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Cash-Flow Sensitivities and the Allocation of Internal Cash Flow
 
 

 

Abstract 

 

 

We study how firms allocate cash flow by estimating the cash-flow sensitivities of various uses 

of cash flow. We decompose cash flow into a transitory and a permanent component and focus 

on the allocation of the transitory component, which by construction contains little information 

about future growth opportunities. We find that more financially constrained firms allocate more 

transitory cash flow to cash savings and direct less toward investment than do less constrained 

firms, consistent with constrained firms accumulating liquidity to buffer against future financial 

constraints. We also illustrate several methodological advantages of our approach over 

alternative methods in previous studies. (JEL G31, G32) 
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How do firms allocate internally generated cash among its various uses? The answer to this 

question is important for several reasons. Firms could pay out additional cash flow as dividends, 

use cash to reduce debt or equity financing, hold cash as precautionary savings, or spend the 

additional cash flow on investment. How firms use internally generated cash could affect the 

speed with which an economy recovers from a recession, which is typically accompanied by 

improvements in profitability.  

The allocation of cash flow could also provide important insights into the types of frictions 

firms face in financing investment and how firms mitigate the constraints imposed by these 

frictions. There is very little theoretical guidance on how the degree of financial constraints is 

supposed to affect the allocation of cash flow. For example, theory does not provide a clear 

answer to the question of whether firms facing more severe financial constraints should invest 

more or save more when they have additional cash flow.
1
 Given this, there is a need for 

empirical evidence to inform theory. However, as we discuss below, it has been difficult to 

interpret available empirical evidence because existing empirical approaches face several 

challenges. One of the main contributions of this paper to provide a methodology that addresses 

some of these challenges and informs theory as to how firms facing different degrees of financial 

constraints allocate cash flow to various uses. 

We measure the allocation of cash flow using the coefficients of cash flow in a regression 

framework in which various uses of cash flow are regressed on cash flow and other controls. The 

cash-flow sensitivity of a particular use of cash flow reveals how much of an additional dollar of 

cash flow is directed toward that use.
2
  To offer a complete view of the cash-flow allocation, we 

                                                 
1
 For instance, Kaplan and Zingales (1997) show that even in a one-period model, investment-cash flow sensitivities 

do not necessarily increase with the degree of financing constraints. 
2
 The cash-flow sensitivities of investment and the change in cash holdings have been extensively studied in the 

literature. However, the estimates of cash-flow sensitivities have proven to be controversial. See, among others, 
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simultaneously track all cash flow uses, which are interrelated by the identity that the sum of all 

uses of cash flow must equal cash flow itself. In our integrated regression framework, this cash-

flow identity implies that the cash-flow sensitivities of various uses of cash flow must add to 

unity, which is hereafter referred to as the “adding-up constraint”. In other words, because all 

cash flow uses must completely absorb a cash-flow shock, if cash flow increases by one dollar, 

the incremental allocations to all cash flow uses must sum to one dollar. 

For a large panel of U.S. firms from 1971 to 2011, we define cash flow and its uses using 

the flow-of-funds (cash flow) statement from Compustat, so that the cash-flow identity holds 

well in our data. We then use ordinary least squares (OLS) regressions to separately estimate five 

equations that describe firms’ five uses of cash flow, that is, investment, the change in cash 

holdings, dividends, net equity repurchases, and net debt reductions.
3
 The results show that the 

coefficients of cash flow across five equations add to one.  

Although the adding-up constraint holds under OLS estimation, a common critique of 

interpreting cash-flow coefficients in the OLS regression framework is that cash flow may 

contain information about a firm’s future prospects if future growth opportunities are not 

properly controlled for. To address this issue, we employ the approach of Beveridge and Nelson 

(1981; BN hereafter) to decompose cash flow into a trend (permanent) and a cycle (transitory) 

component.
4
 BN show that the cycle measure contains little information about the future beyond 

short-term momentum. While the coefficients of both components of cash flow satisfy the 

                                                                                                                                                             
Fazzari, Hubbard, and Petersen (1988), Kaplan and Zingales (1997), Cleary (1999), Erickson and Whited (2000), 

Almeida, Campello, and Weisbach (2004), and Riddick and Whited (2009). In particular, given the diversity of 

methodologies and results on cash-flow sensitivities of these specific uses of cash flow, it is perhaps fair to say that 

there is no clear consensus as to where an additional dollar of cash flow goes. 
3
 We do not consider the change in working capital as a use of cash flow. Instead, we include it in the calculation of 

cash flow, as suggested by Bushman, Smith, and Zhang (2011). The rationale is detailed in Section 2.2. 
4
 Beveridge and Nelson’s decomposition is widely used in the asset pricing literature, such as by Cochrane (1994), 

Bansal, Dittmar, and Kiku (2009), Garleanu, Kogan, and Panageas (2012) and Garleanu, Panageas, and Yu (2012). 

However, its use in the corporate finance literature is rather limited.  
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adding-up constraint under OLS, only those for the cycle component can be reliably interpreted 

as estimates of the use of cash flow. This is because whereas the trend component of cash flow 

contains information about future cash flow growth and thus is likely to correlate with the error 

terms when growth opportunities are inadequately controlled for, this is less likely for the cycle 

component. Therefore, to the extent that the cycle component is uncorrelated with future growth 

opportunities, the coefficient of this component is consistently estimated and can be 

meaningfully interpreted. 

We incorporate both cash flow components into our integrated regression model to 

examine how firms allocate these respective cash flow components.  Economically, in response 

to a one-dollar increase in transitory cash flow, on average, firms allocate 23 cents to investment, 

36 cents to cash holdings, 1 cent to dividends, 32 cents to debt retirements, and 9 cents to equity 

reductions. Consistent with the information content of cash flow components discussed above, 

we find that investment responds much more positively to the trend component of cash flow than 

to the cycle component.  

To explore how the degree of financing frictions (or financial constraints) affects the 

allocation of cash flow, we partition our sample using a variety of financial constraints measures 

used in the literature and then estimate the allocation of transitory cash flow for financially more 

constrained and less constrained firms separately. The results reveal that in response to an 

additional dollar of transitory shock to cash flow, less financially constrained firms, which are 

typically larger and have better access to external capital markets, reduce new equity financing 

by 3 to 4 cents, depending on the financial constraints measures used. However, this magnitude 

increases to 9 to 12 cents for more financially constrained firms.  Moreover, regardless of which 

criteria is being used to distinguish between financially more and less constrained firms, the 
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former group exhibits a lower investment-cash flow sensitivity and a higher cash holding-cash 

flow sensitivity than the latter group.  

The finding that more financially constrained firms allocate less cash flow to investment 

than their less constrained counterparts may appear surprising because the literature has usually 

assumed that more constrained firms should rely more on internal cash flow for investment given 

their restricted access to capital markets.
5
 However, we conjecture that this result highlights the 

importance of the interdependent nature of various uses of cash flow through the cash flow 

identity. To wit, as firms become more financially constrained, they should be more willing to 

reduce the use of costly external finance with internal cash flow. In the meantime, they may face 

tighter financial constraints not only in the present but also in the future. Therefore, they may use 

cash flow to reduce the current use of external finance or save more cash out of cash flow to 

accumulate liquidity as a buffer against future constraints (e.g., Hubbard 1998; Dasgupta and 

Sengupta 2007). Because reducing external finance, addition to cash holdings, and investment 

are competing uses of cash flow (which are interdependent through the cash flow identity), if 

more constrained firms direct a larger portion of each additional dollar of cash flow to cash 

reserves and reducing external finance, then a smaller portion is left for investment. 

We then conduct additional analysis to ensure that our main results are robust to alternative 

model specifications. Furthermore, we perform two tests to compare our methodologies with 

those used in previous studies. First, Gatchev, Pulvino, and Tarhan (2010; GPT hereafter) 

propose that the cash-flow sensitivities should be estimated using a constrained system of 

equations with the adding-up constraint imposed explicitly. They show that estimating all the 

cash-flow sensitivities simultaneously without explicitly imposing the constraint leads to 

                                                 
5
 Two exceptions are Kaplan and Zingales (1997) and Cleary (1999), who also document that financially constrained 

firms exhibit a lower investment-cash flow sensitivity than do unconstrained ones.  
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erroneous coefficient estimates. GPT’s claim, however, is false. Using our sample, we estimate 

the cash-flow sensitivities with the adding-up constraint imposed and without. Unlike GPT, 

however, we find that explicitly imposing the constraint makes no difference to our estimates. 

The reason is simple: when variables are consistently defined and satisfy the cash-flow identity 

in the data, the estimated cash flow coefficients should meet the adding-up constraint 

automatically, thereby making the constraint redundant in the estimation. We further show that 

GPT’s findings are due to inconsistent variable definitions, which violate the cash-flow identity 

for a substantially large percentage of observations in their sample. 

Second, Erickson and Whited (2000, 2002) show that the measurement errors associated 

with Tobin’s marginal q, which is supposed to capture investment opportunities, can have 

serious consequences on inference based on the cash-flow coefficients. They propose a modified 

generalized method of moments (GMM) method based on higher-order moments to correct for 

the measurement errors.
6
 We estimate our five equations separately using the GMM estimators 

proposed by Erickson and Whited (2000; 2002). Although theory does not pin down the exact 

value for the expected cash-flow coefficient in each equation, to the extent that GMM estimators 

offer consistent estimates for all equations, the cash flow coefficients should add to unity across 

five equations. However, our results show that unlike OLS estimates that always satisfy the 

adding-up constraint, GMM estimates violate the constraint often by large amounts. The upshot 

of this comparison is that when applied to real data, the GMM estimators fail to offer 

economically meaningful estimates of the cash-flow allocation across various uses.  

Our paper makes several contributions, both in terms of the estimates of the cash-flow 

allocation and empirical methodology. In terms of the allocation of cash flow among competing 

                                                 
6
 This methodology has been profoundly influential in the subsequent literature that examines the cash-flow 

sensitivities of investment or cash holdings. See, among others, Whited (2001, 2006), Hennessey (2004), Colak and 

Whited (2007), and Riddick and Whited (2009). 
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uses, we document that substitution of external financing is the most important single use of 

transitory cash flow and that financially more constrained firms allocate more out of an 

additional dollar of transitory cash flow to cash holdings but less to investment than less 

constrained firms. In terms of methodology, we suggest an alternative way to address the 

measurement error problem that makes interpretation of cash flow coefficients problematic in an 

OLS setting, by focusing on a component of cash flow that is orthogonal to future growth 

opportunities. This is necessitated because, as we demonstrate, it is problematic to interpret 

coefficient estimates based on available higher-order moment methods applied to individual 

equations because the adding-up constraint can be easily violated. By establishing that the OLS 

method has the virtue that the adding-up constraint is always satisfied, we suggest a way in 

which the allocation of the transitory component of cash flow can be meaningfully studied 

without the information content of cash flow affecting our inference.
7
  

 

 

1. Empirical Methodologies 

1.1 Regression equations 

Our empirical analysis critically hinges upon the following cash-flow identity defined using 

flow-of-funds data: 

,t t t t t tInv Cash Div D E CF         (1) 

where the uses of funds include investment (Inv), the change in cash holdings (ΔCash), and cash 

dividends (Div). The sources of funds comprise the internally generated cash flow (CF) and 

                                                 
7
 In a related study, Gorbenko and Strebulaev (2010) theoretically examine firm financial policies in the presence of 

both transitory and permanent shocks to cash flow and emphasize the role of transitory shocks, which are neglected 

by prior capital structure studies. However, they do not empirically decompose cash flow into transitory and 

permanent components. Moreover, they mainly examine the effect of transitory shocks on financing decisions, 

instead of on investment and cash savings decisions. 
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external financing that consists of the net debt issuance (ΔD) and the net equity issuance (ΔE). -

ΔD and -ΔE represent net reductions in external financing, which are regarded as uses of funds.  

Our baseline empirical models regress different uses of cash (e.g., investment, the change 

in cash holdings, cash dividends, and net reductions in external financing) on CF, the market-to-

book ratio (MB) as a proxy for investment opportunities, and control variables (Y). We also 

include firm dummies ( )f  to control for unobserved heterogeneity and year dummies (y) to 

account for time effects. The regression equations are written as follows: 

1 1

Inv Inv Inv Inv

it it it it i t itInv CF MB Y f y         
,
     (2) 

1 1

Cash Cash Cash Cash

it it it it i t itCash CF MB Y f y      

       
,
    (3) 

1 1

Div Div Div Div

it it it it i t itDiv CF MB Y f y         
,
    (4) 

1 1

D D D D

it it it it i t itD CF MB Y f y      

       
,
     (5) 

1 1 .E E E E

it it it it i t itE CF MB Y f y      

             (6) 

The allocation of cash flow across various uses is captured by the coefficients of CF in 

Equations (2)–(6). Because investment, cash holdings, dividend, and financing decisions are 

made jointly, subject to Equation (1) that cash flow must equal uses of cash flow, the cash-flow 

sensitivities of various uses of cash flow must add to unity. Mathematically, the coefficient 

estimates in Equations (2)–(6) must satisfy the following conditions.  

α
Inv

 + α
∆Cash

 + α
Div

 - α
∆D

 - α
∆E

 = 1,     (7) 

β
Inv

 + β
∆Cash

 + β
Div

 - β
∆D

 - β
∆E

 = 0,     (8) 

γ
 Inv

 + γ
 ∆Cash

 + γ
 Div

 - γ
 ∆D

 - γ
 ∆E

 = 0.     (9) 

The adding-up constraint (7) reflects the accounting identity that sources of cash equal uses 

of cash. In other words, a one-dollar increase in internal cash flow needs to be used to increase 
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investment, increase cash holdings, pay cash dividends, or reduce outstanding debt or equity. 

Constraints (8) and (9) stipulate that the total response across different sources and uses of funds 

must sum to zero if the shock stems from an exogenous or predetermined variable that represents 

neither a source nor a use of funds in the current period.
8
 

If the variables in Equation (1) are consistently defined so that the cash-flow identity holds 

implicitly in the data, constraints (7)-(9) should hold automatically and need not be imposed 

explicitly in the estimation. Furthermore, Equations (2)–(6) can be estimated simultaneously 

using seemingly unrelated regressions (SUR), because each equation in the system has its own 

dependent variable and the explanatory variables in all equations are either exogenous or 

predetermined. Greene (2012) suggests that SUR estimates are equivalent to equation-by-

equation OLS estimates if the same set of explanatory variables is included in each equation, 

which is precisely the case in Equations (2)–(6).
9
 Taken together, we thus estimate Equations 

(2)–(6) separately using OLS regressions without imposing constraints (7)–(9) explicitly. In 

Section 4.1, we confirm that our unconstrained single-equation estimation generates the same 

results as those obtained by estimating Equations (2)–(6) simultaneously using the SUR method 

with constraints (7)–(9) imposed. 

For control variables (Y), we include the log of the book value of assets, Ln(Assets), as a 

proxy for firm size. The sales growth (SalesG) is incorporated as an additional control for firm 

growth prospects. The net PPE-to-asset ratio (Tangibility) is used to measure the tangibility of 

firm assets. We also include the leverage ratio (Leverage) defined as total debt (the sum of short-

term and long-term debt) divided by total assets.   

                                                 
8
 For instance, suppose the coefficient of MB is 0.1 in Equation (2), suggesting that investment increases by 10% of 

total assets if MB increases by one. Because investment is a use of funds and total uses of funds must be equal to the 

total sources of funds, the net effect of the increase of MB on other use variables must sum to -10% of total assets.  
9
 A detailed proof is included in the Internet Appendix of this article (IA.1). See also Greene (2012, 293–95). 
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1.2 Beveridge-Nelson decomposition of cash flow 

BN develop a procedure to decompose a univariate time series into trend (permanent) and 

cycle (transitory) components. The BN trend is defined as the limiting forecast of the level of the 

series (minus any deterministic drift), and the BN cycle is the difference between the level of the 

series and the trend component. Specifically, assume a univariate time series
ty , which is an I(1) 

(integrated of order 1) process with Wold representation as follows. 

0

( ) ,
t t j t j

j

y L     






          
(10)

 

where L is the lag operator, ( )L  is the lag polynomial,  is the mean value of ty , Δ is the first 

difference, that is, Δ=1-L, (0) 1,  (1) 0, 
1/2

0

| |j

j

j 




  , and t ~ i.i.d. N 2(0, ) .  

The trend component t  is defined as the limiting forecast of the level of the series 

(adjusted for the mean growth rate) or, equivalently, the current level of the series plus the 

infinite sum of the expected j-period-ahead change in y: 

                     
1

lim [ . ] lim [( )]
J

t t t J t t t j
J J

j

E y J y E y   
 



      .              
(11) 

We then can have 

          
1 1lim[ ( ) ( ) ]t t t t J t t J

J
E y E y     


    .

 

1( ) ( )t t J t t JE y E y   can be viewed as the response of t Jy  to the shock at t. Because 

( )t t JE y  1( )t t JE y  
1

J

j t

j

 


  and 1lim[ ( ) ( )] (1)t t J t t J t
J

E y E y    


  , we can write 

1 (1)t t t       .       
(12)
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Hence, the BN trend is a pure random walk with drift  and its innovation variance is 

2 2(1)  . The BN cycle, tc , is the difference between the present level of the series ( ty ) and the 

trend component ( t ): 

      ( ) ,t t t tc y L           
(13)

 

where 
0

( ) j

j

j

L L 




  and 
1

j k

k j

 


 

  .  

Essentially, the derivation above suggests that the trend component is a random walk with 

drift and the cycle component is a stationary process with zero mean. Empirically, we follow the 

methodology of Morley, Nelson, and Zivot (2003) and perform the BN decomposition by fitting 

the first difference of unscaled cash-flow series with an (2,2)ARMA model. The decomposition is 

detailed in Appendix A. After obtaining the trend and cycle components of unscaled cash flow, 

we deflate both components by the beginning-of-period book value of assets to get CF_Trend and 

CF_Cycle. 
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2. Data and Variables 

2.1 Data 

Our sample consists of firms listed in the Compustat Industrial Annual files at any point 

between 1971 and 2011.  We follow Frank and Goyal (2003) and use the flow-of-funds data to 

define variables in the cash-flow identity. We set the starting point of our sample at 1971, 

because this is the year that Compustat starts to report flow-of-funds data extensively. Data on 

stock prices and returns are retrieved from the Center for Research on Security Prices (CRSP) 

files. Dollar values are converted into 2000 constant dollars using the GDP deflator. 

Following common practice, we discard observations from financial institutions (SIC codes 

6000–6999), utilities (SIC codes 4900�4999), not-for-profit organizations, and government 

enterprises (SIC codes greater than 8000).
10

 We require firms to provide valid information on 

their total assets, sales growth, market capitalization, changes in cash holdings, investment, cash 

dividends, cash flow, and external financing. Following Almeida, Campello, and Weisbach 

(2004) and Almeida and Campello (2010), we exclude firm-years for which the market value of 

assets is less than $1 million, those displaying asset growth exceeding 100%, and those with 

annual sales lower than $1 million to minimize the sampling of financially distressed firms.
11

 

Furthermore, to ensure that the cash-flow identity holds well in our data, we exclude 

observations for which the absolute value of the difference between the left-hand and right-hand 

sides of Equation (1) is greater than 1% of the beginning-of-period total assets.
12

 Finally, to 

                                                 
10

 Utility firms, not-for-profit organizations, and government enterprises are excluded because they are heavily 

regulated. We discard financial firms because their financing decisions are affected by different factors (e.g., capital 

adequacy regulations) that are almost irrelevant for nonfinancial firms. 
11

 Very small firms (with the market value of assets or sales less than $1 million) are removed because they have 

severely limited access to capital markets. Our results are essentially unchanged if we increase the cutoff for 

defining very small firms from $1 million to $5 million. Firms experiencing extremely high growth are eliminated 

because they are normally involved in major corporate events, such as mergers and acquisitions. 
12

 A number of observations (396) are deleted from our main sample because of this treatment. In Section 2.3, we 

elaborate on various causes of violation of the cash-flow identity.  
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ensure that the BN decomposition of cash flow can be performed with a reasonably long time 

series, we restrict the sample to firms with at least fifteen years of cash flow data in Compustat.
13

 

These screens leave us with an unbalanced panel that consists of 46,991 firm-year observations.  

 

2.2 Variables in the cash-flow identity 

According to Compustat data manuals, it is important to consider the format code when 

defining variables using flow-of-funds data. Effective for fiscal years ending on July 15, 1988, 

Statement of Financial Accounting Standards (SFAS) #95 requires U.S. companies to report the 

Statement of Cash Flows (format code = 7). Prior to the adoption of SFAS #95, companies may 

have reported one of the following statements: Working Capital Statement (format code = 1), 

Cash Statement by Source and Use of Funds (format code = 2), or Cash Statement by Activity 

(format code = 3). Thus, the variable definitions vary depending on which format code a firm 

follows in reporting flow-of-funds data. In particular, for investment we include capital 

expenditure, acquisitions paid by cash, and other investment that result in cash outflows. For 

issuance and repurchase activities, we consider those that are associated with actual cash inflows 

or outflows. Following Fama and French (2005), the issuance activities generating no cash flow 

to the firm, such as granting shares to employees or financing acquisitions with stock, are 

excluded from our analysis. Table 1 details the construction of all variables in Equation (1) based 

on different format codes of flow-of-funds data. 

                                                 
13

 Our results are qualitatively the same if we require the firms to have at least consecutive 10 or 20 years of cash 

flow. In addition, when estimating the ARMA model, the standard BN procedure utilizes the whole time series of a 

firm to decompose cash flow. In any given year t, cash flow is decomposed based on both historical information 

from year 1 (the first year the firm entering our sample) to year t and future information from year t+1 to N (the 

number of periods for which cash-flow data are available). As an additional analysis, which aims to show that our 

findings are not mainly due to the “look-ahead bias” created by the use of future information, we decompose CF in 

year t using realized data from year 1 to year t. Because the BN decomposition requires a reasonably long time 

series to estimate the ARMA model, we perform this analysis from year 10 onward (i.e., t ≥ 10) for each firm. We 

then estimate the cash-flow sensitivities based on the BN decomposition using realized data and obtain results 

(untabulated) similar to those reported in Tables 3 and 4. 
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[Insert Table 1 here] 

It is worth noting that, following recent studies on cash-flow sensitivities (e.g., Bushman, 

Smith, and Zhang 2011; Dasgupta, Noe, and Wang 2011; GPT), we define cash flow (CF) as the 

operating cash flows, net of the change in working capital.
14

 Bushman, Smith, and Zhang (2011) 

suggest that the cash flow measure used almost universally in the investment-cash flow literature 

is essentially earnings before depreciation, which contains a true cash component (operating cash 

flows) and a noncash component in the form of working capital accruals. They find that the 

investment-cash flow sensitivity documented in previous studies is mainly due to the naturally 

positive correlation between investment and working capital accruals.
15

 By removing the effect 

of the change in working capital and focusing on cash flow from operations, we mitigate the 

concern that our results are driven by the correlations between the uses of funds (investment in 

particular) and working capital accruals.  

 

2.3 Summary statistics 

Table 2 reports summary statistics for the variables used in the regression analysis. All 

flow-of-funds variables are deflated by the beginning-of-period total assets and have been 

winsorized at the top and bottom 1% of their distributions. This approach reduces the impact of 

extreme observations by assigning the cutoff values to those that are beyond the cutoff points. 

Our results (untabulated) are qualitatively the same when we truncate (rather than winsorize) the 

distributions. 

                                                 
14

 For instance, for firms with format code = 7, CF is defined as income before extra items + extra items and 

discontinued operation + depreciation and amortization + deferred taxes + equity in net loss + gains in sale of PPE 

and investment + other funds from operation + exchange rate effect - change in working capital (∆WC). The 

definitions of CF for firms with other format codes are detailed in Table 1.  
15

 Because fixed assets investments normally increase firm scale, it is natural to expect corresponding increases in 

noncash working capital items, such as accounts receivables and inventories. However, this relation has little to do 

with financing constraints caused by capital market imperfections but rather is a manifestation of increasing scale.  
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[Insert Table 2 here] 

On average, every year, our sample firms invest (Inv) 9.2%, increase cash holdings (∆Cash) 

by 0.9%, and pay out as dividends (Div) 1.1% of the beginning-of-period assets. To finance these 

uses of funds, an average firm in our sample taps external capital markets by issuing debt and 

equity that amounts to 1.4% and 1.6% of the beginning-of-period assets, respectively. The gap 

between the uses of funds and external financing is met by internally generated cash flow (CF), 

which accounts for 8.3% of the beginning-of-period assets. Except for dividends (Div), all flow-

of-funds variables exhibit significant variation, ranging from large negative to large positive 

values. 

As mentioned in Section 2.1, we have excluded observations with the absolute value of the 

difference between the left-hand and right-hand sides of Equation (1) greater than 1% of total 

assets.
16

 Thus, the cash-flow identity (Equation (1)) holds up well in our sample, albeit not 

perfectly. We define DIF
Equation 1

 as the difference between the left-hand and right-hand sides of 

Equation (1), with all variables deflated by the beginning-of-period total assets. The mean, 

median, and standard deviation of DIF
Equation 1 

are 0, 0, and 0.003, respectively. 
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 There are mainly four causes resulting in a violation of the cash-flow identity: (1) defining variables using data 

from different sources (i.e., balance sheet, income statement, and cash flow statement), (2) misrecorded data for any 

variable in the cash-flow identity, (3) rounding errors, and (4) winsorization. As we show in Section 4.1, cause (1) 

leads to severe violation of the cash-flow identity for most firm-years. Cause (2) applies to a small number of firm-

years only but may result in extreme values of DIF
Equation 1

. Cause (3) contributes to violation of the cash-flow 

identity for many firm-years, but its magnitude and its effect on the estimated cash-flow sensitivities should be 

negligible. Finally, winsorization can also slightly perturb the cash-flow identity for a small number of firms 

because not all scaled variables in the cash-flow identity take extreme values simultaneously in a given firm-year. 

Because we define variables only using the cash-flow statement, cause (1) does not apply to our sample. To mitigate 

the effects of causes (2), (3), and (4), we drop 396 firm-years with |DIF
Equation 1

| > 1%. Robustness checks 

(untabulated) show that our main results are unaffected if we make no modifications to the data, namely, if we do 

not winsorize and do not remove observations with |DIF
Equation 1

| > 1%. This is not surprising because both 

winsorization and |DIF
Equation 1

| > 1% only affect a small number of firms. In addition, Compustat firms that report 

cash-flow statements completely normally have no highly extreme values for variables in the cash-flow identity. 
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2.4 The cycle and trend components of cash flow 

Table 2 also reports the summary statistics of the cycle and trend components of cash flow, 

which are obtained using BN’s decomposition approach outlined in Section 1.2. The mean of the 

cycle component is close to zero, confirming its basic feature of a zero-mean stationary process. 

In contrast, the trend component has the mean of 0.084, which is almost the same as the mean 

value of the level of cash flow. The correlation coefficient (untabulated) between the trend and 

cycle components, both scaled by lagged book value of assets, is -0.21, which is significant at the 

1% level.
17

  

The orthogonality of the cycle component with respect to growth opportunities is crucial 

for us to meaningfully interpret the cash-flow coefficients in the regressions. As discussed in 

Section 1.2, the logic of the BN decomposition suggests that the cycle component should reflect 

little else than short-term momentum, with the stochastic trend component capturing a persistent 

shock to future cash-flow growth. Here, we provide further evidence that the cycle component 

contains little information about future growth. 

First, we decompose the market-to-book ratio into the cycle and trend components using 

the BN methodology and regard the latter component as a proxy for the long-term growth 

prospect. We find that the cycle component of cash flow is uncorrelated with the 

contemporaneous trend component of the market-to-book ratio (the correlation coefficient is 0.01 

and the p value is 0.43). This correlation supports the notion that the cycle component of cash 

flow contains little information about future growth prospects. In contrast, the trend component 

of cash flow is strongly correlated with the contemporaneous trend component of the market-to-

                                                 
17

 The BN decomposition is not an orthogonal decomposition. Some other filters, such as the Hodrick-Prescott 

(1997) filter, generate orthogonal trend and cycle components. The relative merits of these alternative 

decompositions are controversial (e.g., Maravall 1995; Nelson 2008; Oh, Zivot, and Creal 2008). As a robustness 

check, we redo our tests using the Hodrick-Prescott filter and obtain very similar results (available upon request). 
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book ratio (the correlation coefficient is 0.34 and significant at the 1% level). Second, we run a 

regression (untabulated) of the contemporaneous trend component of cash flow scaled by lagged 

assets on the past three lagged values of the cycle component of cash flow scaled by lagged 

assets and find that the R
2
 is almost zero. Third, following Nelson (2008), we also regress the 

(unscaled) change in cash flow on the (unscaled) lagged cycle component. The co-efficient of the 

cycle component is negative, but the R
2
 is 5%, very comparable to that reported by Nelson 

(2008). This short-run predictability is expected because, as pointed out by Nelson (2008), if the 

series is below trend because the cycle component is negative, the recovery is expected to have 

an above-average future growth rate subsequently. However, when we regress the (unscaled) 

change in cash flow on the (unscaled) cycle component lagged two periods, the R
2
 is almost zero. 

These findings are consistent with Nelson (2008), who documents that the cycle component 

contains little information about future growth beyond short-term momentum. 

 

3. Main Results 

3.1 The allocation of cash flow across various uses 

Panel A of Table 3 reports the baseline results obtained by estimating Equations (2)–(6) as 

standalone equations. To estimate regressions with firm fixed effects, we demean the dependent 

and independent variables in Equations (2)–(6).
18

 

[Insert Table 3 here] 

In panel A of Table 3, we document positive investment-cash flow and cash-cash flow 

sensitivities and negative external finance-cash flow sensitivities. More specifically, a one-dollar 

                                                 
18

 Alternatively, we estimate the regressions by including firm dummies. Not surprisingly, the resulting coefficients 

are identical to those obtained by demeaning the variables. However, the estimation with firm dummies generally 

has a higher R-squared value than the demeaning approach, because the former explains the level of the dependent 

variable, whereas the latter explains the deviation of the dependent variables from their firm-specific means. We 

report the demeaning approach in order to facilitate the comparison with GPT’s approach in Section 4.1. 
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increase in cash flow increases investment by 28 cents, increases cash holdings by 33 cents, 

increases dividends by 1 cent, reduces the use of debt by 28 cents, and reduces the use of equity 

by 10 cents. To summarize, in response to a one-dollar increase in cash flow, the firms in our 

sample, on average, increase the uses of cash by roughly 60 cents and reduce reliance on external 

finance by roughly 40 cents. 

In addition, we find that in Panel A of Table 3, α
Inv

 + α
∆Cash

 + α
Div

 - α
∆D

 - α
∆E

 = 1. For the 

coefficients of other explanatory variables, we have β
Inv

 + β
∆Cash

 + β
Div

 - β
∆D

 - β
∆E

 = 0 and γ
 Inv

 + γ
 

∆Cash
 + γ

 Div
 - γ

 ∆D
 - γ

 ∆E
 = 0. These findings indicate that although we estimate Equations (2)–(6) 

separately, constraints (7)–(9) hold automatically because the dependent variables are linked 

implicitly through the cash-flow identity (Equation (1)), which holds in our data, by definition. 

While the OLS coefficients satisfy the aggregate constraints, their interpretation is still 

subject to the critique that cash flow contain information about future growth prospects. To 

mitigate this concern, we follow the approach outlined in Section 1.2 to decompose cash flow 

into a trend (permanent) and a cycle (transitory) component and focus on the cycle component, 

which should be less subject to this critique. The results are reported in Panel B of Table 3. 

We first notice that for both the cycle and trend components, the adding-up constraint is 

satisfied—the sum of the coefficients for each component across the various uses is very close to 

unity (recall that the signs of the cash flow coefficients for debt and equity issuance columns 

need to be flipped). Next, consistent with the argument that cash flow contains information about 

future growth, and that the trend component is much more subject to this concern than the cycle 

component, in Column (6), we find that the coefficient of the trend component (0.34) in the 

investment equation is 50% higher than that of the cycle component (0.23). Finally, focusing on 

the coefficients of the cycle component, we find that an additional dollar of transitory shock to 
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cash flow reduces external financing by about 41 cents and boosts the cash buffer by 36 cents. 

While the investment response is much lower (23 cents), it is still far from negligible.
19

 

 

3.2 Financial constraints and the allocation of cash flow 

How do financial constraints faced by firms affect their allocation of cash flow across 

various uses? Theoretically, we do not have a clear answer to this question, because existing 

models do not deliver clear predictions regarding whether firms facing more financing frictions 

should exhibit higher or lower cash flow sensitivity of investment than those facing less 

friction.
20

 There is almost no theory in this regard addressing the allocation of cash flow among 

its various uses. 

Because theory either does not exist or has no clear predictions, one would hope that 

empirical results would inform theory. However, for reasons discussed earlier, it has proved 

difficult to interpret the cash flow coefficients corresponding to various uses of cash. Thus, we 

proceed to document how firms facing different degrees of financial constraints allocate cash 

flow, using our cash flow components and a variety of classification schemes used in the 

literature.  

Specifically, we use classification schemes based on firm size (Ln(Assets)), the dividend 

payer dummy, credit ratings (e.g., Almeida, Campello, and Weisbach 2004), and more recent 

classifications suggested by Whited and Wu (2006; henceforth the WW index) and by Hadlock 
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 Much of the investment-cash flow sensitivity literature has focused on capital expenditure rather than on total 

investment (as defined in Table 1, the latter includes capital expenditure, acquisitions paid in cash, and other long-

term investment). As an additional analysis (untabulated), we separate capital expenditure from other forms of 

investment and find that the coefficient of the trend component is twice as large for capital expenditure than that of 

the cycle component. However, consistent with several studies (e.g., Almeida and Campello 2007), we find that a 

dollar of additional cycle component of cash flow increases capital expenditure by only 5 cents. 
20

 See, for example, the debate between Fazzari, Hubbard, and Petersen (2000) and Kaplan and Zingales (2000). 
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and Pierce (2010; henceforth the HP index).
21

 By construction, higher scores of the HP and WW 

indexes indicate that firms are more financially constrained. Each year, a firm is classified as 

more (less) financially constrained if its Ln(Assets) is in the bottom (top) three deciles of the 

distribution, it pays zero (nonzero) dividends, its HP index or WW index is in the top (bottom) 

three deciles of the distribution, or if it does not have (has) a credit rating. We then estimate 

Equations (2)–(6) for financially more constrained and less constrained firms, respectively, and 

tabulate the results in Table 4. While all control variables in Table 3 are still included in the new 

tests, we only report the coefficients of CF (panel A) and two CF components (panel B) for 

brevity.   

[Insert Table 4 here] 

We focus on the coefficients of CF_Cycle, which is less likely to be influenced by future 

growth opportunities than are CF and CF_Trend. Panel B of Table 4 reveals that the coefficient 

of the cycle component in the investment regression is lower, and that in the cash holding 

regression is higher, for firms that are classified as more financially constrained, than those for 

firms classified as less constrained. In other words, more financially constrained firms allocate 

more (less) additional cash flow towards cash holdings (investment) than less constrained 

firms.
22

 There is no consistently significant difference in the total amount of external financing 
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 The WW index is equal to -0.091 × CF/Assets - 0.062 × Dividend Payer + 0.021 × long-term debt/Assets - 0.044 × 

Ln(Assets) + 0.102 × industry median SaleG - 0.035 × SaleG. The HP index is defined as -0.737 × Ln(Assets) + 

0.043 × Ln(Assets)
2
 + 0.04 × Firm Age. Firm Age is the number of years elapsed since a firm enters the CRSP 

database. We find qualitatively similar results using the alternative classifications suggested by Kaplan and Zingales 

(1997) and Cleary (1999). The only exception is that firms classified as more constrained using Kaplan and 

Zingales’ (1997) index exhibit no significant difference in the investment response to CF_Cycle relative to their less 

constrained counterparts. We do not tabulate these results because Hadlock and Pierce (2010) show that in various 

contexts, Kaplan and Zingales’ (1997) index is a less reasonable measure of financial constraints than the HP index. 
22

 The differences in the Inv-CF_Cycle sensitivity between more and less constrained firms are statistically 

significant at conventional levels, except for the dividend payout classification scheme. Similar results are obtained 

when we measure investment using capital expenditure only: the cash-flow sensitivity of capital expenditure with 

respect to the cycle component is consistently lower for more constrained firms than for less constrained firms. The 

coefficients for less constrained firms are between 0.07 and 0.11, whereas those for more constrained firms are 

between 0.04 and 0.05. 
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that is substituted by additional cash flow for the two groups. However, a regularity consistently 

observed is that the more constrained firms substitute more (less) equity (debt) using additional 

cash flow than the less constrained ones. This is consistent with the possibility that more 

constrained firms, for example, smaller or younger firms, are likely to be more equity dependent. 

We now briefly speculate on these results, leaving the modeling challenge to theory. 

Perhaps the most surprising aspect of these results is that the financially less constrained firms 

exhibit higher investment-cash flow sensitivities than do the more constrained firms. The 

literature has usually assumed that the firms that are classified as “more constrained” are less 

able to access capital markets and face more financing frictions. If so, they should be unable to 

readily undertake all positive net present value (NPV) projects, and we should expect their 

investment to respond more positively to cash flow that does not reflect growth opportunities. 

However, more constrained firms face tighter financial constraints not only in the present but 

also in the future. Thus, one explanation for our results is that by adding to cash holdings and 

reducing external financing at the expense of more investment today, more constrained firms 

allocate liquidity optimally over time and preserve their ability to invest in the future.
23

  

An alternative explanation is that the less constrained firms overinvest: managers like 

projects, and financing is readily obtained for positive NPV projects. However, it may be 

difficult to convince investors to provide capital when projects do not have positive NPV, and 

these projects can only be financed with internal funds. Thus, higher cash flow leads to higher 

investment in pet projects, with some cash saved away for future pet projects. More constrained 

firms do not have enough funds to invest in all good projects anyway, so they do not overinvest 

today as the cash is valuable for future good projects.  
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 See Dasgupta and Sengupta (2007) for a model along these lines. 
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3.3 Additional analysis and robustness checks 

We conduct two additional tests to ensure that our main results are robust to alternative 

model specifications.
24

 While all control variables in Table 3 are still included in the new tests, 

we only report the coefficients of cash flow variables and the newly added variables for brevity. 

For the tests regarding the effects of financial constraints, we only tabulate the results obtained 

using the classification scheme based on firm size. Other classification schemes generate 

qualitatively similar results but are not reported to save space.  

[Insert Table 5 here] 

First, prior studies (e.g., Dasgupta, Noe, and Wang 2011) have shown that firms stage their 

investment response to cash flow shocks. For instance, a firm that experiences a positive cash 

flow shock may deploy excess cash flow to their cash reserves or reductions of external finance 

in the current period and then step up investment in subsequent periods by drawing down their 

cash holdings or raising more external capital. As a result, there could be a delay between the 

time cash flow is realized and the time the firm actually invest it. To account for the 

intertemporal allocation of cash flow, we augment Equations (2)–(6) by including two lags of the 

cash flow components.
25

 The estimated coefficients of the lagged cash flow components capture 

how the uses of cash flow today respond to an additional dollar of a cash flow component one 

and two years ago. The total response across different uses must sum to zero because the lagged 

cash flow components are predetermined variables. 

The results reported in Panel A of Table 5 show that the lagged cash flow components are 

significantly associated with the current level of investment. For the whole sample, Invt increases 

by 4 cents (0.03+0.01 = 0.04) and 5 cents (0.05+0.00 = 0.05) in response to one-dollar increases 
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 We thank the referee and the editor for suggesting the additional analysis. 
25

 Similar results (untabulated) are obtained if we include three lags of the cash flow components. The estimated 

coefficients of cash flow components at t-3 are close to zero. 
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in CF_Cycle and CF_Trend, respectively, in the previous two years. Moreover, ∆Casht (∆Dt) 

reacts negatively (positively) to lagged cash flows, indicating that lagged cash flows increase Invt 

indirectly through depleting cash balances and increasing debt issues at time t. Consistent with 

Dasgupta, Noe, and Wang (2011), we document that investment of less constrained firms is more 

responsive to lagged cash flow than that of more constrained firms. More importantly, compared 

with the findings reported in Tables 3 and 4, our results indicate that the inclusion of lagged cash 

flow components has no material impact on the estimated coefficients of CF_Cyclet and 

CF_Trendt. 

Second, firms may exhibit asymmetric responses to cash-flow shocks in positive and 

negative cash-flow years. For example, Allayannis and Mozumdar (2004) argue that firms with 

negative cash flow are able to make only essential investments, so that any further cutback in 

investment in response to further declines in cash flow becomes infeasible. As a result, one 

should expect the investment-cash flow sensitivity to be low in negative cash flow years. To 

investigate possible asymmetry in the allocation of cash flow, we include in the regressions NEG, 

which is a dummy variable that equals one if CF is negative and zero otherwise, and the 

interaction terms between NEG and the two cash flow components. The results reported in panel 

B of Table 5 suggest that firms with negative cash flow display lower investment-cash flow and 

cash-cash flow sensitivities than those with positive cash flow. Moreover, firms with negative 

cash flow have stronger substitutions between internal cash flow and external finance (i.e., more 

negative external finance-cash flow sensitivities), indicating that they tap external markets more 

for capital in response to further declines in cash flow. Less (more) constrained firms with 

negative cash flow rely more on debt (equity) financing to substitute the use of internal funds. 

The coefficients of CF_Cyclet and CF_Trendt, which capture the cash-flow sensitivities in 
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positive cash flow years, confirm our main results that more constrained firms allocate more 

(less) transitory cash flow to cash savings (investment) than do less constrained firms, suggesting 

that our findings are not primarily driven by the inclusion of negative cash-flow observations in 

the sample. 

 

4. Comparisons with Methodologies Used in Prior Studies 

4.1 Comparison with GPT 

Unlike our methodology that estimates Equations (2)–(6), which are implicitly linked 

through the cash-flow identity, as standalone equations, GPT argue that the equations should be 

estimated simultaneously with constraints (7)–(9) explicitly imposed. The authors show that 

forcing the constraints to hold leads to substantially different coefficient estimates than those 

obtained if the equations for various uses of cash flow are estimated separately. In this subsection, 

we compare our methodology with GPT’s. To save space, we tabulate the results of the 

comparison in the Internet Appendix (IA.2) of this article.  

GPT’s analysis relies on a cash-flow identity similar to Equation (1).
26

 However, unlike our 

study that only uses cash flow statements to define variables in the cash-flow identity, GPT 

define variables using data from different sources. Specifically, they employ balance sheet data 

to define ΔCash, the change in net working capital, net short-term debt issuances, and net long-
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 Their identity is -( ) ( ) ,
t t t t t t t t

Cash Div CAPX ACQUIS ASALES EQISSU RP LTD STD CF            where CAPX 

is net capital expenditures, ACQUIS is acquisitions, ASALES is sale of assets and investment, EQISSU stands for 

equity issuances, RP represents equity repurchases, ΔLTD is net long-term debt issuances, and ΔSTD is net short-

term debt issuances. Our Equation (1) is less detailed because several variables in Equation (1) consolidate some of 

the items in GPT’s equation. In particular, our measure of investment (Inv) aggregates capital expenditure (CAPX), 

acquisition (ACQUIS), and the sales of investment (ASALES). Our measure of net debt issuance (ΔD) captures funds 

from both short-term (ΔSTD) and long-term debt (ΔLTD) financing. In addition, ΔE is equal to the difference 

between two items in GPT’s equation, EQISSU and RP. Our purpose of consolidation is to simplify the empirical 

analysis and ease exposition. Untabulated robustness checks indicate that our results remain qualitatively the same if 

we use GPT’s cash-flow identity instead of Equation (1), so long as all items are defined properly using cash-flow 

statements. 
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term debt. They use income statement data to define cash flow and rely on cash flow statement 

data to define equity issuances and repurchases, investment items, and cash dividends (Table III 

of GPT, 737). As a result, their cash-flow identity generally does not hold in their data. The 

disturbance to GPT’s cash-flow identity is further magnified by their treatment of missing values 

in defining variables. GPT replace all missing values of the variables in the cash-flow identity by 

zeros. This unusual treatment of missing values boosts their sample size but increasingly worsens 

the cash-flow inequality because not all components in the identity have missing values at the 

same time in a given firm-year. 

We define variables in the cash-flow identity by closely following GPT’s definitions and 

their way of treating missing values. We obtain 221,119 firm-years, a sample size quite close to 

theirs (237,412 firm-years). We define DIF
GPT

 as the difference between the left-hand and right-

hand sides of GPT’s cash-flow identity, with all variables deflated by the beginning-of-period 

total assets. Summary statistics reveal that, although the mean and median values of DIF
GPT 

are 

close to zero (0.013 and 0.001, respectively), its distribution is widely dispersed, with a standard 

deviation equal to 0.396. Additional statistics indicate that the sample contains roughly 76% 

(25%) of observations with the absolute value of DIF
GPT

 larger than 1% (10%), confirming our 

conjecture that GPT’s cash-flow identity is severely violated in their data. 

We then use this large sample to estimate the cash-flow sensitivities of various uses of cash 

flow. Consistent with GPT, we document drastic changes in the estimated coefficients of cash 

flow when we move from unconstrained single-equation models to constrained system-of-

equations models. To check whether the changes in coefficient estimates are caused by 

estimation methods or inconsistently defined variables, we re-estimate Equations (2)–(6) 

simultaneously using the SUR method with constraints (7)–(9) imposed for our sample for which 
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cash-flow identity typically holds. Contrary to GPT, we find that the estimated coefficients (α, β, 

and γ), t-statistics, and R-squared values are almost identical to those reported in panel A of 

Table 3.
27

 This result is consistent with Greene (2012), who shows that SUR estimates are 

equivalent to equation-by-equation OLS estimates if the same set of explanatory variables is 

included in each equation. More importantly, our findings suggest that it is the severely 

unbalanced cash-flow identity in GPT’s data that drives the significant differences in the 

estimated cash-flow sensitivities between the unconstrained single-equation model and the 

constrained system-of-equations model.  

GPT also argue that it is indispensable to take into account the intertemporal dependencies 

within and across various uses of cash flow by adding lagged dependent variables.
28

 We thus 

augment Equations (2)–(6) by controlling for Invt-1, ΔCasht-1, Divt-1, ΔDt-1, and ΔEt-1. However, 

we find that the inclusion of lagged dependent variables has no material impact on the coefficient 

estimates of cash flow. Taken together, our analysis suggests that the importance of explicitly 

imposing adding-up constraints and including lagged dependent variables is hugely exaggerated 

by GPT’s reliance on a severely unbalanced cash-flow identity in their data. 

 

4.2 Estimating the cash-flow allocation using GMM estimators 

A well-known critique on cash-flow sensitivities in an OLS regression framework is that 

estimated coefficients are inconsistent because of the measurement errors associated with 

Tobin’s marginal q, which captures investment opportunities. Because the true marginal q cannot 

be observed, most previous studies use the average q as a proxy, which is computed as the 
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 The estimated coefficients and t-statistics are very similar but are not identical to those reported in panel A of 

Table 3 because the cash-flow identity (Equation (1)) does not hold perfectly in our data. Thus, imposing the linear 

constraints (7)–(9) explicitly can still make a minor difference. 
28

 For example, the current investment of a company may be affected by investment made, the change in cash 

holdings, and debt or equity issued last year. 
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market-to-book ratio (MB). Erickson and Whited (2000, 2002) show that the attenuation bias 

associated with mismeasured q affects the coefficient of the well-measured regressor, such as 

cash flow. Erickson and Whited (2000, 2002) propose a modified GMM methodology, which is 

based on higher-order moments, to address the measurement error in Tobin’s q. 

Appendix B derives the potential biases caused by the measurement errors and three 

different GMM estimators (GMM3, GMM4, and GMM5) proposed by Erickson and Whited 

(2000, 2002). These estimators are based on the third, fourth, and fifth moment conditions, 

respectively. GMM3 is exactly identified and its validity requires the rejection of the 

identification test. The validity of both GMM4 and GMM5 should be examined using 

overidentification tests because the number of moment equations involved is larger than that of 

unknown parameters. The GMM estimators are originally designed for cross-sectional data. To 

apply them to unbalanced panel structures, Erickson and Whited (2012) use a minimum distance 

estimator (MDE) to aggregate GMM estimates from different cross-sections. The final estimates 

are the weighted averages across the coefficients from different cross-sections with more 

accurate coefficients assigned with higher weights. 

The usefulness and reliability of the GMM estimators has been debated.  Almeida, 

Campello, and Galvao (2010) claim that fixed effects, error heteroskedasticity, or a low degree 

of data skewness can make the modified GMM methods generate inefficient and biased 

coefficients for both mismeasured and perfectly measured regressors.  However, Erikson and 

Whited (2012) argue that Almeida, Campello, and Galvao (2010) conclusions stem from an 

inaccurate computation of the estimator.  They propose using multiple starting values for the 

computation of GMM4 and GMM5, which requires numerical minimization of asymptotic 

variance functions. The usage of multiple different starting values ensures that GMM estimators 
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correspond to the global, rather than a local minimum. The adoption of multiple starting values 

does not affect the performance of GMM3 because it is exactly identified. 

So far, the debate has focused on the cash flow coefficient in the investment equation, 

rather than in a system-of-equations framework. If we estimate various equations separately and 

independently with GMM estimators using real data, it is difficult to judge whether GMM 

estimates are consistent because we do not know the true values of the cash flow coefficients in 

real data.
29

 However, in our integrated regression framework, if the GMM estimators are 

consistent, the coefficients of MB should add to zero across different equations, and the 

coefficients of cash flow should add to unity across different equations. Thus, by looking at the 

sum of coefficients across different equations, we provide an alternatively way of evaluating the 

performance of the GMM approach using real data. 

Each year we estimate Equations (2)–(6) using GMM3, GMM4, and GMM5. We use the 

minimum distance method to aggregate yearly coefficient estimates. To account for firm fixed 

effects, we apply the within transformation to the data. Following Erikson and Whited (2012), 

we report the results obtained using data both in the within-transformation form and level form.
30

 

[Insert Table 6 here] 

Panel A of Table 6 reports the GMM coefficients estimates of CF and MB for five 

equations using the within transformation form. The coefficients across five equations do not add 

to theoretical priors (one for CF and zero for MB). Erikson and Whited (2012) suggest that 

choosing multiple starting values for the coefficients can avoid local optima and extreme 
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Although Monte Carlo simulations may address the issue, the assumptions on which Monte Carlo simulations are 

based is likely to be inconsistent with what is the case in the real data.  
30

Within-transformation (transforming the observations for each firm into deviations from the firm-specific average) 

is a remedy for biases caused by the correlation between firm fixed effects and regressors. However, within 

transformation may cause the identification condition to be violated in the resulting model. Thus, Erickson and 

Whited (2000) use data in the level form. 
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estimates. Using their codes, we experiment with 101 (-0.1 to 0.5 with a step of 0.006) different 

starting values and obtain the estimates that minimize the objective functions. However, the 

results reveal that the sum of GMM4 or GMM5 coefficients of MB is far away from zero. The 

sum of coefficients of CF ranges between 0.79 and 0.86 for the three GMM estimators.
31

 In 

panel B of Table 6, we report the GMM coefficients obtained using data in the level form, from 

which we draw similar inferences. Overall, the GMM estimators cannot provide us with jointly 

consistent estimates as to how firms allocate cash flow across various uses. 

 

5. Conclusions 

We examine how firms allocate cash flow to corporate investment, cash holdings, 

dividends, and financing activities. We use the methodology of estimating the cash-flow 

sensitivities for the above uses of cash flow to determine how cash flow is allocated. When these 

cash-flow sensitivities are estimated in an OLS framework, the adding-up constraint that the 

cash-flow sensitivities across the various uses should add to unity is satisfied. However, one 

problem with the OLS approach is that it does not deal with the measurement error in Tobin’s q, 

which potentially leads to inconsistent estimates of the cash flow coefficients. This makes the 

interpretation of the cash-flow sensitivities difficult.  

We argue that one way to deal with the measurement error problem is to focus on the 

“transitory” component of cash flow that does not contain information about future growth. We 

show that the cycle component of cash flow obtained from a Beveridge-Nelson decomposition of 
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 We report the detailed yearly coefficient estimates for the investment regression (Equation (2)) in the Internet 

Appendix of this article (IA.3). Consistent with Almeida, Campello, and Galvao (2010), coefficients have extreme 

values in some years, suggesting that using multiple starting values fails to eliminate extreme estimates. In addition, 

some extreme estimates also have very small standard errors. Because the minimum distance algorithm assigns 

larger weights to the coefficients with small standard errors, extreme estimates with small standard errors dominate 

the final results. Furthermore, consistent with previous studies (e.g., Almeida and Campello 2007; Agca and 

Mozumda 2007), our sample passes both the identification and overidentification tests in only 10 out of 40 years.  
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cash flow has several desirable properties toward this end.  In addition, the coefficients of the 

cycle component satisfy the adding-up constraint. Thus, we provide a way in which the 

allocation of cash flow can be meaningfully studied in an OLS framework.  

Our main findings are as follows. Firms allocate a substantial part of an additional dollar of 

transitory cash flow to reduce external financing, suggesting that the “deleveraging” incentive is 

strong when profitability improves. They also tend to add a significant part of the additional 

dollar of cash flow to their cash holding. Very little is paid out as dividends. The resulting impact 

on investment impact is small—to the extent of about 20 cents to a dollar of additional cash flow. 

A very robust pattern is that, the financially more constrained firms invest less, accumulate more 

in cash holdings, and substitute more equity capital than do the financially less constrained firms. 

This result is consistent with the idea that financially more constrained firms expect to face 

tighter financial constraints in the future, thereby saving more cash out of additional cash flow 

for precautionary motives and enhancing the ability to raise external capital in the future.  

We show that our approach has methodological advantages over other approaches that have 

been proposed to deal with either the adding-up constraint or the measurement error problem. 

First, GPT show that imposing the adding-up constraint as a constraint and estimating the cash-

flow sensitivities simultaneously provides substantially different coefficients than those obtained 

when the equations are estimated independently. We show that the GPT claim is false, and their 

results are due to inconsistent data definitions that do not respect the cash-flow identity. To 

address the measurement error problem associated with OLS, higher-order GMM methods have 

been proposed, but their reliability have also been debated. We contribute to this literature by 

showing that the adding-constraint is violated by large amounts when these equations are 

estimated individually using the GMM estimators.  In other words, when applied to real data, the 
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GMM estimators fail to offer economically meaningful estimates of the cash flow allocation 

across various uses. 
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Table 1. Variables defined using the flow-of-funds data 
Variables are defined using flow-of-funds data of Compustat. The variable definitions vary according to the format code (scf) a firm follows in 

reporting flow-of-funds data. Effective for fiscal years ending July 15, 1988, SFAS #95 requires U.S. companies to report the statement of cash 

flows (scf = 7).  Prior to adoption of SFAS #95, companies may have reported one of the following statements: working capital statement (scf = 1), 

cash statement by source and use of funds (scf = 2), and cash statement by activity (scf = 3). Variables include the change in cash holdings 

(∆Cash), investment (Inv), the change in working capital (∆WC), cash dividends (Div), cash flow (CF), net debt issued (∆D), and net equity issued 

(∆E). The Compustat XPF variable names are italicized and provided in parentheses. PPE denotes property, plant, and equipment. 
 
 

Variables scf = 1 scf = 2 scf = 3 scf = 7 

Inv capital expenditure(capx) + increase in 

investment(ivch) + acquisition(aqc) + other uses of 

funds(fuseo) - sale of PPE(sppe) - sale of 

investment(siv)  

same as scf = 1 same as scf = 1 capital expenditure (capx) + increase in 

investment(ivch) + acquisition(aqc) - sale of 

PPE(sppe) - sale of investment(siv) - change in short-

term investment(ivstch) - other investing 

activities(ivaco) 
     

∆Cash cash and cash equivalents increase/decrease (chech) same as scf = 1 same as scf = 1 same as scf = 1 
     

Div cash dividends (dv) same as scf = 1 same as scf =1 same as scf = 1 
     

∆D long-term debt issuance(dltis) - long-term debt 

reduction(dltr) - changes in current debt(dlcch) 

long-term debt issuance(dltis) 

- long-term debt 

reduction(dltr) + changes in 

current debt(dlcch) 

same as scf = 2 same as scf = 2 

     

∆E sale of common and preferred stock (sstk) - 

purchase of common and preferred stock(prstkc) 

same as scf = 1 same as scf = 1 same as scf = 1 

     

∆WC change in working capital(wcapc) - change in working 

capital(wcapc) 

same as scf = 2 -change in account receivable(recch) - change in 

inventory(invch) - change in account payable(apalch) 

- accrued income taxes(txach) - other changes in 

assets and liabilities (aoloch) - other financing 

activities(fiao) 
     

CF income before extra items(ibc) + extra items & 

discontinued operation(xidoc) + depreciation & 

amortization(dpc) + deferred taxes(txdc) + equity in 

net loss(esubc) + gains in sale of PPE & 

investment(sppiv) + other funds from 

operation(fopo) + other sources of funds(fsrco) - 

∆WC 

same as scf = 1 same as scf = 1 income before extra items(ibc) + extra items & 

discontinued operation(xidoc) + depreciation & 

amortization(dpc) + deferred taxes(txdc) + equity in 

net loss(esubc) + gains in sale of PPE & 

investment(sppiv) + other funds from operation(fopo) 

+ exchange rate effect(exre) - ∆WC 
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Table 2. Summary statistics 
The sample consists of 46,991 firm-years jointly covered in Compustat and CRSP between 1971 and 

2011. The variables in the cash-flow identity (Equation (1)) include the change in cash holdings (∆Cash), 

investment (Inv), cash dividends (Div), cash flow (CF), net debt issued (∆D), and net equity issued (∆E). 

They are all deflated by the beginning-of-period total assets. DIF
Equation 1

 is the difference between the left-

hand and right-hand sides of Equation (1). Observations with |DIF
Equation 1

| >1% are deleted. CF_Cycle 

and CF_Trend are the cycle and the trend components of CF, respectively. Ln(Assets) is the natural log of 

the total book value of assets. MB is defined as the market value of assets divided by the book value of 

assets. Tangibility is the net PPE over total assets. Sales Growth is the change in net sales scaled by 

lagged net sales. Leverage is defined as total debt (the sum of short-term and long-term debt) divided by 

total assets. Dollar values are adjusted to the 2000 dollar value using the gross domestic product (GDP) 

deflator. Q1 and Q3 stand for the 25th and 75th percentiles of the distribution, respectively. All variables 

are winsorized at the top and bottom 1% of their distributions.  
 

     

Variables  Mean SD Minimum Q1 Median Q3 Maximum 

 

Inv  0.092 0.142 -0.373 0.023 0.064 0.128 2.274 

∆Cash  0.009 0.102 -0.478 -0.017 0.001 0.028 2.215 

Div  0.011 0.017 0 0 0 0.017 0.108 

∆D  0.014 0.110 -0.550 -0.022 0 0.029 1.647 

∆E  0.016 0.115 -0.146 -0.002 0 0.006 3.613 

CF  0.083 0.118 -0.752 0.029 0.088 0.147 0.705 

         

DIF
Equation1

  0 0.003 -0.010 0 0 0 0.010 

         

CF_Cycle  -0.002 0.079 -0.366 -0.031 -0.001 0.027 0.436 

CF_Trend  0.084 0.106 -0.472 0.037 0.085 0.137 0.472 

         

MB  1.659 1.119 0.549 1.022 1.313 1.862 8.471 

SaleG  0.132 0.358 -0.542 -0.019 0.081 0.201 2.855 

Ln(Assets)  5.401 2.094 0.980 3.805 5.331 6.894 10.745 

Leverage  0.215 0.187 0 0.042 0.192 0.332 0.797 

Tangibility  0.306 0.219 0.009 0.134 0.255 0.428 0.896 
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Table 3. The allocation of cash flow 
The data are from Compustat and CRSP for 1971–2011. The dependent variables are five uses of cash flow (CF), including the change in cash 

holdings (∆Cash), investment (Inv), cash dividends (Div), net debt issued (∆D), and net equity issued (∆E). CF_Cycle and CF_Trend are the cycle 

and the trend components of CF, respectively. Ln(Assets) is the natural log of the total book value of assets. MB is defined as the market value of 

assets divided by the book value of assets. Tangibility is the net PPE over total assets. Sales Growth is the change in net sales scaled by lagged net 

sales. Leverage is defined as total debt (the sum of short-term and long-term debt) divided by total assets. To estimate regressions with firm fixed 

effects in both panels, we demean the dependent and all independent variables in the equations. The constant term and year dummies are included 

in regressions but are not reported. Coefficients significant at the 10%, 5%, and 1% levels are indicated by *, **, and ***, respectively. The t-

statistics are presented in parentheses. Panel A examines how firms allocate the total cash flow. Panel B shows the respective allocations of the 

trend and cycle components of cash flow.  
 

 Panel A: Allocation of CF Panel B: Allocation of CF_Cycle and CF_Trend 

Dependent (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

variables Invt ∆Casht Divt ∆Dt ∆Et Invt ∆Casht Divt ∆Dt ∆Et 

CFt 0.28*** 0.33*** 0.01*** -0.28*** -0.10***      

 (45.1) (69.8) (21.5) (-55.4) (-20.0)      

CF_Cyclet       0.23*** 0.36*** 0.01*** -0.32*** -0.09*** 

      (30.0) (61.8) (10.9) (-50.5) (-13.5) 

CF_Trendt       0.34*** 0.29*** 0.01*** -0.23*** -0.12*** 

      (40.6) (45.4) (23.2) (-34.4) (-17.9) 

MBt-1 0.02*** 0.01*** 0.00*** 0.01*** 0.02*** 0.02*** 0.01*** 0.00*** 0.01*** 0.02*** 

 (31.6) (11.9) (17.9) (13.4) (37.2) (31.4) (12.1) (17.7) (13.2) (37.3) 

SaleGt-1 0.03*** 0.00 -0.00*** 0.02*** 0.01*** 0.03*** 0.00 -0.00*** 0.02*** 0.01*** 

 (14.5) (1.1) (-5.8) (11.4) (6.7) (14.8) (0.8) (-5.5) (11.7) (6.6) 

Ln(Assets) t-1 -0.02*** -0.01*** 0.00*** -0.01*** -0.03*** -0.02*** -0.01*** 0.00*** -0.01*** -0.03*** 

 (-20.2) (-17.6) (3.5) (-8.3) (-32.2) (-19.0) (-18.5) (4.6) (-7.2) (-32.5) 

Leveraget-1 -0.15*** 0.01** -0.02*** -0.22*** 0.06*** -0.15*** 0.01 -0.02*** -0.22*** 0.06*** 

 (-29.6) (2.3) (-40.7) (-52.8) (14.8) (-28.4) (1.3) (-39.5) (-51.6) (14.2) 

Tangibilityt-1 0.04*** 0.07*** 0.00*** 0.07*** 0.04*** 0.03*** 0.08*** 0.00*** 0.07*** 0.04*** 

 (5.4) (13.3) (3.7) (12.0) (7.4) (4.9) (13.8) (3.2) (11.5) (7.6) 

N 46,991 46,991 46,991 46,991 46,991 46,991 46,991 46,991 46,991 46,991 

R
2
 0.13 0.11 0.07 0.13 0.07 0.13 0.12 0.07 0.13 0.07 
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Table 4. Financial constraints and the allocation of cash flow 
The data are from Compustat and CRSP for 1971–2011. The dependent variables are five uses of cash flow (CF), including the change in cash 

holdings (∆Cash), investment (Inv), cash dividends (Div), net debt issued (∆D), and net equity issued (∆E). CF_Cycle and CF_Trend are the cycle 

and the trend components of CF, respectively. Each year a firm is classified as financially more constrained if its Ln(Assets) is below the 30th 

percentile, its HP index or the WW index is above the 70th percentile, it pays no dividends, or it has no credit rating. A firm is classified as 

financially less constrained if its Ln(Assets) is above the 70th percentile, its HP index or the WW index is below the 30th percentile, it pays 

dividends, or it has a credit rating. The models in Table 3 are estimated separately for more and less constrained subsamples. All control variables 

in Table 3 are included in the regressions. Only the coefficients of CF (panel A) and the two CF components (panel B) are reported for brevity. To 

estimate the regressions with firm fixed effects in both panels, we demean the dependent and all independent variables in the equations. The 

constant term and year dummies are included in regressions but are not reported. Coefficients significant at the 10%, 5%, and 1% levels are 

indicated by *, **, and ***, respectively. The t-statistics are presented in parentheses.  
 

Panel A: Allocation of CF 

  More constrained firms Less constrained firms 

Constraint   (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

measures:  Invt ∆Casht Divt ∆Dt ∆Et Invt ∆Casht Divt ∆Dt ∆Et 

            

Ln(Assets) CFt 0.21
***

 0.38
***

 0.01
***

 -0.28
***

 -0.12
***

 0.45
***

 0.24
***

 0.02
***

 -0.25
***

 -0.04
***

 

  (24.2) (46.6) (10.0) (-41.4) (-14.0) (27.3) (29.3) (13.9) (-17.7) (-5.4) 

            

HP Index CFt 0.24
***

 0.37
***

 0.01
***

 -0.27
***

 -0.12
***

 0.38
***

 0.26
***

 0.02
***

 -0.29
***

 -0.05
***

 

  (24.1) (41.0) (9.3) (-35.9) (-10.7) (27.0) (33.6) (15.4) (-23.1) (-8.8) 

            

WW Index CFt 0.20
***

 0.36
***

 0.00
***

 -0.29
***

 -0.15
***

 0.45
***

 0.26
***

 0.02
***

 -0.23
***

 -0.04
***

 

  (22.7) (43.9) (8.7) (-41.2) (-16.2) (26.9) (32.6) (15.3) (-16.4) (-5.1) 

            

Dividend Payer CFt 0.26
***

 0.35
***

 0.00
***

 -0.27
***

 -0.11
***

 0.32
***

 0.30
***

 0.02
***

 -0.31
***

 -0.05
***

 

  (34.2) (52.4) (9.0) (-44.5) (-14.3) (29.0) (49.6) (20.6) (-31.9) (-9.3) 

            

Credit Rating CFt 0.26
***

 0.35
***

 0.01
***

 -0.28
***

 -0.10
***

 0.43
***

 0.23
***

 0.02
***

 -0.27
***

 -0.04
***

 

  (38.7) (63.4) (17.1) (-54.8) (-17.2) (24.1) (23.4) (12.4) (-16.6) (-5.3) 
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Table 4 (Continued) 
 

Panel B: Allocation of CF_Cycle and CF_Trend 

  More constrained firms Less constrained firms 

Constraint   (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

measures:  Invt ∆Casht Divt ∆Dt ∆Et Invt ∆Casht Divt ∆Dt ∆Et 

            

Ln(Assets) CF_Cyclet  0.18
***

 0.41
***

 0.00
***

 -0.30
***

 -0.10
***

 0.35
***

 0.27
***

 0.01
***

 -0.33
***

 -0.04
***

 

  (16.9) (41.2) (5.9) (-36.5) (-9.5) (16.5) (25.7) (6.3) (-18.0) (-4.0) 

 CF_Trendt  0.26
***

 0.33
***

 0.01
***

 -0.25
***

 -0.15
***

 0.54
***

 0.21
***

 0.02
***

 -0.19
***

 -0.04
***

 

  (20.8) (29.3) (9.9) (-26.2) (-12.3) (26.6) (21.0) (15.4) (-10.5) (-4.6) 

            

HP Index CF_Cyclet  0.20
***

 0.40
***

 0.00
***

 -0.29
***

 -0.10
***

 0.29
***

 0.30
***

 0.01
***

 -0.36
***

 -0.04
***

 

  (16.5) (35.1) (5.9) (-30.9) (-7.6) (16.5) (31.9) (7.5) (-23.4) (-5.2) 

 CF_Trendt  0.28
***

 0.34
***

 0.01
***

 -0.24
***

 -0.13
***

 0.49
***

 0.21
***

 0.03
***

 -0.20
***

 -0.07
***

 

  (20.9) (27.6) (8.6) (-23.9) (-9.0) (26.6) (20.6) (17.2) (-12.5) (-8.9) 

            

WW Index CF_Cyclet  0.17
***

 0.39
***

 0.00
***

 -0.32
***

 -0.12
***

 0.35
***

 0.29
***

 0.01
***

 -0.31
***

 -0.03
***

 

  (16.2) (39.4) (5.3) (-36.9) (-10.8) (16.2) (27.8) (7.9) (-16.9) (-3.8) 

 CF_Trendt  0.24
***

 0.31
***

 0.01
***

 -0.26
***

 -0.18
***

 0.53
***

 0.24
***

 0.03
***

 -0.17
***

 -0.04
***

 

  (19.3) (27.3) (8.5) (-25.7) (-14.6) (26.2) (24.6) (16.1) (-9.7) (-4.4) 

            

Dividend Payer CF_Cyclet  0.22
***

 0.38
***

 0.00
***

 -0.30
***

 -0.09
***

 0.26
***

 0.33
***

 0.01
***

 -0.36
***

 -0.03
***

 

  (23.2) (45.9) (4.9) (-39.8) (-10.1) (18.7) (43.9) (10.5) (-30.6) (-5.7) 

 CF_Trendt  0.32
***

 0.31
***

 0.00
***

 -0.24
***

 -0.13
***

 0.40
***

 0.27
***

 0.03
***

 -0.24
***

 -0.06
***

 

  (30.2) (34.2) (9.4) (-28.0) (-12.1) (27.5) (33.8) (22.5) (-19.2) (-9.2) 

            

Credit Rating CF_Cyclet  0.21
***

 0.38
***

 0.01
***

 -0.32
***

 -0.09
***

 0.36
***

 0.27
***

 0.01
***

 -0.32
***

 -0.04
***

 

  (26.1) (55.5) (8.9) (-49.4) (-11.9) (16.0) (21.6) (6.2) (-15.2) (-3.9) 

 CF_Trendt  0.31
***

 0.31
***

 0.01
***

 -0.24
***

 -0.12
***

 0.51
***

 0.19
***

 0.02
***

 -0.23
***

 -0.05
***

 

  (34.5) (41.6) (18.2) (-34.3) (-15.0) (22.2) (15.3) (13.4) (-11.0) (-4.5) 
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Table 5. Additional analysis and robustness checks 
The dependent variables are five uses of cash flow (CF), including the change in cash holdings (∆Cash), 

investment (Inv), cash dividends (Div), net debt issued (∆D), and net equity issued (∆E). CF_Cycle and 

CF_Trend are the cycle and the trend components of CF, respectively. Firms are classified into 

financially more and less constrained groups using firm size. The constant term, year dummies, and the 

control variables in Table 3 are included in the estimation, but their coefficients are not reported. To 

estimate the regressions with firm fixed effects in both panels, we demean the dependent and all 

independent variables in the equations. Panel A investigates intertemporal allocation of cash flow by 

including two lags of the cash flow components. Panel B examines the asymmetry in the cash-flow 

allocation by including NEG, which is a dummy variable that equals one if CF is negative and zero 

otherwise, and the interaction terms between NEG and the two cash-flow components. Coefficients 

significant at the 10%, 5%, and 1% levels are indicated by *, **, and ***, respectively. The t-statistics are 

not reported. 
  (1) (2) (3) (4) (5) 

Samples Variables Invt ∆Casht Divt ∆Dt ∆Et 

Panel A: Controlling for lagged cash flow 

Full sample CF_Cyclet 0.23*** 0.37*** 0.01*** -0.31*** -0.08*** 

 CF_Trendt 0.31*** 0.30*** 0.01*** -0.25*** -0.12*** 

 CF_Cyclet-1 0.03*** -0.03*** 0.00*** 0.01** -0.00 

 CF_Trendt-1 0.05*** -0.02*** 0.00*** 0.03*** 0.01 

 CF_Cyclet-2 0.01*** -0.00*** 0.00*** 0.01*** -0.00** 

 CF_Trendt-2 0.00*** -0.00 0.00** 0.00*** -0.00 

       

More constrained CF_Cyclet 0.18*** 0.41*** 0.00*** -0.30*** -0.10*** 

 CF_Trendt 0.24*** 0.33*** 0.01*** -0.26*** -0.15*** 

 CF_Cyclet-1 0.02*** -0.02*** 0.00*** 0.00 0.00 

 CF_Trendt-1 0.03*** -0.00 0.00*** 0.01** 0.01 

 CF_Cyclet-2 0.00 -0.01** 0.00 0.00 -0.01** 

 CF_Trendt-2 0.00 -0.00 0.00 0.00 -0.00 

       

Less constrained CF_Cyclet 0.36*** 0.27*** 0.01*** -0.33*** -0.04*** 

 CF_Trendt 0.49*** 0.24*** 0.02*** -0.21*** -0.03*** 

 CF_Cyclet-1 0.08*** -0.04*** 0.00*** 0.05*** -0.01 

 CF_Trendt-1 0.08*** -0.06*** 0.00*** 0.04*** -0.01* 

 CF_Cyclet-2 0.03*** 0.01* 0.00 0.04*** -0.00 

 CF_Trendt-2 0.05*** -0.00 0.00 0.05*** -0.00 

Panel B: Asymmetries in cash flow allocations between positive and negative CF years 
Full sample CF_Cyclet  0.35*** 0.43*** 0.01*** -0.21*** 0.01 

 CF_Trendt  0.47*** 0.35*** 0.02*** -0.14*** -0.02* 

 Cyclet×NEGt -0.30*** -0.23*** -0.01*** -0.21*** -0.33*** 

 Trendt×NEGt -0.34*** -0.21*** -0.02*** -0.18*** -0.38*** 

 NEGt 0.01*** -0.01*** 0.00*** 0.02*** -0.01*** 

       

More constrained CF_Cyclet  0.28*** 0.54*** 0.01*** -0.21*** 0.03* 

 CF_Trendt  0.39*** 0.49*** 0.01*** -0.16*** 0.05** 

 Cyclet×NEGt -0.19*** -0.32*** -0.01*** -0.16*** -0.36*** 

 Trendt×NEGt -0.26*** -0.35*** -0.01*** -0.14*** -0.49*** 

 NEGt 0.01 0.00 0.00 0.01*** -0.01* 

       

Less constrained CF_Cyclet  0.45*** 0.29*** 0.01*** -0.22*** -0.02** 

 CF_Trendt  0.58*** 0.22*** 0.03*** -0.13*** -0.03*** 

 Cyclet×NEGt -0.92*** -0.20*** -0.02** -0.97*** -0.16*** 

 Trendt×NEGt -0.68*** -0.19*** -0.03*** -0.72*** -0.18*** 

 NEGt -0.00 0.00 0.00 -0.00 -0.00 
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Table 6. Coefficients of CF and MB estimated using GMM estimators  
The data are from Compustat and CRSP for 1971–2011. The dependent variables are five uses of cash flow (CF), including the change in cash 

holdings (∆Cash), investment (Inv), cash dividends (Div), net debt issued (∆D), and net equity issued (∆E). Each year we estimate Equations (2)–

(6) using GMM3, GMM4, and GMM5, which are defined in Appendix B. All control variables in Table 3 are included in the estimation. Only the 

coefficients of CF and MB are reported. We use the minimum distance method to aggregate yearly coefficient estimates. To account for the firm 

fixed effects, we apply the within transformation to the data and report the results in panel A. Panel B reports the results obtained using data in the 

level form. Standard errors are included in parentheses. Sum is the sum of the coefficients of MB or CF across five equations. 

 

 Coefficients of MB Coefficients of CF 

 Inv ∆Cash Div ∆D ∆E Sum Inv ∆Cash Div ∆D ∆E Sum 

Panel A: Within transformation form 

GMM3 -88.31 0.03 0.00 38.9 -19.73 -107.46 0.26 0.16 0.01 -0.28 -0.09 0.79 

 (0.00) (0.01) (0.00) (0.00) (0.00)  (0.02) (0.02) (0.00) (0.02) (0.01)  

GMM4 -2.92 0.05 0.00 -4.04 -9.54 10.71 0.25 0.22 0.01 -0.28 -0.10 0.86 

 (0.00) (0.00) (0.00) (0.00) (0.00)  (0.01) (0.01) (0.00) (0.01) (0.01)  

GMM5 0.08 0.00 0.00 2.34 0.00 -2.26 0.25 0.20 0.01 -0.24 -0.11 0.81 

 (0.00) (0.00) (0.00) (0.00) (0.00)  (0.01) (0.01) (0.00) (0.01) (0.01)  

Panel B: Level form 

GMM3 0.11 0.11 0.02 0.04 0.17 0.02 0.27 0.09 0.01 -0.19 -0.23 0.79 

 (0.01) (0.01) (0.00) (0.01) (0.01)  (0.02) (0.02) (0.00) (0.02) (0.02)  

GMM4 -6.27 -5.50 0.00 0.69 3.00 -15.45 0.29 0.15 0.02 -0.19 -0.21 0.85 

 (0.00) (0.00) (0.00) (0.00) (0.00)  (0.02) (0.01) (0.00) (0.01) (0.02)  

GMM5 -4.52 1.28 -0.48 0.00 -1.26 -2.46 0.29 0.18 0.02 -0.21 -0.09 0.79 

 (0.00) (0.00) (0.00) (0.00) (0.00)  (0.02) (0.01) (0.00) (0.01) (0.01)  
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Appendix A. The BN Decomposition 
 

To implement the BN decomposition, ty  is fitted using an ( , )ARMA p q model. Then the trend/cycle 

components are calculated using Equations (11) and (13). However, the calculation process of trend and 

cycle components is often complicated as the limiting forecast in Equation (11) contains infinite sums. 

Morley (2002) simplifies the calculation of BN decomposition by applying the state-space approach to the 

forecasting model for ( ).ty    Specifically, suppose ( )ty   is a liner combination of the elements 

of a 1k state vector tX : 

                       1 2( ) [ , ... ]t k ty h h h X   ,                          (A1) 

where tX is modeled as the first-order stochastic difference equation: 1t t tX FX    and ~ (0, )t N  . 

All of the eigenvalues of F are less than unity and F is invertible. Then the expected j -period-ahead 

forecast of the ( )ty   is 

                   1 2[( )] [ , ... ] [ ]j

t t j k t tE y h h h F E X   .                    (A2) 

[ ]t tE X  can be obtained via Kalman filter, and the filtered estimate is denoted as 
|t tX . Applying (A2) 

directly into the definition of trend component (11), we can have the general form of BN trend as 

                   
1

1 2 |[ , ... ] (1 )t t k t ty h h h F F X    .                        (A3) 

Thus, the general form of BN cycle is written as 

                  
1

1 2 |[ , ... ] (1 )t t t k t tc y h h h F F X      .                    (A4) 

Following Morley, Nelson, and Zivot (2003), we calculate the BN decomposition by fitting the first 

difference of unscaled cash flow series with an (2,2)ARMA model 

   
2

1 1 2 2 1 1 2 2( ) ( ) ( ) , ~ . . . (0, )t t t t t t ty y y i i d N                         .     (A5) 

The calculation of (2,2)ARMA is straightforward because it has ( )ty   as the first element of the 

state vector tX : 

                

11 2 1 2

1 2

1

1 2

1 0 0 0 0

0 0 0 0

0 0 1 0 0

t t t

t t

t t t

t t

y y

y y

     

 

  

 



 



 

         
         
       
      
      

      

.              (A6) 

Then the BN trend of unscaled cash flow ty  is 

                      
1

|[1 0 0 0] (1 )t t t ty F F X    .                   (A7) 

The corresponding BN cycle is 

                    
1

|[1 0 0 0] (1 )t t t t tc y F F X      .                (A8) 
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Appendix B. GMM Estimators 
 

To understand the potential biases caused by measurement errors, consider a cross-section single-equation 

model as follows: 

             
i i i i

y z u     ,                            (B1)   

                               
i i i

x    ,                               (B2)      

where
iy  is the dependent variable, iz is the vector of perfectly measured explanatory variables, such as 

cash flow, 
i is the unobserved marginal Q, and 

ix  is the average Q, which proxies for
i . 

By substituting (B2) into (B1), we have
i i i iy z x     , where 

i i iu    . The correlation between 
ix  

and 
i

 causes the estimate of  to be biased downward (attenuation bias). If there is a positive correlation 

between the mismeasured Q and the well-measured regressor (cash flow), the attenuation bias causes the 

coefficient of the well-measured regressor to be biased upward. To derive the GMM estimates, Erickson 

and Whited (2000, 2002) first “partial out” the perfectly measured variables ( iz ) in (B1) and (B2): 

                       i i y i i
y z u     ,

                               (B3) 

                        i i x i i
x z      ,

                               (B4)
 

where 1( , , ) [( )] [( ( , , )]y x i i i i i iE z z E z y x      and 
i i iz     . The GMM estimators are calculated using 

the moment equations of 
i i yy z  and 

i i xx z  , which are functions of unknown   and the moments of 

( iu , i , i ). There are three second-order moment equations: 

                   
2 2 2 2

[( ) ] ( ) ( )
i i y i i

E y z E E u     ,
                        (B5) 

                   
2

[( )( )] ( )
i i y i i x i

E y z x z E      ,
                        (B6)                

                    
2 2 2

[( ) ] ( ) ( )
i i x i i

E x z E E     .
                        (B7) 

The third-order product moment equations comprise two equations with two unknowns: 

                   
2 2 3

[( ) ( )] ( )
i i y i i x i

E y z x z E      ,
                      (B8) 

                    
2 3

[( )( ) ] ( )
i i y i i x i

E y z x z E      .
                      (B9) 

Thus, we can have 2 2
[( ) ( )] / [( )( ) ]

i i y i i x i i y i i x
E y z x z E y z x z         if 0  and 

3
( ) 0

i
E   . The 

condition 
3

( ) 0
i

E    is called an identification test. The estimated GMM3 estimator,  , is exactly 

identified and its validity requires the rejection of the identification test. An overidentified equation 

system can be obtained by combining the above second-order and third-order moment equations together 

with additional fourth-order moment equations, which include only one additional new parameter, 4( )iE  : 

             
3 3 4 2 2

[( ) ( )] ( ) 3 ( ) ( )
i i y i i x i i i

E y z x z E E E u        ,
                (B10) 

    
2 2 2 4 2 2 2 2 2

[( ) ( ) ] [ ( ) ( ) ( )] ( )[ ( ) ( )]
i i y i i x i i i i i i

E y z x z E E E u E u E E            ,
     (B11) 

             
3 4 2 2

[( )( ) ] [ ( ) 3 ( ) ( )]
i i y i i x i i i

E y z x z E E E         .
               (B12) 

GMM4 can then be estimated by numerically minimizing a quadratic form of asymptotic variance. 

Similarly, we can have GMM5 estimates, which additionally utilize the equations for the fifth-order 

product moments and the third-order nonproduct moments. To examine the validity of both GMM4 and 

GMM5, overidentification tests should be performed because the number of moment equations involved 

is larger than that of unknown parameters.   



Internet Appendix for  

“Cash Flow Sensitivities and the Allocation of Internal Cash Flow” 

 

 1 



IA.1 The equivalence of SUR and OLS estimates when the regressors are identical across 
different equations 
 
This appendix derives that SUR (seemingly unrelated regressions) estimates are equivalent to 
equation-by-equation OLS estimates if the same set of explanatory variables is included in each 
equation of a system-of-equations framework.  
 
Consider the following equations: 
 

1 1 1 1

2 2 2 2

0 0
0 0 0

0 0M M M M

y X
y X

X

y X

β ε
β ε

β ε

β ε

⋅ ⋅ ⋅       
       ⋅ ⋅       
       ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
       = + = +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       
       ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
       
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       

       ⋅ ⋅ ⋅       

 

 
( )E εε ′ = Ω , where TIΩ = Σ⊗  and [ ], , 1, 2,...,ij i j MσΣ = = . When the regressors are identical 

across different equations, SUR estimates β  (system of equations) and OLS estimates β̂  are 
numerically equivalent and equally efficient.  
 
 
Proof: 
 

*
1

*
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*

*
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0 0 0 0 0 0

0 0 0 0

M

M

X X
X X

X I X

X X
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1 * 1

* 1

1 *
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M T
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The SUR estimator is therefore 
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Note that this theorem holds regardless of the correlation among the disturbances across different 
equations. 
 
 
Reference 
Greene, W. H. 2012. Econometric Analysis. Seventh edition. Upper Saddle River: Prentice-Hall, 
Inc. 
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IA.2 Comparison with Gatchev, Pulvino, and Tarhan (2010; GPT hereafter) 
 
To reconcile our findings with GPT’s, we reproduce their analysis using their cash flow identity 
as follows. 

( ) ( ) ,t t t t t t t tCash Div CAPX ACQUIS ASALES EQISSU RP LTD STD CF∆ + + + − − − − ∆ + ∆ =  (GPT)  
where CAPX is net capital expenditures, ACQUIS is acquisitions, ASALES is sale of assets and 
investment, EQISSU stands for equity issuances, RP represents equity repurchases, ΔLTD is net 
long-term debt issuances, and ΔSTD is net short-term debt issuances.   

GPT’s cash flow identity appears more detailed than our equation (1) because several 
variables in equation (1) consolidate some of the items in equation (GPT).1  Our purpose of 
consolidation is to simplify the empirical analysis and ease exposition.  Untabulated robustness 
checks indicate that our results remain qualitatively the same if we use equation (GPT) instead of 
equation (1), so long as all items are defined properly using cash flow statements. 

While the length of the cash flow identity is unimportant, the definitions of variables in the 
identity do matter.  To ensure that equation (1) holds in the data for each firm each year, we rely 
solely on cash flow statements in defining variables.  In contrast, GPT define variables in 
equation (GPT) using data from different sources.  Specifically, they use balance sheet data to 
define ΔCash, the change in net working capital, ΔSTD, and ΔLTD.  They use income statement 
data to define cash flow, and rely on cash flow statement data to define equity issuances and 
repurchases, investment items, and cash dividends (Table III of GPT, page 737).  As a result, 
their cash flow identity generally does not hold in the data.  The disturbance to equality in 
equation (GPT) is further magnified by GPT’s treatment of missing values in defining variables.  
GPT replace all missing values of the variables in equation (GPT) by zeros.2  This unusual 
treatment of missing values boosts their sample size to 237,412 firm-years, but increasingly 
worsens the cash flow inequality since not all components in equation (GPT) have missing 
values at the same time in a given firm-year. 

We define variables in equation (GPT) by closely following GPT’s definitions and their 
way of treating missing values.  We end up with 221,119 firm-years, which are quite close to the 
size of their sample (237,412 firm-years).  Table IA.2.1 reports the summary statistics of 
variables in equation (GPT) for this sample, which are comparable to those reported in Table IV 
of GPT.3  We also tabulate the statistics of DIFGPT, which is defined as the difference between 
the left-hand and right-hand sides of equation (GPT), with all variables being deflated by the 
beginning-of-period total assets.  The results reveal that, although the mean and median values of 

1 In particular, our measure of investment (Inv) aggregates capital expenditure (CAPX), acquisition (ACQUIS), and 
the sales of investment (ASALES).  Our measure of net debt issuance (ΔD) captures funds from both short-term 
(ΔSTD) and long-term debt (ΔLTD) financing.  In addition, ΔE is equal to the difference between two items in 
equation (GPT), EQISSU and RP. 
2 For instance, without setting missing values to zero, their measure of cash flow can only be computed for roughly 
124,406 firm-years for 1952-2007 in Compustat because of missing values in operating income, interest expenses, 
taxes, or the change in net working capital.  In addition, GPT define a few variables, such as EQISSU and RP, over 
1952-2007 using cash flow statement data.  However, because Compustat cash flow statement data are only 
available from 1971 onwards, they set all missing values between 1952 and 1970 to zero.  In footnote 9 of their 
paper, GPT suggest that their results are not qualitatively affected if they drop the observations with missing 
Compustat variables instead of setting them to zero.  This is not surprising, however, given that the identity is still 
violated due to inconsistent definitions using data from different sources. 
3 The figures reported in IA.2.1 are not identical to those in GPT’s Table IV due to the slight difference in sample 
size and the way of handling extreme observations (winsorization). 
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DIFGPT are close to zero (0.013 and 0.001, respectively), its distribution is widely dispersed, with 
a standard deviation equal to 0.396.  Additional statistics (untabulated) indicate that the sample 
contains roughly 76% (25%) of observations with the absolute value of DIFGPT larger than 1% 
(10%) of total assets, confirming our conjecture that the cash flow identity (equation (GPT)) is 
severely violated in GPT’s data. 

We then use this large sample to estimate the cash flow sensitivities of various uses of cash 
flows in equation (GPT).4  Consistent with GPT, we document drastic changes in the estimated 
coefficients of cash flow when we move from unconstrained single-equation models to 
constrained system-of-equations models.  This result is untabulated but available upon request.  
To check whether the changes in coefficient estimates are caused by estimation methods or 
inconsistently defined variables, we re-estimate equations (2)-(6) simultaneously using the SUR 
method with constraints (7)-(9) imposed for our sample where cash flow identity holds generally.  
The results are reported in Panel A of Table IA.2.2. 

Contrary to GPT, we find that the estimated coefficients (α, β, and γ), t-statistics, and R-
squared values are almost identical to those reported in Panel A of Table 3.5  This result is 
consistent with Greene (2012) who shows that SUR estimates are equivalent to equation-by-
equation OLS estimates if the same set of explanatory variables is included in each equation.  
More importantly, our findings suggest that it is the severely unbalanced cash flow identity in 
GPT’s data that drives the significant differences in the estimated cash flow sensitivities between 
the unconstrained single-equation model and the constrained system-of-equations model.  

GPT also argue that it is indispensable to take into account the intertemporal dependencies 
within and across various uses of cash flow when estimating cash flow sensitivities.  For 
example, the current investment of a company may be affected by investment made last year, the 
change in cash holdings, and debt or equity issued last year.  Without incorporating lagged 
dependent variables into equations (2)-(6), the estimation may suffer from model 
misspecification and omitted variable biases.  Thus, to account for the interdependent nature of 
corporate policies, we augment equations (2)-(6) by adding lagged dependent variables (Invt-1, 
ΔCasht-1, Divt-1, ΔDt-1, and ΔEt-1).  We then estimate five equations both as unconstrained 
standalone equations using OLS and as constrained system-of-equations using SUR.6  Again, we 
find that the coefficients obtained using the two approaches are almost identical.  We thus only 
report the results obtained using unconstrained standalone equations in Panel B of Table IA.2.2.   
This finding confirms our earlier inference that linear constraints are redundant if the cash flow 
identity holds in the data.  Furthermore, we find that the inclusion of lagged dependent variables 
has no material impact on the coefficient estimates of cash flow.  This result indicates that 
omitted variable biases associated with lagged dependent variables are almost negligible and far 
less significant than those proposed by GPT.  Taken together, our analysis suggests that the 
importance of explicitly imposing adding-up constraints and adding lagged dependent variables 
is hugely exaggerated by GPT’s reliance on a severely unbalanced cash flow identity in their 
data. 
 

4 In GPT’s regression analysis (reported in their Tables V-X), all variables in equation (GPT) are unscaled.  Instead, 
we follow the common practice by scaling the variables using total assets to mitigate the heterogeneity concerns. 
5 The estimated coefficients and t-statistics are very similar but not identical to those reported in Panel A of Table 3 
because the cash flow identity (equation (1)) does not hold perfectly in our data.  Thus, imposing the linear 
constraints (7)-(9) explicitly can still make a minor difference. 
6 Apart from constraints (7)-(9), we also impose five additional constraints that the coefficients of the five lagged 
(predetermined) dependent variables sum to zero across equations. 
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Table IA.2.1 Summary statistics of GPT’s sample 
The sample contains the firms from Compustat for 1952-2007. The sampling process follows Gatchev, 
Pulvino, and Tarhan (2010). The variables are defined following GPT’s Table III.  DIFGPT is the 
difference between the left-hand and right-hand sides of equation (GPT).  Q1 and Q3, stand for the 25th 
and 75th percentiles of the distribution, respectively.  All variables are deflated by the beginning-of-
period total assets and winsorized at the top and bottom 1% of their distributions. 
 

     
Variables  Mean Standard 

Deviation 
Minimum Q1 Median Q3 Maximum 

CAPX  0.093 0.139 0 0.020 0.050 0.105 0.913 
ACQUIS  0.024 0.092 -0.004 0 0 0 0.698 
ASALES  0.006 0.024 0 0 0 0.002 0.198 
∆Cash  0.069 0.382 -0.457 -0.023 0 0.041 2.636 
Div  0.008 0.021 0 0 0 0.007 0.173 
∆LTD  0.033 0.183 -0.442 -0.015 0 0.034 1.104 
∆STD  0.012 0.124 -0.445 -0.007 0 0.018 0.725 
EQISSU  0.182 0.711 0 0 0.001 0.020 5.461 
RP  0.008 0.028 0 0 0 0 0.198 
CF  -0.045 0.473 -3.269 -0.039 0.052 0.126 0.585 
         
DIFGPT  0.013 0.396 -7.620 -0.031 0.001 0.035 7.517 

 
 
 
Reference 
Gatchev, V., T. Pulvino, and V. Tarhan. 2010. The interdependent and intertemporal nature of 
financial decisions: An application to cash flow sensitivities. Journal of Finance 65: 725-63. 
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Table IA.2.2 Estimating cash flow sensitivities with linear constraints and lagged dependent variables 
The data are from Compustat and CRSP for 1971–2011. The dependent variables are five uses of cash flow (CF), which include the change in 
cash holdings (∆Cash), investment (Inv), cash dividends (Div), net debt issued (∆D), and net equity issued (∆E).  Ln(Assets) is the natural log of 
the total book value of assets.  MB is defined as the market value of assets divided by the book value of assets.  Tangibility is the net PPE over 
total assets.  Sales Growth is the change in net sales scaled by lagged net sales.  Leverage is defined as total debt (the sum of short-term and long-
term debt) divided by total assets.  To estimate regressions with firm fixed effects in both panels, we demean the dependent and all independent 
variables in the equations. The constant term and year dummies are included in regressions but not reported. Coefficients significant at the 10%, 
5%, and 1% levels are indicated by *, **, and ***, respectively. The t-statistics are presented in parentheses.  Panel A reports the results obtained 
using SUR with constraints (7)-(9).  Panel B estimates equations using OLS separately, without linear constraints. 
 

 Panel A: System of equations with linear constraints Panel B: Standalone equations without constraints 
Dependent (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Variables Invt ∆Casht Divt ∆Dt ∆Et Invt ∆Casht Divt ∆Dt ∆Et 
CFt 0.28*** 0.33*** 0.01*** -0.28*** -0.10*** 0.26*** 0.33*** 0.01*** -0.29*** -0.10*** 
 (45.3) (69.9) (21.5) (-55.2) (-20.2) (42.7) (70.5) (18.6) (-56.7) (-20.0) 
MBt-1 0.02*** 0.01*** 0.00*** 0.01*** 0.02*** 0.02*** 0.01*** 0.00*** 0.01*** 0.02*** 
 (31.6) (11.9) (18.0) (13.5) (37.2) (28.4) (18.1) (10.9) (12.6) (38.6) 
SaleGt-1 0.03*** 0.00 -0.00*** 0.02*** 0.01*** 0.02*** 0.01*** -0.00*** 0.01*** 0.01*** 
 (14.5) (1.1) (-5.8) (11.3) (6.7) (9.6) (6.3) (-4.7) (9.1) (7.9) 
Ln(Assets) t-1 -0.02*** -0.01*** 0.00*** -0.01*** -0.03*** -0.02*** -0.01*** 0.00*** -0.01*** -0.03*** 
 (-20.1) (-17.7) (3.5) (-8.1) (-32.2) (-21.7) (-17.4) (2.6) (-9.4) (-32.4) 
Leveraget-1 -0.15*** 0.01** -0.02*** -0.22*** 0.06*** -0.15*** 0.00 -0.01*** -0.22*** 0.06*** 
 (-29.5) (2.3) (-40.7) (-52.6) (14.6) (-29.0) (0.8) (-31.9) (-49.6) (12.5) 
Tangibilityt-1 0.04*** 0.07*** 0.00*** 0.07*** 0.04*** 0.05*** 0.05*** 0.00*** 0.06*** 0.04*** 
 (5.3) (13.4) (3.7) (11.9) (7.5) (7.4) (8.5) (3.0) (10.5) (6.4) 
Invt-1      0.07*** -0.02*** 0.00*** 0.06*** -0.00 
      (12.9) (-3.8) (3.6) (13.5) (-1.1) 
∆Cash t-1      0.13*** -0.14*** 0.00*** 0.01*** -0.03*** 
      (24.5) (-35.9) (4.0) (2.6) (-5.8) 
Divt-1      -0.03 -0.28*** 0.35*** 0.15*** -0.11*** 
      (-0.8) (-9.0) (134.0) (4.4) (-3.1) 
∆Dt-1      -0.02*** 0.01 -0.00*** -0.03*** 0.01*** 
      (-3.1) (1.5) (-3.6) (-5.6) (2.9) 
∆Et-1      -0.06*** 0.02*** -0.00*** -0.03*** -0.01* 
      (-14.3) (6.9) (-10.5) (-9.9) (-1.8) 
Observations 46,991 46,991 46,991 46,991 46,991 46,991 46,991 46,991 46,991 46,991 
R-squared 0.13 0.11 0.07 0.13 0.07 0.14 0.15 0.33 0.13 0.08 
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IA.3 OLS and GMM coefficients for investment equation (within transformation) 
We transform the observations for each firm into deviations from firm-specific average (within 
transformation). Then, each year we estimate the investment equation and obtain coefficients (marked in 
bold) using the GMM3, GMM4, and GMM5. To aggregate yearly coefficient estimates, we use minimum 
distance method (Erickson and Whited (2012)) for GMM estimators. The numbers reported at the end of 
the Appendix are those can be found in the investment equation of the Panel A (within transformation 
form) in Table 6. The instances in which both identification and over-identification are satisfied are 
highlighted in grey. The test statistics for Identification tests and J tests are reported with their P-values. 
Standard errors are included in parentheses under the estimated parameters. 
 

 ID J Test Coefficients of MB Coefficients of CF 
Year Test GMM4 GMM5 GMM3 GMM4 GMM5 GMM3 GMM4 GMM5 
1972 2.19 0.28 5.13 0.63 1.32 0.20 -1.80 -4.33 -0.23 

 (0.33) (0.87) (0.40) (1.27) (1.94) (0.32) (4.73) (7.74) (1.24) 
1973 0.39 4.00 4.89 0.06 0.05 0.04 0.23 0.26 0.28 

 (0.82) (0.14) (0.43) (0.17) (0.02) (0.02) (0.49) (0.16) (0.15) 
1974 1.37 3.18 4.87 -0.11 0.10 0.08 0.95 0.35 0.42 

 (0.50) (0.20) (0.43) (0.17) (0.10) (0.07) (0.46) (0.30) (0.20) 
1975 0.20 0.43 6.23 -0.20 0.00 0.01 0.37 0.35 0.34 

 (0.91) (0.81) (0.28) (0.93) (0.07) (0.07) (0.17) (0.09) (0.09) 
1976 1.90 0.81 10.51 0.19 0.03 0.40 0.45 0.48 0.41 

 (0.39) (0.67) (0.06) (0.25) (0.04) (0.11) (0.19) (0.13) (0.28) 
1977 0.25 0.08 2.37 1.27 -3.02 -0.08 -1.02 4.28 0.65 

 (0.88) (0.96) (0.80) (10.85) 0.00 (0.07) (13.34) (1.47) (0.11) 
1978 7.31 1.48 10.20 0.07 0.84 0.06 0.49 0.18 0.50 

 (0.03) (0.48) (0.07) (0.02) (0.73) (0.01) (0.10) (0.43) (0.11) 
1979 2.95 1.34 4.73 -0.12 -0.58 -0.01 0.44 0.56 0.42 

 (0.23) (0.51) (0.45) (0.12) (0.60) (0.03) (0.13) (0.40) (0.09) 
1980 0.64 3.10 9.96 1.57 0.41 0.47 -0.72 0.10 0.06 

 (0.72) (0.21) (0.08) (12.53) (0.21) (0.15) (8.79) (0.36) (0.34) 
1981 5.81 1.28 6.57 -0.22 -3.26 0.67 1.25 9.25 -1.07 

 (0.05) (0.53) (0.25) (0.27) 0.00 (0.97) (0.78) (2.22) (2.44) 
1982 0.19 1.05 4.39 0.23 0.01 0.59 0.39 0.56 0.11 

 (0.91) (0.59) (0.49) (1.11) (0.05) (0.19) (0.78) (0.16) (0.34) 
1983 8.59 1.39 3.84 0.27 0.09 0.11 0.09 0.24 0.23 

 (0.01) (0.50) (0.57) (0.17) (0.03) (0.02) (0.12) (0.13) (0.13) 
1984 4.56 0.58 4.30 0.19 0.34 0.31 0.12 0.09 0.09 

 (0.10) (0.75) (0.51) (0.21) (0.23) (0.11) (0.07) (0.09) (0.08) 
1985 4.23 2.66 6.24 1.29 -2.16 0.77 -0.13 0.65 -0.01 

 (0.12) (0.27) (0.28) (5.02) (6.37) (0.51) (1.18) (1.51) (0.18) 
1986 8.48 3.92 7.07 0.56 6.43 1.44 0.12 -0.71 0.00 

 (0.01) (0.14) (0.22) (0.45) 0.00 (0.96) (0.14) (1.42) (0.34) 
1987 2.26 0.06 4.57 0.08 0.06 0.10 0.24 0.24 0.25 

 (0.32) (0.97) (0.47) (0.10) (0.04) (0.03) (0.05) (0.05) (0.06) 
1988 1.72 1.63 6.21 0.89 0.05 0.06 -0.32 0.21 0.21 

 (0.42) (0.44) (0.29) (3.98) (0.02) (0.04) (2.49) (0.04) (0.05) 
1989 0.15 0.83 2.46 0.12 0.09 1.29 0.28 0.29 0.03 

 (0.93) (0.66) (0.78) (0.53) (0.05) (1.41) (0.13) (0.04) (0.42) 
1990 0.68 1.63 4.86 0.09 0.06 0.06 0.27 0.27 0.27 

 (0.71) (0.44) (0.43) (0.11) (0.02) (0.02) (0.04) (0.04) (0.04) 
1991 2.63 0.79 4.13 0.85 0.60 0.24 0.13 0.16 0.22 
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 (0.27) (0.67) (0.53) (1.01) (0.25) (0.23) (0.29) (0.19) (0.09) 
1992 7.73 0.64 5.53 1.97 0.52 0.13 0.06 0.17 0.21 

 (0.02) (0.72) (0.36) (11.04) (0.32) (0.04) (1.23) (0.18) (0.06) 
1993 1.67 1.16 3.52 0.06 0.16 0.12 0.23 0.19 0.20 

 (0.43) (0.56) (0.62) (0.13) (0.07) (0.04) (0.07) (0.06) (0.05) 
1994 5.34 2.83 3.62 0.15 0.08 0.08 0.25 0.28 0.28 

 (0.07) (0.24) (0.60) (0.09) (0.04) (0.03) (0.07) (0.05) (0.05) 
1995 1.69 2.84 4.41 0.24 0.08 0.09 0.12 0.23 0.22 

 (0.43) (0.24) (0.49) (0.13) (0.06) (0.02) (0.11) (0.05) (0.05) 
1996 7.58 2.75 5.93 0.34 0.28 0.29 0.11 0.15 0.14 

 (0.02) (0.25) (0.31) (0.08) (0.05) (0.05) (0.13) (0.11) (0.11) 
1997 1.63 1.45 3.71 0.35 0.25 0.05 0.32 0.33 0.34 

 (0.44) (0.49) (0.59) (0.13) (0.03) (0.05) (0.12) (0.09) (0.05) 
1998 5.90 1.91 5.29 0.77 0.72 0.38 -0.41 -0.36 -0.06 

 (0.05) (0.39) (0.38) (1.12) (0.51) (0.14) (0.98) (0.53) (0.17) 
1999 4.58 4.67 9.51 0.47 0.04 0.20 -0.22 0.40 0.17 

 (0.10) (0.10) (0.09) (0.23) (0.10) (0.03) (0.36) (0.13) (0.08) 
2000 7.41 2.52 2.60 0.14 0.08 0.09 0.24 0.27 0.27 

 (0.02) (0.28) (0.76) (0.05) (0.03) (0.02) (0.08) (0.06) (0.06) 
2001 2.97 1.52 2.91 0.15 0.21 0.09 0.09 0.01 0.20 

 (0.23) (0.47) (0.71) (0.15) (0.10) (0.03) (0.23) (0.19) (0.06) 
2002 6.27 1.09 5.82 -89.85 0.42 0.13 52.74 0.07 0.24 

 (0.04) (0.58) (0.32) 0.00 (0.24) (0.05) (27.22) (0.21) (0.06) 
2003 2.27 0.29 0.96 0.12 0.12 0.11 0.20 0.20 0.21 

 (0.32) (0.86) (0.97) (0.09) (0.03) (0.02) (0.15) (0.06) (0.06) 
2004 5.34 2.01 7.27 0.29 2.53 0.27 -0.18 -4.23 -0.14 

 (0.07) (0.37) (0.20) (0.12) (4.12) (0.08) (0.23) (7.26) (0.17) 
2005 3.18 1.71 3.64 0.24 0.16 0.14 -0.01 0.10 0.13 

 (0.20) (0.43) (0.60) (0.12) (0.03) (0.01) (0.21) (0.10) (0.08) 
2006 1.31 3.14 4.23 0.60 0.23 0.53 -0.45 0.06 -0.36 

 (0.52) (0.21) (0.52) (0.31) (0.42) (0.27) (0.51) (0.63) (0.42) 
2007 1.28 0.20 3.00 -0.30 -0.54 0.18 0.54 0.79 0.04 

 (0.53) (0.91) (0.70) (0.42) (0.32) (0.09) (0.44) (0.38) (0.12) 
2008 6.32 0.94 5.35 -0.04 -0.05 0.14 0.40 0.42 0.12 

 (0.04) (0.62) (0.38) (0.03) (0.03) (0.07) (0.07) (0.06) (0.13) 
2009 2.98 1.74 2.11 -0.62 0.22 0.23 0.80 0.14 0.13 

 (0.23) (0.42) (0.83) (1.04) (0.07) (0.08) (0.86) (0.08) (0.09) 
2010 0.96 3.45 4.64 0.07 -0.05 0.00 0.28 0.32 0.30 

 (0.62) (0.18) (0.46) (0.23) (0.05) (0.01) (0.09) (0.06) (0.06) 
2011 1.16 0.43 3.42 0.00 0.06 0.05 0.25 0.18 0.19 

 (0.56) (0.81) (0.64) (0.09) (0.02) (0.01) (0.10) (0.04) (0.04) 
Fama-MacBeth/Minimum distance -88.31 -2.92 0.08 0.26 0.25 0.25 

Standard errors (0.00) (0.00) (0.00) (0.02) (0.01) (0.01) 
 
 
Reference 
Erickson, T., and T. M. Whited. 2012. Treating measurement error in Tobin's q. Review of 
Financial Studies 25: 1286-329. 
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