeneous distributions across space and time. Control of such dis-

eases needs methods of continuous monitoring of prevalence and evaluation of control

measures that make the best possible use of limited resources, and will therefore benefit

greatly from the ability to combine national household surveys with more local conve-

nience sampling strategies without compromising the validity of the resulting prevalence

estimates.
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Summary

The original aim of the African Programme for Onchocerciasis Control (APOC) was to

control onchocerciasis as a public health problem in 20 African countries. In order to

identify all high risk areas where ivermectin treatment was needed to achieve control,

APOC used Rapid Epidemiological Mapping of Onchocerciasis (REMO). REMO involved

spatial sampling of villages to be surveyed, and examination of 30 to 50 adults per

village for palpable onchocercal nodules. REMO has now been virtually completed and

we report the results in two articles. A companion article reports the delineation of

high risk areas based on expert analysis. The present article reports the results of a

geostatistical analysis of the REMO data to map endemicity levels and estimate the

number infected.

A model-based geostatistical analysis of the REMO data was undertaken to generate

high-resolution maps of the predicted prevalence of nodules and of the probability that

the true nodule prevalence exceeds the high risk threshold of 20%. The number infected

was estimated by converting nodule prevalence to microfilaria prevalence, and multiply-

ing the predicted prevalence for each location with local data on population density. The

geostatistical analysis included the nodule palpation data for 14,473 surveyed villages.

The generated map of onchocerciasis endemicity levels, as reflected in the prevalence of

nodules, is a significant advance with many new endemic areas identified. The prevalence

of nodules wasâĂĽgreater than 20% over an area of 2.5 million km2 with an estimated

population of 62 million people. The results were consistent with the delineation of

high risk areas of the expert analysis except for borderline areas where the prevalence

fluctuated around 20%. It is estimated that 36 million people would have been infected

in the APOC countries by 2011 if there had been no ivermectin treatment.

The map of onchocerciasis endemicity levels has proven very valuable for onchocerciasis

control in the APOC countries. Following the recent shift to onchocerciasis elimination,

the map continues to play an important role in planning treatment, evaluating impact

and predicting treatment end dates in relation to local endemicity levels.

Keywords: Onchocerciasis; APOC; Onchocercal nodule; Mapping; REMO; Geostatis-

tics; Endemicity level.
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3.1 Background

Onchocerciasis, or river blindness, used to be endemic in some 30 countries in Africa

where over 99% of all cases in the world were found (World Health Organization, 1995).

The Onchocerciasis Control Programme in West Africa (OCP) has successfully controlled

onchocerciasis by large scale vector control in the savanna belt of nine West African

countries (Boatin, 2008). In the remaining endemic African countries, where some 85%

of onchocerciasis cases lived, onchocerciasis control became feasible with the registra-

tion of ivermectin for the treatment of human onchocerciasis in 1987 and its donation

free of charge for as long as needed (Tielsch and Beeche, 2004; Gustavsen, Hopkins,

and Sauerbrey, 2011). Clinical and community trials demonstrated that annual iver-

mectin treatment could effectively control the disease (Tielsch and Beeche, 2004), and

Non-Governmental Development Organizations initiated the first ivermectin distribution

efforts (Bush and Hopkins, 2011). In 1995 the African Programme for Onchocerciasis

Control (APOC) was created to support the establishment of community directed treat-

ment with ivermectin (CDTI) in all remaining areas in Africa where onchocerciasis was

a public health problem (Remme, 1995).

One of the first challenges for APOC was to determine where exactly onchocerciasis

was a public health problem. The existing information on the geographic distribution

of onchocerciasis in the 20 APOC countries (World Health Organization, 1995; Baker

and Abdelnur, 1986; Zein, 1990) was incomplete and not reliable enough for targeting

ivermectin treatment programmes, and there was an urgent need for comprehensive map-

ping of the geographic distribution of onchocerciasis in all potentially endemic countries

in Africa outside the OCP (Remme, 1995; Noma et al., 2002). This was a vast area of

some 14 million km2 and the survey methods available were difficult to implement at

such a large scale. In anticipation of this problem, the WHO Special Programme for Re-

search and Training in Tropical Diseases (TDR) developed a rapid assessment method in

1993, Rapid Epidemiological Mapping of Onchocerciasis (REMO) (Ngoumou and Walsh,

1993). In REMO, sample villages are selected using a sampling methodology that takes

the spatial epidemiology of onchocerciasis into account. Rapid assessment surveys are

then carried out in the selected villages to estimate the prevalence of palpable onchocercal

nodules as a proxy for the prevalence of onchocerciasis infection. Following its success-

ful field testing in Cameroon and Nigeria (Ngoumou, Walsh, and Mace, 1994), APOC

adopted REMO for large-scale mapping of onchocerciasis in all APOC countries in order

to identify priority areas for CDTI. Large scale application of REMO started in 1996,

and has since been applied in phase with the expansion of CDTI to cover all potentially

endemic areas in APOC countries (Noma et al., 2002).
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To date, virtually all potentially endemic areas in the 20 APOC countries have been

mapped for onchocerciasis through REMO. In a companion paper we summarize the

REMO surveys and show the results of an expert analysis that was undertaken to delin-

eate high-risk areas where onchocerciasis was a major public health problem and where

ivermectin treatment was a priority (World Health Organization, 2012). Based on these

maps of high risk areas, CDTI projects were created that by 2012 were treating over 80

million people in the APOC countries (World Health Organization, 2012).

In the present article we report the results of a more advanced analysis of the REMO

data using a model-based geostatistical methodology that has allowed a more effective

utilization of the extensive REMO data. One important application was the mapping of

the geographic distribution of onchocerciasis endemicity levels as reflected in the preva-

lence of palpable onchocercal nodules. Endemicity is a key concept in onchocerciasis

epidemiology. The severity of the disease and the public health importance of onchocer-

ciasis in a given area are directly related to the local level of endemicity (Murdoch et al.,

2002; Remme et al., 1989). The endemicity level is also an important indicator of the

local potential for transmission, as well as a predictor of the intensity and duration of

interventions needed to control or eliminate onchocerciasis in an onchocerciasis focus

(World Health Organization, 2010). It is therefore important for onchocerciasis control

programmes to have a detailed map of onchocerciasis endemicity levels throughout their

operational area.

In 1979, Prost, Hervouet, and Thylefors (1979) defined three levels of onchocerciasis en-

demicity in terms of the community prevalence of Onchocerca volvulus microfilaria in the

skin: hyperendemic onchocerciasis (prevalence of microfilaria greater than 60%),where

the disease is very severe and associated with onchocercal blindness rates in excess of 4

to 5% in the West African savanna; hypoendemic onchocerciasis (prevalence of microfi-

laria smaller than 35%) where ocular complications are rare and the disease is socially

not apparent, and mesoendemic onchocerciasis (prevalence of microfilaria between 35%

and 60%) where the disease pattern varied between these two extremes. The prevalence

of nodules is related to the prevalence of skin microfilaria. Using the quantification of

this relationship by Coffeng et al. (2013), the above endemicity classes translate into

hyperendemic onchocerciasis for a prevalence of palpable nodules in adults greater than

45%, mesoendemic onchocerciasis for a nodule prevalence between 20% and 45%, and

hypoendemicity for a prevalence of nodules smaller than 20%.

When ivermectin became available for onchocerciasis control, a WHO expert meeting

recommended that in order to control onchocerciasis as a public health problem, iver-

mectin treatment was urgent in communities with a prevalence of nodules in adult males

greater than 40% and highly desirable for a nodule prevalence greater than 20%, i.e. in
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all meso and hyper endemic communities (World Health Organization, 1991). Based on

this recommendation, APOC aim was to establish CDTI in all high risk areas where the

prevalence of palpable nodules in adults was greater than 20% (Noma et al., 2002). A first

application of the geostatistical analysis was to delineate all areas where the estimated

prevalence was greater than 20% and to compare the results with the classification of

high risk areas from the expert analysis as reported in the companion paper. We also

used the geostatistical analysis to provide population estimates by endemicity level, and

to predict how many people would have been infected with O. volvulus in the APOC

countries if there had been no onchocerciasis control.

3.2 Methods

3.2.1 REMO methodology

The geographic distribution of onchocerciasis is determined by the availability of breed-

ing sites for the Simulium vectors in fast flowing rivers and streams, and the limited

flight range of the vector when seeking a blood meal. The spatial epidemiology of on-

chocerciasis is therefore closely related to the distribution and suitability of local river

systems. REMO is based on this knowledge and consists of three stages (Ngoumou and

Walsh, 1993):

1) The division of the area to be mapped into biogeographic zones that are reasonably

uniform with regard to their potential for onchocerciasis and that cover the watersheds

of the main local drainage systems. Areas that are known to be unsuitable for the vector

for ecological reasons (absence of fast flowing water, high altitude, etc.) and uninhabited

areas (e.g. national parks) are excluded at this stage.

2) The selection of a sample of villages to be surveyed in order to determine whether on-

chocerciasis is present or not and, if present, to give a rough indication of the distribution

and severity of onchocerciasis in the zone. This sampling uses the available information

on the local river system

3) Rapid epidemiological assessment (REA) surveys in the selected villages. A sample

of 30 to 50 adult males who have resided in the village for more than 10 years are

examined for the presence of nodules, and the percentage of males with palpable nodules

is calculated. The geographic coordinates of each village are collected by applying a

Global Positioning System (GPS) in a central location in the village.

More details of the REMO methodology are provided in the companion paper (Noma

et al., 2014) and the WHO Manual for Rapid Epidemiological Mapping of Onchocerciasis
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(Ngoumou and Walsh, 1993). The companion paper also describes the implementation of

REMO in APOC countries and ethical considerations in undertaking the REMO surveys.

3.2.2 Analysis of REMO data

The analysis of the REMO data was undertaken using two analytical approaches: an

expert analysis using the original REMO analytical methodology for which the results

are reported in the companion article (Noma et al., 2014), and a geostatistical analysis

which is described here.

3.2.3 Geographic information system (GIS)

All relevant geographic information was processed using ArcGIS 10 (ESRI Inc., Redlands,

USA).

The geographic information used for the analysis included:

• National and administrative boundaries, rivers and lakes, national parks, main

roads, villages and urban settlements (source WHO HealthMapper

http://health-mapper-release-5.software.informer.com.

• Topography and relief (source ESRI http://services.arcgisonline.com/ArcGIS/

rest/services/World_Shaded_Relief/MapServer.

• Population density at 30 arc seconds resolution (source LandScan http://www.

ornl.gov/sci/landscan/index.shtml.

• Total surface area per country, including water bodies (http://wdi.worldbank.

org/table/1.1.

• Areas that are unsuitable for onchocerciasis as defined during the first REMO phase

(see above).

• Geographic coordinates of all surveyed villages and for each surveyed village the

percentage of examined adults who had palpable nodules, referred to as the “preva-

lence of nodules” or nodule prevalence.

• Surveyed area: this is the total area within 50 km from the nearest surveyed

village. The threshold of 50 km corresponds to the maximum acceptable distance

between sample villages as defined in the REMO manual (Ngoumou and Walsh,

1993). Areas beyond 50 km from the nearest surveyed village are classified as non-

surveyed. Excluded from both the surveyed and non-surveyed areas are unsuitable

areas, national parks and water bodies.

http://health-mapper-release-5.software.informer.com
http://services.arcgisonline.com/ArcGIS/rest/services/World_Shaded_Relief/MapServer
http://services.arcgisonline.com/ArcGIS/rest/services/World_Shaded_Relief/MapServer
http://www.ornl.gov/sci/landscan/index.shtml
http://www.ornl.gov/sci/landscan/index.shtml
http://wdi.worldbank.org/table/1.1
http://wdi.worldbank.org/table/1.1


Paper 2. Onchocerciasis prevalence mapping in the 20 African APOC countries 38

3.2.4 Geostatistical analysis

For probabilistic prediction of the true prevalence at both sampled and unsampled loca-

tions, a geostatistical model (Diggle and Ribeiro, 2007) was fitted in which conditional

on the true prevalence P (x) at location x, the number of positives, Y , amongst a sample

of N individuals follows a binomial distribution with N trials and “success” probability

P (x). We used a standard logistic link function log{P (x)/(1+P (x))} = µ+S(x), where

S(x) is a low-rank approximation to a zero-mean isotropic Gaussian process (Higdon,

1998). For the main analysis, which excluded the spatially separate areas of Liberia and

the island of Bioko, this process is defined as follows: (1) choose a discrete set of M

points, say Xj , over the region of interest; (2) represent S(x) as a weighted average of

M independent, identically distributed zero-mean Gaussian variables Zj with variance

σ2, i.e.
∑M

j=1w(Xj − x)Zj , where the weights w(Xj − x) are chosen as functions of the

great-circle distance, say uj , between x and each of the Xj , so as to approximate the

required correlation function of S(x). Note that, in this case, the variance σ2 does not

represent variability on the logit scale since the range of variation of the Zj variables is

scaled by the kernel weights w(Xj−x). Following the procedure suggested by Rodrigues

and Diggle (2010), we usedM = 10734 points Xj in a regular lattice at spacing 0.1 by 0.1

degrees and weights w(Xj − x) = exp(−2
√

2uj/φ)/φ to approximate a Matérn correla-

tion function (Diggle and Ribeiro, 2007, p.51-52) with scale parameter φ and smoothness

parameter κ = 2.

In the separate analyses for Liberia and Bioko the dimensionality was much lower and

there was no need of a low rank approximation of S(x). In these analyses, the zero-mean

isotropic Gaussian process S(x) has Matérn correlation function, as previously defined,

and variance τ2, which represents, unlike σ2, variation on the logit scale.

In each of the three analyses, model parameters were then estimated using the method of

maximum likelihood based on the Laplace approximation method (Pinheiro and Chao,

2006). Maximum likelihood estimates, with associated 95% confidence intervals, of the

geostatistical model parameters were for the main analysis (all REMO data excluding

Liberia and Bioko) µ̂ = −2.451 (−2.469,−2.432), σ̂2 = 31.570 (31.038, 32.112) and

φ̂ = 65.208 (64.993, 66.301). For Liberia the parameter estimates were µ̂ = −1.759

(−1.779,−1.739), τ̂2 = 0.486 (0.432, 0.547) and φ̂ = 57.945 (52.151, 64.381). Finally

for Bioko the estimates were µ̂ = −0.079 (−0.283, 0.125), τ̂2 = 0.133 (0.057, 0.310) and

φ̂ = 1.950 (0.535, 7.112). From the estimates of the scale parameters φ we determined

that the range of the spatial correlation, defined as the distance at which the spatial

correlation is 0.05 (Diggle and Ribeiro, 2007), is about 350 km for the main area, 311

km for Liberia and 10 km for Bioko. Hence pairs of observations within these distances

in each of the three areas will show non-negligible spatial correlation.
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The output from the fitted geostatistical model is a sample, of whatever desired size,

from the joint predictive distribution of P (x), i.e. the conditional distribution of P (x)

given all of the data, at locations x forming a regular grid at spacing 1 km over the entire

surveyed area. A Monte Carlo Markov Chain method for conditional simulation of P (x)

is used, based on the approach proposed by Giorgi et al. (2015). Any desired summaries of

the predictive distributions can then be calculated and mapped. The two most relevant

summaries for the current population are the mean of the predictive distribution of P (x)

and the probability that P (x) exceeds 0.2 (20%), which corresponds to the operational

criterion for delineating high-risk areas.

In order to deal with the high number of zero reported disease cases, we added zero

prevalence data-points in areas free from the disease (ocean, deserts) when simulating

from the predictive distribution of P (x). The fraction of added zeros corresponds to 5%

of the total sample size beyond which very little impact was observed on the predicted

prevalence surface. This approach decreases prevalence estimates in proximity of bound-

aries with areas free from the disease and avoids unrealistic high estimates of prevalence

in such boundary areas. All computations were run on the High End Computer Cluster

at Lancaster University, using the R statistical software environment (R Development

Core Team, 2011).

3.2.5 Estimation of population by endemicity level and number in-
fected

The “at risk population” of the surveyed areas in each APOC country was estimated

by multiplying the surface of the surveyed area in the country with the country-specific

average population density for CDTI projects. The latter was obtained for each APOC

country by dividing the total population of the CDTI projects in the country in 2011 by

the total surface area of these projects.

The nodule prevalence map was used to divide the surveyed area in each country into

three endemicity classes with nodule prevalence of 0− 4.5%, 5− 19.9% and greater than

20% respectively. The population in each class was estimated by multiplying the surface

area with the average population density for CDTI projects in the country. For all surface

calculations, the geographic coordinates were first projected using the ARCGIS (World)

Cylindrical Equal Area projection.

In order to estimate the number of persons that would have been infected with O. volvu-

lus by the year 2011 if there had been no onchocerciasis control, we used the recently

published results of a study on the relationship between the prevalence of skin micro-

filaria in a village (all age groups combined) and the prevalence of palpable nodules in
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adult males in the same villages (Coffeng et al., 2013). From this publication we used

the main relationship for all study areas except one (Mbam), for which the pattern was

different. This relationship was used to convert the 1 km resolution predicted nodule

prevalence in adults, as generated during the geostatistical analysis, into the correspond-

ing predicted prevalence of microfilaria for all ages combined. For each country, the

predicted prevalence of microfilaria was then averaged over the total surveyed area and

multiplied with the estimated at risk population of the surveyed areas in the country to

obtain an estimate of the total number, T , infected with O. volvulus if there had been

no onchocerciasis control. To obtain a confidence interval for this estimate, we sampled

repeatedly from the joint predictive distribution of prevalence surface P (x), and from

each sample calculated the corresponding estimate of T . Then, a 95% confidence interval

for T is the range from the 2.5-th to the 97.5-th percentile of the empirical distribution

of these estimates. For the APOC-wide total we used a similar procedure. Since nodule

prevalence was modelled using three independent spatial processes with different means

for the main area, Liberia and Bioko, we obtained a simulated sample for each from the

joint predictive distribution of P (x), the estimated number of infected for the three areas

separately and added these up. The 95% confidence intervals were then calculated from

the resulting APOC-wide total distribution of T .

3.3 Results

3.3.1 Surveyed and excluded areas

The first step in the implementation of REMO was the exclusion of areas that were

considered unsuitable for onchocerciasis transmission, and where, therefore, no nodule

surveys were carried out. Also excluded at this stage were large water bodies and national

parks that were considered uninhabited. The extent of the excluded areas in the different

countries is summarised in Table 3.1. Large excluded areas covering more than 50% of

the country surface were identified in Chad, Ethiopia, Kenya and Sudan. A description

of the main unsuitable areas is provided in the companion paper (Noma et al., 2014).

The remaining areas after the above exclusions were considered potentially endemic areas

that needed to be surveyed for onchocerciasis. Table 3.1 shows for each country the extent

of the areas that were surveyed and of the remaining non-surveyed area. In 8 countries all

of the potentially endemic areas were surveyed. In 6 other countries, all (Central African

Republic and Gabon) or nearly all (Angola, Cameroon, Congo and South Sudan) of

the non-surveyed areas were uninhabited or had a very low population density of less

than 1 person per km2. In only 2 of the remaining countries was the non-surveyed area
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Table 3.1: Extent of excluded and surveyed areas in the 20 APOC countries.

Country surface Excluded area Surveyed area Non-surveyed area
Country 1000 km2 1000 km2 % 1000 km2 % 1000 km2 %

Angola 1,247 84 6.7 1,015 81.4 148 11.9
Burundi 28 4 13.0 24 87.0 0 0.0
Cameroon 475 25 5.2 430 90.5 21 4.3
CAR 623 129 20.6 448 71.9 46 7.4
Chad 1284 1027 80.0 257 20.0 0 0.0
Congo 342 59 17.1 271 79.3 12 3.5
DRC 2,345 183 7.8 2,053 87.6 109 4.6
Eq. Guinea 28 4 15.2 23 80.4 0 0.0
Ethiopia 1,104 583 52.8 446 40.4 75 6.8
Gabon 268 19 7.3 191 71.5 57 21.2
Kenya 584 505 86.3 57 9.8 23 3.9
Liberia 96 1 0.8 96 99.2 0 0.0
Malawi 118 39 33.3 77 64.9 2 1.9
Mozambique 799 60 7.5 549 68.7 190 23.8
Nigeria 924 42 4.6 858 92.9 0 0.0
Rwanda 25 5 21.3 20 78.0 0 0.0
South Sudan 644 68 10.6 535 83.0 41 6.4
Sudan 1,861 1,516 81.4 346 18.6 0 0.0
Tanzania 947 380 40.1 393 41.5 174 18.4
Uganda 242 62 25.5 180 74.4 0 0.0
Total 13,986 4,793 34.3 8,270 59.1 898 6.4

more than 10% of the country surface: Mozambique (17%) and Tanzania (16%). REMO

surveys were carried out in a total of 14,473 sample villages in the surveyed areas in

the 20 APOC countries. Figure 3.1 provides a map showing the location and observed

prevalence in the sample villages and the extent of the surveyed area.

3.3.2 Map of the estimated prevalence of palpable nodules

The model-based geostatistical analysis generated a map of the predicted prevalence of

palpable nodules at 1 km resolution throughout the surveyed area in the 20 countries

(see Figure 3.2). This map provides the best estimate of the geographic distribution of

onchocerciasis endemicity levels based on the model based analysis of the REMO data.

It shows substantial spatial variation in onchocerciasis endemicity levels. There are some

vast areas where the endemicity levels are very high with the estimated prevalence of

nodules exceeding 40%. A vast belt of hyperendemic onchocerciasis extends from the

Democratic Republic of Congo through the west of South Sudan and the Central African

Republic to Cameroon and south east Nigeria. There are also large hyperendemic foci

in south Tanzania and west Ethiopia. On the other end of the endemicity scale there

are several large areas where the prevalence of nodules is close to 0. This includes
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Figure 3.1: Map of the observed prevalence of palpable nodules in the 14,473 surveyed
villages.

an area of some 500,000 km2 in North and Central Congo, South West of the Central

African Republic and border areas of Cameroon, Gabon and the Democratic Republic of

Congo where the results suggest that onchocerciasis is not endemic. Similar results were

obtained for most of Mozambique, Malawi and Uganda, and large sections of Tanzania,

Ethiopia, Sudan and Chad.

3.3.3 Estimated population by endemicity level

Table 3.2 shows for each APOC country the classification of the surveyed areas into three

endemicity classes with nodule prevalences of 0− 4.9%, 5− 19.9% and greater than 20%

respectively. The table also gives the estimated population for these three categories for

the year 2011. Overall, the predicted prevalence of nodules is greater than 20% over an

area of 2.5 million km2 where an estimated 62 million people live. Another 77 million

people are estimated to live in an area of 2.8 million km2 where the predicted nodule

prevalence is between 5% and 20%. There are four countries, namely Cameroon, Central

African Republic, Democratic Republic of Congo and Liberia, where more than 50% of

the surveyed population live in areas where the predicted nodule prevalence is greater
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Figure 3.2: Map of the estimated prevalence of palpable nodules in the 20 APOC
countries.

than 20%. In absolute numbers, the main countries are the Democratic Republic of

Congo with 23.3 million people living in areas with more than 20% prevalence, Nigeria

(14.3 million), Ethiopia (5.9 million), and Cameroon (5.2 million).
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Table 3.2: Surveyed area and population by estimated nodule prevalence in the 20 APOC countries.

Estimated population as % of total population of
Total surveyed area Surface km2 Estimated population (1000) surveyed area

Population Estimated Prevalence of Prevalence of Prevalence of Prevalence of Prevalence of Prevalence of Prevalence of Prevalence of Prevalence of
per km2 in Surface population of nodules of nodules of nodules of nodules of nodules of nodules of nodules of nodules of nodules

Country CTDi area (1000 km2) (1000) 0-4.9% 5-19.9% ≥ 20% 0-4.9% 5-19.9% ≥ 20% 0-4.9% 5-19.9% ≥ 20%

Angola 3.8 1,015 3,812 278 570 166 1,046 2,142 625 27.4 56.2 16.4
Burundi 341.0 24 8,252 11 11 2 3,821 3,760 671 46.3 45.6 8.1
Cameroon 24.2 430 10,389 64 149 217 1,555 3,599 5,234 15.0 34.6 50.4
CAR 5.2 448 2,312 135 81 232 697 418 1,198 30.1 18.1 51.8
Chad 21.6 257 5,557 152 51 54 3,286 1,099 1,171 59.1 19.8 21.1
Congo 34.8 271 9,432 194 62 15 6,750 2,159 523 71.6 22.9 5.5
DRC 22.1 2,053 45,391 318 683 1,052 7,040 15,089 23,262 15.5 33.2 51.2
Eq. Guinea 22.0 23 433 3 18 1 54 298 81 12.4 68.8 18.7
Ethiopia 46.7 446 20,842 168 152 126 7,844 7,094 5,904 37.6 34.0 28.3
Gabon NA 191 722 88 101 2 333 381 8 46.1 52.8 1.2
Kenya NA 57 3,035 57 0 0 3,035 0 0 100.0 0.0 0.0
Liberia 30.2 96 2,884 0 42 53 10 1,269 1,604 0.3 44.0 55.6
Malawi 237.4 77 18,245 61 11 4 14,529 2,708 1,008 79.6 14.8 5.5
Mozambique NA 549 9,889 483 65 1 8,694 1,170 25 87.9 11.8 0.2
Nigeria 65.3 858 56,016 175 463 220 11,440 30,239 14,336 20.4 54.0 25.6
Rwanda NA 20 9,550 19 1 0 9,550 0 0 100.0 0.0 0.0
South Sudan 13.8 535 7,380 115 206 214 1,591 2,842 2,947 21.6 38.5 39.9
Sudan 14.6 346 5,053 331 13 2 4,841 190 23 95.8 3.8 0.4
Tanzania 19.4 393 7,631 221 66 106 4,289 1,276 2,065 56.2 16.7 27.1
Uganda 56.4 180 10,135 128 28 24 7,208 1,556 1,371 71.1 15.4 13.5
Total 27.1 8,270 236,959 3,004 2,774 2,493 97,611 77,291 62,056 41.2 32.6 26.2
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Figure 3.3: Map of the predictive probability that the local prevalence of nodules
exceeds 20%.

3.3.4 Priority areas for large scale treatment

The main objective of the REMO surveys was to identify priority areas for large-scale

ivermectin treatment, i.e. areas where the prevalence of nodules is greater than 20%. The

geostatistical analysis provides an objective method for defining such areas while taking

the statistical uncertainty of the estimates into account. Figure 3.3 provides a map of the

predicted probability that the local prevalence of palpable nodules exceeds the threshold

of 20%. The map shows that for most of the surveyed area there is little uncertainty

whether the prevalence of nodules exceeds the threshold or not: the probability is in

most areas less than 0.1 (highly unlikely that the prevalence exceeds 20%) or greater

than 0.9 (very likely that the prevalence is greater than 20%). Only for a few areas is the

exceedance probability around 0.5, indicating that it is uncertain whether the prevalence

exceeds the threshold. Most of these concern transition areas between high and low

endemicity zones.

Table 3.3 provides a summary of the classification of the surveyed area according to the

probability that the nodule prevalence exceeds 20%, and compares the results with those
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Table 3.3: Comparison of priority areas for treatment identified by the two analytical
approaches: expert analysis and geostatistical analysis.

Exceedance High risk (expert analysis)
probability Yes No Total

of 20% Surface Population Surface Population Surface Population
(1000 km2) (1000) % of total (1000 km2) (1000) % of total (1000 km2) (1000) % of total

> 0.9 1,440 35,447 98.0% 25 714 2.0% 1,465 36,161 100.0%
> 0.5 2,193 55,066 93.4% 152 3,877 6.6% 2,345 58,943 100.0%
> 0.1 2, 794 72, 479 80.4% 837 17,682 19.6% 3,631 90,162 100.0%
Total

surveyed 3,180 83,972 35.4% 5,089 152,986 64.6% 8,270 236,959 100.0%
area

of the classification of high risk areas in the expert analysis described in the compan-

ion paper (Noma et al., 2014). Using an exceedance probability of 0.5, it is estimated

that the nodule prevalence exceeds 20% over a total surface of 2.3 million km2 with a

population of 59 million people. However, these estimates are subject to considerable

statistical uncertainty. Using an exceedance probability of 0.9 (highly likely that the

nodule prevalence exceeds 20%), the corresponding population is only 36 million. Using

an exceedance probability of 0.1, the population increases to as much as 90 million. The

expert analysis reported in the companion article identified high risk areas with a total

surface of 3.2 million km2 and a population of 84 million (this figure refers to high risk

areas within the surveyed area; the experts also classified an additional 0.11 million km2

of unsurveyed area as “assumed” high risk based on circumstantial evidence, giving a

total of 3.3 million km2 of high risk areas and a population of 86 million reported in the

companion paper). Table 3.3 shows the overlap between the two approaches. 98% of the

priority areas for treatment that were identified with an exceedance probability of 0.9

in the geostatistical analysis were classified as high risk areas by the experts. The few

differences between the two classification methods concerned minor differences in the de-

lineation of boundaries of priority areas for treatment, with the expert analysis drawing

boundaries according to river basins and the model based analysis, which currently does

not include spatial information on rivers, drawing the boundaries often slightly wider.

For the priority areas identified with the low exceedance probability of 0.1, the agreement

with the experts was, unsurprisingly, poorer; only 80% of this area was classified as high

risk by the experts.

3.3.5 Estimated number infected

The map of the predicted prevalence of nodules in adults in the 20 APOC countries,

together with the recently published relationship between the prevalence of skin microfi-

laria and the prevalence of nodules, allowed the estimation of the total number of people

that would have been infected with O. volvulus in the APOC countries if there had been



Paper 2. Onchocerciasis prevalence mapping in the 20 African APOC countries 47

Table 3.4: Estimated number of people that would have been infected with Onchocerca
volvulus in the 20 APOC countries in 2011 if there had been no ivermectin treatment.

Population per km2 Surveyed area Rural population Number infected with O. volvulus (1000)
in CTDi area area (1000 km2) in surveyed area (1000) Estimate Quantile 0.025 Quantile 0.975

Angola 3.8 1,015 3,812 440 410 475
Burundi 341.0 24 8,252 658 603 717
Cameroon 24.2 430 10,389 2,810 2,674 2,956
CAR 5.2 448 2,312 592 562 624
Chad 21.6 257 5,557 551 516 591
Congo 34.8 271 9,432 512 442 605
DRC 22.1 2,053 45,391 13,155 12,869 13,462
Equatorial Guinea 22.0 23 433 58 55 62
Ethiopia 46.7 446 20,842 2,882 2,677 3,117
Gabon NA 191 722 49 35 66
Kenya NA 57 3,035 68 37 123
Liberia 30.2 96 2,884 554 515 596
Malawi 237.4 77 18,245 817 727 968
Mozambique NA 549 9,889 330 275 398
Nigeria 65.3 858 56,016 8,510 8,292 8,750
Rwanda NA 20 9,550 228 179 283
South Sudan 13.8 535 7,380 1,361 1,269 1,464
Sudan 14.6 346 5,053 58 50 68
Tanzania 19.4 393 7,631 1,061 975 1,152
Uganda 56.4 180 10,135 865 814 925
Total 27.1 8,270 236,959 35,559 35,085 36,116

no onchocerciasis control. The results of this analysis are shown in Table 3.4. It is es-

timated that overall 35.6 million people (95% confidence interval 35.1 to 36.1 million)

would have been infected by 2011 if there had been no CDTI. Of those, 13.2 million are

from the Democratic Republic of Congo and 8.5 million from Nigeria.

As reported in the companion article, the prevalence of nodules was virtually zero in

Kenya and Rwanda, suggesting that these two countries are non-endemic for onchocer-

ciasis (Noma et al., 2014). However, the necessarily imperfect calibration relationship

between the prevalence of nodules and skin mf prevalence of Coffeng et al. (2013) shows

that a zero nodule prevalence is compatible with skin mf prevalence between zero and

about four percent. This explains why, in each of these two presumed non-endemic coun-

tries, our point estimate of the number of infected is approximately 2% of the population

of the surveyed area.

3.4 Discussion

The geostatistical analysis of the extensive REMO data for 14,473 surveyed villages has

produced a detailed map of the pre-control geographic distribution of onchocerciasis

endemicity levels in the 20 APOC countries. This map has been proven very valuable

for onchocerciasis control and elimination.

Nearly all potentially endemic areas in the 20 APOC countries have been mapped for

onchocerciasis. Of the total surface area of the 20 countries, 94% has been surveyed for
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onchocerciasis or classified as unsuitable for onchocerciasis transmission. By design, no

surveys were done in the unsuitable areas. Although we have no reason to doubt the

classification of unsuitability, we were not able to validate it with survey data. Most of the

remaining 6% of unsurveyed area is either not populated or has a very low population

density of less than 1 person per km2. It also includes a few zones for which it can

reasonably be assumed that onchocerciasis is not endemic: the belts between surveyed

and unsuitable areas in central Ethiopia and Kenya where the prevalence of nodules

was zero in all neighbouring REMO villages; the unsurveyed areas in Mozambique south

of latitude 18◦S given that only 1 single nodule was detected in 37 villages surveyed

below this latitude; and the coastal low lands of Tanzania where onchocerciasis vectors

have never been reported (Mwaiko, Mtoi, and Mkufya, 1990; Raybould and White, 1979;

Wegesa, 1970). Only for less than 1% of the total surface area of the 20 APOC countries

may surveys still be needed to estimate the level of onchocerciasis endemicity. Hence the

mapping of onchocerciasis in all potentially endemic areas in the APOC countries can

be considered more than 99% complete.

The map of the pre-control prevalence of nodules that was generated in the geostatistical

analysis predicts that before the start of CDTI, onchocerciasis was endemic in 18 of the

20 APOC countries. In Rwanda and Kenya (where onchocerciasis has been eliminated

through vector control in the 1960s) the prevalence of nodules was virtually zero and

these countries were classified as non-endemic. In Mozambique, the predicted prevalence

of nodules was around zero throughout the country except for two small border areas

with Tanzania and Malawi. In these two neighbouring countries there are hyperendemic

onchocerciasis foci close to the border and this resulted in a predicted nodule prevalence

of 15% to 20% just across the border in Mozambique. In the remaining 17 endemic

countries, the endemicity levels of onchocerciasis varied significantly. There was a vast

belt of hyperendemic onchocerciasis covering most of the Democratic Republic of Congo

and extending across west Uganda, South Sudan, Central African Republic, Chad and

Cameroon into Nigeria. In all of these countries the estimated nodule prevalence reached

levels of over 40%, corresponding to skin microfilaria prevalence levels of about 60%.

There were also large hyperendemic zones in Ethiopia and Tanzania with equally high

prevalence levels. On the other hand, the estimated prevalence was close or equal to zero

in most of Malawi, Uganda and Sudan, and in large sections of Burundi, Congo, Gabon,

Tanzania, central Ethiopia and south-west Central African Republic. An intermediate

pattern with low to medium prevalence levels was seen in the mainland of Equatorial

Guinea and most of Angola. Overall, the predicted prevalence of nodules was greater

than 20% over a surveyed area of 2.5 million km2 with an estimated population of 62

million, while the prevalence was between 5% and 20% over 2.8 million km2 with an

estimated population of 77 million.
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Beyond the APOC countries, onchocerciasis was known to be endemic in West Africa

where the disease has been mapped by the OCP (Boatin, 2008; De Sole et al., 1991). To

the north of the surveyed area in the APOC countries are arid zones that are not suitable

for Simulium vectors and which are therefore onchocerciasis free. For the same reason,

Somalia is also considered onchocerciasis free even though the presence of S. damnosum

s.l. (though not the disease) was reported from one area in the 1950s (Raybould and

White, 1979). To the south of APOC, all countries except one are located below the most

southern latitude at which onchocerciasis has ever been reported. The exception is Zam-

bia. Since Zambia is not a participating country of APOC, REMO surveys have not been

done in this country. In the literature there is only one report from 1983 of an infection

with O. volvulus in a child (Beaver, Hira, and Patel, 1983), otherwise onchocerciasis has

never been reported from Zambia. However, in the absence of systematic survey data,

we cannot be certain that the country is onchocerciasis free, especially for some border

areas.

Compared to the historical information on the geographic distribution of onchocerciasis

in the APOC countries, the nodule prevalence map is a significant advance. The WHO

Expert Committee on Onchocerciasis Control of 1995 produced a provisional map of

endemic onchocerciasis in Africa on the basis of information available at that time (World

Health Organization, 1995). Much of the area that the Committee identified as endemic

for onchocerciasis has been confirmed endemic in the geostatistical analysis of the REMO

data. However, there were several large areas that the Committee labeled as non-endemic

but that were shown to have medium to high prevalence levels in the nodule prevalence

map. These include endemic foci in North Nigeria, South Cameroon, South Sudan, much

of Angola, and several large hyperendemic zones in the Democratic Republic of Congo

where the prevalence of nodules exceeded 50%-80%. Conversely, several areas labeled as

endemic by the Committee had an estimated nodule prevalence around zero, e.g. the

zone in the south-west of the Central African Republic and the north of Congo.

A second limitation of the historical data was the lack of information on onchocerciasis

endemicity levels for most areas. The REMO surveys filled this gap and generated de-

tailed information on onchocerciasis endemicity that was critically important for APOC

to identify priority areas for ivermectin treatment, i.e. areas where the prevalence of

nodules exceeded 20%. Wherever REMO data became available, they were subjected

to an expert analysis that delineated high risk areas where the prevalence of nodules

was greater than 20% and where CDTI was subsequently implemented to control the

disease as a public health problem. The results of the expert analysis are described in

the companion paper. The expert analysis used a standard methodology to analyse the

REMO data within the context of other relevant geographic information. The ability to

take data from multiple sources into account was a strength of this methodology but a
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perceived weakness was its subjective component: the expertsâĂŹ interpretation of the

information. The geostatistical analysis involves an objective statistical method that can

take statistical uncertainty into account in the decision making process on priority areas.

Given these fundamental differences between the two analytical approaches, it was of

interest to compare their results.

Using the geostatistical analysis it was predicted that the local prevalence of nodules

was equal to or greater than the threshold of 20% over a total surface area of 2.5 million

km2 with a population of 62 million people. This is less than the high risk area of 3.2

million km2 with a population of 84 million identified in the expert analysis. However,

in contrast to the expert analysis, the geostatistical estimate has the advantage that it

is accompanied by an estimate of its statistical uncertainty. Taking into account the

probability that the local prevalence exceeds the 20% threshold, the surface area ranges

from 1.5 million km2 to 3.6 million km2 for exceedance probabilities of 0.9 and 0.1 respec-

tively. For exceedance probabilities of 0.9, nearly all the surface area classified as having

a prevalence of nodules greater than 20% was also classified as high risk in the expert

analysis. For the low exceedance probability of 0.1, there was agreement with the expert

analysis for only 80% of the area classified as exceeding the 20% threshold. The results

indicate that the two methods gave comparable results for areas where the prevalence of

nodules clearly exceeds (i.e. exceedance probability greater than âĂĽ0.9) the threshold

of 20%, and where ivermectin treatment is therefore needed to control onchocerciasis

as a public health problem, but that there is some disagreement for borderline areas

where the prevalence of nodules fluctuates around or below 20%. We conclude that the

expert analysis has correctly identified all areas for which there is strong evidence that

ivermectin treatment is needed to control onchocerciasis as a public health problem. It

also includes many borderline areas for which the evidence of high risk is less strong,

but this has been considered justified for ethical reasons so as not to exclude isolated

high-risk communities from treatment (Noma et al., 2014).

The geostatistical analysis has also been used to estimate the total number of people that

would have been infected with O. volvulus in the 20 APOC countries if there had been

no CDTI. Based on the nodule prevalence map and the recently published quantification

of the relationship between the prevalence of skin microfilaria and the prevalence of

onchocercal nodules (Coffeng et al., 2013), we estimate that some 35.6 million people

(95% confidence interval 35.1 to 36.1 million) would have been infected by the year 2011

if there had been no CDTI. This estimate is significantly higher than the most commonly

quoted estimate from the WHO Expert Committee on Onchocerciasis Control which

estimated that in 1995 a total of 17.7 million people were infected globally, of which 15.0

million lived in APOC countries (World Health Organization, 1995). Using an annual

rural population growth rate of 2.2% for the APOC countries (“Rural population growth
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rate”), our estimate of 36 million infected for 2011 corresponds to 25 million infected in

1995, i.e. 10 million more than the previous WHO estimate for the APOC countries.

This difference is not surprising given that REMO identified many new endemic areas

and generated prevalence estimates for all areas. However, compared to other, more

recent estimates our figure appears low. Coffeng et al. (2013) reported an estimate of

32 million people infected in the APOC countries in 1995, and Remme et al. (2006)

estimated 37 million people infected globally in 1995 and also about 32 million for the

APOC countries. These estimates are also largely based on REMO data of APOC. The

difference with our estimate is mainly due to two methodological factors. One concerns

the formula used to quantify the relationship between the prevalence of microfilaria and

the prevalence of nodules. We used a formula from a recently published analysis of

data from West, Central and East Africa (Coffeng et al., 2013) which predicts a lower

prevalence of microfilariae for a given prevalence of nodules than the formulas used

previously. The second factor concerns the way the REMO sampling design has been

taken into account. The previous estimates assume that sample villages were selected

randomly from a given area. However, in the REMO sampling method villages are

selected spatially at regular distances along rivers with potential breeding sites and at

lower sampling density between rivers. Because of this design, the selection of villages to

be surveyed is biased towards villages with a high endemicity level close to breeding sites

and this bias may have resulted in an overestimate of the number infected in previous

studies. The current geostatistical analysis partially corrects for this bias by taking into

account the spatial distribution of the survey data. Specifically, in estimating the total

number infected, one effect of the spatial correlation is that the observed prevalence

from an isolated surveyed village acts as a proxy for the results that would have been

obtained had surrounding villages also been surveyed, and therefore has greater influence

than any one of a number of surveyed villages at mutually close locations. This results in

a discrepancy between the crude average prevalence and the spatially averaged modelled

prevalence.

A possible improvement of the geostatistical analysis of the REMO data would be to

include relevant geographical covariates in the geostatistical model (Diggle, Menezes, and

Su, 2010), such as the distance to the nearest river with breeding sites, local Simulium

species and vegetation. This will not be easy as the distribution of the different Simulium

species is not well known for most areas while the identification of rivers with potential

for Simulium breeding is a challenge, especially in forest areas. However, recent progress

in the development of a remote sensing model to identify S. damnosum s.l. breeding sites

in Africa appears promising (Jacob et al., 2013). If this approach can be made to work

also in forest areas, and if the cost of its large scale application can be reduced, it should

be possible to improve the nodule prevalence map by including in the model the distance
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to the nearest potential S. damnosum breeding site as identified by remote sensing data.

Another possible improvement of the model concerns predictions in areas where the

prevalence is zero. A common feature of prevalence survey data, here and elsewhere, is

an excess of zeros by comparison with the best-fitting binomial distribution. In a spatial

setting, this zero-inflation can be artificial; for example, it could be the result of over-

sampling in low-prevalence areas. In principle, geographical covariate information could

again be used to model genuine zero-inflation (Giardina et al., 2012). In our analysis, we

dealt with this by adding dummy zero prevalence data at points within areas known to

be disease-free (eg deserts and large water-bodies), thereby ensuring that our estimated

prevalence approaches zero at the boundaries of each of these areas. We intend to

develop an extended model which treats zero-inflation as a second spatial stochastic

process for applications where areas of true zero prevalence are not known beforehand and

prediction of such areas is important. One such application is the use of the REMO data

for helping to revise ivermectin treatment boundaries for the purpose of onchocerciasis

elimination. Finally, bias would arise if implementers deliberately sampled communities

whose prevalence was atypical of their general localities, a phenomenon called preferential

sampling. Correcting for the effects of preferential sampling is difficult unless it can be

explained by measured covariates such as distance to the nearest river in the case of

onchocerciasis (Diggle, Menezes, and Su, 2010).

The original objective of REMO was to identify target areas for ivermectin treatment

with the aim of controlling onchocerciasis as a public health problem. In recent years

evidence has emerged that in the long term onchocerciasis infection and transmission

can even be eliminated with CDTI (Higazi et al., 2013; Tekle et al., 2012; Traore et

al., 2012). Based on this new evidence, APOC has adopted an additional objective to

eliminate onchocerciasis where feasible (World Health Organization, 2012). Because of

this paradigm shift, the target areas for CDTI are currently being revised to include

all areas with local onchocerciasis transmission. The nodule prevalence map provides

the starting point for determining the new treatment boundaries. Furthermore, the

number of years of ivermectin treatment that is required to achieve elimination depends

strongly on the local endemicity level (Winnen et al., 2002). Information on pre-control

endemicity levels is therefore essential for the correct interpretation of the results of

epidemiological evaluations of the impact of CDTI on onchocerciasis infection levels, and

for the prediction of the remaining number of years of CDTI needed in a given area

(World Health Organization, 2010). This information is now also available for all CDTI

areas from the nodule prevalence map.
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3.5 Conclusions

APOC is close to achieving the objective of controlling onchocerciasis as a public health

problem throughout the APOC countries, and the REMO data and nodule prevalence

maps have played an essential role in targeting treatment where needed to achieve this

objective (World Health Organization, 2011). Following the shift from onchocerciasis

control to onchocerciasis elimination, the nodule prevalence map will continue to play an

important role and help with adjusting treatment boundaries, interpreting epidemiologi-

cal evaluation data on progress towards elimination and predicting when elimination will

be achieved in different areas. REMO was a major undertaking but it has been worth-

while and the results have been very valuable for onchocerciasis control and elimination

in Africa.
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Summary

In this paper we introduce a new R package, PrevMap, for the analysis of spatially ref-

erenced prevalence data, including both classical maximum likelihood and Bayesian ap-

proaches to parameter estimation and plug-in or Bayesian prediction. More specifically,

the new package implements fitting of geostatistical models for binomial data, based on

two distinct approaches. The first approach uses a generalized linear mixed model with

logistic link function, binomial error distribution and a Gaussian spatial process as a

stochastic component in the linear predictor. A simpler, but approximate, alternative

approach consists of fitting a linear Gaussian model to empirical-logit-transformed data.

The package also includes implementations of convolution-based low-rank approxima-

tions to the Gaussian spatial process to enable computationally efficient analysis of large

spatial data-sets. We illustrate the use of the package through the analysis of Loa loa

prevalence data from Cameroon and Nigeria. We illustrate the use of the low rank ap-

proximation using a simulated geostatistical data-set.

Keywords: Bayesian analysis; Geostatistics; Low-rank approximations; Monte Carlo

maximum likelihood; Prevalence data; R software environment.
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4.1 Introduction

This article introduces PrevMap, an R package for classical and Bayesian inference on

spatially referenced prevalence data. The package implements fitting and spatial pre-

diction for the standard geostatistical model used in the context of prevalence mapping

(Diggle, Tawn, and Moyeed, 1998). This model falls within the generalized linear mixed

model framework whereby, conditionally on a Gaussian spatial process, a binomial error

distribution with logistic-link function is used to model the data. For classical analy-

sis, we estimate parameters by Monte Carlo maximum likelihood (MCML), which uses

importance sampling techniques so as to approximate the high-dimensional intractable

integral that defines the likelihood function; see for example Christensen (2004). Plug-in

spatial prediction is then carried out by fixing the model parameters at the corresponding

MCML estimates. In order to account for uncertainty in the model parameter estimates,

we also consider a Bayesian approach in which plug-in predictive distributions at different

values of the model parameters are weighted according to their posterior probabilities.

A simpler, but approximate, procedure consists of fitting a geostatistical linear Gaussian

model to empirical-logit-transformed prevalences.

Table 4.1 summarises the common functionalities required for prevalence mapping that

are available in PrevMap and the existing packages geoR (Diggle and Ribeiro, 2007;

Ribeiro and Diggle, 2001), geoRglm (Christensen and Ribeiro, 2002), geostatsp (Brown,

2015), geoBayes and spBayes (Finley, Banerjee, and Carlin, 2007; Finley, Banerjee, and

Gelfand, 2015). Overall, PrevMap provides the most extensive functionality. Specifically,

PrevMap provides the following features: implementation of a convolution-based low-rank

approximation that can be used to reduce the computational burden when analysing large

spatial data-sets; accurate numerical computation of MCML standard errors for both

regression and covariance parameters estimates; inclusion of both individual-level and

location-level explanatory variables with random effects defined at location-level when

repeated observations are made at the same locations; more flexible prior specifications

for the covariance parameters; implementation of an efficient Hamiltonian Monte Carlo

algorithm for Bayesian parameter estimation.

The paper is structured as follows. In Section 4.2, we briefly introduce the geostatistical

binomial logistic (henceforth BL) model, describe methods for classical and Bayesian in-

ference, and outline approximate procedures based on the empirical logit transformation

and low-rank approximations. Section 4.3 is a geostatistical analysis of Loa loa preva-

lence data using the empirical logit transformation of the data; we also show how to fit

a BL model using Monte Carlo methods, both for classical and Bayesian analysis. In

Section 4.4, we illustrate the use of the low-rank approximation by fitting a BL model
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Table 4.1: List of functionalities that are currently available (X) and not available
(5) in PrevMap and other R packages used to analyse geostatistical data.

PrevMap geoR geoRglm geostatsp geoBayes spBayes
− Fitting of geostatistical X 5 X X X X
binomial models.
− Likelihood-based inference X 5 X 5 5 5

(binomial model).
− Bayesian inference X 5 X X X X
(binomial model).
− Option for inclusion of X 5 X X X 5

the nugget effect (binomial model).
− Low-rank approximations. X 5 5 5 5 X
− Fitting of two-levels models. X 5 5 X 5 5

− Spatial prediction of X X∗ X 5 X X
non-linear properties.
− Spatial prediction of X X∗ X 5 X X
multivariate properties.
− Option for inclusion 5 X∗ X X∗ 5 5

of anisotropy.
− Specification of non-Matérn 5 X∗ X 5 X X
correlation functions (e.g. Gaussian,
spherical).

* Available only for the linear model.

to a simulated geostatistical data-set. Section 4.5 is a concluding discussion on planned

extensions to the package.

4.2 Methodological framework

The ingredients of a geostatistical BL model are: random variables Yi of positive counts,

binomial denominators mi, explanatory variables di ∈ Rp and associated sampling loca-

tions xi : i = 1, . . . , n in a given region of interest A ⊆ R2. Conditionally on a zero-mean

Gaussian process S(x) and mutually independent zero-mean Gaussian variables Zi, Yi
follows a binomial distribution with mean E[Yi|S(xi), Zi] = mipi such that

log

{
pi

1− pi

}
= Ti = d(xi)

>β + S(xi) + Zi, (4.1)

where we set di = d(xi) to emphasize the spatial context and β is a vector of regression

coefficients. In (4.1), we write τ2 for the variance of Zi and model S(x) as a stationary

isotropic Gaussian process with variance σ2 and Matérn (1986) correlation function given

by

ρ(u;φ, κ) = {2k−1Γ(κ)}−1(u/φ)κKκ(u/φ), u > 0,
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where φ > 0 is a scale parameter, Kκ(·) is the modified Bessel function of the second

kind of order κ > 0 and u is the distance between two sampling locations. The shape

parameter κ determines the smoothness of S(x), in the sense that S(x) is dκe − 1 times

mean-square differentiable, with dκe denoting the smallest integer greater than or equal

to κ.

In most of the functions available in PrevMap, the Matérn shape parameter κ is treated

as fixed. One reason for this is that, as shown by Zhang (2004), not all of the three

parameters σ2, φ and κ can be consistently estimated under in-fill asymptotics and in

practice this translates to κ often being poorly identified. Additionally, the parameter

κ is rarely of direct scientific interest. We therefore recommend either fixing κ at a

plausible value, or considering a discrete set of values e.g., {1/2, 3/2, 5/2} corresponding
to different levels of smoothness, and profiling on κ.

4.2.1 Monte Carlo maximum likelihood

The likelihood function for the parameters β and θ> = (σ2, φ, τ2) is given by the marginal

distribution of the random variables Yi. This is obtained by integrating out the random

effects in Ti as defined by (4.1). Let D denote the n by p matrix of explanatory variables

and y> = (y1, . . . , yn) the vector of binomial observations. The marginal distribution

of T is multivariate Gaussian with mean vector Dβ and covariance matrix Σ(θ) with

diagonal elements σ2 + τ2 and off-diagonal elements σ2ρ(uij), where uij is the distance

between locations xi and xj . The conditional distribution of Y > = (Y1, . . . , Yn) given

T> = t> = (t1, . . . , tn) is

f(y|t) =

n∏
i=1

f(yi|ti), (4.2)

a product of independent binomial probability functions. The likelihood function for β

and θ follows as

L(β, θ) = f(y;β, θ) =

∫
Rn

N(t;Dβ,Σ(θ))f(y|t) dt (4.3)

whereN(·;µ,Σ) is the density function of a multivariate Gaussian distribution with mean

vector µ and covariance matrix Σ.

The MCML method (Geyer and Thompson, 1992; Geyer, 1994; Geyer, 1996; Geyer, 1999)

uses conditional simulation from the distribution of T given Y = y to approximate the

high-dimensional integral in (4.3). Specifically, the likelihood function can be rewritten
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as

L(β, θ) =

∫
Rn

N(t;Dβ,Σ(θ))f(y|t)
N(t;Dβ0,Σ(θ0))f(y|t)

f(y, t) dt

∝
∫
Rn

N(t;Dβ,Σ(θ))

N(t;Dβ0,Σ(θ0))
f(t|y) dt = ET |y

[
N(t;Dβ,Σ(θ))

N(t;Dβ0,Σ(θ0))

]
(4.4)

where f(y, t) = N(t;Dβ0,Σ(θ0))f(y|t) is the joint distribution of Y and T for pre-defined,

fixed values of β0 and θ0. We use a Markov Chain Monte Carlo (MCMC) algorithm to

obtain m samples t(i) from the conditional distribution of T given Y = y under β0 and

θ0 and approximate (4.4) with

Lm(β, θ) =
1

m

n∑
i=1

N(t(i);Dβ,Σ(θ))

N(t(i);Dβ0,Σ(θ0))
. (4.5)

Note that Lm(β, θ) is a consistent estimator of L(β, θ), whether or not the samples t(i)
are correlated. The optimal choices for β0 and θ0 are the maximum likelihood estimates

of β and θ, for which maxβ,θ Lm(β, θ) → 1 as m → ∞. Since our choices for β0 and

θ0 will necessarily differ from the actual maximum likelihood estimates, the distance of

Lm(β̂m, θ̂m) from 1, where β̂m and θ̂m are the MCML estimates, can be used as a measure

of quality of the Monte Carlo approximation. In practice, we embed the maximisation

of Lm(β, θ) within the following iterative procedure. Let β̂m and θ̂m denote the values

that maximise Lm(β, θ) using an initial guess at suitable values β0 and θ0, repeat the

maximisation with β0 = β̂m and θ0 = θ̂m and continue until convergence.

For maximization of the approximation to the log-likelihood lm(β, θ) = logLm(β, θ) in

PrevMap, the user can choose between a BFGS algorithm or unconstrained optimization

with PORT routines. Let ψ = log θ; analytical expressions for the first and second

derivatives of lm(β, ψ) with respect to β and ψ are internally passed to the optimization

functions maxBFGS of the maxLik package (Henningsen and Toomet, 2011) in the former

case and to the nlminb function in the latter. This can be very useful in order to better

locate the global maximum on a generally flat likelihood surface, as it is often the case for

the ψ parameter. The MCML standard errors are then estimated by taking the square-

roots of the diagonal elements of the inverse of the negative Hessian of lm(β̂m, ψ̂m). The

accuracy of such an approximation for the standard errors is context-specific and is also

affected by the Monte Carlo error. As a partial check, the resulting standard errors for

β are typically larger than those estimated using an ordinary logistic regression. In the

examples of Section 4.3.3 and Section 4.4, the number of simulated samples is sufficiently

large to make the Monte Carlo error negligible.

In the PrevMap package, conditional simulation of T given y with fixed parameters β and
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Table 4.2: Some of the main functions available in the PrevMap package. Note that
all of the listed functions include an option to use a low-rank approximation procedure.

Function Model Method of inference Type of use
binomial.logistic.MCML Binomial Classical Parameter estimation
binomial.logistic.Bayes Binomial Bayesian Parameter estimation
linear.model.MLE Linear Classical Parameter estimation
linear.model.Bayes Linear Bayesian Parameter estimation
spatial.pred.binomial.MCML Binomial Classical Spatial prediction
spatial.pred.binomial.Bayes Binomial Bayesian Spatial prediction
spatial.pred.linear.MLE Linear Classical Spatial prediction
spatial.pred.linear.Bayes Linear Bayesian Spatial prediction

θ is implemented by the function Laplace.sampling. This function uses a Langevin-

Hastings algorithm to update the random variable T̂ = Σ̂1/2(T − t̂), where t̂ and Σ̂

are respectively the mode and the inverse of the negative Hessian of the density of the

conditional distribution. The objective of this linear transformation is to break the

dependence between the different components of T so as to allow for faster convergence

of the MCMC algorithm. However, when using the function binomial.logistic.MCML

for parameter estimation, conditional simulation is carried out internally; see Section

4.3.3.1.

4.2.2 Bayesian inference

In the Bayesian framework, a joint prior distribution for β and θ is combined with the

likelihood function through Bayes’ theorem so as to obtain the corresponding posterior

distribution. We assume that the prior distributions for θ and β are of the form

θ ∼ g(·),

β|σ2 ∼ N(·; ξ, σ2Ω)

where g(·) can be any distribution for θ, and ξ and Ω are the mean vector and a p by p

covariance matrix for the Gaussian prior of β. The posterior distribution for β, θ and T

is given by

π(β, θ, t|y) ∝ g(θ)N(β; ξ, σ2Ω)N(t;Dβ,Σ(θ))f(y|t). (4.6)

The function binomial.logistic.Bayes can be used to obtain samples from the above

posterior distribution. This uses an MCMC algorithm, where θ, β and T are updated in

turn using the following procedure.
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1. Initialise β, θ and T .

2. Following the procedure proposed by Christensen, Roberts, and Sköld (2006), use

the following re-parametrization for the covariance parameters

(θ̃1, θ̃2, θ̃3) = (log σ, log(σ2/φ2κ), log τ2)

and update each of them in turn using a random-walk Metropolis Hastings (RWMH).

In each of the three RWMH for θ̃1, θ̃2 and θ̃3, the standard deviation, h say, of the

Gaussian proposal at i-th iteration is given by

hi = hi−1 + c1i
−c2(αi − 0.45), (4.7)

where c1 > 0 and c2 ∈ (0, 1] are pre-defined constants, αi is the acceptance prob-

ability at the i-th iteration and 0.45 is the optimal acceptance probability for a

univariate Gaussian distribution.

3. Update β using a Gibbs step. The required conditional distribution of β given θ

and T is Gaussian, independent of y and with mean ξ̃ and covariance matrix σ2Ω̃

given by

ξ̃ = Ω̃(Ω−1ξ +D>R(θ)−1T )

σ2Ω̃ = σ2(Ω−1 +D>R(θ)−1D)−1,

where σ2R(θ) = Σ(θ).

4. Update the distribution of T given β, θ and y using a Hamiltonian Monte Carlo

algorithm (Neal, 2011). Specifically, let H(t, u) be the Hamiltonian function

H(t, u) = u>u/2− log f(t|y, β, θ),

where u ∈ Rn is the vector of the momentum variables and f(t|y, β, θ) is the con-

ditional density of T given β, θ and y. The partial derivatives of H(u, t) determine

how u and t change over time v according to the Hamiltonian equations

dti
dv

=
∂H

∂ui
,

dui
dv

= −∂H
∂ti

for i = 1, . . . , n. In order to implement the Hamiltonian dynamic, the above

differential equations are discretized using the leapfrog method (Neal, 2011, pp.

121-122) and approximate solutions are then found.
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Two auxiliary functions, control.prior and control.mcmc.Bayes, define prior distri-

butions and tuning parameters for the above MCMC scheme.

4.2.3 Empirical logit transformation

An alternative approach to exact fitting methods is to use a trans-Gaussian approxima-

tion of the model in (4.1). This consists of fitting a linear model to the empirical logit

transformation of the data,

Ỹi = log

(
Yi + 1/2

mi − Yi + 1/2

)
: i = 1, . . . , n. (4.8)

The method then assumes that Ỹi|S(xi) ∼ N(d(xi)
>β +S(xi), τ

2) with S(x) having the

same properties as previously defined. Guidance on when this model can be safely used

is given by Stanton and Diggle (2013).

In the PrevMap package the empirical logit transformation is implemented both for classi-

cal and Bayesian inference in the functions linear.model.MLE and linear.model.Bayes.

4.2.4 Low-rank approximation

The Gaussian process S(x) in (4.1) can be represented as a convolution of Gaussian noise

(Higdon, 1998; Higdon, 2002),

S(x) =

∫
R2

K(‖x− t‖;φ, κ) dB(t) (4.9)

where B is Brownian motion, ‖ · ‖ is the Euclidean distance and K(·) is the Matérn

kernel given by the following expression

K(u;φ, κ) =
Γ(κ+ 1)1/2κ(κ+1)/4u(κ−1)/2

π1/2Γ((κ+ 1)/2)Γ(κ)1/2(2κ1/2φ)(κ+1)/2
Kκ(u/φ), u > 0. (4.10)

Let (x̃1, . . . , x̃r) be a grid of spatial knots. By discretization of equation (4.9), and for r

sufficiently large, we obtain a low-rank approximation

S(x) ≈
r∑
i=1

K(‖x− x̃i‖;φ, κ)Ui, (4.11)

where the Ui are independent zero-mean Gaussian variables with variance σ2. This

approximation is particularly beneficial for relatively large values of the scale parameter

φ, when a small number of spatial knots is required to give a good approximation over
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the study-region. Note also that the number of spatial knots r is independent of the

sample size n, making this approach computationally attractive when n is large.

Since the resulting approximation in (4.11) is no longer a stationary process, we adjust

the value of σ2 by multiplying it by the following quantity

1

n

n∑
i=1

m∑
j=1

K(‖x̃j − x̃i‖;φ, κ)2.

The adjusted value of σ2 is then a closer approximation to the actual variance of the

Gaussian process S(x).

Different implementations of this method are possible, depending on whether we use

an exact fitting method or an empirical logit approximation. In the PrevMap package,

low-rank approximations can be used in each of the fitting functions listed in Table 4.2;

we give an example in Section 4.4.

Implementations of the low-rank approximation for the BL and linear model are as

follows.

• BL model. In this implementation the nugget effect is not included, hence τ2 =

0. For both the classical and Bayesian analysis, conditional simulation from the

distribution of the random effect U given the data y (and the model parameters in

the Bayesian case) is used, hence avoiding matrix inversion.

• Linear model. The low-rank approximation is here used for the empirical logit

transformation of prevalence. In this case τ2 > 0, since the nugget effect is now

a proxy for binomial sampling variation. Inversion of the covariance matrix and

computation of the determinant are simplified as follows. Let K(θ) denote the n

by r kernel matrix. The covariance matrix now assumes the form

Σ(θ) = σ2K(θ)K(θ)> + τ2In

where In is the n by n identity matrix. The Woodbury identity for matrix inversion

gives

Σ(θ)−1 = σ2ν−2(In − ν−2K(θ)(ν−2K(θ)>K(θ) + Ir)
−1K(θ)>)

where ν2 = τ2/σ2. Inversion of Σ(θ) now requires inversion of an r by r matrix.

Computation of the determinant, denoted by | · |, can also be simplified by using
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Sylvester’s determinant theorem. This gives

|Σ(θ)| = |σ2K(θ)K(θ)> + τ2In|

= τ2n|ν−2K(θ)>K(θ) + Ir|,

which again reduces the dimensionality of the required matrix operations from n

by n to r by r.

4.2.5 Spatial prediction

We now consider the prediction of T ∗ = (T (xn+1), . . . , T (xn+q))
> at q additional lo-

cations not included in the data. This requires all relevant explanatory variables to

be available at the prediction locations. We do not include the mutually independent

random variables Zi in (4.1) as part of our target for prediction, hence T (xn+i) =

d(xn+i)
>β + S(xn+i) for i = 1, . . . , q.

Conditionally on T> = (T1, . . . , Tn), β, θ and y, the target for prediction T ∗ follows a

multivariate Gaussian distribution with mean and covariance matrix

µ∗(T ) = D∗β + CΣ−1(T −Dβ), (4.12)

Σ∗ = V − CΣ−1C>, (4.13)

where C is the cross-covariance matrix between T and T ∗, V is the covariance matrix of

T ∗ and D∗ is a q by p matrix of explanatory variables at the prediction locations. Let T ∗(j)
denote the j-th simulated sampled from the posterior distribution of T ∗ for j = 1, . . . ,m.

If the sample mean is to be used as a point predictor of T , the package uses the following

result to reduce the associated Monte Carlo error,

ET ∗|yE[T ∗] = ET,β,θ|y[ET ∗|T,β,θ,y[T
∗]] = ET,β,θ|y[µ

∗(T )] ≈ 1

m

m∑
j=1

µ∗(T(j)).

Prediction of the functional W (T ∗)> = (W (T (xn+1)), . . . ,W (T (xn+q))) follows imme-

diately by computing W(j) = W (T ∗(j)) for j = 1, . . . ,m. The PrevMap package provides

automatic computation of the following functionals.

• Prevalence: W (T (xn+i)) = exp{T (xn+i)}/(1 + exp{T (xn+i)}).
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• Odds: W (Tn+i) = exp{T (xn+i)}. Let σ2∗ = diag(Σ∗) denote the vector of condi-

tional variances. In this case, the Monte Carlo error in the computation of the pos-

terior mean is reduced by noticing that ET ∗|T,β,θ,y[exp{T ∗}] = exp{µ∗(T )+σ2∗/2},
hence

ET ∗|y[exp{T ∗}] ≈ 1

m

m∑
j=1

exp{µ∗(T(j)) + σ2∗(j)/2}.

Another summary of the posterior distribution that is often relevant, particularly in

problems of hotspot detection, is the exceedance probability P (T (xn+i) > l | y) for a

given threshold l and i = 1, . . . , q. We estimate this as

1

m

m∑
j=1

I
(
T(j)(xn+i) > l

)
,

where I(a > l) is 1 if a > l and 0 otherwise, and T(j)(xn+i) is the i-th element of T ∗(j).

The spatial.pred.binomial.MCML and spatial.pred.binomial.Bayes functions can

be used for classical and Bayesian spatial prediction, respectively. As we later illustrate,

one of the available options is also the computation of either joint or marginal predic-

tions. For example, joint predictions are needed when the target for prediction is an

average over a sub-region. Spatial prediction for the empirical logit transformation using

classical and Bayesian approaches is implemented in the spatial.pred.linear.MLE and

spatial.pred.linear.Bayes functions, respectively. Low-rank approximations for each

of the above functions are also available; see Section 4.3.3.

4.3 Example: Loa loa prevalence mapping

The data that we analyse relate to a study of the prevalence of Loa loa (eyeworm) in

a series of surveys undertaken in 197 villages in Cameroon and southern Nigeria; see

Diggle et al. (2007) for more details. Figure 4.2(a) shows the locations of the sampled

villages.

4.3.1 Choosing initial values

Choosing initial values for the model parameters is the first step in both classical and

Bayesian analysis. Initial values for the regression coefficients can be easily obtained from

an ordinary logistic regression fit. Choosing initial values for the covariance parameters

is less straightforward. The shape parameter κ of the Matérn function is typically chosen

from a discrete set of candidate values, which can be compared by evaluating a profile
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Figure 4.1: Profile likelihood for the shape parameter κ of the Matérn covariance
function, obtained using the function shape.matern; the profile likelihood (black solid
line) is interpolated by a spline (red solid line), which is then used to obtain a confidence

interval of coverage 95% (vertical dashed lines).
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Figure 4.2: (a) Sampling locations for the Loa loa data. (b) Empirical variogram for
the empirical logit transformation of the observed prevalence with theoretical variogram

(solid line) obtained by least-squares estimation.

likelihood for κ based on the empirical logit transformation of the observed prevalence,

as in the following example.

R> library("PrevMap")

R> data("loaloa")

R> loaloa$logit <- log((loaloa$NO_INF + 0.5)/

+ (loaloa$NO_EXAM - loaloa$NO_INF + 0.5))

R> profile.kappa <- shape.matern(formula = logit ~ 1,
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+ coords = ~ LONGITUDE + LATITUDE,

+ data = loaloa, set.kappa = seq(0.2,1.5, length = 15),

+ start.par = c(0.2,0.05), coverage = 0.95)

R>

R> c(profile.kappa$lower, profile.kappa$upper)

[1] 0.2140705 1.1044392

R> profile.kappa$kappa.hat

[1] 0.4991899

The shape.matern function evaluates the profile likelihood for κ and obtains a corre-

sponding confidence interval with coverage specified by the argument coverage. The

set of values that are used for evaluation of the profile likelihood is specified through

the set.kappa argument. Computation of the confidence interval uses the interpolated

profile log-likelihood as shown in Figure 4.1: the red line corresponds to an interpolating

spline and the likelihood threshold, denoted by the horizontal dashed line, is obtained

using the asymptotic distribution of a chi-squared with one degree of freedom. Since the

maximum likelihood estimate is very close to 1/2, we then fix the shape parameter κ at

this value for the subsequent analysis.

The package geoR provides several functions that are useful for an initial exploratory

analysis of geostatistical data. For example, using the function variofit, a least-squares

estimation of the empirical variogram can be used in order to choose initial values for

the covariance parameters of the Gaussian spatial process.

R> library("geoR")

R> coords <- as.matrix(loaloa[, c("LONGITUDE", "LATITUDE")])

R> vari <- variog(coords = coords, data = loaloa$logit,

+ uvec = c(0, 0.1, 0.15, 0.2,

+ 0.4, 0.8, 1.4, 1.8, 2, 2.5, 3))

R> vari.fit <- variofit(vari, ini.cov.pars = c(2, 0.2),

+ cov.model = "matern",
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+ fix.nugget = FALSE, nugget = 0 ,

+ fix.kappa = TRUE, kappa = 0.5)

R> par(mfrow = c(1,2))

R> plot(coords, pch = 20, asp = 1, cex = 0.5, main = "(a)")

R> plot(vari, main = "(b)")

R> lines(vari.fit)

R> vari.fit

variofit: model parameters estimated by WLS (weighted least squares):

covariance model is: matern with fixed kappa = 0.5 (exponential)

parameter estimates:

tausq sigmasq phi

0.1554 2.0827 0.1890

Practical Range with cor = 0.05 for asymptotic range: 0.5662674

variofit: minimised weighted sum of squares = 780.6663

The above code computes the empirical logit transformation of the observed Loa loa

prevalence, uses this to obtain the empirical variogram with the variog function and

fits an exponential correlation function to the empirical variogram with the variofit

function, which uses a least squares curve-fitting criterion. The results are shown in

Figure 4.2(b).

4.3.2 Linear model

In this section we show how to fit a linear model with Matérn correlation function to

the empirical logit transformation of the Loa loa data using the maximum likelihood

method. The linear.model.MLE function has its counterpart in the likfit function in

geoR but, unlike likfit, uses analytic expressions for the gradient function and Hessian

matrix, and delivers an estimated covariance matrix of the maximum likelihood estimates

accordingly. As shown in the next section, the binomial.logistic.MCML function uses

the same approach in fitting a BL model.

R> fit.MLE <- linear.model.MLE(formula = logit ~ 1,

+ coords = ~ LONGITUDE + LATITUDE, data = loaloa,
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+ start.cov.pars = c(0.2, 0.15), kappa = 0.5)

R>

R> summary(fit.MLE, log.cov.pars = FALSE)

Geostatistical linear Gaussian model

Call:

geo.linear.MLE(formula = formula, coords = coords, data = data,

kappa = kappa, fixed.rel.nugget = fixed.rel.nugget,

start.cov.pars = start.cov.pars,

method = method)

Estimate StdErr z.value p.value

(Intercept) -2.2986 0.5469 -4.203 2.634e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Log-likelihood: -94.34047

Covariance parameters Matern function (kappa = 0.5)

Estimate StdErr

sigma^2 2.45148 0.1393

phi 0.84398 0.4933

tau^2 0.36865 1.1717

Legend:

sigma^2 = variance of the Gaussian process

phi = scale of the spatial correlation

tau^2 = variance of the nugget effect

The first argument of linear.model.MLE specifies the covariates used in the regression

as a formula object; in this case formula = logit ~ 1 since we only fit an intercept.

The argument start.cov.pars provides the initial values of φ and ν2(= τ2/σ2), re-

spectively, used in the optimization algorithm. The argument fixed.rel.nugget allows

the relative variance of the nugget effect ν2 to be fixed if desired. Additionally, two

different maximisation algorithms are available: if method = "BFGS" (set by default),

the maxBFGS function in the maxLik package is used, otherwise method = "nlminb" and

the nlminb function is then used for unconstrained optimization using PORT routines.
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Figure 4.3: Profile log-likelihood for ν2 (left panel) and (ν2, φ) (right panel) obtained
using the function loglik.linear.model.

When calling a summary of the fitted model, estimates and standard errors of the co-

variance parameters are given on the log-scale by default. Setting log.scale = FALSE

gives estimates and standard errors on the original scale.

The function loglik.linear.model can be used either for computation of the profile

likelihood for φ and/or ν2 or for evaluation of the likelihood keeping the other parameters

fixed. The auxiliary function control.profile is used to define the set of values for φ

and/or ν2 used in the evaluation of the likelihood, and the fixed values for β and σ2, if

necessary. The shape parameter κ is also fixed at the value defined in the fitted model

object that must be specified as first argument of loglik.linear.model.

R> cp1 <- control.profile(rel.nugget = exp(seq(-5, 0, length = 20)))

Control profile: parameters have been set for

evaluation of the profile log-likelihood.

R> cp2 <- control.profile(rel.nugget = exp(seq(-5, 0, length = 20)),

+ phi = exp(seq(-4, 4, length = 20)))
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Control profile: parameters have been set for

evaluation of the profile log-likelihood.

R> lp1 <- loglik.linear.model(fit.MLE, cp1, plot.profile = FALSE)

R>

R> lp2 <- loglik.linear.model(fit.MLE, cp2, plot.profile = FALSE)

R>

R> par(mfrow = c(1, 2))

R> plot(lp1, type = "l", log.scale = TRUE,

+ xlab = expression(log(nu^2)),

+ ylab = "log-likelihood",

+ main = expression("Profile likelihood for" ~ nu^2))

R> plot(lp2, log.scale = TRUE, xlab = expression(log(phi)),

+ ylab = expression(log(nu^2)),

+ main = expression("Profile likelihood for" ~ nu^2 ~ "and" ~ phi))

The resulting plots of the profile log-likelihood for ν2 and the profile log-likelihood

surface of (ν2, φ) are shown in Figure 4.3. These are generated using the function

plot.profile.PrevMap as an S3 method, in which the logical argument log.scale can

be set to TRUE in order to plot the profile likelihood on the log-scale of the chosen param-

eters. Likelihood-based confidence intervals for φ or ν2 can also be obtained by using the

loglik.ci function. As with the shape.matern function, the loglik.ci function uses

a spline to interpolate the univariate profile likelihood and obtain a confidence interval

of coverage specified by coverage.

R> ci0.95 <- loglik.ci(lp1, coverage = 0.95, plot.spline.profile = FALSE)

Likelihood-based 95% confidence interval: (0.04460758, 0.2936487)

4.3.3 Binomial logistic model

We now show how to fit a BL model to the Loa loa data using either the MCML method

(Section 4.3.3.1) or a Bayesian approach (Section 4.3.3.2).
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4.3.3.1 Likelihood-based analysis

For the MCML method, we set the parameters of the importance sampling distribution,

β0 and θ0, to the estimates reported in Section 4.3.1 using ordinary logistic regression

and a least squares fit to the variogram, respectively.

R> fit.glm <- glm(cbind(NO_INF, NO_EXAM - NO_INF) ~ 1, data = loaloa,

+ family = binomial)

R> par0 <- c(coef(fit.glm), vari.fit$cov.pars, vari.fit$nugget)

R> c.mcmc <- control.mcmc.MCML(n.sim = 10000, burnin = 2000,

+ thin = 8, h = (1.65)/(nrow(loaloa) ^ (1/6)))

R> fit.MCML1 <- binomial.logistic.MCML(formula = NO_INF ~ 1,

+ units.m = ~ NO_EXAM, par0 = par0,

+ coords = ~ LONGITUDE + LATITUDE, data = loaloa,

+ control.mcmc = c.mcmc,

+ kappa = 0.5,

+ start.cov.pars = c(par0[3], par0[4]/par0[2]))

R> fit.MCML1$log.lik

[1] 24.24903

The above code fits a BL model by simulating 10,000 samples and retaining every eighth

sample after a burn-in of 2,000 values to approximate the likelihood integral. The func-

tion control.mcmc.MCMCL sets the control parameters of the MCMC algorithm. The

argument h represents the proposal density of the Langevin-Hastings (see Section 4.2.1).

Our suggestion is to set this to 1.65/n1/6, where n is the sample size, which corresponds

to the optimal value for sampling from a standard multivariate Gaussian distribution

(Roberts and Rosenthal, 2001).

We now repeat the MCML procedure twice, but with new values for β0 and θ0 set as the

MCML estimates each time; in the last iteration, we also increase the number of retained

simulated samples to 10,000.

R> par0 <- coef(fit.MCML1)

R> start <- c(par0[3], par0[4]/par0[2])
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Figure 4.4: Plots of the prevalence estimates, standard errors and exceedance proba-
bilities for the Loa loa data from the MCML (upper panels) and Bayesian (lower panels)

analyses.

R> fit.MCML2 <- binomial.logistic.MCML(formula = NO_INF ~ 1,

+ units.m = ~ NO_EXAM, par0 = par0,

+ coords = ~ LONGITUDE + LATITUDE, data = loaloa,

+ control.mcmc = c.mcmc,

+ kappa = 0.5,

+ start.cov.pars = c(par0[3], par0[4]/par0[2]))

R> fit.MCML2$log.lik

[1] 1.287294

R> c.mcmc <- control.mcmc.MCML(n.sim = 65000, burnin = 5000,

+ thin = 6, h = (1.65)/(nrow(loaloa)^(1/6)))

R> par0 <- coef(fit.MCML2)

R> fit.MCML3 <- binomial.logistic.MCML(formula = NO_INF ~ 1,

+ units.m = ~ NO_EXAM,par0=par0,

+ coords = ~LONGITUDE+LATITUDE,data=loaloa,

+ control.mcmc = c.mcmc,

+ kappa = 0.5, start.

+ cov.pars = c(par0[3],par0[4]/par0[2]))

R> summary(fit.MCML3)
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Binomial geostatistical model

Call:

binomial.logistic.MCML(formula = NO_INF ~ 1, units.m = ~NO_EXAM,

coords = ~LONGITUDE + LATITUDE, data = loaloa, par0 = par0,

control.mcmc = c.mcmc, kappa = 0.5, start.cov.pars = c(par0[3],

par0[4]/par0[2]))

Estimate StdErr z.value p.value

(Intercept) -2.30556 0.51743 -4.4558 8.358e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Objective function: 0.1366855

Covariance parameters Matern function (kappa=0.5)

Estimate StdErr

log(sigma^2) 0.92408 0.3215

log(phi) -0.28736 0.3804

log(tau^2) -3.23648 1.5796

Legend:

sigma^2 = variance of the Gaussian process

phi = scale of the spatial correlation

tau^2 = variance of the nugget effect

Note that updating β0 and θ0 with the resulting MCML estimates at each iteration

results in the maximum value of the approximation to the log-likelihood function ap-

proaching zero. This is an indication that the MCML estimates are converging towards

the actual maximum likelihood estimates of β and θ, for which the value of the Monte

Carlo likelihood is exactly zero. We now carry out spatial predictions over a 0.1 by 0.1 de-

gree regular grid, fixing the model parameters at the MCML estimates, and summarise

the predictive distribution of prevalence in each grid cell through its mean, standard

deviation and probability that the estimated prevalence is above 20%.

R> library("splancs")
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R> poly <- coords[chull(coords),]

R> grid.pred <- gridpts(poly, xs = 0.1, ys = 0.1)

R> pred.MCML <- spatial.pred.binomial.MCML(fit.MCML3, grid.pred,

+ control.mcmc = c.mcmc, type = "marginal",

+ scale.predictions = "prevalence",

+ standard.errors = TRUE, thresholds = 0.2,

+ scale.thresholds = "prevalence")

R>

R> par(mfrow = c(1,3))

R> plot(pred.MCML, type = "prevalence",

+ summary = "predictions", zlim = c(0,0.45),

+ main = "Prevalence - predictions \n (classical analysis)")

R> contour(pred.MCML, type = "prevalence",

+ summary = "predictions",

+ levels = c(0.05,0.1,0.2,0.3), add = TRUE)

R> plot(pred.MCML, type = "prevalence",

+ summary = "standard.errors", zlim = c(0,0.3),

+ main = "Prevalence - standard errors \n (classical analysis)")

R> contour(pred.MCML, type = "prevalence",

+ summary = "standard.errors",

+ levels = c(0.05,0.1,0.15,0.2), add = TRUE)

R> plot(pred.MCML, summary = "exceedance.prob",

+ zlim = c(0,1),

+ main = "Prevalence - exceedance probabilities

+ \n (classical analysis)")

R> contour(pred.MCML, summary = "exceedance.prob",

+ levels = c(0.1,0.4,0.5,0.7), add = TRUE)

Using the argument type in spatial.pred.binomial.MCML, we can specify either marginal

(type = "marginal") or joint (type = "joint") predictions. Through scale.predictions,

we can also specify the scale on which predictions are required: "logit", "prevalence"

or "odds". Exceedance probability thresholds and the scale on which they are provided

are specified through the arguments thresholds and scale.thresholds, respectively.

Figure 4.4 shows the images of prevalence estimates, standard errors and exceedance

probabilities with associated contours. These plots are obtained using the methods

plot.pred.PrevMap and contour.pred.PrevMap, whose arguments type and summary

can be used to specify which summaries should be displayed.
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Figure 4.5: Autocorrelation plot of a thinned sequence of 10000 MCMC samples
(left panels), trace plot of the same sequence (central panels) and empirical cumula-
tive distribution plots for the first 5000 and second 5000 samples (right panels), for
the spatial average of predicted logit-transformed prevalence (first row) and for the
predicted logit-transformed prevalence at two randomly selected locations (second and

third rows).

The following code generates a set of diagnostic plots, shown in Figure 4.5, that provide

checks on convergence of the MCMC.

R> par(mfrow=c(3,3))

R> S.mean <- apply(pred.MCML$samples, 2, mean)

R> acf(S.mean,main = "")

R> plot(S.mean,type = "l")

R> plot(ecdf(S.mean[1:5000]), main = "")

R> lines(ecdf(S.mean[5001:10000]), col = 2, lty = "dashed")

+

R> ind.S <- sample(1:nrow(grid.pred), 2)

R> acf(pred.MCML$samples[ind.S[1],], main = "")

R> plot(pred.MCML$samples[ind.S[1], ],
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+ ylab = paste("Component n.", ind.S[1]), type = "l")

R> plot(ecdf(pred.MCML$samples[ind.S[1], 1:5000]), main = "")

R> lines(ecdf(pred.MCML$samples[ind.S[1], 5001:10000]),

+ col = 2, lty = "dashed")

+

R> ind.S <- sample(1:nrow(grid.pred), 2)

R> acf(pred.MCML$samples[ind.S[2],], main = "")

R> plot(pred.MCML$samples[ind.S[2], ],

+ ylab = paste("Component n.", ind.S[2]), type = "l")

R> plot(ecdf(pred.MCML$samples[ind.S[2], 1:5000]), main = "")

R> lines(ecdf(pred.MCML$samples[ind.S[2], 5001:10000]),

+ col = 2, lty = "dashed")

In the first row of Figure 4.5, the target for prediction is the spatial average of logit-

transformed prevalence, in the second and third rows the target is logit-transformed

prevalence at each of two randomly sampled location. The three columns show: the

autocorrelation plot of a thinned sequence of 10000 MCMC samples; the trace plot of

these same 10000 samples; the empirical cumulative distribution functions of the first

5000 and the second 5000 of these 10000 samples. None of these plots show any evidence

of non-convergence.

4.3.3.2 Bayesian analysis

For a Bayesian analysis of the Loa loa data, we use the following prior specification:

φ ∼ Uniform(0, 8),

log(σ2) ∼ N(·; 1, 25),

log(τ2) ∼ N(·;−3, 1),

β|σ2 ∼ N(·; 0, σ21002).

In the PrevMap package, the control.prior function can be used to set a Gaussian

prior on β and any required prior distribution for the covariance parameters σ2, φ and

τ2. The arguments beta.mean and beta.covar are the mean vector and the covariance

matrix of the Gaussian prior for β. Log-Gaussian and uniform priors can also be directly

defined for each covariance parameter by using the corresponding arguments. For exam-

ple, log.normal.sigma2 and uniform.sigma2 define log-Gaussian and uniform priors,

respectively, for σ2. In both cases a vector of length two must be provided. If the prior is
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log-Gaussian the two elements are the mean and standard deviation of the distribution

on the log scale. If the prior is uniform the two elements are the lower and upper limits

of the support of the uniform distribution.

R> cp <-control.prior(beta.mean = 0, beta.covar = 100^2,

log.normal.sigma2 = c(1,5),

uniform.phi = c(0,8),

log.normal.nugget = c(-3,1))

If different priors are required for the covariance parameters, user-defined functions

of the prior log-density can be specified through the arguments log.prior.sigma2,

log.prior.phi and log.prior.nugget.

Control parameters for the MCMC algorithm (see Section 4.2.2) are specified with the

function control.mcmc.Bayes.

R> mcmc.Bayes <- control.mcmc.Bayes(n.sim = 6000,

+ burnin = 1000, thin = 1,

+ h.theta1 = 1, h.theta2 = 0.7, h.theta3 = 0.05,

+ L.S.lim = c(5,50), epsilon.S.lim = c(0.03,0.06),

+ start.beta = -2.3, start.sigma2 = 2.6,

+ start.phi = 0.8, start.nugget = 0.05,

+ start.S = predict(fit.glm))

The arguments h.theta1, h.theta2 and h.theta3 are the starting values for the stan-

dard deviations of the Gaussian proposals; these are then tuned according to the adaptive

scheme given by (4.7). The control parameters for the Hamiltonian Monte Carlo pro-

cedure, used to update the random effects, are L.S.lim and epsilon.S.lim. These

represent, respectively, the intervals used to randomly generate from a uniform distribu-

tion the number of steps and the step size in the leapfrog method at each iteration of the

MCMC (see Section 4.2.2).

R> fit.Bayes <- binomial.logistic.Bayes(formula = NO_INF ~ 1,

+ units.m = ~ NO_EXAM,
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+ coords = ~ LONGITUDE + LATITUDE,

+ data = loaloa, control.prior = cp,

+ control.mcmc = mcmc.Bayes, kappa = 0.5)

R>

R> summary(fit.Bayes, hpd.coverage = 0.95)

Bayesian binomial geostatistical logistic model

Call:

binomial.logistic.Bayes(formula = NO_INF ~ 1, units.m = ~ NO_EXAM,

coords = ~ LONGITUDE + LATITUDE,

data = loaloa, control.prior = cp,

control.mcmc = mcmc.Bayes, kappa = 0.5)

Mean Median Mode StdErr HPD 0.025 HPD 0.975

(Intercept) -2.696243 -2.48606 -2.305288 1.827606 -7.253424 0.5964536

Covariance parameters Matern function (kappa = 0.5)

Mean Median Mode StdErr HPD 0.025 HPD 0.975

sigma^2 7.66349058 5.27116856 3.28389063 5.86998256 1.650528734 20.5858584

phi 2.58509412 1.79584603 1.04951602 1.98215672 0.440133492 6.9920447

tau^2 0.05250712 0.04516296 0.02365498 0.03371813 0.003049963 0.1190124

Legend:

sigma^2 = variance of the Gaussian process

phi = scale of the spatial correlation

tau^2 = variance of the nugget effect

The above code fits a Bayesian BL model and returns summaries of the posterior distri-

bution for each of the model parameters. In the output, high posterior density credible

intervals are also computed, with associated coverage specified through the argument

hpd.coverage.

R> par(mfrow = c(2,4))

R> autocor.plot(fit.Bayes, param = "beta", component.beta = 1)

R> autocor.plot(fit.Bayes, param = "sigma2")
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R> autocor.plot(fit.Bayes, param = "phi")

R> autocor.plot(fit.Bayes, param = "tau2")

R> i <- sample(1:nrow(loaloa),4)

R> autocor.plot(fit.Bayes, param = "S", component.S = i[1])

R> autocor.plot(fit.Bayes, param = "S", component.S = i[2])

R> autocor.plot(fit.Bayes, param = "S", component.S = i[3])

R> autocor.plot(fit.Bayes, param = "S", component.S = i[4])

Autocorrelation plots can be obtained with the autocor.plot function, whose argument

param specifies the model component for which the autocorrelation plot is required. If

param = "beta", then component.beta must be used to specify the component of the

regression coefficients. To display autocorrelation plots for the random effect, then param

= "S" and component.S must be either a positive integer indicating the component of

the random effect, or "all" in order to display the autocorrelation for all components

in a single plot. Using a similar syntax, the functions trace.plot and dens.plot are

also available for visualization of trace-plots and kernel density estimates based on the

posterior samples.
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Figure 4.6: Autocorrelation plots for the posterior samples of β (the intercept), σ2,
φ, τ2 and four randomly chosen components of the spatial random effect.

R> pred.Bayes <- spatial.pred.binomial.Bayes(fit.Bayes, grid.pred,
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+ type = "marginal",

+ scale.predictions = "prevalence", quantiles = NULL,

+ standard.errors = TRUE, thresholds = 0.2,

+ scale.thresholds = "prevalence")

R>

R> par(mfrow = c(1,3))

R> plot(pred.Bayes, type = "prevalence", summary = "predictions",

+ zlim = c(0,0.45),

+ main = "Prevalence - predictions \n (Bayesian analysis)")

R> contour(pred.Bayes, type = "prevalence", summary = "predictions",

+ levels = c(0.05,0.1,0.2,0.3), add = TRUE)

R> plot(pred.Bayes, type = "prevalence", summary = "standard.errors",

+ zlim = c(0,0.3),

+ main = "Prevalence - standard errors \n (Bayesian analysis)")

R> contour(pred.Bayes, type = "prevalence",

+ summary = "standard.errors",

+ levels = c(0.05,0.1,0.15,0.2), add = TRUE)

R> plot(pred.Bayes, type = "exceedance.prob", zlim = c(0,1),

+ main = "Prevalence - exceedance probabilities \n

+ (Bayesian analysis)")

R> contour(pred.Bayes, type = "exceedance.prob",

+ levels = c(0.1,0.4,0.5,0.7), add = TRUE)

The function spatial.pred.binomial.Bayes generates spatial Bayesian predictions us-

ing the same syntax as spatial.pred.binomial.MCML. The resulting plots of the preva-

lence estimates, standard errors and exceedance probabilities are shown in Figure 4.4.

4.4 Example: simulated data

In this example, we use a simulated binomial data-set, available in the package as

data_sim. For these data, a zero-mean Gaussian process was generated over a 30 by

30 grid covering the unit square, with parameters σ2 = 1, φ = 0.15 and κ = 2; the

nugget effect was not included, hence τ2 = 0. Binomial observations, with 10 trials at

each grid point and probabilities given by the anti-logit of the simulated values of the

Gaussian process, constitute the variable y in the data. To illustrate the accuracy of

the low-rank approximation, we analyse these data using three different grids covering

the square [−0.2, 1.2] × [−0.2, 1.2] with 25, 100 and 225 spatial knots, respectively. By
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letting some knots lie outside of the unit square, we avoid the presence of edge-effects

due to the restriction of the integral in (4.9) to a sub-region of the real plane.

R> data("data_sim")

R> knots1 <- expand.grid(seq(-0.2,1.2, length = 5),

+ seq(-0.2,1.2, length = 5))

R> knots2 <- expand.grid(seq(-0.2,1.2, length = 10),

+ seq(-0.2,1.2, length = 10))

R> knots3 <- expand.grid(seq(-0.2,1.2, length = 15),

+ seq(-0.2,1.2, length = 15))

We use the MCML method to fit a BL model using both exact and approximate ap-

proaches. We then use the resulting binomial fits to generate spatial predictions of

prevalence at each of the 900 sampling locations.

R> par0.exact <- c(0,1,0.15)

R> exact.mcmc <- control.mcmc.MCML(n.sim = 65000,

+ burnin = 5000, thin = 12,

+ h = 1.65/(nrow(data_sim)^(1/6)))

R> system.time(fit.MCML.exact <- binomial.logistic.MCML(

+ y ~ 1, units.m = ~ units.m,

+ coords = ~ x1 + x2,

+ data = data_sim, par0 = par0.exact,

+ start.cov.pars = 0.15,

+ control.mcmc = exact.mcmc,

+ kappa = 2, fixed.rel.nugget = 0,

+ method = "nlminb",

+ plot.correlogram = FALSE))

user system elapsed

2401.530 297.871 2714.146

R> par0.lr <- c(-0.219294,0.97945,0.21393)

R> lr.mcmc <- control.mcmc.MCML(n.sim = 65000,



Paper 3. PrevMap: an R package for prevalence mapping 87

+ burnin = 5000, thin = 12,

+ h = 1.65/(nrow(knots1)^(1/6)))

R> system.time(fit.MCML.lr1 <- binomial.logistic.MCML(

+ y ~ 1,

+ units.m = ~ units.m, coords = ~ x1 + x2,

+ data = data_sim, par0 = par0.lr,

+ start.cov.pars = par0.lr[3],

+ control.mcmc = lr.mcmc,

+ low.rank = TRUE, knots = knots1, kappa = 2,

+ method = "nlminb",

+ plot.correlogram = FALSE))

user system elapsed

72.893 2.785 77.157

R> lr.mcmc$h <- 1.65/(nrow(knots2)^(1/6))

R> par0.lr <- c(-0.017333,0.16490,0.16971)

R> system.time(fit.MCML.lr2 <- binomial.logistic.MCML(

+ y ~ 1,

+ units.m = ~ units.m, coords = ~ x1 + x2,

+ data = data_sim, par0 = par0.lr,

+ start.cov.pars = par0.lr[3], control.mcmc = lr.mcmc,

+ low.rank = TRUE, knots = knots2, kappa = 2,

+ method = "nlminb", plot.correlogram = FALSE))

user system elapsed

172.864 20.973 194.625

R> lr.mcmc$h <- 1.65/(nrow(knots3)^(1/6))

R> par0.lr <- c(-0.031759,0.30572, 0.18854)

R> system.time(fit.MCML.lr3 <- binomial.logistic.MCML(

+ y ~ 1,

+ units.m = ~ units.m, coords = ~ x1 + x2,

+ data = data_sim, par0 = par0.lr,

+ start.cov.pars = par0.lr[3], control.mcmc = lr.mcmc,
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+ low.rank = TRUE, knots = knots3, kappa = 2,

+ method = "nlminb", plot.correlogram = FALSE))

user system elapsed

407.376 14.397 423.235

To fit a low-rank approximation, we only need to specify low.rank = TRUE and define

the set of spatial knots through the argument knots. For parameter estimation, this

approach was about 35, 13 and 6 times faster than the exact method when using 5, 100

and 225 knots, respectively.

R> par.hat <- coef(fit.MCML.exact)

R> Sigma.hat <- varcov.spatial(coords = data_sim[c("x1","x2")],

+ cov.pars = par.hat[2:3], kappa = 2)$varcov

R> mu.hat <- rep(par.hat[1], nrow(data_sim))

R> system.time(S.cond.sim <- Laplace.sampling(mu = mu.hat,

+ sigma = Sigma.hat,

+ y = data_sim$y,

+ units.m = data_sim$units.m,

+ control.mcmc = exact.mcmc,

+ plot.correlogram = FALSE))

user system elapsed

1275.890 134.015 1393.457

R> prevalence.sim <- exp(S.cond.sim$samples)/

+ (1 + exp(S.cond.sim$samples))

R> prevalence.exact <- apply(prevalence.sim,2, mean)

R>

R> lr.mcmc$h <- 1.65/(nrow(knots1)^(1/6))

R> system.time(pred.MCML.lr1 <- spatial.pred.binomial.MCML(

+ fit.MCML.lr1,

+ grid.pred = data_sim[c("x1","x2")],

+ control.mcmc = lr.mcmc,
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+ type = "joint", scale.predictions = "prevalence",

+ plot.correlogram = FALSE))

user system elapsed

34.571 2.954 37.664

R> lr.mcmc$h <- 1.65/(nrow(knots2)^(1/6))

R> system.time(pred.MCML.lr2 <- spatial.pred.binomial.MCML(

+ fit.MCML.lr2,

+ grid.pred = data_sim[c("x1","x2")],

+ control.mcmc = lr.mcmc,

+ type = "joint", scale.predictions = "prevalence",

+ plot.correlogram = FALSE))

user system elapsed

75.035 6.008 81.399

R> lr.mcmc$h <- 1.65/(nrow(knots3)^(1/6))

R> system.time(pred.MCML.lr3 <- spatial.pred.binomial.MCML(

+ fit.MCML.lr3,

+ grid.pred = data_sim[c("x1","x2")],

+ control.mcmc = lr.mcmc,

+ type = "joint", scale.predictions = "prevalence",

+ plot.correlogram = FALSE))

user system elapsed

169.352 21.975 192.218

R> par(mfrow = c(2,2), mar = c(3,4,3,4))

R> r.exact <- rasterFromXYZ(

+ cbind(data_sim[, c("x1","x2")],

+ prevalence.exact))

R> plot(r.exact, zlim = c(0,1), main = "Exact method")
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R> contour(r.exact, levels = seq(0.1,0.9,0.1), add = TRUE)

R>

R> plot(pred.MCML.lr1,"prevalence",

+ "predictions", zlim = c(0,1),

+ main = "Low-rank: 25 knots")

R> contour(pred.MCML.lr1,"prevalence",

+ "predictions", zlim = c(0,1),

+ levels = seq(0.1,0.9,0.1), add = TRUE)

R>

R> plot(pred.MCML.lr2,"prevalence",

+ "predictions", zlim = c(0,1),

+ main = "Low-rank: 100 knots")

R> contour(pred.MCML.lr2,"prevalence","predictions", zlim = c(0,1),

+ levels = seq(0.1,0.9,0.1), add = TRUE)

R>

R> plot(pred.MCML.lr3,"prevalence",

+ "predictions", zlim = c(0,1),

+ main = "Low-rank: 225 knots")

R> contour(pred.MCML.lr3,"prevalence",

+ "predictions", zlim = c(0,1),

+ levels = seq(0.1,0.9,0.1), add = TRUE)

The above code generates and plots spatial predictions of prevalence at the 900 sample

locations using exact and approximate methods. In the exact case, we first use the func-

tion Laplace.sampling to sample from the predictive distribution of T> = (T1, . . . , t900),

where Ti is given by (4.1). The arguments mu and Sigma of this function represents the

mean vector and covariance matrix of the unconditional distribution of T . We post-

process the simulation output to obtain estimates of prevalence by using the anti-logit

transformation of each simulated sample and taking the average of these values at each

sampling location. Figure 4.7 shows the resulting estimates of prevalence. As expected,

the accuracy of the low-rank approximation increases as more knots are included: while

using 5 knots leads to a computationally fast but poor approximation, 100 and 225

knots give progressive improvements in accuracy which might be considered sufficient in

practice.
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Figure 4.7: Images of the estimated surfaces of prevalence obtained for the simulated
data using the exact method (upper left panel) and the low-rank approximation using
25 (upper right panel), 100 (lower left panel) and 225 (lower right panel) spatial knots.

4.5 Conclusions and future developments

We have illustrated the use the PrevMap package for geostatistical modelling of spatially

referenced prevalence data. The package is intended to be compatible with the existing

geoR and geoRglm packages, but with increased functionality.

The package provides more accurate numerical procedures for maximum likelihood esti-

mation of the geostatistical linear and BL models, as well as routines for evaluation of

the profile likelihood. Computationally faster approximations of the likelihood function

for geostatistical BL models can be obtained using the Laplace approximation (LA).

However, the resulting parameter estimates can be substantially biased in the case of

binomial observations with small denominators (Joe, 2008), whereas the MCML method

delivers asymptotically unbiased estimates.



Paper 3. PrevMap: an R package for prevalence mapping 92

For likeihood-based inference we have used a Langevin-Hastings MCMC algorithm be-

cause the availability of optimal scaling results makes it easier to tune than the Hamilto-

nian MCMC. However, for Bayesian inference where model parameters are also updated

at each iteration, the required computation of the mode of the random effects condi-

tional distribution (see Section 4.2.1) would have been computationally too demanding.

For Bayesian analysis, we have therefore implemented an efficient Hamiltonian MCMC

scheme that updates the random effects on their original scale and allows a more flexible

prior specification for the model parameters.

The package also allows the user to specify whether marginal or joint predictions are

required for different predictive targets: logit, prevalence, odds and exceedance probabil-

ities. This overcomes the inherent limitation of methods based on analytical approxima-

tions to the marginal predictive distributions, such as INLA (Rue, Martino, and Chopin,

2009) on which the geostatsp package is based, which cannot calculate predictive dis-

tributions for functionals of the latent field.

The package includes several functions for automatic post-processing of the results, such

as the diagnostic plots illustrated in Figure 4.5. As is the case for any MCMC application,

these can only reveal non-convergence rather guarantee convergence, but are nevertheless

useful as partial checks, and we therefore considered it important to make them easily

accessible to users.

The accuracy of the low-rank approximations that are incorporated into the package is

context-specific. However, used with care they offer computationally efficient procedures

for analysing large data-sets. The spBayes package implements a low-rank procedure

based on Gaussian predictive process models (Banerjee et al., 2008). In this approach,

the latent field S(x) in (4.1) is replaced by the conditional expectation of S(x) given S(x̃i)

for i = 1, . . . , r < n, where x̃i is a set of pre-defined spatial knots. This is particularly

useful and computationally advantageous when spatial interpolation is the sole objective

of the analysis. In this context, other computationally efficient procedures could also be

considered, such as low-rank spline smoothers (Wood, 2003). However, for applications

that involve a range of inferential objectives, including both spatial prediction and es-

timation of covariate effects, it is desirable that the low-rank method approximates the

same probabilistic model that would be used were computational burden not an issue,

rather than changing the model specification. For this reason, we consider our version of

low-rank approximation (Section 4.2.4) to be more suitable for disease mapping appli-

cations where, typically, the objectives include inference for regression parameters, both

to assess the importance of hypothesised risk-factors and to enable spatial prediction

under a range of scenarios. A specific example is the construction of predictive maps for
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malaria under different climate scenarios, or before and after widespread distribution of

insecticide-treated bed-nets.

Another feature not illustrated in the present paper is the possibility of fitting a BL

model to prevalence data from household surveys so as to include information at both

household and individual level. More specifically, let i and j identify the i-th household

and the j-th individual within that household; in this case the linear predictor is

log

{
pij

1− pij

}
= d>ijβ + S(xi) + Zi,

where the random effects are now defined at household level.

Possible extensions of the package include the implementation of functions for spatio-

temporal analyses, for geostatistical modelling of zero-inflated data and for combining

data from multiple spatially referenced prevalence surveys (Giorgi et al., 2014). We will

report these extensions separately in due course.
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Summary

In low-resource settings, prevalence mapping relies on empirical prevalence data from a

finite, often spatially sparse, set of surveys of communities within the region of interest,

possibly supplemented by remotely sensed images that can act as proxies for environ-

mental risk factors. A standard geostatistical model for data of this kind is a generalized

linear mixed model with binomial error distribution, logistic link and a combination

of explanatory variables and a Gaussian spatial stochastic process in the linear predic-

tor. In this paper, we first review statistical methods and software associated with this

standard model, then consider several methodological extensions whose development has

been motivated by the requirements of specific applications. These include: methods for

combining randomised survey data with data from non-randomised, and therefore po-

tentially biased, surveys; spatio-temporal extensions; spatially structured zero-inflation.

Throughout, we illustrate the methods with disease mapping applications that have

arisen through our involvement with a range of African public health programmes.

Keywords: geostatistics; multiple surveys; prevalence; spatio-temporal models; zero-

inflation.



Paper 4. Model-based geostatistics for prevalence mapping in low-resource settings 98

5.1 Introduction

The term “geostatistics” is typically used as a convenient shorthand for statistical models

and methods associated with analysing spatially discrete data relating to an unobserved

spatially continuous phenomenon. The name derives from its origins in the South African

mining industry (Krige, 1951) and its subsequent development by the late Georges Math-

eron and colleagues in L’École des Mines, Fontainebleau, France (Chilés and Delfiner,

2012). Geostatistical methodology has since been applied in a wide range of scientific

contexts, and is now widely accepted as one of three main branches of spatial statis-

tics (Cressie, 1993). The descriptive phrase “model-based geostatistics” was coined by

Diggle, Tawn, and Moyeed (1998) to mean the embedding of geostatistics within the

general framework of statistical modelling and likelihood-based inference as applied to

geostatistical problems. In contrast, “classical” Fontainebleau-style geostatistics has its

own terminology and self-contained methodology, developed largely independently of the

statistical mainstream.

Whether tackled through the model-based or classical approach, a typical feature of

most geostatistical problems is a focus on prediction rather than on parameter estima-

tion. The canonical geostatistical problem, expressed in the language of model-based

geostatistics, is the following. Data {(yi, xi) : i = 1, ..., n} are realised values of random

variables Yi associated with pre-specified locations xi ∈ A ⊂ R2. The Yi are assumed

to be statistically dependent on an unobserved stochastic process, {S(x) : x ∈ R2}, as
expressed through a statistical model [S, Y ] = [S][Y |S], where [·] means “the distribution

of,” Y = (Y1, ..., Yn) and S = {S(x1), ..., S(xn)}. What can be said about the realisa-

tion of S? The formal model-based solution is the conditional distribution, [S|Y ], which

follows as a direct application of Bayes’ theorem,

[S|Y ] = [S][Y |S]/

∫
[S][Y |S]dS.

By far the most tractable case is the linear Gaussian model, for which S is a Gaussian

process and the Yi given S are conditionally independent, Yi|S ∼ N(S(xi), τ
2). It follows

that both the marginal distribution of Y and the conditional distribution of S given Y

are multivariate Normal.

Note that in the above formulation, no model is specified for the xi. The implicit assump-

tion is that the xi are pre-specified as part of the study-design or are located according

to a process that is stochastically independent of S. If X = (x1, ..., xn) is stochastic,

a complete factorisation is [S,X, Y ] = [S][X|S][Y |X,S]. Then, if [X|S] = [X] and the

properties of [X] are not of interest, it is legitimate to condition on [X] and so recover

the previous formulation, [S, Y ] = [S][Y |S].
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Diggle et al. (2013) argue that the geostatistical label should be applied more generally

to scientific problems that involve predictive inference about an unobserved spatial phe-

nomenon S(x) using any form of incomplete information. This includes, for example,

predictive inference for the intensity of a Cox process (Cox, 1955), and inference when

X is both stochastic and dependent on S.

In this paper, we restrict our substantive scope to the problem of analysing data from

spatially referenced prevalence surveys. We also focus on prevalence mapping in low-

resource countries where registry data are lacking. We argue that in low-resource settings

the sparsity of the available data justifies a more strongly model-based approach than

would be appropriate if accurate registries were available.

5.2 The standard geostatistical model for prevalence data

In its most basic form, a prevalence survey consists of visiting communities at locations

xi : i = 1, ..., n distributed over a region of interest A and, in each community, sampling

mi individuals and recording whether each tests positive or negative for the disease of

interest. If p(x) denotes prevalence at location x, the standard sampling model for the

resulting data is binomial, Yi ∼ Bin(mi, p(xi)) for i = 1, ..., n. Linkage of the p(xi)

at different locations is usually desirable, and is essential if we wish to make inferences

about p(x) at unsampled locations x.

The simplest extension to the basic model is a binary regression model, for example a

logistic regression model of the form

log[p(xi)/{1− p(xi)}] = d(xi)
′β, (5.1)

where d(xi) is a vector of explanatory variables associated with the location xi. This

assumes that the value of d(x) is available not only at the data-locations xi but also at

any other location x that is of interest. When extra-binomial variation is present, two

further extensions are possible. Firstly, a standard mixed effects model adds a random

effect to the right-hand-side of (5.1), to give

log[p(xi)/{1− p(xi)}] = d(xi)
′β + Zi,

where the Zi are independent, N(0, τ2) variates. Secondly, if the context suggests that

covariate-adjusted prevalence should vary smoothly over the region of interest, we can

add a spatially correlated random effect, to give

log[p(xi)/{1− p(xi)}] = d(xi)
′β + S(xi) + Zi, (5.2)
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where S = {S(x) : x ∈ R2} is a Gaussian process with mean zero, variance σ2 and

correlation function ρ(x, x′) = Corr{S(x), S(x′)}. We shall assume that the process S is

stationary and isotropic, hence Corr{S(x), S(x′)} = ρ(||x− x′||), where || · || denotes the
Euclidean distance. The initial focus of inference within this model is the unobserved

surface p(x) or specific properties thereof. In general, we call T = T (S) a target for

predictive inference. For example, we may wish to delineate sub-regions of A where p(x)

is likely to exceed a policy intervention threshold, in which case the target is T = {x :

p(x) > c} for pre-specified c, and the required output from the analysis is the predictive

distribution of the random set T .

Equation (5.2) defines what we shall call the standard geostatistical prevalence sampling

model. Various approaches to fitting this model to geostatistical data have been suggested

in the literature. Diggle, Tawn, and Moyeed (1998) used Bayesian inference for parameter

estimation and prediction, implemented by an MCMC algorithm. Rue, Martino, and

Chopin (2009) used integrated nested Laplace approximation (INLA) methods. The

INLA methodology and its associated software yield accurate and computationally fast

approximations to the marginal posterior distributions of model parameters and to the

marginal predictive distributions of S(x) at any set of locations x, but not to their joint

predictive distribution; this limits INLA’s applicability to point-wise targets T . Giorgi

and Diggle (2014) provide an R package for Monte Carlo maximum likelihood estimation

and plug-in prediction with an option to use a low-rank approximation to S for faster

computation with large data-sets. The low-rank method approximates S by S∗, where

S∗(x) =
r∑

k=1

f(x− xk)Vk. (5.3)

In (5.3), the Vk are independent N(0, τ2) variates associated with a pre-specified set of

locations xk and f(x) is a prescribed function, typically monotone non-increasing in ||x||.
The covariance function of S∗ is

Cov{S∗(x), S∗(x′)} = τ2
r∑

k=1

f(x− xk)f(x′ − xk), (5.4)

Low-rank specifications have been proposed as models in their right; see, for example,

Higdon (1998) and Higdon (2002). We consider them as approximations to a limiting, full-

rank process. Taking the xk in (5.3) as the points of an increasingly fine regular lattice

and scaling the function f(·) commensurate with the lattice spacing gives a limiting,

full-rank process with covariance function

Cov{S∗(x), S∗(x′)} = τ2
∫
R2

f(x− u)f(x′ − u)du. (5.5)
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From this perspective, the summation in (5.4) represents a quadrature approximation to

the integral in (5.5). Note, however, that this construction admits only a sub-class of

the allowable covariance functions for a spatially continuous Gaussian process.

Gotway and Stroup (1997) suggest using generalized estimating equations (Liang and

Zeger, 1986) when scientific interest is focused on the regression parameters rather than

on prediction of S. However, in this approach the implicit target for inference is not the

parameter vector β that appears in (5.2), but rather the marginal regression parameter

vector, β∗ say. The elements of β∗ are smaller in absolute value than those of β by an

amount that depends on τ2, σ2 and ρ(u).

Diggle et al. (2007) use the standard model, but without the mutually independent

random effects Zi, to construct predictive maps of the prevalence of Loa loa, a parasitic

infection of the eye, in an area of equatorial west Africa covering Cameroon and parts of

its neighbouring countries. Following Thomson et al. (2004) they include two remotely

sensed covariates, height above sea-level and the Normalised Digital Vegetation Index

(NDVI), as proxies for the ability of the disease vector, a particular species of Chrysops

fly, to breed at each location. As described in Thomson et al. (2004) and Diggle et al.

(2007), Loa loa prevalence mapping plays an important role in the implementation of a

multi-national prophylactic mass-treatment programme for the control of onchocerciasis

(river blindness), the African Programme for Onchocerciasis Control, APOC (WHO,

2012), following the recognition that a generally safe filaricide medication, Ivermectin,

could produce severe, occasionally fatal, adverse reactions in people heavily co-infected

with onchocerciasis and Loa loa parasites. As a result, APOC adopted the policy that

in areas where Loa loa prevalence was greater than 20%, precautionary measures should

be taken before local administration of Ivermectin.

Diggle et al. (2007) mapped the minimum mean square error point predictor, p(x) =

E[p(x)|Y ] but also argued that a more useful quantity was the point-wise predictive

probability, q(x) say, that p(x) exceeded 0.2, in line with APOC’s precautionary policy.

In addition to addressing directly the relevant practical problem, a map of q(x) conveys

the uncertainty associated with the resulting predictions. This map, here reproduced as

Figure 5.1, identifies large areas that almost certainly do and do not meet the policy-

intervention criterion, but also delineates large areas where the only honest answer is

“don’t know,” indicating the need for further investigation or, if practicalities dictate,

taking an informed risk.

Other prevalence mapping applications of model-based geostatistics include: Claridge

et al. (2012) on liver fluke and bovine tuberculosis in the UK cattle herd; Clements et al.

(2006) on schistosomiasis in Tanzania; Diggle and Ribeiro (2002) on childhood malaria

in the Gambia; Gemperli et al. (2004) on infant mortality in Mali; Gething et al. (2012)
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Figure 5.1: Predictive probability map of Loa loa prevalence in Cameroon and sur-
rounding areas (adapted from Diggle et al. (2007)). Empirical prevalences at surveyed

locations are indicated by size and colour coded dots.

on the world-wide distribution of Plasmodium vivax; Hay et al. (2009) on the world-wide

distribution of Plasmodium falciparium; Kleinschmidt et al. (2001) on malaria incidence

in Kwazuku Natal, South Africa; Kleinschmidt et al. (2007) on HIV in South Africa;

Soares Magalhaes and Clements (2011) on anemia in preschool-aged children in West

Africa; Raso et al. (2005) on schistosomiasis in Côte D’Ivoire; Pullan et al. (2011) on

soil-transmitted infections in Kenya; Zoure et al. (2014) on river blindness in the 20

participating countries of the African Programme for Onchocerciasis control.

5.3 Combining information from multiple surveys

In order to obtain good geographical coverage of the population of interest, it is often nec-

essary to combine information from multiple prevalence surveys. However, understanding

the limitations of the sampling design adopted in each survey is crucial in order to draw

valid inferences from a joint analysis of the data. In particular, non-randomized “con-

venience” surveys in which data are gathered opportunistically, for example at schools,

markets or hospital clinics, may reach an unrepresentative sub-population or be biased

in other ways. Nonetheless, convenience samples represent a tempting, low-cost alterna-

tive to random samples. A combined analysis of data from randomised and convenience

samples that estimates and adjusts for bias can be more efficient than an analysis that

considers only the data from randomised surveys. In a non-spatial context, Hedt and

Pagano (2011) propose a hybrid estimator of prevalence that supplements information
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from random samples with convenience samples, and show that this leads to more accu-

rate prevalence estimates than those available from using only the data from randomised

surveys.

Giorgi et al. (2015) develop a multivariate generalized linear geostatistical model to ac-

count for data-quality variation amongst spatially referenced prevalence surveys. They

assume that at least one of the available surveys is a “gold-standard” that delivers unbi-

ased prevalence estimates and for which the standard model (5.2) is appropriate. Bias

in a “non gold-standard” survey is then modelled using covariate information together

with an additional, zero-mean stationary Gaussian process B = {B(x) : x ∈ R2}. The

resulting model for a non-randomised survey is

log[p(xi)/{1− p(xi)}] = d(xi)
′β + S(xi) + Zi + {d(xi)

′δ +B(xi)}. (5.6)

Data from both the randomised and the non-randomised survey then contribute to in-

ference on the predictive target, d(x)′β + S(x).

5.3.1 Application: using school and community surveys to estimate
malaria prevalence in Nyanza Province, Kenya

We now show an application to malaria prevalence data from a community survey and

a school survey conducted in July 2010 in Rachuonyo South and Kisii Central Districts,

Nyanza Province, Kenya. In the community survey, all residents above the age of 6

months were eligible for inclusion. A finger-prick blood sample was collected on each

participant and examined for presence/absence of malaria parasites by a rapid diagnostic

test (RDT).

In the school survey, 46 out of 122 schools with at least 100 pupils were randomly selected

using an iterative process to limit the probability of selecting school with overlapping

catchment areas. All eligible children in attendance were included. In the community

survey, residential compounds lying within 600 meters of each school were randomly

sampled and all eligible residents in each sampled compound examined by the RDT.

The design of the community survey delivers an unbiased sample of residents from the

catchment area of each school, whereas the school survey is potentially biased by a

plausible association between a child’s health status and their attendance at school.

More details on the survey procedures can be found in Stevenson et al. (2013).

In our analysis, we extracted information on sampled individuals between the ages of 6

and 25 years in both surveys, as some adults have taken advantage of the introduction

of free primary education in Kenya. The community survey included 1430 individuals
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distributed over 740 compounds whilst the school survey included 4852 pupils distributed

over 3791 compounds, i.e. averages per compund of approximately 1.9 and 1.3 people,

respectively. Figure 5.2 shows the locations of the sampled compounds from both surveys.

For our joint analysis of the data from both surveys, we used exponential correlation

functions for both S(x) and B(x), with φ and ψ denoting the respective scale parameters.

We parameterise the respective variances of S(x), B(x) and Zi as σ2, ν2σ2 and ω2σ2.

For selection of significant explanatory variables we used ordinary logistic regression,

retaining variables with nominal p-values smaller than 5%. Table 5.1 gives the final set

of explanatory variables included in the geostatistical model. The “District” indicator

variable accounts for a known higher level of malaria risk in Rachuonoyo district. Socio-

economic status (SES) is an indicator of household wealth taking discrete values from 1

(poor) to 5 (wealthy).

Table 5.2 reports Monte Carlo maximum likelihood estimates and 95% confidence inter-

vals for the model parameters. The β-parameters reflect the district effect mentioned

above as well as confirming a lower risk of malaria associated with higher scores of SES

and greater age. The negative estimate of δ0 and its associated confidence interval indi-

cate a significantly lower malaria prevalence in individuals attending school than in the

community at large. The positive estimate and associated confidence interval for δ1 in-

dicate that for individuals attending school, the negative effect of age is less strong than

in the community. Figure 5.3(a) shows point-wise predictions of B∗(x) = exp{B(x)},
which represents the unexplained multiplicative spatial bias in the school survey for the

odds of malaria at location x. Figure 5.3(b) maps the predictive probability, r(x) say,

that B∗(x) lies outside the interval (0.9, 1.1),

r(x) = 1− P (0.9 < B∗(x) < 1.1|y) . (5.7)

The lowest value of r(x) is about 87%, indicating the presence of non-negligible spatially

structured bias throughout the study area. The joint analysis of the data from both

surveys allows us to remove the bias and so obtain more accurate predictions for S(x)

than would be obtained using only the data from the community survey. Figure 5.4(a)

shows a scatter plot of the standard errors for S(x) obtained from the joint model for the

school and community surveys and from the model fitted to the community data only.

Figure 5.4(b) shows that locations for which the joint analysis produces larger standard

errors for S(x) correspond to areas where no observations were made.
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Table 5.1: Explanatory variables used in the analysis of the Kenya malaria prevalence
data.

Term
β0 Intercept
β1 Age in years
β2 District (=1 if “Rachuonyo”; =0 otherwise)
β3 Socio-economic status (score from 1 to 5)
δ0 Survey indicator, 1 if “school,” 0 if “community” (bias term)
δ1 Age in years (bias term)

Table 5.2: Monte Carlo maximum likelihood estimates and corresponding 95% confi-
dence intervals for the model fitted to the Kenya malaria prevalence data

Estimate 95% Confidence interval
β0 -1.412 (-2.303, -0.521)
β1 -0.141 (-0.174, -0.109)
β2 2.006 (1.228, 2.785)
β3 -0.121 (-0.169, -0.072)
δ0 -0.761 (-1.354, -0.167)
δ1 0.094 (0.046, 0.142)

log(σ2) 0.519 (0.048, 0.990)
log(ν2) -1.264 (-1.738, -0.790)
log(φ) -3.574 (-4.083, -3.064)
log(ω2) -1.408 (-2.267, -0.550)
log(ψ) -3.366 (-4.178, -2.553)

5.4 Analysing spatio-temporally referenced prevalence sur-

veys

In endemic disease settings where prevalence varies smoothly over time, joint analysis

of data from surveys collected at different times can also bring gains in efficiency. The

modelling framework in Giorgi et al. (2015) accommodates multiple surveys conducted

at different, discrete times. The extension of (5.6) to m surveys conducted at possibly

different times is

log[pk(xi)/{1− pk(xi)}] = d(xik)
′β + Sk(xi) + Zik +

I(k ∈ B){d(xik)
′δ +Bk(xi)}, k = 1, ...,m (5.8)

where B denotes the indices of the non-randomised surveys, Cov{Sk(x), Sk′(x
′)} =

σ2αkk′ρ(x, x′) and αkk′ = 1 if surveys k and k′ are taken at the same time, −1 < αkk′ < 1

otherwise.
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Figure 5.2: Geographical coordinates of the sampled compounds in the community
(black points) and school (red points) surveys.

A different design for monitoring endemic disease prevalence is the rolling indicator sur-

vey (Roca-Feltrer et al., 2012). This consists of sampling members of a target population

of individuals or households more or less continuously over time, the order of sampling

being randomised. A natural model for the resulting data is a spatio-temporal version

of (5.2),

log[p(xi, ti)/{1− p(xi, ti)}] = d(xi, ti)
′β + S(xi, ti) + Zi, (5.9)

where now (xi, ti) denotes the location and time of the ith sample member. There is an

extensive literature on ways of specifying the covariance structure of a spatio-temporal

Gaussian process; see, for example, Gneiting and Guttorp (2010). For endemic diseases,

a reasonable working assumption is that the relative risk of disease at different times is

the same at all locations, and vice versa. This implies an additive formulation,

S(x, t) = S(x) + U(t), (5.10)

where S(x) and U(t) are independent spatial and temporal Gaussian processes, respec-

tively.
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Figure 5.3: The predicted surfaces for B∗(x) (a) and r(x) (b).
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Figure 5.4: (a) Scatterplot of the standard errors for S(x) using data from the com-
munity survey only (x-axis) and using both community and school survey data. Points
coloured green or red lie below or above the identity line y = x, respectively. (b) Pre-
diction locations, coloured green or red at locations where the prediction variance for
S(x) is smaller or larger, respectively, when using the data from both the community

and school surveys.

5.4.1 Application: rolling malaria indicator survey in Chikwawa dis-
trict, Malawi, May 2010 to June 2013

We now analyse data from a rolling malaria indicator survey (rMIS) conducted in Chik-

wawa District, Southern Malawi, from May 2010 to June 2013. In this rMIS, children

under five years were randomly selected in 50 villages covering an area of approximately

400 km2. Blood samples were then collected and tested by RDT for malaria. The

objectives of the analysis are the following.

(i) Interpolation of the spatio-temporal pattern of malaria prevalence for children un-

der twelve months;

(i) Estimation of the reduction in prevalence and number of infected children through a

scale-up in the distribution of insecticide treated nets (ITN) and delivery of indoor

residual spraying (IRS), from the actual coverage to 100% coverage in each village.

A practical distinction between these two objectives is that the first can only use ex-

planatory variables that are available throughout the study-region, whereas the second

can additionally use explanatory variables associated with the sampled households.
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5.4.1.1 Spatio-temporal interpolation of malaria prevalence

Let pj(xi, ti) denote the probability of having a positive RDT outcome for the j-th

children in the i-th household at time ti. Using the model defined by (5.9), the linear

predictor assumes the form

log[pj(xi, ti)/{1− pj(xi, ti)}] = β0 + β1dij + β2ti + β3 sin(2πti/12) + β4 cos(2πti/12) +

β5 sin(2πti/6) + β6 cos(2πti/6) + S(xi) + U(ti), (5.11)

where dij is a binary indicator that takes value 1 if the child is under twelve months and

0 otherwise. The linear combination of sine and cosine functions with periodicities of

one year and six months is used to model the seasonality of malaria. For both S(x) and

U(t), we use isotropic exponential correlation functions with scale parameters φ and ψ,

respectively. We use σ2 and ν2σ2 to denote the variance of S(x) and U(t), respectively.

Table 5.3 (Model 1) reports the MCML estimates of the model parameters; for the

positive-valued parameters σ2, φ, ν2 and ψ we applied a log-transformation to improve

the quadratic approximation to the log-likelihood. As expected, the estimate of β1
indicates a significantly lower risk of having a positive RDT outcome for children in the

first year of life, as newborns benefit from maternally acquired immunity that gradually

fades.

Table 5.3: Monte Carlo Maximum Likelihood estimates for the spatio-temporal mod-
els fitted to the Malawi malaria prevalence data. Model 1 is defined at equation (5.11).

Model 2 includes three additional explanatory variables: ITN, IRS and SES.

Model 1 Model 2
Term Estimate 95% Confidence interval Estimate 95% Confidence interval
β0 4.210 (3.815, 4.605) 4.644 (4.099, 5.189)
β1 -5.380 (-5.914, -4.847) -5.428 (-6.066, -4.789)
β2 -0.067 (-0.083, -0.051) -0.072 (-0.090, -0.054)
β3 -0.749 (-0.978, -0.521) -0.693 (-0.922, -0.465)
β4 0.361 (0.134, 0.588) 0.160 (-0.070, 0.389)
β5 -0.099 (-0.307, 0.109) -0.260 (-0.475, -0.045)
β6 -0.168 (-0.391, 0.055) -0.062 (-0.286, 0.162)
β7
∗ - - -0.188 (-0.492, 0.117)

β8
∗∗ - - -0.181 (-0.503, 0.141)

β9
∗∗∗ - - -0.079 (-0.505, 0.347)

log(σ2) 0.899 (-0.011, 1.808) 0.971 (0.035, 1.906)
log(φ) -3.624 (-4.852, -2.397) -4.463 (-5.769, -3.157)
log(ν2) -3.282 (-4.199, -2.365) -3.118 (-4.059, -2.177)
log(ψ) 0.882 (-0.170, 1.934) 1.118 (0.017, 2.218)
∗ ownership of at least one ITN; ∗∗ presence of IRS; ∗∗∗ SES (score from 1 to 5).

We now generate prevalence predictions for five of the 50 villages in Chikwawa District.

We chose these five villages selectively to include areas of low and high risk for malaria.
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Figure 5.5: Estimated temporal trend of RDT prevalence for five villages in Chikwawa
District. Figure 5.6 shows the location of each of these five villages.

Let Ai denote the convex hull obtained from the sampled locations of the i-th village.

For a fixed time t, we computed

pi(t) = |Ai|−1
∫
Ai

p̂(x, t) dx, for i = 1, . . . , 5 (5.12)

where dij is fixed at 1 for all x ∈ Ai and t = 1, 2, . . . , 38, where each integer identifies

a month, from May 2010 to June 2013. Also, p̂(x, t) is the mean of the predictive

distribution of prevalence at location x and month t. For each village, i, we approximated

the intractable integral in (5.12) using a quadrature method based on a regular grid

covering the corresponding Ai. The results are shown in Figure 5.5, where each pi(t) is

plotted against t; a declining trend of RDT prevalence can be seen, with seasonal troughs

and peaks around December-January and April-May, respectively.

For any specified policy-relevant prevalence threshold p̃, a quantity of interest is the

predictive probability that the estimated prevalence p̂(x, t) exceeds p̃. In Figure 5.6, we

map the exceedance probabilities in June of each year for p̃ = 0.2. Two areas of high

and low prevalence are clearly identified. The former corresponds approximately to a

flooding area where the the presence of local ponds also favours mosquito breeding.

5.4.1.2 Estimating the impact of scaling-up control interventions

The model (5.11) that we used to predict malaria prevalence throughout the study-region

necessarily excluded any covariate that was only available at the sampled locations. We

now propose a procedure to estimate community-wide prevalence and number of infected

children under a pre-defined control scenario, focusing on the effects of ownership of ITN

and presence of IRS, and adjusting for a measure of each household’s socio-economic

status (SES, scored from 1 to 5). We first fit a model with linear predictor of the same

form in (5.11), but including these three additional explanatory variables. The resulting
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Figure 5.6: Maps of the predictive exceedance probabilities for a 20% malaria preva-
lence threshold in Chikwawa district; light blue lines correspond to waterways, with the

Shire river represented by the thicker line.

parameter estimates are shown in Table 5.3 (Model 2). We then use enumeration data

to obtain, for each village, the total number of children under five years and the number

of households with at least one child under five years, and proceed as follows.

(i) Allocate the number of children in each household.

(ii) Impute geographical coordinates, ownership of ITN, presence of IRS and remain-

ing explanatory variables for all unsampled children under the pre-defined control

scenario.

(iii) Generate values for all the model parameters using the asymptotic distribution of

the maximum likelihood estimator, i.e.

θ̂ ∼ N
(
θ, I−1obs

)
where θ is the vector of model parameters and Iobs is the observed Fisher informa-

tion as estimated by the negative Hessian of the Monte Carlo likelihood.
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Figure 5.7: Estimated reduction in prevalence (left panel) and number of infected
children (right panel) for each of the 50 villages in Chikwawa District, assuming a

scale-up in the distribution of ITN and IRS to 100% coverage.

(iv) Generate predictive samples for each child’s infection status and compute the mean

of each sample as a point-estimate of the probability of infection for that child.

(v) For each village, estimate of the number of infected children as the sum of the

estimated child-specific probabilities of infection, and average these to estimate

the village-level prevalence.

We then repeat this process N times and, for each village, compute summary statistics

of the N samples of estimated numbers of infected children and village-level prevalence.

We applied this procedure under two different scenarios for April 2013, the most recent

peak in RDT prevalence within the period covered by the data, as follows.

S1. Households having IRS and at least one ITN are equally distributed among sampled

and unsampled households.

S2. Every household, whether sampled or unsampled, has IRS and at least one ITN.

In Step (ii), we imputed the locations of unsampled children by independent random

sampling from the uniform distribution over each village area Ai, defined as the convex

hull of the sampled households’ locations.
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In scenario S1, we imputed age, ITN, IRS and SES by random sampling from the empir-

ical villlage-level distribution of the sampled households. In scenario S2, only SES and

age need to be imputed as ITN and IRS are both present in every household. The dif-

ferences between estimated prevalences and between numbers of infected children under

S2 and S1 are reported in Figure 5.7. The main gains achieved by scenario S2 are in

villages situated in the high prevalence area to the east of the Shire river.

5.5 Spatially structured zero-inflation

The standard geostatistical model for prevalence data in (5.2) assumes binomial sampling

variation around the true prevalence, with a latent risk surface that approaches, but

does not exactly reach, zero. However, empirical prevalence data often show an excess of

zeros, i.e. zero-inflation. For diseases that are environmentally driven, one explanation

for this is that some areas are fundamentally unsuitable for disease transmission. Hence,

a zero prevalence estimate in a particular community can be either a chance finding, or a

necessary consequence of the community being disease/infection-free. Ways of handling

spatially structured zero-inflation have been proposed in ecology (Agarwal, Gelfand, and

Citron-Pousty, 2002) and in specific epidemiological applications (Amek et al., 2011;

Giardina et al., 2012). These approaches assume that the zero-inflation can be explained

by regressing on a limited set of measured risk factors. In this extension to the standard

geostatistical model (5.2) for spatially varying prevalence, p(x), the distribution for the

prevalence data Y conditional on S now takes the form of a mixture,

P (Yi = y|S(xi)) =

[1− π(xi)] + π(xi)Bin(0;mi, p(xi)) if y = 0

π(xi)Bin(y;m, p(xi)) if y > 0
(5.13)

where π(xi) ∈ (0, 1) denotes the probability that xi is suitable for transmission of the

disease, log[π(xi)/{1 − π(xi)}] = d(xi)
′γ and Bin(y;m, p) denotes the probability mass

function of a binomial distribution with probability of success p and number of trials m.

The modelled prevalence at location x is p∗(x) = π(x)p(x).

An alternative way of specifying the conditional distribution of Y given S is given by

the so called “hurdle” model (Mullahy, 1986). In this case the mixture distribution for Y

assumes the form

P (Yi = y|S(xi)) =


1− π(xi) if y = 0

π(xi)Bin(y;m, p(xi))

1− Bin(0;m, p(xi))
if y > 0

. (5.14)
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In our view, (5.14) is unsuitable for diseases mapping for the two following reasons.

Firstly, the model does not distinguish between observing no cases amongst sampled

individuals as a chance finding or as a necessary consequence of the entire community

being disease-free. Secondly, the model can generate unnatural patches of low preva-

lence around each sampled location for which no cases are observed amongst sampled

individuals.

A natural extension of the models in (5.13) and (5.14) that allows zero-inflation to

depend on both measured and unmeasured covariates can obtained as follows. Define an

additional stationary Gaussian process T (x) such that

log[π(xi)/{1− π(xi)}] = d(xi)
′γ + T (xi). (5.15)

The spatial processes S(x) and T (x) can also be further decomposed as

S(x) = U1(x) + V (x),

T (x) = U2(x) + V (x)

where U1(x), U2(x) and V (x) are independent Gaussian proccesses. In this formulation,

V (x) accounts for unmeasured factors that jointly affect the risk of the disease at a loca-

tion x that is suitable for transmissionof the disease and the risk that x is itself suitable

for transmission. However, identification of all of the resulting parameters requires a

large amount of data. A pragmatic response is to assume that V (x) = 0 for all x, i.e.

that S(x) and T (x) are independent processes.

5.5.1 Application: river-blindness prevalence mapping

We now show an application to river-blindness prevalence data, previously analysed

in Zoure et al. (2014). Here, we restrict our analysis to three of the twenty APOC

countries, namely Mozambique, Malawi and Tanzania. Figure 5.8 shows the locations of

the sampled villages in the three countries. Red dots identify the 513 villages with no

cases of river-blindness amongst sampled individuals, black dots the 397 villages with at

least one case.

We fit the model with conditional distribution for Y given by (5.13), and logistic link func-

tions (5.2) and (5.15) for p(x) and π(x), respectively. We also assume that S(x) and T (x)

are independent processes with ciovariance functions σ2 exp(−u/φ) and σ2ω2 exp(−u/ψ),

respectively; we denote the variance of the nugget effect Z by σ2ν2. We do include co-

variates, but simply fit constant means µ1 and µ2 on the logit-scale of p(x) and π(x),

respectively.
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Figure 5.8: Sampled villages in Mozambique, Malawi and Tanzania, with balck and
red dots corresponding to villages with no observed case and at least one observed case

of river-blindness, respectively.

Table 5.4: MCML estimates of the parameters in the zero-inflated geostatistical model
and associated 95% confidence intervals.

Term Estimate 95% confidence interval
µ1 -5.812 (-8.746, -2.877)
µ2 2.287 (1.361, 3.213)

log(σ2) -3.138 (-4.075, -2.200)
log(ν2) 1.579 (0.615, 2.543)
log(φ) -2.899 (-6.162, 0.363)

log(ω2) 2.390 (1.425, 3.354)
log(ψ) 1.679 (0.704, 2.654)
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Figure 5.9: (a) Difference between predicted prevalences using the standard and zero-
inflated geostatistical models. (b) Predicted surface of π(x).

Table 5.4 shows the MCML estimates of the model parameters. The estimated scale of

the spatial correlation of T (x) is much larger than that of S(x). Also, the estimate of

the noise-to-signal ratio ν2 is substantial.

Figure 5.9(a) shows the difference between estimates of prevalence p̂s(x) and p̂z(x) based

on the standard and zero-inflated, geostatistical models, respectively; these range be-

tween plus and minus 0.2. Figure 5.9(b) shows the estimated surface of π(x), and in-

dicates that the central and northern parts of Malawi are disease-free, whereas most of

the reported zero cases in Mozambique and Tanzania are more likely to be attributable

to binomial sampling error.

5.6 Discussion

We have discussed four important issues that arise in prevalence mapping of tropical dis-

eases, namely: combining data from multiple surveys of different quality; spatio-temporal

interpolation of disease prevalence; assessment of the impact of control interventions; and

accounting for zero-inflation in empirical prevalences. For each issue we have presented

an extension of the standard geostatistical model and have described an application that

we have encountered through our involvement with public health programmes in Africa.
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In each application, we have used the MCML method for parameter estimation. This

fitting procedure can be used under a very general modelling framework. Let Wi for

i = 1, . . . , n denote a set of random effects associated with Yi, following a joint multi-

variate Normal distribution with mean µ and covariance matrix Σ. Assume that Yi con-

ditionally on Wi are mutually independent random variables with distributions f(·|Wi).

The likelihood function for the vector of model parameters θ is given by

L(θ) =

∫
Rdim(W)

g(W, y; θ) dW

=

∫
Rdim(W)

N(W ;µ,Σ)
n∏
i

f(yi|Wi) dW,

where dim(W ) denotes the dimension ofW . Note, for example, that in the model used in

Section 5.5.1, the random effect associated with village i is a bivariate random variable,

Wi = {S(xi) + Zi, T (xi)}, hence dim(W ) = 2n with f(·|Wi) given by (5.13). Monte

Carlo methods are then used in order to approximate the above intractable integral

using importance sampling. As discussed in Giorgi and Diggle (2014), a convenient choice

for the importance sampling distribution is g(W, y; θ0) for some fixed θ0, which can be

iteratively updated. With this choice, a Markov chain Monte Carlo (MCMC) algorithm

is then required for simulation of Wi conditionally on yi under θ0. We used a Langin-

Hastings algorithm that updates the transformed vector of random effects Σ̂−1/2(W−Ŵ ),

where Ŵ and Σ̂ are the mode and the inverse of the negative Hessian at Ŵ of g(W, y; θ0).

In each of the applications, diagnostic plots based on the resulting samples of Wi showed

fast convergence of the MCMC algorithm; details are available from the authors.

In the applications of Section 5.3.1 and Section 5.4.1, we considered extra-binomial varia-

tion at household-level but not at individual-level within households. An extension of the

standard geostatistical model (5.2) that accounts for within-household random variation

is

log{pij/(1− pij)} = α+ [c′ijδ + Uij ] + [d(xi)
′β + S(xi) + Zi],

where i denotes household, j denotes individual within household, cij is a vector of

individual-specific explanatory variables with associated regression parameters δ and the

Vij are mutually independent, zero-mean, Normally distributed random effects. However,

when the data consists of empirical prevalences with small denominators, it is generally

difficult to disentangle the effects of Zi and Uij . For this reason we used the more

pragmatic approach of setting Uij = 0 for all i and j.

The results of Section 5.4.1.2 on the impact of scaling-up the distribution of ITN and

IRS to a 100% coverage should be interpreted cuatiously. The procedure that we used to

obtain estimates of prevalence and number of infected children under different scenarios
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does not deal with the issue of causation. The control scenarios S1 and S2 represent

virtual scenarios under which coverage of ITN and IRS is assumed to follow a pre-defined

pattern without having any impact on other risk factors for malaria. In reality, a scale-up

of ITN and IRS coverage may influence other features of the process, for example the

extent to which ITNs are used correctly.

Under model (5.13) that accounts for zero-inflation, the risk surface can approach, but

not reach, zero. We are are currently working on two further extensions of the standard

geostatistical model. In the first of these, prevalence can reach zero but is constrained to

do so smoothly. The second allows discontinuities in risk between suitable and unsuitable

areas of transmission. Spatial discontinuities may seem artificial but can give a better

fit to the data, especially when the pattern of risk is highly non-linear. Statistical tools

for automatic choice between non-nested models are available from both frequentist and

Bayesian perspectives, but our preference would be to reach agreement with a subject-

matter expert on what qualitative features of the model best reflect the behaviour of the

underlying process.
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Chapter 6

Conclusions and future

developments

In this chapter we further discuss each of the papers separately. As each paper already

contains its own discussion, we focus on some specific issues and future research aimed

at improving and broadening the range of applicability of the developed methodology.

6.1 Paper 1

In this paper we proposed a multivariate geostatistical model for the combined analysis of

data from multiple spatially referenced prevalence surveys. We focused our attention on

temporal variation, when surveys are repeated over time, and data-quality variation, as

in the case of randomised and non-randomised surveys. Through simulation studies and

an application to malaria prevalence data from Chikwawa District, Malawi, we showed

that using a joint model for the data can lead to more accurate prevalence estimates.

This approach finds wide applicability in low-resource settings, where sampling of the

community of interest is essential in the absence of digitalized disease registries.

However, our approach can also be applied for disease mapping in developed countries,

where disease registries are in fact available. For example, official surveys conducted by

government agencies or other public bodies usually make use of sampling methodologies

that generate “gold-standard” data. Commercial surveys instead often use biased sam-

pling strategies but are more frequently updated than official surveys. In Manzi et al.

(2011), local authority (LA) level smoking prevalences from multiple surveys conducted

in the United Kingdom are analysed using hierarchical Bayesian models. In their anal-

ysis, residual spatial correlation between LA is not taken into account and the bias of
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some of the surveys is modelled using unstructured survey-specific random effects at LA

level. However, if we consider smoking prevalences in each LA to be the realization of a

spatially discrete process, the model in (2.1) can then be modified as follows. Let i and

j denote the indices corresponding the i-th survey and the j-th LA; use B to denote the

index set of potentially biased surveys, and let dij be a vector of explanatory variables

for the j-th LA in the i-th survey. The linear predictor in (2.1) now assumes the form

ηij = d>ijβ1 + Sij + I(i ∈ B)[Bij + d>ijβi] + Zij ,

j = 1, . . . , ni; i = 1, . . . , r. (6.1)

where Si(xij) and Bi(xij) have been replaced by Sij and Bij , respectively, which are

modelled as independent spatially discrete processes. In this context, a possible choice

would be to use conditional autoregressive (CAR) models (Besag, 1974). The distribution

of Sij conditionally on Sik for all k 6= j is then given by

Sij |Sik : k ∈ δj ∼ N

(
ρ

∑
k∈δj wikSik∑
k∈δj wik

,
σ2∑

k∈δj wjk

)

where δj is the index set of neighbouring LAs to the j-th LA, wik are pre-defined weights

and ρ regulates the strength of the spatial correlation between LAs. Likewise, the Bij for

i = 1, . . . , r would then be modelled as CAR processes with spatial correlation parameter

ρBi and marginal variance σ2Bi
. The unstructured random effects Zij would still be

modelled as zero-mean Gaussian noise with variance τ2i and, in this case, would represent

extra-binomial variation within LA. To account for temporal variation across surveys,

an approach analogous to (2.1) can be adopted by assuming separability of the temporal

and spatial correlation functions. We conjecture that using this modelling framework

would lead to very similar results to those shown in Chapter 2.

6.2 Paper 2

In the analysis of river-blindness prevalence across 20 APOC countries a standard geo-

statistical model was fitted to the data. Due to the high-dimensionality of the spatial

random effects, a low-rank approximation was used so as to make parameter estimation

and spatial prediction feasible. One of the initial issues in the analysis was that esti-

mated prevalence was judged by a subject-matter expert to be too high in the proximity

of onchocerciasis-free areas. We then accommodated this by placing a set of fictitious

zero-cases in those areas. This turned out to be effective without affecting the estimated

prevalence in onchocerciasis endemic areas. An alternative solution to this problem would

be to carry out parameter estimation and spatial prediction separately in each APOC



Conclusions 125

country in order to allow for country-specific means and covariance structures. However,

we considered this approach to be unsatisfactory since it does not exploit the spatial

correlation across country boundaries and does not make the most efficient use of all the

available data.

A more general and sophisticated approach would be to model the spatial stochastic

process S(x) assuming a spatially varying mean, say T (x), and variance, say V (x). A

spatially varying scale parameter of the spatial correlation could also be assumed but we

expect this to be very difficult to recover from the data, as well as adding more complexity

that would not give significant additional flexibility to a model already including T (x)

and V (x). Forms of non-stationarity in the covariance structure can be taken into account

by allowing, for example, for directional effects. An example of directional effect is given

by geometrical anisotropy where stationarity of the covariance structure is transformed

by a differential stretching and rotation of the coordinate axes; see Diggle and Ribeiro

(2007, pp. 58-60) for more details.

In the context of our analysis of river-blindness prevalence, the spatial process T (x) could

be potentially useful to account for geopolitical differences between countries that may

induce residual long-range spatial variation. The introduction of the spatial process V (x)

would account for spatial heteroscedasticity. Indeed, large values of V (x) would identify

regions of Africa where observations tend to be relatively far away from the estimated

trend surface. By modelling T (x) and log{V (x)} as independent stationary and isotropic

Gaussian processes, the linear predictor in (1.1) is then modified as

log{pi/(1− pi)} = d(xi)
>β + S(xi)

= d(xi)
>β + T (xi) +

√
V (xi)S

∗(xi), (6.2)

where the spatial process S∗(xi) has the same properties of the stationary version of

S(xi) in (1.1). The introduction of the spatial process V (x) has also been proposed

by Palacios and Steel (2006) in order to generate mean-square continuous fields with

tails heavier than the Gaussian model. Additionally, by defining the variance and mean

of log{V (x)} as ν2 and −ν2/2, respectively, where ν2 is a positive real parameter to

estimate, we have that the expected value of V (x) is 1 and as ν2 tends to 0 we recover

the standard geostatistical model with stationary variance.

It is clear that a large amount of data would be required to recover all the components of

the model in (6.2). Then, a restrictive but practical assumptions would be, for example,

that log{V (xi)} and S∗(x) share the same covariance function. Identifying T (x) can

also be very difficult. However, since T (x) accounts for large scale spatial variation, this

implies that the scale parameter of the correlation function for T (x), say δ, is larger
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than that of S∗(x), say φ. We can then approximate T (x) with its country-level spatial

average, i.e.

T (x) ≈ Tj = |Cj |−1
∫
Cj

T (x) dx, x ∈ Cj (6.3)

where Cj is the region delimited by the borders of the j-th country and |Cj | is the area

of Cj . Indeed, it can be shown that for large values of δ, Tj is a good approximation to

T (x). Let τ2ρ(·; δ) denote the covariance function of the process T (x); the approximated

covariance structure is given by the following expression

cov(T (x), T (x′)) ≈ cov(Th, Tk)

= |Ch|−1|Ck|−1τ2
∫
Ch

∫
Ck

ρ(‖y − y′‖; δ) dy dy′, x ∈ Ch, x′ ∈ Ck,

where the above intractable integral can be approximated using a quadrature procedure.

An alternative approach would be to approximate T (x) with a spatially discrete CAR

process introduced in the previous section. However, one of the issues of this approach is

that, unlike (6.3), it does not provide a direct and unique way to account for the different

sizes of the countries.

6.3 Paper 3

In this paper, we presented some of the features of the PrevMap package and illustrated

how these can be used to conduct Bayesian and likelihood-based analysis of spatially

referenced prevalence data. Future extensions of the package will be the following.

• Fitting of geostatistical Poisson-models. This is sometimes an appropriate model

in its own right but also a useful approximation to the binomial model in the case

of large binomial denominators and a very small probability of having a positive

test.

• Fitting of multivariate geostatistical models to combine data from multiple surveys

(Chapter 2), spatio-temporal models (Section 5.4) and geostatistical zero inflated

binomial models (Section 5.5).

• Faster computational procedures for fitting binomial models based on covariance

tapering (Kaufman, Schervish, and Nychka, 2008). Covariance tapering techniques

approximate a spatial covariance matrix, say Σ, with Σ̃ = Σ ◦ Σ0 where ◦ is the

Hadamard product and Σ0 is a covariance matrix based on a spatial correlation

function with compact support (e.g. the spherical correlation function). Since Σ̃

is sparse, matrix calculations, such as inversion, Cholesky factorization and multi-

plication, are computationally more efficient than with the dense matrix Σ.
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• Faster computational procedures for fitting geostatistical models to binary data

using auxiliary variables techniques.

We now focus on the last extension, describing a computational procedure that we are

currently implementing.

Let Yij denote a binary indicator that takes value 1 if the test for the disease for the j-th

individual in the i-th household is positive and 0 otherwise. We assume that conditionally

on the random effects S(xi) and Zi, Yij are mutually independent Bernoulli variables with

probit-link function given by

Φ−1(pij) = d>ijβ + S(xi) + Zi,

where Φ−1(·) is the quantile function of a standard Gaussian variable and dij is a vector

that includes both individual specific and location-specific explanatory variables. An

auxiliary variable Vij can then be introduced such that

Vij |β, S(xi), Zi ∼ N
(
d>ijβ + S(xi) + Zi, 1

)
.

It then follows that

Yij |Vij =

1 if Vij > 0,

0 oterhwise

since

pij = P (Yij = 1) = P (Vij > 0|S(xi), Zi)

= 1− Φ(−d>ijβ + S(xi) + Zi)

= Φ(d>ijβ + S(xi) + Zi).

By using a Gaussian prior for β, say N(ξ,Ω), one of the advantage of this representation

is that the full conditional distribution of the vector T> = (β>, S(x1) +Z1, . . . , S(xn) +

Zn) is multivariate Gaussian. Let D denote a matrix of covariates and A a binary

matrix with entries [A]hk = 1 if the h-th individual has been sampled at location xk

and [A]hk = 0 otherwise. Let θ denote the vector of covariance parameters and V > =

(V11, . . . , V1,m1 , . . . , Vn,1, . . . , Vn,mn); we can then write

cov(T |V, θ) =

(
Ω−1 +D>D D>A

A>D Σ−1 +A>A

)−1
,
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where Σ is the spatial covariance matrix including the nugget variance. The mean of the

full conditional of T is then given by

cov(T |V, θ)

(
Ω−1ξ +D>V

A>V

)
.

Finally, the full conditional distribution of V is a set of mutually independent right and

left half-truncated Gaussian variables. More specifically, Vij is a half-truncated Gaussian

variable with support in (0,+∞) if Yij = 1 or in (−∞, 0) if Yij = 0. A Gibbs sampler can

then be used to update T and V in turn. To simulate from a half-truncated Gaussian

variable, we can either use the method of inversion or some rejection-sampling procedure

which prevents the issue of numerical errors in the case of a large negative (positive)

mean for a right (left) half-truncated Gaussian variable.

This approach can be extended to the logistic link function by introducing an additional

set of mutually independent auxiliary variables λij that follow a Kolmogorov-Smirnov

distribution (Stefanski, 1991) such that

Vij |β, S(xi), Zi, λij ∼ N
(
d>ijβ + S(xi) + Zi, 1/λij

)
.

However, simulating from the full conditional distribution of λij is not trivial, since the

distribution of a Kolmogorov-Smirnov distribution is only known as an infinite series.

For a more detailed discussion see Section 4.3 in Rue and Held (2005).

6.4 Paper 4

In this paper, we presented three extensions of the standard geostatistical model to

address the statistical issues of combining data from multiple surveys, spatio-temporal

interpolation of disease prevalence, estimation of the impact of control interventions and

accounting for an excess of no reported cases. As discussed in Section 5.6, the model

presented in Section 5.5 can only approach but does not exactly reach zero-prevalence

in disease-free areas. We now describe two further extensions that can be used to model

spatially structured zero-inflation and allow prevalence to reach zero exactly. Using the

same notation as Section 5.5, we model π(x) as a binary indicator taking value 1 if

location x is suitable for transmission and 0 otherwise.

Assume that prevalence p∗(x) = p(x)π(x) is constrained to approach zero smoothly as

the location x approaches the boundary of the unsuitable area for transmission, i.e.

allocations for which π(x) = 0. This can be achieved by defining a threshold θ ∈ R with

π(x) = 0 if d(x)′β + S(x) < θ and π(x) = 1 otherwise. The conditional distribution of
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Yi given S(xi) then takes the form

P (Yi = y|S(xi)) =

1 if y = 0 and d(xi)
′β + S(xi) < θ

Bin(y;m, p(xi)) if d(xi)
′β + S(xi) > θ

(6.4)

where now

p(xi) = 2
exp{d(xi)

′β + S(xi)− θ}
1 + exp{d(xi)′β + S(xi)− θ}

− 1.

If, instead, we want to allow for discontinuities between suitable and unsuitable regions

for transmission, this can be achieved as follows. Partition the area of interest A using

a Voronoi tessellation with cells given by the observed set of locations, i.e. A =
⋃n
i=1Ri

where

Ri = {x ∈ A : ||x− xi|| ≤ ||x− xj ||, for all j 6= i} .

Let w = (w1, . . . , wn) denote a binary random Markov field (Rue and Held, 2010). Hence,

wi ∈ {0, 1} with wi having conditional distribution

f(wi|wj , for all j 6= i) = f(wi|wj , for all j ∈ ∂i), (6.5)

where ∂i is the set of all regions Rj that are neighbours to site Ri. One possibility would

be to consider the following form for (6.5)

f(wi|wj , for all j ∈ ∂i) =
exp{α[(1− wi)n0 + win1]}

exp{αn0}+ exp{αn1}
, α > 0

where n0 and n1 are the numbers of neighbours to wi that are zero and one, respectively.

The parameter α regulates the interaction between neighbouring tiles, with large values

of α associated with long-range interactions.

Assume that w and S are independent; the distribution of Yi conditioned on S(xi) and

wi is given by

P (Yi = y|S(xi)) =

1 if y = 0 and wi = 0

Bin(y;m, p(xi)) if wi = 1
, (6.6)

where p(xi) retains its form given by (5.2). Preliminary results show that model (6.6)

gives very similar results in prevalence estimates with respect to the model of Section

5.5. The main disadvantage of this approach is that (6.6) is an artificial construction

that does not allow for the use of explanatory variables to model the binary field w.

One of the advantages, instead, is that allowing for discontinuities in prevalence between

neighbouring tiles can potentially give a better fit to the data in the case of highly

non-linear patterns of prevalence.
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