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Abstract— The electricity grid is currently transforming and 
becoming more and more decentralised. Green energy generation 
has many incentives throughout the world thus small renewable 
generation units become popular. Intermittent generation units 
pose threat to system stability so new balancing techniques like 
Demand Side Management must be researched. Residential hot 
water heaters are perfect candidates to be used for shifting 
electricity consumption in time. This paper investigates the 
ability on Artificial Neural Networks to predict individual hot 
water heater energy demand profile. Data from about a hundred 
dwellings are analysed using autocorrelation technique. The most 
appropriate lags were chosen and different Neural Network 
model topologies were tested and compared. The results are 
positive and show that water heaters have could potentially shift 
electric energy. 
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I.  INTRODUCTION 
Electric power grid is the largest device ever made by a 

human being, where it plays an enormous role in every 
person’s life. Traditional power system was designed to be 
centralised and consists of large generation units generating 
electricity and many consumers using it. This concept has been 
gradually changing over the years, particularly with distributed 
energy resource systems. 

The grid is currently transforming into so called the Smart 
Grid. Consumers are becoming prosumers, meaning they not 
only consume, but also generate electricity. Electricity now 
flows both ways (from the grid to the consumer or from 
consumer to the grid) and the grid could also contain smaller 
generating units. In Europe, there have been many incentives 
for wind and solar power pants to be built [1]. But aside of all 
the environmental advantages of green energy, there are 
considerable drawbacks of renewable energy generators. The 
biggest one being the fact that renewable energy generation is 
intermittent (or forecast) or very hard to control compared to 
conventional power generation. 

This intermittent nature greatly increases the complexity of 
the supply demand balancing problem. Increasing number of 
renewables poses real threat to system resilience and affect 
system stability [2]. To counterweight this issue either more 
spinning reserve power plants should be built or other 

alternatives researched and found. This has invoked great 
attention from researchers around the world. 

The authors of this paper are looking into new ways to 
balance electric energy while keeping current infrastructure and 
thus minimising upfront cost [3]. In fact the balance should be 
reached not only by increasing or decreasing generation, but 
also by changing how people consume electricity. This 
modification of consumer demand profile through various 
incentives or education is generally called Demand Side 
Management (DSM). This term dates back to early 1980s [4], 
but the attention on it is increased recently due to several 
reasons. Electricity market deregulation was the first step 
towards enabling DSM, but the recent attention is mainly due 
to the development of Smart Grid. The addition of additional 
communication layer on top of existing power grid allows 
more precise management and control of electricity. It is 
expected that the future grid will be able to monitor and control 
appliances in residential houses. Thus residential customers are 
allowed to contribute in system balancing act. 

There are several kinds of DSM programs. The most 
popular ones can be grouped into Price Based programs (PBP) 
and Incentive Based Programs (IBP) [5]. Programs can differ 
in many aspects. As the group names suggest, some programs 
are based on Real Time Price (RTP) [6], some give incentives 
like bill discounts. Some require Direct Load Control (DLC) 
while others leave customer to make the final decision when to 
curtail. There are also differences in how many appliances can 
participate in every residence [7]. All in all, every incentive in 
DSM program boils down to decreased energy bill. 

There are devices in every house that are flexible in terms 
of when the electricity could be used, i.e. energy use can be 
shifted in time. One of the biggest electricity users in dwelling 
is an electric hot water heater [8]. Also due to its large inertia, 
it can be turned on at different times without a notable change 
in temperature [9]. This makes it a perfect device candidate that 
could be used for helping system in reaching perfect balance 
while optimising existing generation resources. 

For electric water heaters to be able to fully participate in 
demand side management, the first step is to be able to 
understand how individuals consume hot water. To be more 
specific, it is required to be able to predict or forecast how 
every single dwelling or a group of similar dwellings consume 



hot water. In this particular paper authors are looking into the 
ability of Artificial Neural Networks (ANN) to learn and 
predict the hot water consumption patterns in dwellings [10-
11]. Having accurately forecast hot water consumption patterns 
in dwellings, it will then be able to optimally control electricity 
consumption to maximise supply demand balance by 
efficiently using existing generation capacity [12-13]. 

II. DEMAND SIDE MANANEGMENT USING HOT WATER USAGE 
There are several reasons why hot water heaters are well 

suited for the use of demand side management of electricity 
[14]. Hot water heaters (boilers) are installed in majority of 
residential houses, lowering the initial installation cost as the 
infrastructure is already established. Also this makes energy 
storage distributed and closer to the end user. Secondly, water 
has high specific heat that allows storing relatively large 
amount of energy. This enables large power deviations from 
normal consumption for a reasonably long period. Finally, 
resistive hot water heaters are virtually 100% efficient as all 
energy is converted into heat. This fact should be emphasised 
in cold climate regions. 

Sandels et. al in [1] presents a model for forecasting 
Domestic Hot Water (DHW) and other types of consumers 
based on non-homogenous Markov chains. The results of the 
DHW module coincide with the measured consumption, thus 
confirms that the model is reliable. Another study in [15] 
focuses on voltage control to reduce domestic hot water loads. 
In [16], DHW load profiles are simulated using physical 
models and then Direct Load Control (DLC) switching 
programs are evaluated for how load-shedding actions change 
customer comfort level. A peak load reduction is studied in 
[17] using Time of Use (ToU) and other techniques. 

III. DATA USED FOR FORECASTING MODEL 
The data used in this paper was taken from a project 

initiated by the Energy Monitoring Company in conjunction 
with and on behalf of the Energy Saving Trust, with funding 
and support of the Sustainable Energy Policy Division of the 
Department for Environment, Food and Rural Affairs (Defra). 
The data consists of temperature and volumetric consumption 
records from 112 different dwellings. Various sensors were 
fitted in houses that measured hot water volumetric 
consumption, inlet temperature, outlet temperature and primary 
circuit temperature (in regular boilers). Some additional 
devices measuring water temperature were fitted around pipes 
near kitchen sink, washing machine, bathroom basin, bath, etc 
(Figure 1). This allowed determining the exact spot in house 
where energy was used. Also boiler type, geographical region, 
number of occupants and other parameters were recorded. 

For this particular paper it was not desired to consider the 
location of water use. Instead the interest was focused on the 
total volumetric and energy consumption of hot water boilers 
and hence only hot water meter readings and inlet/outlet 
temperatures were used. Water meter was aggregated for 
different sampling periods because it was being reset after 
every reading. Since inlet and outlet temperatures are not 
constant, the volumetric consumption does not show the exact 
energy consumption. To calculate the energy consumed it is 
required to look at both volumetric consumption and difference 

in temperatures. The following formula was used to calculate 
energy consumed: 

 Et = (Tout – Tin) × Vt (1) 

where Et is the energy stored in water used at time t, Tout and 
Tin are the outlet and inlet temperatures respectively, and Vt is 
the water meter reading at time t. 

A. Formating Raw Data 
Data of domestic hot water consumption in dwellings were 

recorded in year 2006. The data was recorded for about one 
year period at ten minute intervals. When water run-off was 
detected, the sampling rate increased to five seconds. The data 
was then resampled at constant intervals of 1, 2 and 3 hours. A 
range of periods was chosen to test for the best accuracy. The 
volumetric records where aggregated for every sampling 
period. Data was then looked through and any outliers or 
inconsistencies were discarded to improve the quality of the 
data which is going to be used for the model. 

B. Further data analysis 
In this paper authors are testing the ability off ANN to learn 

hot water consumption and predict future consumption. Neural 
Network Nonlinear Autoregressive (NAR) and Nonlinear 
Autoregressive Exogenous (NARX) models were tested, where 
autoregression is the key element in this forecast. 

The next step in analysing the data was to look at auto-
correlation of every single dwelling separately. Different 
patterns were noticed, where Figure 2 shows the first type of 
auto-correlation when the volumetric hot water usage 

 
 

Figure 1 - Various sensor layout inside dwellings [18]. 

 
Figure 2 - Autocorrelation example, when data best 
correlates at 24 hour intervals. 



correlates at every 24-hour interval. This means that occupants 
of this particular dwelling have strong periodic habits because 
their water usage follows strong pattern and is repetitive. 

Another type of dwelling that can be distinguished is when 
consumption pattern repeats every 6 hours. In Figure 4 the data 
autocorrelation has four spikes for each previous day (two 
positive and two negative). The 12-hour period can be 
explained that there is a similar consumption during the night 
and in the middle of the day (consumption is small), and there 
is a large consumption in the morning and in the evening (12 
hours apart). The negative correlation appears every 6-hour 
because peaks and lows are 6 hours apart. 

 
Figure 4 - Autocorrelation example, when data best correlates at 
12-hour and 6-hour intervals. 

Figure 2 and Figure 4 represents only two dwellings. To 
represent autocorrelation of all dwellings, a box plot diagram 
was used. Figure 4 shows a box plot diagram of autocorrelation 
with a maximum lag of one week. Each box represents how the 
dataset for particular lag is distributed and the median is 
represented by the red lines. Red crosses represent the outliers. 
It can be noticed there is a higher peak at 168th hour (mean 
correlation value 0.3528), which is the lag of 7th day, 
comparing with the same hour in every other day of the week 
(mean correlation value 0.2721), i.e. the data repeats best every 
week. This shows that not every day in a week looks the same. 

The mean value of autocorrelation (period of one week) 
was calculated for every dwelling and arranged in an ascending 
order as shown in Figure 5. According to the result, no separate 
regions could be distinguished – the correlation values are 
distributed evenly. 

 
Figure 5 - Mean autocorrelation in an ascending order. 

As mentioned above, hot water consumption differs 
depending on the day of the week. Weekly mean consumption 
pattern was calculated and is shown in Figure 6. It can be seen 
that consumption profile of Monday to Friday is different from 
profile of Saturday and Sunday. Further analysis has been 
carried to investigate this (Figure 7). 

 
Figure 6 - Weekly mean volumetric hot water consumption 
pattern. 

Figure 7 shows cross-correlation R-values between 
different days of the week. First of all, it could be divided into 
two regions using the diagonal. The values above the diagonal 
were calculated for correlation between weekdays of the same 
week, whereas the values below the diagonal (inclusive 
diagonal) are calculated using weekdays of consecutive weeks. 
Therefore, the matrix is not symmetric. 

By looking at the calculated R-values, the matrix can be 
further divided into 4 regions. The values in region 1 (top left) 
are between 0.21 and 0.28 – it represents high correlation 
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Figure 3 - A box plot of autocorrelation data of all dwellings hourly data. 



between consumption profiles of Monday to Friday. Region 2 
(top right) and region 3 (bottom left) with low R-values (0.11 
to 0.14) correspond to low correlation between working days 
and weekends. On the other hand region 4 (bottom right – 
values 0.16 to 0.19) shows that water usage on Saturdays and 
Sundays are similar. Conclusion could be drawn that ANN 
needs external input giving information about the day of the 
week. 

 
Figure 7 – Weekday correlation. 

IV. ARTIFITIAL NEURAL NETWORK FORECASTING TECHNIQUE 
An ANN model was created in MATLAB programing 

environment. To forecast hot water consumption, ANN 
technique was chosen for couple of reasons. ANN is a learning 
algorithm that can be adapted to different consumption 
profiles. The goal is to learn individual consumption habits of 
families and maximise the amount of energy that could 
potentially be shifted in time to reduce the overall peak seen by 
the generation or to better match the demand with supply. 
Secondly, ANN learning algorithm is very appealing because it 
mimics nature. Although, it is a high level algorithm that 
requires a relatively large amount of processing power, which 
nowadays becomes easily available [17]. 

A. Time-series forecasting using NAR model 
A NAR model was created using one hidden layer with 10 

neurons, where Figure 8 shows a simplified model diagram. The 
data division for training, testing and validation was chosen to 
be random for these time series. The performance was 
measured using Mean Square Error (MSE). ANN was trained 
using Levenberg-Marquardt training algorithm. An individual 
dwelling hourly volumetric hot water consumption time series 
were used to train the network. According to auto-correlation 
analysis, different sets of lags were tested to find the best 
performance. The lag configuration in the first 10 cases was in 
ascending order in difficulty (see TABLE 1). 

Case 1 uses only 6 past inputs. Each of them is a past input 
of exactly the same hour of the day from past six days. Figure 4 
suggests that these inputs should have the biggest weight when 
predicting future consumption. Case 2 has the addition of the 
7th day – the same exact hour from the previous week. Figures 
1-3 show that there are additional correlation peaks every 12 
and 6 hours so cases 3 and 4 have additional inputs of every 12 
and 6 previous hours respectively. Case 5 is the same as case 2 
with the addition of the most recent consumption reading. Case 
6 contains 24 hour consumption profile the same day from 
previous week. Case 7 and 9 has inputs from the most recent 
day. Finally, case 8 and 10 contains a combination of 6 with 7 
and 6 with 9 respectively. 

Figure 8 - Simplified NAR model. 

After ANN ware trained for all dwellings, the output-target 
correlation R-values were recorded to judge the performance of 
the model. The simulations for the same 10 cases were 
repeated with extended lag configurations – for every lag 
between 24 and 168, there were adjacent lags added: t-1 and 
t+1. For example instead of lag 48, now ANN receives lags 47, 
48 and 49. TABLE 1 in the results section shows the 
corresponding results for both NAR and NAR extended 
configurations. 

B. Time-series forecasting using NARX model 
The ANN was converted from NAR to NARX by adding 

external inputs (see Figure 9). As the data analysis above 
suggested, the ANN should be supplied with information 
containing the day of the week and whether it is a weekend or 
not. As a result, 6 dummy variables were constructed to 
represent weekday and additional dummy variable was used as 
a Boolean for marking weekends. Also, average hourly 
consumption profile (average value for the hour that is being 
predicted) was fed in as an external input. 

 
Figure 9 - Simplified NARX model. 



The simulations were then run again using lags from 
previous 10 cases and the results can be found in the following 
section. 

V. RESULTS 
The extended data analysis was focused on autocorrelation. 

The results are as expected and show that daily volumetric hot 
water consumption in dwellings is similar. It is also clear that 
water usage habits during workdays and weekends are different 
(Figure 7). 

The goal of this paper was to assess the ability of ANN to 
predict hot water consumption for separate dwellings. Figure 
10 depicts how well NAR model predicts. It can be seen from 
the boxplot that cases 1 to 4 are quite unreliable as there is a 
large spread in performance variable (R value) throughout 
dwellings. On the other hand cases 5 to 10 show that NAR 
model performs well and the R-values are about 0.8 with a 
narrow spread. 

 
Figure 10 - Boxplot of output-target correlation R-values, NAR 
model simulation. 

Finally, Figure 11 compares results between NAR and 
NARX models. It can be seen that NARX model predicts better 
in all cases, though the relative difference is minute in some 
cases. By looking at Table TABLE 1, it can be seen that cases 
7 and 8 perform the best. 

 
Figure 11 - Mean R values from all simulations. Graphical 
representation of TABLE 1 
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