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Abstract—
In this paper we demonstrate a new density based clustering

technique, CODSAS, for online clustering of streaming data
into arbitrary shaped clusters. CODAS is a two stage process
using a simple local density to initiate micro-clusters which are
then combined into clusters. Memory efficiency is gained by not
storing or re-using any data. Computational efficiency is gained
by using hyper-spherical micro-clusters to achieve a micro-cluster
joining technique that is dimensionally independent for speed.
The micro-clusters divide the data space in to sub-spaces with a
core region and a non-core region. Core regions which intersect
define the clusters. A threshold value is used to identify outlier
micro-clusters separately from small clusters of unusual data.
The cluster information is fully maintained on-line.

In this paper we compare CODAS with ELM, DEC,
Chameleon, DBScan and Denstream and demonstrate that CO-
DAS achieves comparable results but in a fully on-line and
dimensionally scale-able manner.

I. INTRODUCTION

In modern times we have seen an ever increasing number of
situations providing streams of data. The need to make sense
of the data in real time and in an adaptable real time time
environment requires new techniques in data analysis. Not only
are offline methods unsuitable for data streams, storage of the
large volumes of data created by these streams is impractical.

Here we address these concerns by evolving the micro-
clusters as new data is presented and by removing the need
to store the data. The technique is named Clustering Online
Data-streams into Arbitrary Shapes (CODAS).

The technique presented here has two main stages. The first
creates micro-clusters when the number of data samples within
a given initial radius of any data sample reaches a specified
value. These values are set by the user and may vary between
applications. Unlike many traditional density based clustering
techniques which use a fixed radius for the micro-clusters in
CODAS we adapt the micro-cluster radius in two ways. Each
cluster consists of a centre point, an outer cluster radius and
an inner core cluster radius which is a fixed proportion of
the outer radius. This value is known as the feather value
and using 0.5 allows for a new micro-cluster to be created
exactly between two close neighbours that touch, but do not
overlap. Data samples are considered to be members of a
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cluster if they lie within the outer cluster radius. The radius
of the cluster is adjusted according to the mean distance of
the data samples from the cluster centre. The mean distance
is updated recursively so does not require the data samples to
be retained. Data samples which have a low local density do
not form clusters but remain as outliers.

The second stage combines any of these micro-clusters that
overlap into global clusters. In this way arbitrary shapes, in-
cluding traditionally difficult shapes such as concave clusters,
can be produced. To simplify the calculations required for
joining the micro-clusters they are limited to hyper-spheres.
Thus they overlap if the sum of the radii is greater than the
distance between the centres and cluster connections are found
with computationally efficient logical operations. Data samples
which do not have the required local density remain as single
outlier samples.

II. STATE OF THE ART

Alternative online data stream clustering techniques such as
ELM [1], DEC [2] provide real time clustering of data streams.
Both of these techniques operate on data streams in real time
but are limited to hyper-ellipsoidal cluster shapes. The basis
for ELM is to store the local mean as a cluster centre and
to adjust the cluster centre and radii as more data arrives.
DEC maintains a list of core and non-core clusters defined
by the weight of the cluster. The weight decays over time
or is increased as new data samples join the cluster. In this
way core clusters may decay to non-core, non-core clusters
my disappear or increase their weight to become core clusters
or new, non-core, clusters may be created. In both techniques
the clusters created are hype-ellipsoidal. In the case of convex
cluster shapes DEC may create many smaller hyper-ellipsoidal
clusters or one large cluster encapsulating all the data.

SPARCL [3], Chameleon [4] and DBScan [5] are all tech-
niques for clustering arbitrary shapes offline. Sparcl utilises a
two layer approach whereby k-means [6] clustering is used to
create a large number of micro-cluster centres. These micro-
cluster centres are then further clustered using a hierarchical
approach to join these micro-clusters. Chameleon and DB-
Scan are techniques that successfully cluster arbitrary shapes
however both work offline and so require the full data set.
An incremental version of DBScan [5] was proposed which
allows for incremental modification of the dataset. However



(a) Core micro-cluster radii (b) Combined micro-clusters

Fig. 1. Illustration of core micro-cluster regions showing (a) micro-cluster
radius in red and, micro-cluster core radius in green (b) micro-clusters
combined to the global clusters

after each increment the micro-cluster connections are made
or broken according to the changes and so the whole dataset
is required to be available for each increment.

A method known as DenStream was proposed in [5]. A
set of core- and potential-micro clusters are maintained. Each
micro-cluster is created from a stored set of data with a
decaying weight. By decaying the data samples those with
a weight below a threshold are discarded and the memory
requirement is limited somewhat. The technique has an initial-
isation phase, using DBScan, to create an initial set of micro-
clusters. Additionally, while the micro-clusters are maintained
in an on-line fashion the process of combining the micro-
clusters into final clusters is an off-line approach carried out
on demand.

A. CODAS Approach

Traditional clustering techniques for arbitrary shapes des-
ignate data samples as ’core’ or ’non-core’. However, this
requires storage of the data samples and so ever increasing
storage capacity which is to be avoided in on-line clustering.
CODAS stores only the information related to the micro-
clusters and each micro-cluster has a ’core’ and ’non-core’
region.

The following terminology is used for CODAS:
1) sample: any data point in n dimensions
2) threshold: the minimum number of sample within a

micro-cluster radius for it to become a core-micro-
cluster

3) non-core-micro-cluster: a micro cluster with local den-
sity below the threshold core-micro-cluster: a micro-
cluster with a local density above the threshold

4) global cluster: a cluster consisting of a number of
intersecting micro-clusters

In general CODAS is a data driven approach to divide
the data space in to core and non-core regions. Each micro-
cluster consist of a non-core region of radius r0 and a core
region being 0.5r0. Any micro-cluster above a given density
threshold is considered for global cluster membership. Micro-
clusters with no intersections form global clusters. Micro-
clusters with core regions that intersect another micro-cluster
non-core region form a single, larger global cluster. Non-core
regions are considered to be edges of global clusters.

New data from the data stream will fall in to one of 3
regions:

1) empty space where it will form a new, non-core-micro-
cluster

2) micro-cluster non-core region where it will be assigned
to the cluster, the cluster count updated and the micro-
cluster centre recursively updated to the mean of it’s
samples.

3) micro-cluster core region where it will be assigned to
the micro-cluster and the cluster count updated

The micro-cluster that has been modified, or created, by this
process is then checked to see if the local density is above the
threshold. If it is then it is checked for new intersections with
other micro-clusters. If new intersections have been made then
all the linked micro-clusters are assigned to the same global
cluster. This maintains arbitrarily shaped data space regions of
global clusters online.

With this approach at any given time a data sample can be
checked for it’s global cluster membership, any new sample is
immediately clustered and outliers are identified as members
of non-core-micro-clusters.

Figure 1 shows a subset of a plot of test data. Figure 1(a)
shows the core and non-core radii of the micro-clusters. Data
sample without a micro-cluster radii are in non-core micro-
clusters which are not displayed. Where the core radius of any
cluster intersects a non-core radius of any other the clusters
combine as shown in figure 1(b).

III. CODAS ALGORITHM

A. CODAS Equations

Here we will describe the CODAS algorithm including the
variables, equations and pseudo code.

Ci - co-ordinates of micro-cluster centre i
di - distances from new sample to micro-cluster centre i
Gi - global cluster of micro-cluster i
Ii - list of micro-clusters intersecting micro-cluster i
m - value of Ni when a non-core micro-cluster to become
a core-micro-cluster, user input
Ni - number of samples in each sub-cluster i
n - number of micro-clusters
r0 - micro-cluster radius, user input
Sn - sample n

di = ‖Sn − Ci‖ (1)

Cj =
(Ni − 1)× Cj + Sn

Ni
(2)

rj =

√
αr20 + (1− α)d̃j (3)



B. CODAS Pseudo-Code

The pseudo-code for the CODAS algorithm is as follows:
1) load new data sample
2) calculate di for all micro-cluster centres Ci

3) if di(min) < r0

a) increment Ni

b) if di(min) >
r0
2 update cluster centre using equa-

tion 2
4) else create new micro-cluster in it’s own global cluster

a) Ci = Sn

b) Gi = max (G) + 1

5) end if
6) calculate distance D to all micro-cluster centres
7) find new list of intersections Ii(new) = D < 1.5r0
8) if the intersection list has changed Ii(new) 6= Ii

a) update intersection list Ii = Ii(new)

b) update global cluster for all intersecting micro-
clusters G(Ii) = Gi

9) end if
10) while data stream continues, go to 1

IV. TEST DATA

The algorithm has been tested on 3 artificial sets of data
designed to test different extremes of cluster shapes and
separations. Plots of each dataset are shown in figure 2.
Further we also test the technique on datasets used by offline
techniques Chameleon [4] and SPARCL [3] where they are
referred to as DS1, DS2 and DS3.

1) Gaussian Clouds Dataset (fig. 2a). This dataset contains
5 clusters with data generated on a gaussian distribution
in each.

2) Spiral Dataset (fig. 2b). This data set contains data
generated with a random spread about 3 spirals. Each
spiral set contains 2,500 samples for a total of 7,500. An
additional 1,500 random samples are added for noise.

3) Mixed Dataset (fig. 2c). This dataset test the ability
of the dataset to cope with a complex array of cluster
shapes and locations. The dataset is constructed of:

a) A gaussian data cloud in the centre containing 100
samples

b) Two convex clusters which both surround the
central data cloud have intersecting convex hulls
containing 150 samples each

c) 2 rectangular clusters containing 200 samples each
d) A ring cluster surrounding all of the above data

containing 1,000 samples.
e) an additional 500 random samples in the data space

representing noise.
4) DS1 (fig. 2d) 6 natural clusters of 8,000 x 2D samples

including 10% noise
5) DS2 (fig. 2e) 9 natural clusters 0f 10,000 samples

including 10% noise.
6) DS3 (fig. 2f) 8 natural clusters of 8,000 samples includ-

ing 10% noise.

V. METHODOLOGY

The CODAS algorithm has been implemented in Matlab
R14b and the tests run on a PC with an Intel Core i7 processor
and 8GB of memory. The code has not been parallelized to
take advantage of the processor cores.

CODAS is run across each dataset and the run time recorded
together with the mean time per sample. The data is discarded
after processing. The results are a set of micro-clusters and
their global cluster assignment. To illustrate the accuracy of
these clusters we re-analyse the data to check it’s global cluster
assignment and display the results, coloured by global cluster.

We further test the effect of dimensionality on CODAS. We
took the spiral dataset and divided each natural cluster through
a varying number of additional dimensions. The original (x,y)
dimensions were retained so the results can be projected back
on to this plain. In this way all other variables remain as

(a) Gaussian (b) Spiral

(c) Mixed (d) DS1

(e) DS2 (f) DS3

Fig. 2. Plots of the datasets used for testing CODAS

TABLE I
CODAS DIMENSION TEST EXAMPLE

Sub x y Dim3 Dim4 Dim5 Dim6 Dim7 Dim8
Cluster

1 9.6447 -3.5968 0.6677 0.3340 0.3332 0.3332 0.3331 0.3333
1 9.6782 -4.1302 0.6674 0.3333 0.3333 0.3337 0.3337 0.3340
2 -1.4015 6.6578 0.3331 0.6673 0.3335 0.3338 0.3339 0.3339
2 -2.1020 6.1781 0.3330 0.6677 0.3339 0.3338 0.3330 0.3337



TABLE II
CODAS CLUSTER ACCURACY RESULTS

Accuracy (%) Average Average
Dataset Min Max Average Purity (%) Assigned (%)

Gaussian 86.21 88.45 87.83 99.62 87.83

Spiral 87 100 99.33 100 99.33

Mixed 98.3 100 98.9 99.9 99.28

constant as possible and only additional dimensionality is
introduced. An example of how the data is generated across
these additional dimensions is given in Table I.

VI. RESULTS

A. Cluster Validity

For the first three datasets, spiral, gaussian and mixed we
had a priori knowledge of the natural cluster assignment of the
data. In this case we could measure the quality of the clusters.
We use two measures, average cluster purity and assignment
accuracy. Average cluster purity is a widely used metric and
is given by:

purity =

n∑
i=1

Sd
i

Si

n
(4)

(a) Gaussian (b) Spiral

(c) Mixed (d) DS1

(e) DS2 (f) DS3

Fig. 3. Images for results of the CODAS algorithm on various test datasets

TABLE III
CODAS SPEED TEST RESULTS

Mean Time / Sample (ms)

Data Set CODAS ELM DEC DBScan

Gaussian 0.461 0.085 0.163 0.048

Spiral 0.474 0.189 1.29 0.12

Mixed 0.421 0.130 ˜ 0.13

DS1 0.488 0.232 ˜ 0.114

DS2 0.476 ˜ ˜ 0.130

DS3 0.483 ˜ ˜ 0.103

Where Sd
i is the number of samples in cluster i in dominant

cluster d and n is the number of clusters.
A large number of small clusters with high purity can

disguise a low number of large clusters with low purity
however and so we also measure cluster accuracy, which is
the number of samples in a cluster that belong in that cluster
and no other and is given by:

accuracy =

n∑
i=1

Sd
i

Si

Ni
(5)

where Sd
i is the number of samples in dominant class d, Si

is the number of samples in cluster i and Ni is the total
number of samples. This gives a measure of the likelihood
that a samples placed in a cluster is correctly placed.

With any technique that allows samples to be outliers it is
possible to create pure and accurate cluster from few samples
and so we also measure the percentage of samples that have
been assigned as follows:

assigned =

n∑
i=1

Si

Ni
(6)

The CODAS algorithm was run 10 times on each dataset
and the maximum, minimum and mean accuracy recorded.
The results for these are given in table II.

B. Speed
The speed of CODAS has been compared to ELM, DEC

and DBScan. DEC and ELM are both techniques that provide
fully maintained cluster information online, however both pro-
duces hyper-ellipsoid shaped clusters resulting in split natural
clusters as shown in figure 4. DBScan is offline but is capable
of producing arbitrary shapes and has been included here to
compare the cluster results with CODAS. Denstream requires
an offline component and an initialisation which are both based
on DBScan so will be related to the DBScan results for multi
dimensionality. CODAS has a speed penalty due to the extra
calculations required to create the arbitrary shapes. However
we can see that it still compares favourably with ELM and
outperforms DEC and DBScan at higher dimensions.

C. Dimensionality
By utilising hyper-spheres for micro-clusters the cluster

joining technique is largely dimensionally independent. Micro-
clusters are joined if the edges of their hyper-spheres overlap.



TABLE IV
MULTI-DIMENSIONAL SPEED TEST RESULTS

Number of Mean Run Time (s)

Dimensions CODAS ELM DEC DBScan

2 1.3840 0.2558 0.4877 0.1400
5 3.6688 1.2200 7.6866 2.3300
8 3.8411 1.2800 7.8800 3.0500

17 4.0803 1.3533 10.2033 4.9966
32 4.3686 1.8366 14.5333 20.5133
62 4.9401 2.6300 26.2400 54.2966
92 5.4787 3.2733 49.2633 73.9933

This is a simple comparison between the euclidean distance
between cluster centres and the sum of the micro-cluster radii.
Therefore the only calculation that is dimensionally dependant
is the euclidean distance. With each new data sample being
assigned to a single micro-cluster we only need to check the
intersections for that micro-cluster. In it’s current form the
radii of the micro-clusters is constant and so we need only
compare the euclidean distance between the changed micro-
cluster and all others with 2× r0.

This was tested by running CODAS along with ELM, DEC
and DBScan on the range of multi-dimensional versions of
the spiral dataset we described in chapter V, Methodology.
The cluster results are projected back on to the (x,y) plane
to visually display them. Figure 5(b) shows the cluster results
for the data partitioned into 99 dimensions. By retaining the
same number of data samples in the same arrangement and
using the same parameters we preserve all calculations. Any
variation in run-time is therefore explained by the increased
complexity of added dimensions alone.

(a) DEC (b) ELM

(c) DBScan

Fig. 4. Images for results of alternative techniques (a) DEC, (B) ELM, (c)
DBScan to the spiral dataset

(a) Time vs Dimensions (b) 99 Dimension Clusters

Fig. 5. Results for running CODAS, ELM, DEC and DBScan across multiple
dimensions (a) Timings vs number of dimensions showing CODAS and ELM
(b) projection of cluster in 99 dimensions on to (x,y).

VII. DISCUSSION AND CONCLUSIONS

All of the techniques under discussion here require some
user parameters to be optimised. ELM has an initial radius
only, DEC has an initial radius together with a γ and β
parameter related to the decay and evolving nature of some
data streams. DBScan uses an intial radius and minimum
number of clusters within that radius to define the local density
of each point. CODAS requires an initial radius r0 and a
minimum number of samples m to be within that radius similar
to DBScan. These are somewhat intuitive with knowledge of
the expected data stream with r0 and m related to the relative
density of the outlier regions to the cluster regions.

CODAS has been developed to manage on-line data streams
that do not evolve, i.e. clusters that form will remain and
continue to be of interest. Future variants of CODAS will be
developed to employ an ’ageing’ process for clusters that allow
them to die out. CODAS has been shown to reliably cluster
data streams into predictable, repeatable clusters of high
purity and cluster data within these cluster regions with high
accuracy. It is comparably in speed to alternative techniques,
order independent and scale-able to multi-dimensional data.
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