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Wave turbulence (WT) occurs in systems of strongly interacting
nonlinear waves, and can lead to energy flows across length and
frequency scales much like those that are well known in vortex tur-
bulence. Typically, the energy passes though a non-dissipative
inertial range until it reaches a small enough scale that viscosity
becomes important and terminates the cascade by dissipating the
energy as heat. Wave turbulence in quantum fluids is of particular
interest, partly because revealing experiments can be performed
on a laboratory scale, and partly because WT among the Kelvin
waves on quantized vortices is believed to play a crucial role in
the final stages of the decay of (vortex) quantum turbulence. In
this short review, we provide a perspective on recent work on WT
in quantum fluids, setting it in context and discussing the outlook
for the next few years. We outline the theory, review briefly the ex-
periments carried out to date using liquid H 2 and liquid 4He, and
discuss some nonequilibrium excitonic superfluids in which WT
has been predicted but not yet observed experimentally. By way
of conclusion, we consider the medium- and longer-term outlook
for the field.
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1. Introduction

Wave turbulence (WT) (1,2) is probably less familiar than ordi-
nary (vortex) turbulence to most scientists, but the two sets of

phenomena are actually very similar. Unlike electromagnetic waves
in the vacuum, which are linear, and can therefore pass through
each other unaltered, waves in a nonlinear medium interact with
each other, sometimes strongly. WT manifests itself in systems of
strongly-interacting nonlinear waves. They form a disordered system
in which there can be non-dissipative flows of energy across the fre-
quency and length scales, much as occur in vortex turbulence. WT
arises in a wide variety of classical contexts, including e.g. surface
waves on water (both gravity and capillary) (3–5), nonlinear optical
systems (6, 7), sound waves in oceanic waveguides (8), shock waves
in the solar atmosphere and their coupling to the Earth’s magneto-
sphere (9), and magnetic turbulence in interstellar gases (10). There
is a large and rapidly expanding literature, to which many relevant
references up to mid-2010 are listed in (2). As we discuss in more
detail below, WT can also occur in quantum fluids, where it exhibits
some distinctive features. Experimental studies have included sur-
face waves on liquid H2 (11) and liquid helium (12), and second
sound in superfluid4He (13). Very recently, wave turbulence has
been demonstrated and studied numerically in the nonequilibrium ex-
citonic superfluids (14) that occur in semiconductors (15) including
graphene (16).

In section 2 we review briefly the theory of WT, concentrating
on the aspects relevant to quantum fluids. Section 3 describes the
relevant experiments reported to date, and also describes a numerical
experiment showing that WT can also occur in semiconductor Bose-
Einstein condensates (BECs). Finally, in section 4, we conclude and
consider the future for research in the area.

2. Theory of wave turbulence in quantum fluids
First of all, we would like to draw a distinction between WT and
“weak turbulence". By the former we understand a real physical phe-
nomenon in a non-equilibrium statistical system where random in-
teracting waves constitute the fundamental building blocks. By the

latter we mean an idealised system where all interacting waves are
weak and have random phases, so that it can therefore be described
by a wave kinetic equation. Thus, in real-life applications WT may
not be, and seldom is, weak. Most often, WT systems include both
random weak waves and strong coherent structures, with these two
components interacting and exchanging energy in a WT life cycle (2).

However, weak turbulence provides a theoretical framework for
WT and allows one to understand many (although not all) physical
effects observed in real systems of random waves. Weak turbulence
theory usually considers dispersive systems, with a couple of impor-
tant exceptions being magnetohydrodynamic (MHD) turbulence and
acoustic turbulence. It is based on two fundamental assumptions: that
the waves are weakly nonlinear, and that they have random phases. It
is further assumed that the system is infinite in the physical space and
statistically homogeneous. The main outcome of the weak turbulence
derivation is a wave kinetic equation describing the evolution of the
wave spectrum. Depending on the system, the kinetic equation can be
three-wave, four-wave or higher-order: see examples in the follow-
ing sections. Besides the usual thermodynamic Rayleigh-Jeans spec-
tra, which represent a limiting case of a general Bose-Einstein dis-
tribution, the kinetic equations often have strongly non-equilibrium
steady-state solutions similar to Kolmogorov cascades in classical
hydrodynamic turbulence, the so-called Kolmogorov-Zakharov (KZ)
spectra.

Quantum fluids provide plenty of physical examples where WT
is either a stand-alone phenomenon or a part of a large turbulent sys-
tem. Besides the systems where WT was implemented and demon-
strated experimentally, there are examples where the presence of
WT has been hypothesized but not not yet experimentally confirmed.
Nonetheless it has firmly taken its niche in the theoretical description
of the quantum turbulence phenomenon. The two most prominent
examples here are small-scale turbulence in superfluid helium and
turbulence in Bose-Einstein condensates. We will start the descrip-
tion of our examples with these two systems, after which we will
present examples where WT was actually observed experimentally.

Wave turbulence in Bose-Einstein condensates. A detailed review
of WT in BEC can be found in the book (2). Here we will restrict
ourselves to a brief description of the most fundamental phenomena
in BEC turbulence. Note that the theory of BEC turbulence is much
more advanced than the corresponding experimental studies; the lat-
ter have only begun relatively recently (17).

The modeling of BEC turbulence starts with the Gross-Pitaevskii
(a.k.a. Nonlinear Schrödinger) equation,

iψ̇(x, t) +∇2ψ(x, t)− ψ(x, t)|ψ(x, t)|2 = 0, [1]
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whereψ is a complex function called the condensate wave function.
(The dot overψ in Eq.1 denotes differentiation with respect to time
t.) In this subsection we will mostly discuss the three-dimensional
case,x ∈ R3, with a brief remark about the two-dimensional (2D)
case at the end of the subsection. In addition to being used todescribe
BEC, the Gross-Pitaevskii equation is also applied to the description
of optical systems, water waves, cosmology, and superfluids. This
makes it one of the most universal partial differential equations in
physics. The second term describes the dispersion of the waves while
the third term corresponds to mutual interactions between the waves
or particles. For the sake of convenience, in this section weuse Eq.
1 in its non-dimensional form; the physical meanings of the dimen-
sional coefficients in realizations for actual physical systems are dif-
ferent.

Equation1 conserves the total number of particles

N =

∫

|ψ|2dx [2]

and the total energy

E =

∫

|∇ψ|2dx+
1

2

∫

|ψ|4dx. [3]

Let us consider a system in a double-periodic square box withsideL
and define the Fourier transform,

ψ̂k =
1

L2

∫

box

ψ(x) e−ik·x dx, [4]

where the wave vectorsk take values on a lattice,

k = (±
2πmx

L
,±

2πmy

L
,±

2πmz

L
), mx,my,mz = 0, 1, 2, ...

The wave spectrum is defined as follows,

nk =
L2

(2π)2
〈|ψ̂k|

2〉, [5]

where the brackets〈. . .〉 denote an ensemble average. Following the
standard setup of the weak turbulence approach, i.e. assuming a small
nonlinearity and random phases, in an infinite box limit one can de-
rive a four-wave kinetic equation (6):

ṅk = 4π

∫

nk1
nk2

nk3
nk

[

1

nk

+
1

nk3

−
1

nk1

−
1

nk2

]

×

δ(ωk + ωk3
− ωk1

− ωk2
)δ(k+ k3 − k1 − k2) dk1dk2dk3. [6]

where
ωk = k2 [7]

is the dispersion relation for the wave frequency. Equation6 is the
quasi-classical limit of a general quantum kinetic equation for non-
condensed systems that holds in the case of large occupationnum-
bersnk (1). The kinetic equation6 also holds in the presence of a
“weak” Bose-Einstein condensate, where the condensate density is
small, and hence the turbulent fluctuations are relatively large. In
weakly interacting systems, this case can be realized in thevicinity
of the superfluid transition where the macroscopic occupation of the
k = 0 state is small. At temperatures much lower than the transition
temperature, the condensate density is large, and the corresponding
equation for the occupation numbers turns into the so-called three-
wave kinetic equation (18,19).

The KZ spectra are non-equilibrium steady state solutions of the
kinetic equation6,

nk = C kν ,

with constant dimensional pre-factorsC and exponentsν = νE =
−3 and ν = νN = −7/3 for the direct energy and the in-
verse particle cascades respectively (6). The KZ solutionsare only
meaningful if they are local, i.e. when the collision integral in the

kinetic equation converges. The inverseN -cascade spectrum ap-
pears to be local, whereas the the directE-cascade spectrum is log-
divergent at the infrared (IR) limit (i.e. atk → 0) (6). Such a
log-divergence can be remedied by a log-correction to the spectrum,
nk ∼ [ln(k/kf )]

−1/3 kνE , wherekf is an IR cutoff provided by the
forcing scale.

In the BEC context, the dual cascade behaviour has a nice inter-
pretation. The forward cascade of energy corresponds to thestrongly
non-equilibrium process of evaporative cooling. Indeed, after reach-
ing the highest momentum states, the energy will spill out ofthe sys-
tem over the potential barrier of the retaining magnetic trap. On the
other hand, the inverse cascade of particles corresponds tothe begin-
ning of the condensation process.

After populating the lowest momentum states, the system will
cease to be weakly nonlinear (20). The weak turbulence description
based on the four-wave kinetic equation (6) will break down,and the
system will enter a strongly nonlinear phase characterisedby a gas
of chaotic vortices of the hydrodynamic type. These vortices will de-
crease in number because of a vortex annihilation process, until they
reach a final coherent state, the condensate, with only a few remain-
ing vortices or no vortices at all (21). The remaining fluctuations on
the background of the condensate will be Bogolyubov phononswhich
can also be described by a WT kinetic equation, but this will now be
a three-wave system of weakly nonlinear acoustic waves (2,6,18,19).

It is interesting that, during these final stages of evolution, the
few remaining vortices in the system (if present) also exhibit wave
motions which can be classified as WT (21). These are so-called
Kelvin waves propagating along the quantised vortex lines.We will
briefly discuss such a 1D WT in next subsection.

A brief remark is due about 2D BEC turbulence. As often in di-
mensions of two or less, this system is special. It exhibits no true
long-range order in the infinite box limit, but there is a Berezinskii-
Kosterlitz-Thouless transition to states with slowly decaying power-
law correlations (22). WT theory is also very special for the2D
Gross-Pitaevskii system, e.g. there are no valid KZ spectra(23, 24).
Indeed, the direct cascade spectrum exponent formally coincides with
that of the thermodynamic energy equipartition state, whereas the
particle flux is in the “wrong" direction in the particle cascade solu-
tion.

Equation1 describes the dynamics of a spatially homogenous
system. If it is placed in an external trapping potentialV (x), an ex-
tra termV (x)ψ(x, t) should be added to the right-hand side of Eq.
1. In effect, the condensate density in the ground state,|ψ(x)|2, be-
comes coordinate-dependent, corresponding to a non-uniform BEC.
WT theory can still be used in this case, for both the weak condensate
(four-wave) and the strong condensate (three-wave) cases,provided
that the characteristic mean-free path of the excitation wavepackets
is less than the size of the trap. In this case the kinetic equation
has to be modified by replacing the partial derivative of the spectrum
on the left-hand side with the time derivative along the wavepacket
trajectory in the coordinate-wavenumber space (2, 18). Theoppo-
site case, when the characteristic mean-free path of the excitation
wavepackets is greater than the size of the trap, has been less studied.
One approach to this problem lies in the expansion of the condensate
wave function over a basis of exact solutions of a linearizedGross-
Pitaevskii equation with the trapping potential, instead of expansion
over plain waves (Eq.4). In this case, the correlation function Eq.
5 has the meaning of the occupation number for the corresponding
oscillatory mode. This approach is applied, for example, tothe BEC
of indirect excitons in coupled quantum wells, as detailed below.
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Kelvin wave turbulence. Kelvin waves propagating on quantised
vortex lines have been widely discussed in the literature asa fun-
damental motions responsible for cascading energy below the mean
inter-vortex separation scale to much smaller scales whereit can be
dissipated via radiation of phonons (25). There have been significant
theoretical advances in applying the WT approach to the Kelvin wave
system, including obtaining KZ-type spectrum (26–28). However,
the main results and conclusions of such theoretical efforts require
testing and validation by both numerical and experimental means.
Such tests would be especially timely considering the ongoing theo-
retical controversy in this area (27,29–35).

The main experimental challenge here is related to the fact that
the Kelvin wave scales are not yet accessible by direct measurement
techniques. Theoretically and numerically, the main difficulty is that
Kelvin waves are only part of the evolving turbulent system:they
coexist with polarised vortex bundles forming a Kolmogorov-type
cascade of eddies in the large-scale range (above the inter-vortex sep-
aration scale) (36); they arise from, and interact with, vortex recon-
nection events (37, 38). Also, in reality, Kelvin waves propagate on
vortex lines which themselves are neither straight nor stationary, as
assumed by the idealised WT setup. Interaction of the Kelvinwaves
with large-scale curvature of underlying vortex lines is likely to have
an important influence on the wave spectrum evolution, and this pro-
cess requires a careful future study.

Excitonic superfluids in semiconductors. Excitonic superfluid rep-
resents another remarkable example of a system where turbulence
can be formed under certain conditions. An exciton is a hydrogen-
like bound state of a negatively charged electron and a positively
charged hole in a semiconductor (39, 40). The ground state en-
ergy of the electron-hole pair is given by the famous Bohr equation
E0 = −mre

4/(ǫ~)2, wheremr is the reduced mass of the pair,e
is the electron charge, andǫ is the dielectric constant of the ma-
terial. Below, we consider gallium arsenide (GaAs), a groupIII-
V semiconductor, as a representative example where excitonic ef-
fects are of essential importance (39–43). For GaAs, withǫ ≈ 13,
mr ≈ m0/21 wherem0 is the free electron mass, the resultant bind-
ing energy of the exciton−E0 ≈ 3.9 meV is much smaller than that
of a hydrogen atom. In experiments, the positive and negative charges
which form the excitons are usually localized in quasi-two dimen-
sional heterostructures; specifically, the electrons and holes are posi-
tioned in two different, neighboring, nm-thick semiconductor layers
(or, quantum wells) separated by an insulating barrier (41,42,44–46).
This arrangement results in a substantial increase of exciton lifetime,
compared to having the charges in a single quantum well, because
of the relatively low probability of quantum tunneling of charges
through the barrier. The increased exciton lifetime allowsone to
reach quasi-equilibrium in the system more easily, and permits one
to observe Bose-Einstein condensation of the excitons, as described
below. These excitons, composed of spatially separated electrons and
holes, are usually referred to asdipolar excitons because they carry
a non-zero average electric dipole moment in the direction perpen-
dicular to the plane of the quantum wells. In addition, the dipolar
excitons can be spatially localized in the heterostructureby applying
an in-plane trapping potential produced by mechanical stress (43), or
an electrostatic trap (47). Trapping in the quantum wells plane per-
mits one to avoid spreading of the excitons in the sample and hence
to increase the exciton two-dimensional density thus, producing more
favorable conditions for Bose-Einstein condensation.

At temperatures belowT0 ≪ |E0|/kB ∼ 44 K, Bose-Einstein
condensation occurs in the system, and the dipolar excitonsform a
superfluid, see (14) for review. (Here,kB is the Boltzmann con-
stant.) Because of the two-dimensional character of exciton motion
in the quantum wells, the superfluid transition is of the Berezinskii-
Kosterlitz-Thouless type mentioned above, that is, it is associated
with pairing of the quantized vortices in the condensate. Over the past
decade, the dynamics of the exciton superfluid has attractedmuch at-

tention because of the potential for using excitons as the physical ba-
sis of a new generation of integrated circuits and optical computing
systems (48–52). We now briefly review the approaches that per-
mit one to study the collective quantum dynamics in a quasi-two-
dimensional excitonic system within the same methodology as was
formulated above for superfluid helium and atomic Bose-Einstein
condensates.

At temperature much lower than that of the superfluid transition
T0, the dynamics of the dipolar exciton BEC is described by the gen-
eralized Gross-Pitaevskii equation

i~ψ̇(x, t) = −
~
2

2mex

∇2ψ(x, t) + V (x)ψ(x, t)

+gψ(x, t)|ψ(x, t)|2 + i~
(

R̂ − γ
)

ψ(x, t). [8]

where the condensate wave functionψ(x, t) depends on the 2D in-
plane coordinatex = (x, y) and timet, mex ≈ 0.22m0 is the exci-
ton effective mass,V (x) = α|x|2/2 is an external trapping potential
(in what follows, we will focus on effects in parabolic traps, but this
is not a restriction of the approach developed),γ = 1/2τex is the
effective damping in the system due to exciton recombination, and
τex ≈ 100 ns is the exciton lifetime. The first term on the right-hand
side of Eq.8 describes the kinetic energy of excitons, whereas the
third, nonlinear term corresponds to mutual scattering of the excitons
in the condensate. We note that Eq.1 is written in dimensionless
units whereas we use dimensional units in Eq.8 to show how the
coefficients depend on the physical parameters of the system. Equa-
tion 8 can be reduced to the non-dimensional form (Eq.1) by rep-
resenting time and distance in natural unitst0 = (mex/α)

1/2 and
ℓ0 = (~2/αmex)

1/4. Equation8 represents a natural generalization
of the “traditional” Gross-Pitaevskii Equation1 for systems where
there is continuous pumping and decay of the particles. The last term
in Eq. 8 captures the fact that the excitons can be created and can
decay; in addition, an external trapping potentialV (x) is taken into
account. A linear operator̂R captures the exciton creation due to
coupling with the external laser radiation.

For dipolar excitons the interaction strengthg is a function of the
exciton density; the interaction strength should therefore be deter-
mined self-consistently from the equation for the chemicalpotential
of the whole system (15). The dependence of the interactiong on
the density arises from the long-range,∝ 1/|x|3, character of the
electric dipole-dipole interactions of the excitons in coupled quan-
tum wells. We focus on the case of a dilute dipolar exciton gasbe-
cause this corresponds to experiments with excitonic BECs (42, 43).
For a high-density gas, the formation of bi-excitons or crystallization
effects must be taken into account (46, 53, 54), as well as nonlinear
damping related to finite-density effects (55). In the modelEq. 8,
we consider the low-temperature limit where the density of thermal
activated excitons above the condensate is negligible. Forrelatively
high temperatures or very high pumping rates, the condensate density
profile can be significantly distorted by scattering on a bathof non-
condensed excitons that sometimes results in the formationof ring-
like patterns around the excitation spot (56). In Sec. 3 (penultimate
subsection) below we describe the results of numerical experiments
for a nonlinear excitonic superfluid based on the solution ofEq.8.

3. Experiments on wave turbulence in quantum fluids
From an experimental point of view, quantum fluids offer manyad-
vantages for the study of WT. In particular, they have very low (or
zero) viscosity compared to conventional fluids, and they can be con-
trolled, unlike natural systems such as the ocean or the interstellar
plasma. We now consider a few quantum fluid systems in which WT
has been demonstrated experimentally and investigated in detail, and
two in which WT has been observed numerically but not yet experi-
mentally.
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Fig. 1. Decaying turbulence of capillary waves on liquid H2. The measured sig-
nal P (t) is proportional to the surface inclination. (a) The periodic driving force
was switched off at time t = 1.8 s. (b) Evolution of the turbulent power spectrum
during the decay, calculated over P (t). Grey shading indicates frequency com-
ponents in the power spectrum whose P 2

ω exceeds the threshold 104 (a.u.) in
the graph below. (c) Instantaneous power spectra calculated at times indicated
by the arrows in (b): curve 1 in the inset corresponds to time t = 2 s; curve 2
corresponds to t = 2.5 s. The spectra shown represent an ensemble average
over ten identical measurements. The dashed lines in (c) corresponds to the
power-law-like dependence P 2

ω ∝ ω−7/2 predicted by WT theory for capillary
waves (57,58). After (11).

Atomic BEC. BECs of cold atoms can be formed in magnetic traps at
extremely low temperaturesT ∼ 102 nK (59,60). An atomic BEC is
a generic example of a degenerate quantum system whose dynamics
is described by WT (18,19). Impact on everyday life may not yet be
generally appreciated, but it is worth noting that experimental work
on atomic BECs has also resulted in fast progress in the development
of atomic clocks, i.e. in the technology that provides International
Atomic Time (IAT), the basis of the general purpose Global Posi-
tioning System (GPS) which is familiar to everyone.

In a parabolic trap, the BEC density in the ground state is well
described by the parabolic Thomas-Fermi distribution, with small
corrections at the edges of the atomic cloud (60). This closecorre-
spondence with Thomas-Fermi theory shows that the quantum fluc-
tuations of the particle momenta in the BEC due to finite cloudsize
are negligible compared to the interaction with the external trap and
the mutual interactions between the particles. If the respective cur-
vatures of the trapping potential in all three directions are compara-

ble with each other, the condensate cloud is essentially three dimen-
sional. However, if the curvature in one direction is much higher than
the those in two other directions, the cloud has a “pancake” shape and
can be considered to a first approximation as two-dimensional. To-
gether, the direct (energy) and inverse (number of particles) cascades
control the dynamics of atomic BEC formation; however, the details
are different for bulk, three-dimensional, and quasi-two dimensional
condensates, in agreement with the general theory sketchedabove.

Capillary waves on the surface of liquid H 2. The surface of liquid
H2 offers particular advantages for the study of WT among capillary
waves. It can be charged through the injection of ions into the under-
lying bulk liquid, and surface waves can then be excited by driving
the charged surface with an alternating electric field. Furthermore,
the superposition of a constant electric field can be used to counter-
act the effect of gravity, thus extending the capillary range to lower
frequencies. The response of the surface can be measured by re-
flecting a laser beam from it. Full experimental details are given by
Brazhnikovet al. (61) and in (62).

Measurements in the stationary state of steady driving (61,63) re-
vealed the formation of WT with a Kolmogorov power law spectrum,
over a wide frequency range (102 − 104 Hz), with a high frequency
cut-off caused by the onset of viscous damping, which terminated the
energy cascade (64). The spectrum is discrete in character on account
of the finite radius of the pool of liquid. The scaling index ofthe tur-
bulent spectrum was found to depend on the spectral content of the
driving force.

Measurements of how the steady state WT decays when the driv-
ing force is suddenly switched off (11,65) have been very revealing.
The decay starts from the high frequency end of the spectrum,while
most of the energy remains localised at low frequencies (Fig. 1), con-
trary to the original theoretical expectation based on the self-similar
theory of nonstationary WT processes (1). The reason is thatviscous
dissipation is actually nonzero at all frequencies (even inwhat, for
steady state driving, is the inertial regime) (66). During the decay,
nonlinear wave interactions result in a rapid redistribution of energy
between the frequency scales. Consequently, the whole spectrum de-
cays together, but the top end goes down faster because of thelarger
viscous effects at high frequencies.

Capillary waves on the surface of liquid 4He. Experiments have
also been performed (12, 67, 68) to investigate capillary waves on
the surface of superfluid4He at 1.7 K. The technique was similar to
that used for hydrogen. WT with a turbulent Kolmogorov powerlaw
spectrum was observed, but there was sometimes an interesting devi-
ation from this law near the high frequency edge of the spectrum. For
steady state harmonic driving at amplitudes that were not too large,
a local maximum appeared in the spectrum representing an accumu-
lation of wave energy at that frequency. The authors attribute it (68)
to an energy transfer bottleneck resulting from a detuning of the dis-
crete surface excitations. As in the case of liquid H2, the form of the
driving force influenced the form of the WT power spectrum.

Second sound waves in superfluid 4He. Wave turbulence among
second sound waves, a form of acoustic turbulence, has been in-
vestigated in the bulk of superfluid4He. Below its transition tem-
peratureTλ liquid 4He behaves as though it were composed of two
interpenetrating fluids, the normal and superfluid components, each
of which completely fills the container. Second sound is an entropy-
temperature wave corresponding to antiphase motion of the two com-
ponents. Its nonlinearity coefficientα is conveniently adjustable by
varying the temperature (69, 70). (The nonlinearity coefficient is in-
troduced in a standard way through the dependence of the second
sound velocity on the wave amplitudeδT as c2 = c20(1 + αδT )
wherec20 is the speed of a second sound wave of infinitely small
amplitude.) Thus second sound can have a nonlinearity of either
sign, or even zero, and the nonlinearity can in principle be made ar-
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bitrarily large as the nonlinearity coefficient diverges to−∞ asTλ is
approached from below.

Fig. 2. Second sound turbulence: the dependence of the AC heat flux density
W at which the instability develops on the dimensionless frequency detuning
∆ = (ωd −ωn)/ωn of the driving force frequency ωd from a cavity resonance
ωn. Numerical calculations (line) are compared with measurements (points) for
driving on the 96th resonance. Horizontal bars mark the widths of the hysteretic
region where second sound exists in a metastable state. Inset: bifurcation dia-
gram showing regions of stability (unshaded) and and regions of instability (yellow
shaded) against the generation of subharmonics. The soft instability occurs over
the (orange) line between the (green) critical points at ±∆∗; outside them lies
the hard instability; W ∗ is the threshold value of the instability. After (71).

The experiments involve exciting a standing wave of second
sound with a heater in a cavity with a high qualityQ-factor, where
large amplitudes (and correspondingly strong nonlinear wave interac-
tions) can be achieved. The temperature variations corresponding to
second sound are measured with a superconducting bolometer. The
results are at first sight rather similar to those from surface waves on
liquid H2 and4He: there is a discrete WT spectrum of disordered (72)
waves, and a power-law Kolmogorov-like cascade of energy towards
higher frequencies (13). Under the right conditions, however, an in-
stability against subharmonic generation can develop, leading to an
inverse cascade. It involves a flux of energy towardslower frequen-
cies (71). The onset of the inverse cascade as the heater power is
increased is of a critical character, which can be related tothe need to
overcome dissipation. By direct numerical integration of the 2-fluid
thermohydrodynamical equations, expanded up to quadraticterms in
the wave amplitude, it was possible to account for these phenomena
theoretically. A key feature of the calculation is that explicit account
was taken of wave damping at all frequencies. The results areshown
in Fig. 2. The main figure compares the calculated and measured val-
ues of the critical driving amplitude at which the instability develops.
There is considerable hysteresis in the experimental measurements,
which is consistent with the theoretical prediction of a hard instabil-
ity in the relevant parameter range, as shown by the inset bifurcation
diagram.

The transient behaviour of the second sound system is of partic-
ular interest. When the system is switched on, under conditions such
that an inverse energy cascade is expected, the sequence of events is
that: the direct cascade builds up fast, almost immediately; there is
an intermediate interval within which isolated “rogue waves” (waves
that are very much larger than any of their neighbours) appear (73);
and finally the inverse cascade appears. The results of the observa-
tions are shown in Fig. 3. In steady state, the energy injected from
the heater is shared between the forward and inverse cascades. Dur-
ing the build-up of the direct cascade, the initial growth ofspectral
amplitude follows power laws that become steeper with increasing
harmonic number, behaviour that corresponds to a propagating front
in frequency space (74). Each successive harmonic suffers alarger
onset delay, and the data are well described by the self-similar theory.

The decay of the WT when the driving force was switched off
was found to exhibit complex and interesting dynamics (75).As in
the case of WT among capillary surface waves (see above), thedecay
started from the high frequency end of the spectrum. A windowed
Fourier analysis revealed very complicated and seemingly chaotic
behaviour of the individual harmonic amplitudes which has yet to
be accounted for theoretically.

Fig. 3. (a) Transient evolution of the 2nd sound wave amplitude δT after a step-
like shift of the driving frequency to the 96th resonance at time t = 0.397 s.
Formation of isolated “rogue” waves is clearly evident. Inset: Example of a rogue
wave, enlarged from frame 2. (b) Instantaneous spectra in frames 1 and 3 of
figure (a). The lower (blue) spectrum, for frame 1, shows the direct cascade only;
the upper (orange) spectrum, for frame 3, shows both the direct and inverse cas-
cades. The green arrow indicates the fundamental peak at the driving frequency.
Inset: Evolution of the wave energy in the low-frequency and high-frequency
domains is shown by the orange squares and blue triangles respectively; black
arrows mark the positions of frames 1 and 3. After (71).

Coupled first sound-second sound waves in superfluid 4He. At
temperatures close to the superfluid transition temperature Tλ or
at elevated pressures, second sound waves in superfluid4He be-
come coupled to first sound, i.e. to the ordinary pressure (density)
waves (76, 77). In this case, mutual transformations between the
first and second sound waves due to nonlinearity provide an ad-
ditional channel for energy propagation and relaxation in the sys-
tem. In superfluid helium, the characteristic relaxation time for first
sound,τ1, is much shorter than that for second sound,τ2, namely
τ1/τ2 ∼ (c2/c1)

3 ∼ 10−3 (c2 and c1 are the second and first
sound velocities, respectively). In effect, the first soundis in quasi-
equilibrium with the second sound waves and induces an effective
four-wave mixing for the latter (78). In the turbulent regime that
forms at high enough driving forces, both the high-frequency en-
ergyE- and low-frequencyN -cascades are becoming established, in
close similarity with BECs considered above. For this coupled first
sound-second sound wave turbulence, the exponents found from the
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solution of respective kinetic equations are equal toνE = −9/2 and
νN = −4 (78, 79). It is worth noting that, because of the big differ-
ence between the first and second sound velocities, the first and sec-
ond sound modes with comparable frequencies are only resonantly
coupled. In effect, the general kinetic equations for wavescan be
represented in the form of a differential equation that describes the
high-order (hyper) diffusion of both integrals of motionE andN in
k-space (78).

Fig. 4. The exciton density profiles at t = 200t0 for the pumping rates (a)
R0 = 0.1 and (b) R0 = 0.3 in a turbulent excitonic BEC. The system is driven
in the spectral range of 4th − 6th harmonics. The coordinates are expressed in
units of ℓ0 = 0.9 µm, and time is expressed in units of t0 = 1.6 ns for the trap-
ping potential strength α = 50 eV/cm2. The inset in frame (a) shows the exciton
density plotted at y = 0 and averaged over the time period 50t0 < t < 200t0
and three independent runs (points). The curve in the inset shows the fitting by
the Thomas-Fermi distribution (60). After (15).

Formation of the turbulent spectra after the application ofthe ex-
ternal driving force is self-similar; however, the character of how the
wave distribution approaches the steady state is quite different for the
high- and low-frequency spectral domains. Specifically, formation of
the high frequency, direct cascade is of the “explosion type” with a
finite formation time∼ τ2. For the inverse cascade, the build-up pro-
cess requires a time∼ (kdL)τ2 that is much longer than is needed
for formation of the direct cascade (kd is the characteristic wave vec-
tor of the driving force andL is the system size). In both cases, the
transient processes can be understood as the propagation offorma-
tion fronts towards high and low frequencies respectively from the
driving frequency scale.

Excitonic superfluids in semiconductors. For an excitonic super-
fluid localized in the(x, y) directions in the trapping potentialV (x),
the non-equilibrium Gross-Pitaevskii Equation8 can be solved by ex-
panding the condensate wave function,ψ(x, t) =

∑

n
An(t)ϕn(x),

over the basis functionsϕn(x), which are the eigenfunctions of the
Hamiltonian for a single quantum particle in a parabolic potential. It
is worth noting that the time-dependent spectral amplitudes An(t)

are similar to the spectral amplitudeŝψk introduced above. How-
ever, in contrast to a homogeneous system for which the wave vec-
tor k is well-defined, the single-particle excitation spectrum in the
trapping potential is labeled by the two-dimensional integer index
n = (nx, ny). In this case, the coupling with the external pumping

is characterized by the matrix elementsR0 of theR̂ operator, which
is diagonal in the basis{ϕn(x)}. Specifically, to describe the in-
teraction of high-frequency modes with external driving, we take the
matrix elements of̂R equal toRn = R0 if n1 < (n2

x+n
2
y)

1/2 ≤ n2

andRn = 0 otherwise (15). We refer toR0 as the pumping rate.

Fig. 5. Angle-averaged occupation number in the excitonic turbulent BEC, Nnr ,
as a function of the radial spectral number nr , plotted on a log-log scale. The
averaging window for Nnr is ∆n = 3. The center of the pumping region is
indicated by the vertical arrow. The lines show a power-law-like distribution for
Nnr = const × nν

r at ν = 0 and ν = −2. Inset: Time oscillations of the
squared spectral amplitudes |An|2 at n = (0, 0) (the fundamental mode) and
(8, 8). After (15).

It was observed that, if the exciton condensate is driven by an
external laser pumping at high enough spectral modes, the spatial
distribution of excitons in the BEC fluctuates strongly, as is demon-
strated in Fig. 4. However, the exciton density averaged over a suffi-
ciently long time is given by a smooth function that is well described
by the Thomas-Fermi distribution known for the atomic BECs (60)
(see inset in Fig. 4(a)). With increasing pumping rateR0, the aver-
age density of the exciton BEC grows but the density oscillations are
sustained as seen in Fig. 4(b).

To better characterize this oscillatory state of the excitonic BEC,
we show in Fig. 5 the dependence on time of the squared spectral
harmonics,|An(t)|

2. It is clearly evident that the spectral amplitudes
(and hence the occupation of the respective quantum states)oscillate
strongly. These latter oscillations correspond to a redistribution of
particles between the spectral modes with simultaneous exchange of
energy between the modes, in full analogy with the wave-turbulence
picture described above. To characterize this excitonic turbulent state
more fully, we also plot in Fig. 5 the radial time-averaged occupation
number spectrum,Nnr =

∑nr+∆n
n=nr

〈|An(t)|
2〉. It is averaged over

multiple realizations, over a time window, and also over thewindow
∆n in the spectral space in order to reduce temporal oscillations;
n = (n2

x + n2
y)

1/2 is the radial spectral number. It can be seen that,
at spectral numbers lower and higher than the characteristic pumping
region (arrowed), power-law-like distributions of occupation number,
Nnr ∝ nν

r , are formed. Specifically, in Fig. 5, the power exponents
areν = 0 andν = −2 in the low- and high-frequency domains,
respectively. These distributions are similar to the Kolmogorov-like
turbulent spectra observed in superfluid4He (12, 71) and proposed
in Refs. (18, 19) in relation to the formation of atomic BECs.Thus,
we infer that a turbulent state is formed in the exciton BEC, and that
it is characterized by the establishment of particle and energy fluxes
through the spectral scales of the system. It is seen in Fig. 5that the
power-like spectra are only formed within one decade of thenr scale.
It is worth noting that the width of such an interval, in whichpower-
like turbulent spectra are realized, varies in a wide range in different
systems, from less of one decade (80) to a few decades (12,81).
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Turbulence in an exciton-polariton condensate. Another con-
densed matter system where turbulence can be formed has recently
been discovered in numerical experiments (82, 83) on microcavity
polaritons, which are quantum superpositions of excitons and micro-
cavity photons. The physics of polariton BECs is a fast-developing
field, and substantial progress has been made during the pastdecade
(we refer the readers to recent reviews (84,85)). Interest in polariton
physics is attributable in part to the promising potential applications
in quantum and optical computing (51, 52, 86). In a polaritonBEC,
a uniform, steady-state condensate becomes unstable due toattrac-
tive interactions and mutual scattering between differentexcitation
modes in the condensate (82). The development of the instability re-
sults in the formation of turbulent spatial structures thatcorrespond
to exciton and photon density modulations in the microcavity. In the
existing theory of polariton WT, only the lower, light-likepolariton
branch of elementary excitations has been taken into account. How-
ever, the dynamics is also mediated by interactions with theupper,
exciton-like polariton branch as well as with a bath of non-condensed
excitons and polaritons (84). Recently it was found in the simula-
tions (87) that interactions with polaritons above the condensate can
lead to peculiarities of the ground-state polariton BEC density and, in
particular, to the formation of a density minimum at the center of the
polariton cloud. The interaction of the BEC with thermal excitations
above the condensate are of special interest because of manysimilar-
ities between atomic condensates at finite temperature and polariton
BEC (88). Development of a general polariton WT theory whereall
the above-mentioned effects are taken into account is a target for fu-
ture investigations.

4. Conclusion and outlook
In conclusion, wave turbulence provides a unified view of nonlin-
ear transport phenomena in a diversity of different systemsinclud-
ing atomic Bose-Einstein condensates, waves in the bulk andon the
surface of quantum fluids, and semiconductors. WT manifestsit-
self through formation of the power-law-like, Kolmogorov-Zakharov
spectra for the conserved quantities, which are the energy and, un-
der certain conditions, the number of particles (or properly defined
“number of waves”). In all these cases, the KZ spectra carry the
fluxes of respective quantities from the pumping spectral region, at
which the system is driven by an external force, towards the high- or
low-frequency domains. The fluxes are eventually absorbed by vis-
cous damping at short wavelength scales or may lead to condensation
at long wavelength scales of the order of the system size.

It is worth noting that, in addition to the cases considered above,
there is strong numerical evidence for WT formation in a system
closely related to semiconductors – the excitonic BEC in twodoped
graphene layers separated by a semiconductor or insulatingbarrier

(16). In this case, the binding energy of the charges to graphene
is higher than the corresponding energy in semiconductor quantum
wells; this results in a longer excitonic lifetime and thus,under some
circumstances, in more favorable conditions for Bose-Einstein con-
densation. However, experimental studies of exciton dynamics in
such embedded multi-layered graphene structures have not yet been
achieved, in particular because of difficulties in their synthesis.

Another closely related system where WT could potentially be
applied is a BEC of light (89). Here, the photon-photon interactions,
which are of key importance for formation of a stable BEC, aremedi-
ated by optically active particles (dye) added into the medium; these
particles absorb and then re-emit light thus providing a channel for
the thermalization in the photonics system. Emission of phonons in
the medium during photon-dye molecule interactions can result is
spatial non-locality of the effective photon-photon scattering. Fur-
ther development of WT theory will be needed to account for these
non-local effects.

Recent experiments have demonstrated the possibility of the
Bose-Einstein condensation of magnons, collective excitations that
carry spin, in Yttrium-Iron-garnet at room temperature (90). While
the possibility of BEC in a magnon system has been discussed during
the past ten years (91,92), and the application of WT to spin systems
has been developed in detail in the monograph (93), the approach
based on the Gross-Pitaevskii equation for a magnon BEC has only
recently been implemented (94), and there is still a large field here
for future research.

It is clear that huge progress has been made with the theory of
WT but that, as already remarked, the corresponding experimental
studies are still in their infancy. If history is a reliable guide, then
the advent of additional experimental data may verify some of the
theoretical predictions, but there will almost certainly be areas of dis-
agreement and unexpected features requiring further extensions and
developments of the theory.
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