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Abstract 
 
A growing body of evidence have linked two of the most common aged-related 

diseases, type 2 diabetes mellitus (T2DM) and Alzheimer disease (AD). It has led to 

the notion that drugs developed for the treatment of T2DM may be beneficial in 

modifying the pathophysiology of AD. As a receptor agonist of glucagon- like peptide 

(GLP-1R) which is a newer drug class to treat T2DM, Geniposide shows clear effects 

in inhibiting pathological processes underlying AD, such as and promoting neurite 

outgrowth. In the present article, we review possible molecular mechanisms of 

geniposide to protect the brain from pathologic damages underlying AD: reducing 

amyloid plaques, inhibiting tau phosphorylation, preventing memory impairment and 

loss of synapses, reducing oxidative stress and the chronic inflammatory response, 

and promoting neurite outgrowth via the GLP-1R signaling pathway. In summary, the 

Chinese herb geniposide shows great promise as a novel treatment for AD.  
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1. Introduction 

Alzheimer’s disease (AD) is the most common neurodegenerative disorder of 

progressive cognitive decline in the aged population. The characteristic pathological 

hallmarks are abundance of two abnormal aggregated proteins in brain tissue: 

neurofibrillary tangles (NFTs) composed mainly of the microtubule-associated protein 

tau and amyloid plaques composed of insoluble amyloid-β (Aβ) deposits, synaptic and 

neuronal loss as well as dysfunction associated to the neurochemical changes in brain 

tissue (Mathis et al., 2007). The multiple molecular pathogenic changes contributing 

to the pathological hallmarks of AD include mitochondrial dysfunction, oxidative 

stress, endoplasmic reticulum (ER) stress, and inflammation, which lead to the 

varying levels of plaques and tangles, and these studies also explain the relationships 

between protein aggregation and neuronal loss in neurodegeneration (Meares et al., 

2011; Stalder et al., 1999).  

Current pharmacotherapy of AD is limited to cholinesterase inhibitors and the 

N-methyl-D-aspartate antagonist memantine. Although these drugs have been shown 

to treat the symptoms of AD they have not been shown to cease or reverse the 

pathophysiological causes of AD (Tan et al., 2014; Werner and Altaf, 2015). Present 

medications approved by the FDA do little to slow disease progression and provided 

no indication for the underlying progressive loss of synaptic connections and neurons 

(Wright et al., 2014). Thus, it is of great importance to seek novel therapeutic agents. 

To find new medications to treat AD based on our molecular pathology knowledge of 

AD has become a priority in the AD area of research. Priority candidate treatments for 

which there is considered to be a high level of supportive evidence, such as 

antihypertensives, antibiotics, antidiabetic drugs and retinoid therapy, have been 

summarized and described (Corbett et al., 2012). 

Considering T2DM had been identified as a risk factor for AD, It is possible to 

develop drugs that can treat T2DM to also treat AD. Use of long-lived mimetics of the 

glucagon like peptide-1 (GLP-1) that are resistant to cleavage by proteases is a 
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successful strategy to treat T2DM. In the present review, we explore a possibility to 

develop a new strategy to treat AD using receptor agonists of GLP-1R and explain the 

possible molecular mechanism. Epidemiological studies found a correlation between 

an increased risk of developing AD and T2DM (Biessels et al., 2006; Haan et al., 

2006; Ristow et al., 2004). Further research showed a range of shared 

pathophysiological changes seen in T2DM and AD (Akter et al., 2011). The possible 

common or interactive processes in T2DM and AD have been reviewed (Li et al., 

2007; Nelson et al., 2005).  

There are currently clinical trials ongoing that test the effectiveness of 

‘antidiabetic’ drugs in AD patients. We are aware of two ongoing pilot studies of 

GLP-1 analogs for AD. A clinical trial of Exendin-4 in AD is performed by the 

National Institute on Aging (ClinicalTrials identifier: NCT01255163). The other is 

evaluating liraglutide in Alzheimer's Disease (ELAD) conducted by the Imperial 

College London (ClinicalTrials identifier: NCT01843075). Three metabolic hormones 

have shown promise in preclinical models of AD: amylin, leptin and GLP-1. The 

neuroprotective effects of GLP-1 and its analogs have shown considerable results in 

vivo and vitro (Hölscher, 2014a; Wang et al., 2010). The GLP-1 analog liraglutide 

showed protective effects from memory impairments in the amyloid precursor protein 

(APP) /presenilin-1 (PS1) mouse model of AD. The Aβ levels, plaque load, and the 

inflammation response in the brain were much reduced after treatment by liraglutide. 

Furthermore, memory formation and synaptic plasticity in the hippocampus was 

rescued by the drug (McClean et al., 2011). The drug also reversed some long-term 

damage in very old transgenic AD mice (McClean et al., 2014a). The newer GLP-1 

analogues lixisenatide also had these impressive neuroprotective effects (McClean et 

al., 2014b). A study characterized the effects of another GLP-1 receptor agonist, 

exendin-4, on stress-induced toxicity in neuronal cultures and on Aβ and tau levels in 

triple transgenic AD (3xTg-AD) mice with and without streptozocin (STZ)-induced 

diabetes (Li et al., 2010). Liraglutide, exendin-4 and lixisenatide are all on the market 

in Europe as treatments for diabetes. Together, these results indicated a potential effect 

of GLP-1R agonists in treating AD, particularly when associated with T2DM or 
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glucose intolerance (Hölscher, 2014b).  

Geniposide, a key component extracted from the fruit of Gardenia jasminoides 

Ellis, is a major iridoid glycoside considered to be responsible for various biological 

effects of the herbs, and its aglycon is genipin. Gardenia is a widely used Chinese herb 

for treatment of hepatic disease, inflammation disorders, contusions and brain 

disorders (Wang et al., 1992; Chen et al., 2010; Wang et al., 2012). Increasing studies 

have focused on the neuroprotective effect of geniposide in brain diseases, especially 

neurodegenerative disorders. Its protective effect from memory impairment and 

normalisation of objection recognition has been shown in animal behavioral 

experiments (Gao et al., 2014; Lv et al., 2014). Using a high throughput screen for 

GLP-1 receptor agonists, geniposide was identified as an agonist for the GLP-1 

receptor (Liu et al., 2006). It has been shown that the activation of the GLP-1 receptor 

by geniposide induces neurotrophic and neuroprotective effect in cells (Liu et al., 

2009, 2012). But the mechanisms underlying these effects have not been definitively 

identified. The aim of present review is to summarize a Chinese herbal medicine that 

can ameliorate AD symptoms and to investigate the cell and molecular mechanisms 

underlying its therapeutic efficacy based on AD pathogenesis hypothesis by which 

diabetes and abnormal glucose metabolism is involved in AD. 

 

2. Metabolism and pharmacokinetics  

 

Most herbal medicines which have been used in China, Korea, and Japan are orally 

administered. In general, glycosides which are the main contents in herbal medicines, 

are brought into contact with the intestinal microflora in the alimentary tract, where it 

is metbolised. Geniposide, an iridoid glucoside, is a major component ( ≥ 2%) in the 

fruits of Gardenia jasminoides Ellis. Until now, pharmacological studies of geniposide 

have revealed key properties including antitumor effects (Hsu et al., 1997), 

modulation of DNA expression (Galvez et al., 2005), treatment of pain (Gong et al., 

2014), anti-inflammatory, coloretic and hepatoprotective effects (Chen et al., 2009; 
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Liu et al., 2010; Chou et al., 2003; Ma et al., 2011). However, the precise mechanisms 

of its effects remains poorly understood. It was found that intestinal bacteria in 

animals can transform geniposide into its aglycone genipin or other metabolites (Fig. 

1) (Akao et al., 1994; Chen et al., 2008). Ten metabolites (G1–G10) involved in the 

metabolic processes were identified. It is interesting that all the metabolites detected 

were produced from the genipin or its ring-opened derivatives rather than the 

geniposide itself. It revealed that when geniposide was orally administered, 

geniposide was first hydrolyzed to genipin by β-glucosidases. After deglycosylation 

of geniposide in the liver or intestine, genipin would undergo redox or phase II 

metabolism immediately (Han et al., 2011). The metabolism of geniposide in vivo 

undergoes the following pathway: it is hydrolyzed first to produce the intermediate 

aglycone (genipin), which quickly conjugates with glucuronic acid as the predominant 

metabolite, followed a series of further metabolic reactions.  

Previous studies had reported the pharmacokinetics of geniposide after peroral 

administration and intravenous (i.v.) administration in mice (Hou et al., 2008; Ueno et 

al., 2001; Ye et al., 2006). More detailed information of the bioavailability and tissue 

distribution of geniposide is still lacking. Recently, studies on the pharmacokinetics, 

bioavailability and tissue distribution of geniposide had been carried out (Sun et al., 

2012; Wang et al., 2014). The major pharmacokinetics parameters of geniposide in rat 

plasma after oral administration are shown in Table 1 (Yu et al., 2013). Compared 

with the i.v. administration, the t1/2 was prolonged after oral administration of 

geniposide. In addition, The AUC0 →∞ values of geniposide were 6.99 ± 1.27 

h · μg/ml following i.v. administration of 10 mg/kg of geniposide. After oral 

administration of geniposide, the absolute oral bioavailability (%F) of geniposide was 

calculated as 9.67%, the AUC0 →4h values in tissues were in the order of kidney > 

spleen > liver > heart > lung > brain (Yu et al., 2013).  

Geniposide is widely used in Chinese medicine as a neuroprotection agent (Liu et al., 

2009; Wu et al., 2009). Pharmacokinetic studies of geniposide and its increased 

absorption in the brain by the terpene borneol have been published (see table 2 for 

details on the Pharmacokinetic parameters) (Yu et al., 2013). The results also 
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demonstrated that borneol markedly facilitated the delivery of geniposide to the 

hippocampus. Therefore, the region specific effect of borneol on the Blood Brain 

Barrier (BBB) might be a new strategy for the treatment of central nervous system 

(CNS) disorders. 

In order to better understand the pharmacokinetics of geniposide, its aglycone genipin 

was administered intravenously and orally. When genipin was given as an intravenous 

bolus, genipin levels declined rapidly and genipin sulfate emerged instantaneously, 

indicating that a very rapid hepatic sulfation had occurred (Hou et al., 2008). Further 

research needs to be performed on other similar iridoid compounds contained in 

various medicinal herbs to obtain a more comprehensive view of their 

pharmacological mechanism and metabolic fates. 

 

3. Molecular pathways  

 

The GLP-1 receptor belongs to the class B family of G protein-coupled receptors 

(GPCRs). A large number of studies have shown that GLP-1 functions through its 

receptor to regulate insulin secretion and glucose metabolism and is, therefore, an 

important strategy in the treatment of T2DM (Burmeister et al., 2012; Shao et al., 

2010). GLP-1 just like insulin and IGF-1 activates second messenger signaling 

pathways that are commonly linked to growth factor signaling (Holscher, 2014a). 

Geniposide is structurally unrelated to insulin and binds to GLP-1R, thereby 

circumventing insulin-signaling impairment. After binding to the GLP-1R, it activates 

signaling pathways that converge with the insulin-signaling pathway and facilitate 

insulin signaling. It was found that geniposide, with the activation of GLP-1 receptor, 

induced insulin secretion in a dose-dependent manner and showed neurotrophic 

properties by stimulating cAMP production. Furthermore, the phosphatidylinositol 

3-kinase (PI3K) signaling pathway and mitogen-activated protein kinases (MAPK) 

pathway are involved in the neuroprotection of geniposide against oxidative damage 

in PC12 cells and in SH-SY5Y cells (Liu et al., 2007; Liu et al., 2012; Guo et al., 
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2012; Sharma et al., 2013). The activities of geniposide in neurons include increased 

expression of genes that are linked to cell growth and repair, inhibition of apoptosis 

and reduction of inflammatory responses (see Fig. 2 for details on the underlying 

molecular mechanism). 

 

4. Possible neuroprotective mechanisms in AD 

4.1 Geniposide reduces levels of Aβ 

Plaques which are composed of aggregated Aβ (Aβ1-42–Aβ1-40) are a characteristic 

hallmark of AD. Aβ is a peptide fragment, mostly 40-42 amino acids in length, which 

is cleaved from the APP by β-secretases and γ-secretases (Thinakaran et al., 2008). 

Pimplikar (Pimplikar, 2009) summarized many avatars of the amyloid hypothesis in a 

review. It was originally proposed that increased levels of Aβ resulted in plaque 

formation which caused AD. Subsequent observations that familial APP mutations 

increase Aβ42 generation led to a proposal that it is the increased levels of Aβ42 peptide 

that causes AD. Another variation on the theme is that the absolute levels of Aβ42 are 

less important than the ratio of Aβ42/40 in causing AD (Pimplikar, 2009). Others 

propose that amyloid is not instrumental in the development of AD at all  (Morris et 

al., 2014). However, the currently most favored idea is that Aβ forms soluble 

oligomers, which are pathogenic in nature and cause AD (Selkoe, 2008).  

    Aβ aggregation into soluble oligomers are believed to be the main toxic species 

and the causative agent underlying the pathological mechanism for AD, aggregating 

and accumulating within and around neurons, cause cognitive dysfunction including 

memory loss (Selkoe, 2008; Rakez and Cristian, 2013). There is also evidence that the 

increased level of Aβ depresses excitatory synapses and reduces neuronal activity, and 

in contrast to the pathological accumulation in normal brain Aβ is produced at lower 

concentration (Kamenetz et al., 2003; Parihar and Brewer, 2010). As a downstream 

effect, tau pathology in AD associated with the cognitive impairment was initiated. 

It’s not surprising that the metabolism of Aβ has become an important therapeutic 
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target in AD research. Understanding the processing and secretion of APP and its 

relationship to Aβ opens a window to develop compounds that prevent the production 

of Aβ by affecting the cleavage of APP, or the aggregation, clearance or toxicity of Aβ 

(Sabbagh et al., 2000). 

The iridoid glucosides extracted from Gardenia Jasminoides showed potential 

improvement of short-term learning/memory capacities in human Aβ42 –expressing 

transgenic flies (Yu et al., 2009). It suggests that the component of Gardenia 

Jasminoides might have potential protective effect against neurodegenerative 

processes in AD. Pre-incubation with geniposide prevented primary cultured cortical 

neurons from Aβ1-42-induced injury. Geniposide also induced the expression of 

insulin-degrading enzyme (IDE), a major degrading protease of Aβ, in a 

dose-dependent manner (Yin et al., 2012). These findings indicate that geniposide 

activates GLP-1 receptors, which then protects against Aβ-induced neurotoxicity by 

regulation of the expression of IDE in cortical neurons. The cultured hippocampal 

neurons had significantly degenerated after treatment with Aβ25-35, but the 

degeneration did not occur to the same extent in the presence of genipin (Yamazaki et 

al., 2001). One study found that genipin suppressed apoptosis in cultured cells via 

inhibition of caspase activation and mitochondrial function (Yamamoto et al., 2000). 

Furthermore, strong evidence suggests that geniposide regulates expression of 

apoptosis-related proteins via the MAPK signaling pathway, thereby overcoming the 

toxicity of Aβ (Liu et al., 2007). All of those studies indicate that geniposide and 

genipin are potential candidates for preventing the development of AD. 

 

4.2 Inhibition of Tau phosphorylation by geniposide 

Hyperphosphorylated tau protein was identified as the major component of 

neurofibrillary tangles, which are known to be a key pathological feature of AD 

(Grundke-Iqbal et al., 1986). Tau protein is a highly soluble microtubule-associated 

protein found in the axonal compartment of the neuron. Its primary function is 

involved in microtubule stabilization, axonal transport, homeostasis, and synaptic 
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function (Drubin and Kirschner, 1986; Terwel et al., 2002). Integrity of the 

microtubules is maintained by the phosphorylation state of tau, which is regulated by 

many phosphatases and kinases (Avila et al., 2004; Hashiguchi et al., 2013). GSK-3 

has been identified as the key kinase responsible for the hyperphosphorylation of tau 

in AD (Flaherty et al., 2000; Hooper et al., 2008; Llorens-Martín et al., 2014). When 

tau protein is phosphorylated, it results in the disassembling of microtubules and can 

aggregate abnormally when hyperphosphorylated to form neurofirillary tangles. Once 

the aggregation into neurofirillary tangles occurs, tau loses the function of connecting 

to tubulin and can no longer play a role in the microtubule assembly. Thus, inhibition 

of pathological hyperphosphorylation of tau may be a therapeutic target for AD (Iqbal 

et al., 2010; Ma et al., 2014).  

   Various animal models have enabled identification and characterization of key 

cellular processes that promote apoptosis in tauopathy, including synapse loss, 

impaired axonal transport, overstabilisation of filamentous actin, mitochondrial 

dysfunction, and aberrant cell cycle activation in post-mitotic neurons (Frost et al., 

2015). 

Identifying the causes of abnormal tau phosphorylation and aggregation is a major 

target for the development of therapeutic interventions for tauopathies, and has been 

the focus of much research, including AD (Götz et al., 2012; Medina et al., 2014). 

Current strategies include decreasing tau aggregation, blocking abnormal tau 

phosphorylation, or stopping the spread of tau pathology through the brain. Our 

previous study (Gao et al., 2014) showed that geniposide could greatly reverse tau 

hyperphosphorylation and the paired helical filament like structures (PHFs ) induced 

by STZ. Furthermore, we also showed that neuroprotective effect of geniposide was 

blocked by Wortmannin, a PI3k inhibitor. This indicates that signaling of PI3K/GSK3 

is involved in the phosphor-tau decrease effect of geniposide. 

 

4.3 Attenuation of mitochondrial oxidative stress by geniposide 

The multiple pathogenic mechanisms contributing to the pathology of AD include an 
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increase of reactive oxygen species (ROS) production, mitochondrial dysfunction, and 

apoptosis due to the impairment of mitochondrial Ca2+ handling ability, altered Ca2+ 

homeostasis, increased mitochondrial permeability transition pore opening, and 

promotion of cytochrome c release (Godoy et al., 2014). Studies using transgenic 

mice demonstrated alterations in mitochondrial enzymes in the AD brain (Piaceri et al., 

2012). It has been shown that one of the neurotoxic mechanisms of Aβ peptides is 

increasing oxidative stress in cultural neurons (Lee et al., 2010). Moreover, the 

enhancement of the oxidative stress by the in vivo depletion of vitamins has been 

shown to result in an increased amount of Aβ by the inhibition of it clearance from the 

brain (Habib et al., 2012). These suggest that oxidative stress, either by itself or as 

part of a “two step process”, causes neuronal dysfunction, and eventually AD (Ciron 

et al., 2012). Many treatment strategies have been focused on preserving 

mitochondrial function in AD. The underlying mechanism of action seems to be 

related to the prevention of mitochondrial Ca2+ overload, and modulation of the 

fusion-fission process, thereby arresting mitochondrial dysfunction (Dinamarca et al., 

2008). Induction of endogenous antioxidative proteins seems to be a reasonable 

strategy for delaying the progression of cell injury. 

It has been shown that intra-gastric administration of geniposide significantly 

reduces oxidative stress and increases the mitochondrial membrane potential and 

activity of cytochrome c oxidase in addition to improving learning and memory in 

APP/PS1 mice (Lv et al., 2014). Genipin was evaluated for its ability to inhibit 

oxidative effects in rat brain homogenate initiated by an Fe2 + / ascorbate system. It 

inhibited the generation of malondialdehyde, which reacts with 

N-methyl-2-phenylindole. Besides, genipin is a specific hydroxyl radical scavenger 

(Koo et al., 2004). Geniposide induced Glutathione S-transferase (GST) activity and 

the expression of GST M1 and GST M2 acting in primary cultured rat hepatocytes 

through the expression of MEK-1 signaling proteins and the activation of 

Ras/Raf/MEK-1 signaling pathway. Glutathione S-transferases (GSTs) are a family of 

dimeric enzymes which is responsible for the metabolism of a broad range of 

xenobiotics (Kuo et al., 2005).  
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    Geniposide activated the GLP-1 receptor, leading to an increase in intracellular 

cAMP. Furthermore, geniposide could increase the expression of HO-1 and resist the 

oxidative damage induced by H2 O2 and 3-morpholinosydnonimine hydrochloride 

(SIN-1) in PC12 cells by activating the MAPK -p90RSK, PI3K/Akt-Nrf2 and 

PKA-CREB (cAMP-response element binding protein) signaling pathways (Liu et al., 

2009; Liu et al., 2007;Yin et al., 2010; Yin et al., 2010). Pretreatment with geniposide 

markedly improved the cells’ viability and regulated the expression of apoptotic 

protein involved in mitochondrial mediated apoptosis in PC12 cells induced by CoCl 2. 

The results demonstrated that geniposide had a significant influence on the 

mitochondrial function which was damaged by oxidative stress induced by CoCl 2 

(Guo et al., 2009). Genipin has an ability to induce neurite outgrowth through 

activation of several protein kinases including extracellular signal-regulated kinase 

(ERK) and activation of nitric oxide synthase (NOS) in PC12h cells. Studies also have 

shown that the NO/cGMP pathway suppresses 6-OHDA-induced apoptosis in PC12 

cells by inhibiting the mitochondrial cytochrome c release, caspase-3 and -9 activation 

via PKG/PI3K/Akt-dependent Bad phosphorylation (Matsumi et al., 2008; Ha et al., 

2003) 

 

4.4 Inhibition of ER stress by geniposide 

The endoplasmatic reticulum (ER) is a membranous cell organelle in which key 

cell functions takes place such as protein synthesis, and folding and transport of 

translocating and integrating proteins (secretory and membrane proteins), lipid 

biosynthesis, and maintaining calcium homeostasis (Fagone et al., 2009; Sammels et 

al., 2010). Disturbance in ER function via the accumulation of unfolded and 

deficiently modified proteins, and release of ER luminal Ca2+ into the cytoplasm 

results in ER stress; chronic ER stress emerges as a key factor driving neuronal 

degeneration and cognitive impairment beyond cell death, a late event on disease 

progression, which has been linked to a variety of age-related neurodegenerative 

diseases, such as AD and Parkinson’s disease (PD) (Antero et al., 2009; Salminen et 
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al., 2010; Torres et al., 2014). A large body of evidence indicates that the ER stress 

response is localised to dendrites. This heterogeneity of the ER network may be 

related to axonal degeneration and synaptic loss in neurons, particularly in the case of 

redox-based dysfunctions, emphasizing a role for ER stress in neuronal degeneration 

(Raff et al., 2002; Murakami et al., 2007; Banhegyi et al., 2008). Mostly, reduction of 

amyloid plaques is correlated with attenuated ER-stress and vice versa. It is revealed 

that treadmill exercise (TE) prevented PS2 mutation-induced memory impairment and 

reduced Aβ-42 deposition and ER stress through the inhibition of β-secretase in the 

cortex and/or hippocampus of aged PS2 mutant mice. It showed that APP processing 

and phosphorylation of tau might be influenced by ER-stress signaling (Kristina and 

Sven, 2013). Therefore, elucidating ER-stress in AD might help turning the scale in 

therapeutic considerations or for evolvement of new highly diagnostic biomarkers. 

Currently, no evidence existas that geniposide and genipin suppresses ER stress 

that is induced by Aβ. However, several studies (Tanaka et al., 2009; Masayuki et al., 

2009) show the protective effects of genipin on cytotoxicity induced in Neuro2a cells 

by tunicamycin (TM), an ER stress inducer. Genipin dramatically rescued the cells 

against TM-induced cell death. In addition, genipin suppressed ER stress-induced 

upregulation of glucose-regulated protein of 78 kDa (GRP78, also known as Bip) and 

CCAAT/enhancer-binding protein(C/EBP) homologous protein (CHOP, also known 

as growth arrest and DNA damage-inducible gene 153(GADD153)), also suppressed 

the activation of caspase-3/7 and caspase 12. Another studyexamined the potential 

regulatory effects of geniposide on hepatic dyslipidemia and its related mechanisms in 

vitro and in vivo. The authors found geniposide inhibited palmitate-induced ER stress, 

reducing hepatic lipid accumulation through secretion of apolipoprotein B and 

associated triglycerides and cholesterol in human HepG2 hepatocytes (Lee et al., 

2013). Oral administration of geniposide also reduced in middle cerebral artery 

occlusion rat model (Pan et al., 2014) 

 

4.5 Inhibition of chronic inflammation in AD by geniposide 
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 Inflammation is a complex molecular and cellular defense mechanism in 

response to stress, injury and infection. Although the etiologic mechanisms of AD are 

poorly understood, more recently, analysis of human brain AD samples has shown 

highly expressed inflammatory cytokines and an upregulation in inflammatory genes 

during the early stages of AD (Hollingworth et al., 2011; Sudduth et al., 2013). During 

neurodegenerative disease development, microglia and other cell types, including 

cytokines, are activated in response to misfolded proteins in the brain, also participate 

in the active immune defense and are particularly important in regulating tissue 

homeostasis and in preserving the structural and functional characteristics of the brain 

(Heneka et al., 2014; Fakhoury, 2015). McGeer et al. (1998) demonstrated the 

activation of microglial cells and astroglial cells in close proximity to the damaged or 

dying neurons. The accumulation of glia cells around plaques along with strong 

upregulation of inflammatory markers has been taken as evidence that glia cell 

proliferation is a key element of the disease process. This is supported by several in 

vivo studies using markers for proliferating cells in transgenic mice. Elevated levels 

of inflammatory cytokines, TNFα, IFNγ, and interleukins, in particular IL-1β and 

IL-18, are found in the brain, near the Aβ plaques, in AD patients and transgenic mice 

(Johnston et al., 2011; Rubio-Perez et al., 2012).   

Modern medical practice has proved that some of Chinese herbal medicine can 

have anti-inflammatory effects in patients. Gardenia fruit extracts (GRE) contain 

acute anti-inflammatory activities, geniposide and genipin are possibly responsible for 

those activities of GRE (Koo et al., 2006). In treatment of various peripheral 

inflammation, genipin performs its anti-inflammatory activity though the suppression 

of both NO production and cyclooxygenase expression. Geniposide also decreases 

serum LPS level and inhibits cytokine (TNF-ɑ and IL-6) release in mice (Zheng et al., 

2010; Zhu et al., 2005). Several studies demonstrated that geniposide exerted 

anti-inflammatory effects by interfering with the expression of Toll-like receptors 4 

(TLR4), which subsequently inhibited the downstream NF-κB and MAPK signaling 

pathways and the release of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 

(Song et al., 2014; Wang et al., 2012; Huang et al., 2013).  

http://link.springer.com/search?dc.title=MAPK&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
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Aβ acts as a microglia activator in cell culture studies (Meda et al., 1995). Genipin 

significantly repressed NO release from microglia that have been stimulated with Aβ. 

Nevertheless, more work is required on identifying target molecules of genipin 

involved in signaling pathways modulating the microglial inflammatory response. The 

receptor for advanced glycation end products (RAGE), an immunoglobulin-like cell 

surface receptor, is also known to be an important cellular cofactor for Aβ-mediated 

cellular perturbation (Yan et al., 2012). The mechanisms by which Aβ mediates 

activation of microglia and astrocytes remain to be elucidated. It appears that there is 

an important role for RAGE-mediated signaling in the microglial activation and 

neuronal dysfunction. RAGE triggers the generation of pro-inflammatory cytokines at 

the blood brain barrier (Leclerc et al., 2010). Further, RAGE dependent signaling in 

microglia stimulates inflammatory responses and processes that exacerbate neuronal 

damage, ultimately impairing neuronal function in the cultured cells taken from AD 

and AD transgenic mice (Yan et al., 2009; Fang et al., 2010; Lue et al., 2001). Recent 

studies demonstrate that geniposide significantly blocks RAGE-dependent signaling 

(activation of ERK and NF-κB) Aβ-induced along with the production of TNF-α and 

IL-1β. Notably, based on the data from co-immunoprecipitation assay, they infer 

that geniposide exerts protective effects on the Aβ-induced inflammatory response 

through blocking Aβ binding to RAGE and suppressing the RAGE-mediated signaling 

pathway (Lv et al., 2015). Taken those together, RAGE may be a target for a novel 

AD therapy. 

 

4.6 Neurite outgrowth promoted by geniposide 

Nerve growth factor (NGF), a neurotrophin, plays a trophic role both during 

development and in adulthood, and activates TrkA-Ras-ERK signaling pathway by 

interacting with the specific receptor tropomyosin kinase receptor A (TrkA) (Aloe et 

al., 2012; Huang et al., 2003; Patapoutian and Reichardt, 2001). Also, NGF elicits its 

neuritogenic effect through activation of nNOS followed by activation of 

NO-cGMP-PKG signaling pathway (Hartikka and Hefti, 1988). Further studies on 
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NGF deficit-induced neurodegeneration in transgenic mice demonstrated also a novel 

causal link between neurotrophic signaling deficits and AD (Cattaneo and Calissano, 

2012). There are growth cones at the free terminals of long neurites in PC 12 cells. 

Neurites induced by genipin generally seemed to be more branched than those 

induced by NGF. Addition of ERK kinase inhibitors could almost completely abolish 

the neurite induction. A neuritogenic effect of genipin in PC12h cells was also 

inhibited by the NOS inhibitor, NO scavenger, and PKC (cGMP-dependent kinase) 

inhibitor (Yamazaki et al., 1996, 2001, 2004). These findings suggest that NO 

production followed by cGMP-mediated stimulation of the MAPK cascade is 

implicated in the neuritogenesis by genipin in PC12 cells. Further, it seems that 

geniposide and genipin promote neuronal development via different molecular 

mechanisms. Normal PC12 cells have no nNOS even though PC12 cells and PC12h 

cells share the same origin. Treatment with geniposide promoted cellular growth, yet 

treatment with genipin did not (Yamazaki et al., 2006). This indicates that nNOS is the 

common target of geniposide and genipin, and that geniposide possesses additional 

therapeutic targets. Perry et al (Perry et al., 2002) was the first to describe the effects 

of GLP-1 and its long-acting analogue, exendin-4, on neuronal proliferation and 

differentiation, and on the metabolism of two neuronal proteins in PC12 cells, which 

had been shown to express the GLP-1 receptor. This study demonstrated that GLP-1 

and exendin-4 induced neurite outgrowth in a manner being similar to nerve growth 

factor (NGF). A significant increase on the GAP-43 protein level in parallel with 

neurite outgrowth was observed after treatment with geniposide. The data also 

demonstrate that geniposide induces the neuronal differentiation of PC12 cells via the 

MAPK pathway (Liu et al., 2006). Therefore, Geniposide has neuroprotective effects 

due to the activation of the GLP-1 receptor in cells without nNOS. It is speculated that 

there is a correlation between the effect of the two drugs and the structural difference 

(Liu et al., 2012). 
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Conclusion 

 

As a receptor agonist of GLP-1R, geniposide is a novel drug candidate for the 

treatment of AD because of its multiple effects in neuroprotection. As the world’s 

ageing population continues to increase and the treatment of AD is still a worldwide 

problem, the therapeutic potential of geniposide which may delay the onset of 

age-related disorders is highly desirable. The molecular mechanism and therapeutic 

targets of geniposide are not completely understood and require further research. 

Geniposide is water soluble and orally active and also can cross the 

blood-brain-barrier. It is easy to administer and has been shown to be safe to take. In 

the present review, we describe the possible mechanisms of the neuroprotective 

properties of geniposide and genipin: inhibiting Aβ toxicity, oxidative stress, 

mitochondrial damage, ER stress, inflammation and tau phosphorylation. In summary, 

the Chinese traditional medicine geniposide may be used as a novel treatment of 

sporadic AD and other diseases. Clinical trials in AD patients are warranted to test this 

hypothesis.  
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Table 1. Pharmacokinetic parameters of geniposide in plasma after oral administration 

Parameters Geniposide(40.65 mg/kg) 

Zhi‐Zi‐Hou‐Pu decoction  

Geniposide(100mg/kg) 

Tmax(min) 0.79±0.19 0.5±0.03 

Cmax(ug/ml) 1.29±0.16 1.40±0.24 

T1/2(h) 2.67±0.56 3.55±0.69 

AUC(0-∞) (h·ug/ml) 5.07±1.07 6.76±1.23 

(Yu et al., 2013) 
 
 
Table 2. Pharmacokinetic parameters of geniposide in brain regions after i.v. 

administration 

parameters  Cortex Hippocampus Hypothalamus Striatum 

Tmax(min) 24.00±8.94 20.00±0.00 20.00±0.00 20.00±0.00 

Cmax(ug/ml) 565.80±234.21 134.87±49.00 133.13±97.76 150.46±63.02 

T1/2(h) 1.84±0.80 2.62±2.03 1.69±1.34 2.12±0.75 

AUC(0-∞) (h·ug/ml) 796.67±240.00 400±240.00 298.33±96.17 441.67±109.17 

MRT(0-∞) (h) 2.04±0.77 3.85±2.79 2.69±1.43 3.25±0.85 

(Yu et al., 2013) 
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Figure 2: Overview of the main pathways induced by geniposide in neurons 
Geniposide activated the GLP-1 receptor in a manner similar to GLP-1. The GLP-1 
receptor is a member of a different class of receptors compared with insulin receptor 
(IR). Activation of the GLP-1 receptor activates an adenylyl cyclase and increases 
cAMP levels (Green et al., 2004), which stimulates protein kinase A (PKA) and 
enhances the transcription of insulin receptor substrate 2 (IRS2) (Broca et al., 2009). 
By this pathway it can link with the signaling pathway of IR. Phosphorylation of PKA 
and other downstream kinases are related to insulin secretion and growth factor 
signaling. An increase of PI3K levels via the G protein activation can activate 
following pathways: (1) MAPK. This pathway activates gene expression, which 
controls expression of peptides that are required for cell growth and repair in neuronal 
cells (Perry et al., 2003) and also Erk1/2 and PI3k which also activate the MAPK 
pathway (Sharma et al., 2013). (2) geniposide also suppresses the induction of 
apoptosis. This pathway involves stimulation of PI3K binding to IRS and G protein, 
activation of PI3K and protein kinase B (Akt/PKB), which suppresses the induction of 
apoptosis and thereby protects neurons (Liu et al., 2012). (3) Activation of Glycogen 
Synthase Kinase (GSK3) to modify the cellular skeleton and dynamics by mediating 
the phosphorylation levels of tau protein; modulating cleavage of amyloid-beta 
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protein precursor (APP) and improve learning and memory formation 
(Eldar-Finkelman et al., 1999; Gao et al., 2011; Gao et al., 2014). As well, AMPK 
inhibits mTOR complex resulting in autophagy stimulation. This pathway also 
suppresses Glucose transporter 2 (GLUT-2) and GLUT-4 gene expression. 
Traditionally, insulin is associated with its blood glucose lowering activity. This is 
achieved by activating a glucose uptake transporter, e.g. GLUT-4. This function is 
only one of many of the IR and GLP-1R (Perry and Greig, 2005; Hölscher, 2011, 
2014). 
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