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Wave turbulence (WT) occurs in systems of strongly interacting latter we mean an idealised system where all interacting waves are
nonlinear waves, and can lead to energy flows across length and weak and have random phases, so that it can therefore be described
frequency scales much like those that are well known in vortex tur- by a wave kinetic equation. Thus, in real-life applications WT may
bulence. Typically, the energy passes though a non-dissipative not be, and seldom is, weak. Most often, WT systems include both

inertial range until it reaches a small enough scale that viscosity
becomes important and terminates the cascade by dissipating the
energy as heat. Wave turbulence in quantum fluids is of particular

random weak waves and strong coherent structures, with these two
components interacting and exchanging energy in a WT life cycle (2).

interest, partly because revealing experiments can be performed However, weak turbulence provides a theoretical framework_for
on a laboratory scale, and partly because WT among the Kelvin WT and allows one to understand many (although not all) physical
waves on quantized vortices is believed to play a crucial role in effects observed in real systems of random waves. Weak turbulence
the final stages of the decay of (vortex) quantum turbulence. In theory usually considers dispersive systems, with a couple of impor-
this short review, we provide a perspective on recent work on WT tant exceptions being magnetohydrodynamic (MHD) turbulence and
in quantum fluids, setting it in context and discussing the outlook acoustic turbulence. Itis based on two fundamental assumptions: that
for the next few years. We outline the theory, review briefly the ex- the waves are weakly nonlinear, and that they have random phases. It

eriments carried out to date using liquid H and liquid “*He, and ; PN :
giscuss some nonequiliorium exci?on?c superquQids - vf/]hich WT is further assumed that the system is infinite in the physical space and

has been predicted but not yet observed experimentally. By way Stat.iSti(.:a”Y homogene_ous_. The m.ain OUtCOm.e of the weak _turbulence
of conclusion, we consider the medium- and longer-term outlook derivation is a wave klngtlc equation descrlblng.the. evoluthn of the
for the field. wave spectrum. Depending on the system, the kinetic equation can be
three-wave, four-wave or higher-order: see examples in the follow-
ing sections. Besides the usual thermodynamic Rayleigh-Jeans spec-
tra, which represent a limiting case of a general Bose-Einstein dis-
tribution, the kinetic equations often have strongly non-equilibrium

1. Introduction steady-state solutions similar to Kolmogorov cascades in classical

Wave turbulence (WT) (1, 2) is probably less familiar than ordi_hydrodynamic turbulence, the so-called Kolmogorov-Zakharov (KZ)

nary (vortex) turbulence to most scientists, but the two sets O?pectra. . . .
v ( ) Quantum fluids provide plenty of physical examples where WT

either a stand-alone phenomenon or a part of a large turbulent sys-
m. Besides the systems where WT was implemented and demon-
rated experimentally, there are examples where the presence of
T has been hypothesized but not not yet experimentally confirmed.
Nonetheless it has firmly taken its niche in the theoretical description
the quantum turbulence phenomenon. The two most prominent

turbulence | nonlinear waves | quantum fluids

phenomena are actually very similar. Unlike electromagnetic waves
in the vacuum, which are linear, and can therefore pass throu 1l
each other unaltered, waves in a nonlinear medium interact wit
each other, sometimes strongly. WT manifests itself in systems

strongly-interacting nonlinear waves. They form a disordered syste
in which there can be non-dissipative flows of energy across the fr

quency and length scales, much as occur in vortex turbulence. les h r le turbul ) fuid hell d
arises in a wide variety of classical contexts, including e.qg. surfacgX@mples here are small-scalé turbulénce In superfluid helium an
urbulence in Bose-Einstein condensates. We will start the descrip-

waves on water (both gravity and capillary) (3-5), nonlinear optlca[. of our examples with these two systems, after which we will

systems (6, 7), sound waves in oceanic waveguides (8), shock wa .
in the solar atmosphere and their coupling to the Earth's magnet&-resem examples where WT was actually observed experimentally.

sphere (9), and magnetic turbulence in interstellar gases (10). There
is a large and rapidly expanding literature, to which many relevaritvave turbulence in Bose-Einstein condensates. A detailed review
references up to mid-2010 are listed in (2). As we discuss in moref WT in BEC can be found in the book (2). Here we will restrict
detail below, WT can also occur in quantum fluids, where it exhibit®urselves to a brief description of the most fundamental phenomena
some distinctive features. Experimental studies have included suf BEC turbulence. Note that the theory of BEC turbulence is much
face waves on liquid K (11) and liquid helium (12), and second more advanced than the corresponding experimental studies; the lat-
sound in superfluidHe (13). Very recently, wave turbulence has ter have only begun relatively recently (17).
been demonstrated and studied numerically in the nonequilibrium ex- The modeling of BEC turbulence starts with the Gross-Pitaevskii
citonic superfluids (14) that occur in semiconductors (15) includinda.k.a. Nonlinear Schidinger) equation,
graphene (16). )

In section 2 we review briefly the theory of WT, concentrating ip(x,t) + V3(x,t) — (x, ) [(x,t)> = 0, [1]
on the aspects relevant to quantum fluids. Section 3 describes the
relevant experiments reported to date, and also describes a numerical o
experiment showing that WT can also occur in semiconductor BoséReserved for Publication Footnotes
Einstein condensates (BECs). Finally, in section 4, we conclude and
consider the future for research in the area.

2. Theory of wave turbulence in quantum fluids

First of all, we would like to draw a distinction between WT and
“weak turbulence". By the former we understand a real physical phe-
nomenon in a non-equilibrium statistical system where random in-
teracting waves constitute the fundamental building blocks. By the
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where is a complex function called the condensate wave functionkinetic equation converges. The inversé-cascade spectrum ap-
(The dot overp in Eq. 1 denotes differentiation with respect to time pears to be local, whereas the the dirBetascade spectrum is log-

t.) In this subsection we will mostly discuss the three-disienal

divergent at the infrared (IR) limit (i.e. & — 0) (6). Such a

casex € R®, with a brief remark about the two-dimensional (2D) log-divergence can be remedied by a log-correction to teetspm,

case at the end of the subsection. In addition to being usaekribe
BEC, the Gross-Pitaevskii equation is also applied to tlserdgtion
of optical systems, water waves, cosmology, and superfluldss
makes it one of the most universal partial differential e in
physics. The second term describes the dispersion of theswalile
the third term corresponds to mutual interactions betwhemtaves
or particles. For the sake of convenience, in this sectiouseEq.
1in its non-dimensional form; the physical meanings of thae-
sional coefficients in realizations for actual physicalteyss are dif-
ferent.
Equationl conserves the total number of particles

N = / b[2dx [2]

and the total energy

1
E:/|Vz/)|2dx+§/|w|4dx. [3]

Let us consider a system in a double-periodic square boxsiddr,
and define the Fourier transform,

o= [ weeax, [4]

box
where the wave vectois take values on a lattice,
2TMy 2mmy, n 27TM
L L’ L
The wave spectrum is defined as follows,

k= (£ ,t ), Ma,my,m> =0,1,2, ...

(Il [5]

Nk =

L
(2)?

ni ~ [In(k/ks)]~% kVZ  wherek; is an IR cutoff provided by the
forcing scale.

In the BEC context, the dual cascade behaviour has a niae inte
pretation. The forward cascade of energy corresponds ttithiegly
non-equilibrium process of evaporative cooling. Indedtiraeach-
ing the highest momentum states, the energy will spill ouhefsys-
tem over the potential barrier of the retaining magnetip.t@n the
other hand, the inverse cascade of particles corresporille tregin-
ning of the condensation process.

After populating the lowest momentum states, the systerh wil
cease to be weakly nonlinear (20). The weak turbulence igéiscr
based on the four-wave kinetic equation (6) will break doamd the
system will enter a strongly nonlinear phase charactefiised gas
of chaotic vortices of the hydrodynamic type. These vostivédl de-
crease in number because of a vortex annihilation procesisthey
reach a final coherent state, the condensate, with only admain-
ing vortices or no vortices at all (21). The remaining flutitoas on
the background of the condensate will be Bogolyubov phomdrish
can also be described by a WT kinetic equation, but this weilV ve
a three-wave system of weakly nonlinear acoustic waves1g, 69).

It is interesting that, during these final stages of evohtithe
few remaining vortices in the system (if present) also eihilave
motions which can be classified as WT (21). These are sodcalle
Kelvin waves propagating along the quantised vortex liis. will
briefly discuss such a 1D WT in next subsection.

A brief remark is due about 2D BEC turbulence. As often in di-
mensions of two or less, this system is special. It exhibitdroe
long-range order in the infinite box limit, but there is a Banskii-
Kosterlitz-Thouless transition to states with slowly dgng power-
law correlations (22). WT theory is also very special for &2
Gross-Pitaevskii system, e.g. there are no valid KZ spg28a24).
Indeed, the direct cascade spectrum exponent formallgica with

where the bracket§ . .) denote an ensemble average. FoIIowmg thethat of the thermodynamic energy equipartition state, eherthe

standard setup of the weak turbulence approach, i.e. asgansimall
nonlinearity and random phases, in an infinite box limit oae de-
rive a four-wave kinetic equation (6):

. 1 1 1 1
N = AT [ i Ny Mk Mk | — + — — — — —| X
Nk Nk Nk Ny

5(wk + Wiy — Wk — wkz)(S(k + ks — k; — kg) dkidkadks. [6]
where
wy, =k [7]

is the dispersion relation for the wave frequency. Equafids the
quasi-classical limit of a general quantum kinetic equafimr non-
condensed systems that holds in the case of large occupation

bersny (1). The kinetic equatio® also holds in the presence of a

“weak” Bose-Einstein condensate, where the condensatstdes
small, and hence the turbulent fluctuations are relativatgd. In
weakly interacting systems, this case can be realized initieity
of the superfluid transition where the macroscopic occopati the

k = 0 state is small. At temperatures much lower than the tramsiti

temperature, the condensate density is large, and thespomding
equation for the occupation numbers turns into the so-atdlece-
wave kinetic equation (18, 19).

The KZ spectra are non-equilibrium steady state solutidriseo
kinetic equatiorg,

ng = C k?u,
with constant dimensional pre-factofsand exponenty = vg =

-3 andv = wn = -—7/3 for the direct energy and the in-

verse particle cascades respectively (6). The KZ solutimasonly
meaningful if they are local, i.e. when the collision intglgin the
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particle flux is in the “wrong" direction in the particle caste solu-
tion.

Equationl describes the dynamics of a spatially homogenous
system. Ifitis placed in an external trapping potentidk), an ex-
tra termV (x)vy(x, t) should be added to the right-hand side of Eq.
1. In effect, the condensate density in the ground staitex)|?, be-
comes coordinate-dependent, corresponding to a nonromBEC.
WT theory can still be used in this case, for both the weak ensdte
(four-wave) and the strong condensate (three-wave) cpsegded
that the characteristic mean-free path of the excitationewackets
is less than the size of the trap. In this case the kinetic teaua
has to be modified by replacing the partial derivative of {ecsrum
on the left-hand side with the time derivative along the wpaeket
trajectory in the coordinate-wavenumber space (2, 18). dpmo-
site case, when the characteristic mean-free path of thicaBzn
wavepackets is greater than the size of the trap, has beestisted.
One approach to this problem lies in the expansion of the ensate
wave function over a basis of exact solutions of a lineari@edss-
Pitaevskii equation with the trapping potential, inste&éxgpansion
over plain waves (Ed). In this case, the correlation function Eq.
5 has the meaning of the occupation number for the correspgndi
oscillatory mode. This approach is applied, for exampleh&oBEC
of indirect excitons in coupled quantum wells, as detaileldww.
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Kelvin wave turbulence.
vortex lines have been widely discussed in the literatura &sn-
damental motions responsible for cascading energy belevimisan
inter-vortex separation scale to much smaller scales wihesn be
dissipated via radiation of phonons (25). There have begifiant
theoretical advances in applying the WT approach to theikelave
system, including obtaining KZ-type spectrum (26—28). Idwer,
the main results and conclusions of such theoretical sff@guire
testing and validation by both numerical and experimentahms.
Such tests would be especially timely considering the orgtheo-
retical controversy in this area (27, 29-35).

The main experimental challenge here is related to the featt t
the Kelvin wave scales are not yet accessible by direct nneamnt
techniques. Theoretically and numerically, the main difficis that
Kelvin waves are only part of the evolving turbulent systeimey
coexist with polarised vortex bundles forming a Kolmogotgpe
cascade of eddies in the large-scale range (above theviortiex sep-
aration scale) (36); they arise from, and interact withtexrecon-
nection events (37, 38). Also, in reality, Kelvin waves pagate on
vortex lines which themselves are neither straight noicstaty, as
assumed by the idealised WT setup. Interaction of the Keladnes
with large-scale curvature of underlying vortex lines kgly to have
an important influence on the wave spectrum evolution, aisdotio-
cess requires a careful future study.

Excitonic superfluids in semiconductors. Excitonic superfluid rep-
resents another remarkable example of a system where e¢ndmil
can be formed under certain conditions. An exciton is a hyeine
like bound state of a negatively charged electron and a ipelsit
charged hole in a semiconductor (39, 40).
ergy of the electron-hole pair is given by the famous Bohratign
E = —mye'/(eh)?, wherem, is the reduced mass of the pair,
is the electron charge, andis the dielectric constant of the ma-
terial. Below, we consider gallium arsenide (GaAs), a gréilp
V semiconductor, as a representative example where eicigdn
fects are of essential importance (39—-43). For GaAs, with 13,

The ground state e

Kelvin waves propagating on quantised tention because of the potential for using excitons as tlgsipal ba-

sis of a new generation of integrated circuits and opticahmating
systems (48-52). We now briefly review the approaches that pe
mit one to study the collective quantum dynamics in a quasi-t
dimensional excitonic system within the same methodolagyas
formulated above for superfluid helium and atomic Bose-€ins
condensates.

At temperature much lower than that of the superfluid tréorsit
To, the dynamics of the dipolar exciton BEC is described by & g
eralized Gross-Pitaevskii equation

2
i, 0) = — 51—V, 1) + V (), 1)

Tt e P +in (R—)u(xn). (8]
where the condensate wave functiofix, t) depends on the 2D in-
plane coordinate = (z,y) and timet, mex ~ 0.22my is the exci-

ton effective massy (x) = «|x|?/2 is an external trapping potential
(in what follows, we will focus on effects in parabolic trajfsit this

is not a restriction of the approach developed)= 1/27« is the
effective damping in the system due to exciton recombinatand

Tex & 100 ns is the exciton lifetime. The first term on the right-hand
side of Eq.8 describes the kinetic energy of excitons, whereas the
third, nonlinear term corresponds to mutual scatterinfpefxcitons

in the condensate. We note that Hgis written in dimensionless
units whereas we use dimensional units in Bqo show how the
coefficients depend on the physical parameters of the sydEepm-
tion 8 can be reduced to the non-dimensional form (BEgby rep-
rtlesenting time and distance in natural unifs= (m../a)/? and

ly = (h?/amex)'/*. Equation8 represents a natural generalization
of the “traditional” Gross-Pitaevskii Equatidhfor systems where
there is continuous pumping and decay of the particles. d$tadrm

in Eq. 8 captures the fact that the excitons can be created and can
decay; in addition, an external trapping potentiglx) is taken into

account. A linear operatak captures the exciton creation due to

m. & mo/21 wheremy is the free electron mass, the resultant bind-coupling with the external laser radiation.

ing energy of the excitor-& ~ 3.9 meV is much smaller than that
of a hydrogen atom. In experiments, the positive and negatiarges
which form the excitons are usually localized in quasi-twmeh-
sional heterostructures; specifically, the electrons ahelshare posi-
tioned in two different, neighboring, nm-thick semiconthrdayers
(or, quantum wells) separated by an insulating barrier4244—-46).
This arrangement results in a substantial increase ofaxtfetime,
compared to having the charges in a single quantum well,useca
of the relatively low probability of quantum tunneling of arges
through the barrier. The increased exciton lifetime allawe to
reach quasi-equilibrium in the system more easily, and jierome
to observe Bose-Einstein condensation of the excitonsesaritbed
below. These excitons, composed of spatially separatettefs and
holes, are usually referred to eigolar excitons because they carry
a non-zero average electric dipole moment in the directienpgn-
dicular to the plane of the quantum wells. In addition, theothr
excitons can be spatially localized in the heterostrudbyrapplying
an in-plane trapping potential produced by mechanicasst43), or
an electrostatic trap (47). Trapping in the quantum welielper-
mits one to avoid spreading of the excitons in the sample andén
to increase the exciton two-dimensional density thus, ycod) more
favorable conditions for Bose-Einstein condensation.

At temperatures beloWy < |Eo|/ks ~ 44 K, Bose-Einstein
condensation occurs in the system, and the dipolar excftons a
superfluid, see (14) for review. (Hergg is the Boltzmann con-
stant.) Because of the two-dimensional character of exgitotion
in the quantum wells, the superfluid transition is of the Berskii-
Kosterlitz-Thouless type mentioned above, that is, it isoamted
with pairing of the quantized vortices in the condensateer@ve past
decade, the dynamics of the exciton superfluid has attracteth at-

Footline Author

For dipolar excitons the interaction strengtfs a function of the
exciton density; the interaction strength should theeefoe deter-
mined self-consistently from the equation for the chempezkntial
of the whole system (15). The dependence of the interagtion
the density arises from the long-range, 1/|x|®, character of the
electric dipole-dipole interactions of the excitons in ptaad quan-
tum wells. We focus on the case of a dilute dipolar excitonlas
cause this corresponds to experiments with excitonic BBZR).
For a high-density gas, the formation of bi-excitons or taljization
effects must be taken into account (46, 53, 54), as well abneam
damping related to finite-density effects (55). In the mdgel 8,
we consider the low-temperature limit where the densityhefmnal
activated excitons above the condensate is negligible rétatively
high temperatures or very high pumping rates, the condeaisaisity
profile can be significantly distorted by scattering on a ledthon-
condensed excitons that sometimes results in the formafioimg-
like patterns around the excitation spot (56). In Sec. 3(fignate
subsection) below we describe the results of numericalrexpats
for a nonlinear excitonic superfluid based on the solutioBaf8.

3. Experiments on wave turbulence in quantum fluids

From an experimental point of view, quantum fluids offer many
vantages for the study of WT. In particular, they have vewy (or
zero) viscosity compared to conventional fluids, and theytmacon-
trolled, unlike natural systems such as the ocean or thestet&r
plasma. We now consider a few quantum fluid systems in which WT
has been demonstrated experimentally and investigatestail cand
two in which WT has been observed numerically but not yet expe
mentally.
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Fig. 1. Decaying turbulence of capillary waves on liquid H2. The measured sig-
nal P(t) is proportional to the surface inclination. (a) The periodic driving force
was switched off attime ¢ = 1.8 s. (b) Evolution of the turbulent power spectrum
during the decay, calculated over P(t). Grey shading indicates frequency com-
ponents in the power spectrum whose Pﬁ exceeds the threshold 10* (a.u.) in
the graph below. (c) Instantaneous power spectra calculated at times indicated
by the arrows in (b): curve 1 in the inset corresponds to time ¢ = 2 s; curve 2
corresponds to t = 2.5 s. The spectra shown represent an ensemble average
over ten identical measurements. The dashed lines in (c) corresponds to the
power-law-like dependence Pf x w™7/2 predicted by WT theory for capillary
waves (57,58). After (11).
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ble with each other, the condensate cloud is essentiakettimen-
sional. However, if the curvature in one direction is muajhier than
the those in two other directions, the cloud has a “pancakafps and
can be considered to a first approximation as two-dimenkiore
gether, the direct (energy) and inverse (number of pasjidascades
control the dynamics of atomic BEC formation; however, tetads
are different for bulk, three-dimensional, and quasi-twoehsional
condensates, in agreement with the general theory skettioack.

Capillary waves on the surface of liquid H  o. The surface of liquid

H- offers particular advantages for the study of WT among Gapil
waves. It can be charged through the injection of ions ingouthder-
lying bulk liquid, and surface waves can then be excited hyirdy

the charged surface with an alternating electric field. Hamhore,

the superposition of a constant electric field can be useduater-

act the effect of gravity, thus extending the capillary rang lower
frequencies. The response of the surface can be measurest by r
flecting a laser beam from it. Full experimental details dveryby
Brazhnikovet al. (61) and in (62).

Measurements in the stationary state of steady drivind@Xe-
vealed the formation of WT with a Kolmogorov power law spaoir
over a wide frequency range@® — 10" Hz), with a high frequency
cut-off caused by the onset of viscous damping, which teateththe
energy cascade (64). The spectrum is discrete in characssomunt
of the finite radius of the pool of liquid. The scaling indextbé tur-
bulent spectrum was found to depend on the spectral conteheo
driving force.

Measurements of how the steady state WT decays when the driv-
ing force is suddenly switched off (11, 65) have been vergaéng.
The decay starts from the high frequency end of the spectlrite
most of the energy remains localised at low frequencies (Higon-
trary to the original theoretical expectation based on giesmilar
theory of nonstationary WT processes (1). The reason isvibabus
dissipation is actually nonzero at all frequencies (evewliat, for
steady state driving, is the inertial regime) (66). Durihg tecay,
nonlinear wave interactions result in a rapid redistriitbf energy
between the frequency scales. Consequently, the wholérspede-
cays together, but the top end goes down faster because lof gjee
viscous effects at high frequencies.

Capillary waves on the surface of liquid 4he. Experiments have
also been performed (12, 67, 68) to investigate capillaryesaon
the surface of superfluiHe at 1.7 K. The technique was similar to
that used for hydrogen. WT with a turbulent Kolmogorov povesv
spectrum was observed, but there was sometimes an inteyelstii-
ation from this law near the high frequency edge of the spattiFor
steady state harmonic driving at amplitudes that were rotame,

a local maximum appeared in the spectrum representing amacc
lation of wave energy at that frequency. The authors atili(68)

to an energy transfer bottleneck resulting from a detunirtpedis-

Atomic BEC. BECs of cold atoms can be formed in magnetic traps agrete surface excitations. As in the case of liquig the form of the

extremely low temperatures ~ 10 nK (59,60). An atomic BEC s griving force influenced the form of the WT power spectrum.
a generic example of a degenerate quantum system whose idgnam

is described by WT (18, 19). Impact on everyday life may notyee
generally appreciated, but it is worth noting that experntakwork
on atomic BECs has also resulted in fast progress in the al@vent
of atomic clocks, i.e. in the technology that provides Ingtional
Atomic Time (IAT), the basis of the general purpose GlobasiPo
tioning System (GPS) which is familiar to everyone.

In a parabolic trap, the BEC density in the ground state i wel
described by the parabolic Thomas-Fermi distribution hvginall
corrections at the edges of the atomic cloud (60). This ctosee-
spondence with Thomas-Fermi theory shows that the quantien fl
tuations of the particle momenta in the BEC due to finite cleizeé
are negligible compared to the interaction with the extemag and
the mutual interactions between the particles. If the retbpe cur-
vatures of the trapping potential in all three directions esmpara-

Second sound waves in superfluid 4He. Wave turbulence among
second sound waves, a form of acoustic turbulence, has Ibeen i
vestigated in the bulk of superfluitHe. Below its transition tem-
peratureT, liquid *He behaves as though it were composed of two
interpenetrating fluids, the normal and superfluid comptmerach

of which completely fills the container. Second sound is anogy-
temperature wave corresponding to antiphase motion oftbeom-
ponents. Its nonlinearity coefficientis conveniently adjustable by
varying the temperature (69, 70). (The nonlinearity coiffitis in-
troduced in a standard way through the dependence of thegeco
sound velocity on the wave amplitudd” asca = c20(1 + adT)
wherecog is the speed of a second sound wave of infinitely small
amplitude.) Thus second sound can have a nonlinearity béreit
sign, or even zero, and the nonlinearity can in principle laelenar-
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bitrarily large as the nonlinearity coefficient diverges-too asT) is
approached from below.

2 4

A x10

Fig. 2. Second sound turbulence: the dependence of the AC heat flux density
W at which the instability develops on the dimensionless frequency detuning
A = (wgq — wn)/wn of the driving force frequency wy from a cavity resonance
wn,. Numerical calculations (line) are compared with measurements (points) for
driving on the 96th resonance. Horizontal bars mark the widths of the hysteretic
region where second sound exists in a metastable state. Inset: bifurcation dia-
gram showing regions of stability (unshaded) and and regions of instability (yellow
shaded) against the generation of subharmonics. The soft instability occurs over
the (orange) line between the (green) critical points at +A*; outside them lies
the hard instability; W * is the threshold value of the instability. After (71).

The experiments involve exciting a standing wave of second

sound with a heater in a cavity with a high quali@¢factor, where
large amplitudes (and correspondingly strong nonlineaevirsterac-
tions) can be achieved. The temperature variations canekpg to

second sound are measured with a superconducting boloniéter

results are at first sight rather similar to those from s@faaves on

liquid H, and*He: there is a discrete WT spectrum of disordered (72)

waves, and a power-law Kolmogorov-like cascade of energnitds
higher frequencies (13). Under the right conditions, havean in-
stability against subharmonic generation can develomlihgato an
inverse cascade. It involves a flux of energy towdoiger frequen-

cies (71). The onset of the inverse cascade as the heater powe

increased is of a critical character, which can be relatédemeed to
overcome dissipation. By direct numerical integrationtaf 2-fluid
thermohydrodynamical equations, expanded up to quadeatits in
the wave amplitude, it was possible to account for theseqhena
theoretically. A key feature of the calculation is that esiplaccount
was taken of wave damping at all frequencies. The resultstanen
in Fig. 2. The main figure compares the calculated and medsate
ues of the critical driving amplitude at which the instatyilievelops.
There is considerable hysteresis in the experimental measunts,
which is consistent with the theoretical prediction of achiastabil-
ity in the relevant parameter range, as shown by the insetdaifion
diagram.

The decay of the WT when the driving force was switched off
was found to exhibit complex and interesting dynamics (79.in
the case of WT among capillary surface waves (see abovejettay
started from the high frequency end of the spectrum. A wiretbw
Fourier analysis revealed very complicated and seeminighotic
behaviour of the individual harmonic amplitudes which has
be accounted for theoretically.

) 0.3

—_

a

8T(t) (MK)

(MK s)
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5T x10
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Fig. 3. (a) Transient evolution of the 2nd sound wave amplitude 67" after a step-
like shift of the driving frequency to the 96th resonance at time t = 0.397 s.
Formation of isolated “rogue” waves is clearly evident. Inset: Example of a rogue
wave, enlarged from frame 2. (b) Instantaneous spectra in frames 1 and 3 of
figure (a). The lower (blue) spectrum, for frame 1, shows the direct cascade only;
the upper (orange) spectrum, for frame 3, shows both the direct and inverse cas-
cades. The green arrow indicates the fundamental peak at the driving frequency.
Inset: Evolution of the wave energy in the low-frequency and high-frequency
domains is shown by the orange squares and blue triangles respectively; black
arrows mark the positions of frames 1 and 3. After (71).

Coupled first sound-second sound waves in superfluid 4He. At

The transient behaviour of the second sound system is départ temperatures close to the superfluid transition tempeafiyr or

ular interest. When the system is switched on, under camditsuch
that an inverse energy cascade is expected, the sequenaents &
that: the direct cascade builds up fast, almost immediatebre is
an intermediate interval within which isolated “rogue wsiv@vaves
that are very much larger than any of their neighbours) ap{¥;

and finally the inverse cascade appears. The results of gerneb
tions are shown in Fig. 3. In steady state, the energy irjefttam

the heater is shared between the forward and inverse casdade
ing the build-up of the direct cascade, the initial growthspéctral
amplitude follows power laws that become steeper with asirey
harmonic number, behaviour that corresponds to a propaghtnt
in frequency space (74). Each successive harmonic suffierger
onset delay, and the data are well described by the selfagitheory.

Footline Author

at elevated pressures, second sound waves in supetfigdbe-
come coupled to first sound, i.e. to the ordinary pressurasftg
waves (76, 77). In this case, mutual transformations betwbe
first and second sound waves due to nonlinearity provide an ad
ditional channel for energy propagation and relaxationh@ $ys-
tem. In superfluid helium, the characteristic relaxationetifor first
sound, 71, is much shorter than that for second soung, namely
T1/T2 ~ (c2/c1)® ~ 1073 (c2 and ¢; are the second and first
sound velocities, respectively). In effect, the first soimah quasi-
equilibrium with the second sound waves and induces antaffec
four-wave mixing for the latter (78). In the turbulent reginthat
forms at high enough driving forces, both the high-freqyean-
ergy E- and low-frequencyV-cascades are becoming established, in
close similarity with BECs considered above. For this ceddirst
sound-second sound wave turbulence, the exponents foonmitlifre

PNAS | Issue Date | Volume | Issue Number | 5



solution of respective kinetic equations are equatgo= —9/2 and

is characterized by the matrix elemetits of the R operator, which

vy = —4(78,79). Itis worth noting that, because of the big differ-is diagonal in the basi$p. (x)}. Specifically, to describe the in-

ence between the first and second sound velocities, therinistec-
ond sound modes with comparable frequencies are only regna
coupled. In effect, the general kinetic equations for wasas be
represented in the form of a differential equation that dbss the
high-order (hyper) diffusion of both integrals of motiéghand A/ in
k-space (78).

(@ R,=0.10, 1=200%,

[P 2

(b) R,=030, 1=2001
Iy

40

20

1010
Fig. 4. The exciton density profiles at ¢ = 200t¢¢ for the pumping rates (a)
Ro = 0.1 and (b) Rp = 0.3 in a turbulent excitonic BEC. The system is driven
in the spectral range of 4" _ 6P harmonics. The coordinates are expressed in
units of £ = 0.9 pm, and time is expressed in units of to = 1.6 ns for the trap-
ping potential strength o = 50 eV/cm?2. The inset in frame (a) shows the exciton
density plotted at y = 0 and averaged over the time period 50ty < t < 200tg
and three independent runs (points). The curve in the inset shows the fitting by
the Thomas-Fermi distribution (60). After (15).

Formation of the turbulent spectra after the applicatiothefex-
ternal driving force is self-similar; however, the chasaaif how the
wave distribution approaches the steady state is quiterdift for the
high- and low-frequency spectral domains. Specificallymiation of
the high frequency, direct cascade is of the “explosiontyyth a

teraction of high-frequency modes with external driving, take the
matrix elements of? equal toR,, = Ro if n1 < (n2+n2)'/? < na
andR,, = 0 otherwise (15). We refer t&, as the pumping rate.

const

0.1 :

t

0 50 100 150 200 #/1

1 n, 10
Fig. 5. Angle-averaged occupation number in the excitonic turbulent BEC, Ny,,.,
as a function of the radial spectral number n., plotted on a log-log scale. The
averaging window for Ny,. is An = 3. The center of the pumping region is
indicated by the vertical arrow. The lines show a power-law-like distribution for
Ny, = const X n; atv = 0 and v = —2. Inset: Time oscillations of the
squared spectral amplitudes | Ay, |? at m = (0, 0) (the fundamental mode) and
(8, 8). After (15).

It was observed that, if the exciton condensate is drivenrby a
external laser pumping at high enough spectral modes, thiabkp
distribution of excitons in the BEC fluctuates strongly, &sl€mon-
strated in Fig. 4. However, the exciton density averaged agiffi-
ciently long time is given by a smooth function that is welsdebed
by the Thomas-Fermi distribution known for the atomic BEG8)(
(see inset in Fig. 4(a)). With increasing pumping r&g the aver-
age density of the exciton BEC grows but the density osmlatare
sustained as seen in Fig. 4(b).

To better characterize this oscillatory state of the exdt®EC,
we show in Fig. 5 the dependence on time of the squared spectra
harmonics|An (t)|?. Itis clearly evident that the spectral amplitudes
(and hence the occupation of the respective quantum steaedipte
strongly. These latter oscillations correspond to a rabdigion of
particles between the spectral modes with simultaneousaexge of
energy between the modes, in full analogy with the wavettierice
picture described above. To characterize this excitomimdent state

finite formation time~ 7. For the inverse cascade, the build-up pro-more fully, we also plot in Fig. 5 the radial time-averageduggation
cess requires a time (kqL)7 that is much longer than is needed number spectrumy,,.. Z;flf"<|An(t)|2>. It is averaged over

for formation of the direct cascadgis the characteristic wave vec- multiple realizations, over a time window, and also ovenfiedow
tor of the driving force and. is the system size). In both cases, the An in the spectral space in order to reduce temporal oscitiatio

transient processes can be understood as the propagationmai-
tion fronts towards high and low frequencies respectiveby the
driving frequency scale.

Excitonic superfluids in semiconductors. For an excitonic super-
fluid localized in the(x, y) directions in the trapping potenti&l(x),
the non-equilibrium Gross-Pitaevskii Equati®nan be solved by ex-
panding the condensate wave functignix, t) = >, A (t)pn(x),
over the basis functiong,, (x), which are the eigenfunctions of the
Hamiltonian for a single quantum particle in a parabolicepbial. It

is worth noting that the time-dependent spectral amplgudg (¢)
are similar to the spectral amplitudés introduced above. How-
ever, in contrast to a homogeneous system for which the wewe v
tor k is well-defined, the single-particle excitation spectrunthe
trapping potential is labeled by the two-dimensional ietemdex

n = (nz,ny). Inthis case, the coupling with the external pumping

6 | www.pnas.org/cgi/doi/10.1073/pnas.0709640104

n = (n2 4+ n2)"/? is the radial spectral number. It can be seen that,
at spectral numbers lower and higher than the charactepisthping
region (arrowed), power-law-like distributions of occtipa number,
N,, x ny,are formed. Specifically, in Fig. 5, the power exponents
arevr = 0 andv = —2 in the low- and high-frequency domains,
respectively. These distributions are similar to the Kayomov-like
turbulent spectra observed in superfldide (12, 71) and proposed
in Refs. (18, 19) in relation to the formation of atomic BEG#$ws,

we infer that a turbulent state is formed in the exciton BE@| that

it is characterized by the establishment of particle andgnituxes
through the spectral scales of the system. It is seen in Rigatihe
power-like spectra are only formed within one decade ofthscale.

It is worth noting that the width of such an interval, in whigbwer-
like turbulent spectra are realized, varies in a wide rangdifferent
systems, from less of one decade (80) to a few decades (12, 81)

Footline Author



Turbulence in an exciton-polariton condensate. Another con-

(16). In this case, the binding energy of the charges to gnagh

densed matter system where turbulence can be formed haglyece is higher than the corresponding energy in semiconductantym

been discovered in numerical experiments (82, 83) on mastibc
polaritons, which are quantum superpositions of excitorsraicro-
cavity photons. The physics of polariton BECs is a fast-tigiag
field, and substantial progress has been made during thelg@eade
(we refer the readers to recent reviews (84, 85)). Interegblariton
physics is attributable in part to the promising potentjgblacations
in quantum and optical computing (51,52, 86). In a polari&C,
a uniform, steady-state condensate becomes unstable duao-
tive interactions and mutual scattering between diffeextitation
modes in the condensate (82). The development of the ifistabi
sults in the formation of turbulent spatial structures tt@atrespond
to exciton and photon density modulations in the microgavit the
existing theory of polariton WT, only the lower, light-lik@olariton
branch of elementary excitations has been taken into atcéiamw-
ever, the dynamics is also mediated by interactions withugbyer,
exciton-like polariton branch as well as with a bath of nemaensed
excitons and polaritons (84). Recently it was found in theua-
tions (87) that interactions with polaritons above the @nsdite can
lead to peculiarities of the ground-state polariton BECsitgrand, in
particular, to the formation of a density minimum at the eemnf the
polariton cloud. The interaction of the BEC with thermal igxttons
above the condensate are of special interest because ofsimaifey-
ities between atomic condensates at finite temperature @adtpn
BEC (88). Development of a general polariton WT theory wtale
the above-mentioned effects are taken into account is attéogfu-
ture investigations.

4. Conclusion and outlook

In conclusion, wave turbulence provides a unified view oflimen
ear transport phenomena in a diversity of different systarolsid-
ing atomic Bose-Einstein condensates, waves in the bulloaritie
surface of quantum fluids, and semiconductors. WT manifiests
self through formation of the power-law-like, Kolmogor@akharov
spectra for the conserved quantities, which are the enerdy un-
der certain conditions, the number of particles (or propddfined
“number of waves”). In all these cases, the KZ spectra cdrey t
fluxes of respective quantities from the pumping spectrgiore at
which the system is driven by an external force, towards tge-tor
low-frequency domains. The fluxes are eventually absorlyedss
cous damping at short wavelength scales or may lead to ceatien
at long wavelength scales of the order of the system size.

It is worth noting that, in addition to the cases considefsava,
there is strong numerical evidence for WT formation in a eyst
closely related to semiconductors — the excitonic BEC in deped
graphene layers separated by a semiconductor or insulaéinger
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wells; this results in a longer excitonic lifetime and thusder some
circumstances, in more favorable conditions for Bose4{€inscon-

densation. However, experimental studies of exciton dyosirim

such embedded multi-layered graphene structures haveehbegn
achieved, in particular because of difficulties in theirtbgsis.

Another closely related system where WT could potentially b
applied is a BEC of light (89). Here, the photon-photon iations,
which are of key importance for formation of a stable BEC ragali-
ated by optically active particles (dye) added into the medithese
particles absorb and then re-emit light thus providing anae&for
the thermalization in the photonics system. Emission ofnpins in
the medium during photon-dye molecule interactions canltrés
spatial non-locality of the effective photon-photon seaitg. Fur-
ther development of WT theory will be needed to account fes¢h
non-local effects.

Recent experiments have demonstrated the possibility of th
Bose-Einstein condensation of magnons, collective exaita that
carry spin, in Yttrium-lron-garnet at room temperature)(9®hile
the possibility of BEC in a magnon system has been discussaugd
the past ten years (91, 92), and the application of WT to sgitems
has been developed in detail in the monograph (93), the appro
based on the Gross-Pitaevskii equation for a magnon BECigs o
recently been implemented (94), and there is still a lardd fiere
for future research.

It is clear that huge progress has been made with the theory of
WT but that, as already remarked, the corresponding expetith
studies are still in their infancy. If history is a reliableide, then
the advent of additional experimental data may verify somthe
theoretical predictions, but there will almost certaing/dreas of dis-
agreement and unexpected features requiring further ixtenand
developments of the theory.
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