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Abstract: We develop a suitable reweighting approach to deal with outliers when
maximun-likelihood estimation is used to estimate latent class models. In such a
context, the BM algorithm is used and the presence of singularities and spurious
local maxima is common. The proposed method is motivated by an application
aimed at finding clusters of offending behaviours.
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1 Introduction

We address the problem of the outliers detection and robust estimation in
the context of latent class (LC) models for categorical data. These mod-
els, introduced by Lanzarsfeld and Henry (1968), represent a valid tool to
explain the association between the categorical variables by assuming the
existence of a finite set of latent classes. Maximum likelihood estimates of
the model parameters are found by using the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) and inference is based on the solu-
tion corresponding to the largest value of the log-likelihood at convergence.
As for other finite mixture models (McLachlan and Peel, 2000), strategies
to single out the global maximum (e.g. Aitkin et al., 1981; McCutheon,
2002) still need improvements. The likelihood may be multimodal and to
deal with this problem, a random rule may be applied for the initialization
of the EM algorithm. This method, when repeated a suitable number of
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times, allows us to explore the parameter space adequately, provided that
the mumber of parameters is reduced.

We propose a joint use of the trimmed maximum likelihood approach as
that developed by Garcia-Escudero et al. (2014) and of appropriate con-
straints on the parameters of the latent variable and on the parameters
of the conditional distribution of the response variables given the latent
variable (Bartolucci et al., 2007: Pennoni, 2014). The aim is to obtain a
potential improved fit of the LC model. This may also allows us to cope
with the problem of the multimodality of the likelihood function.

We illustrate the proposed method by considering the sample data from 1
in 13 sample of all England and Wales offenders born in 1953 related to
the dates of conviction and type of offenses from age 16 up to age 20.

2 Proposal

We denote by Y7, ..., Y, the categorical response variables with categories
labeled from 0 to ¢—1. It includes the case of binary responses when ¢ = 2.
We suppose the existence of a latent variable U with % levels, u=1,... k.
The model parameters are the conditional probabilities of a single response
variable y; given the latent variable denoted by ¢,,, and the weights 7,

=1
— Pjylu = 1.

Lay=
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for each latent class. Obviously, we have > _ 7, = 1 and 3!
Given a sequence of responses y = (.. . .. Yy ). the conditional distribution
of all responses given the latent variable is given by

;

p(ylw) = T diypu

J=i

and, then, the manifest probability of this sequence is equal to

p(y) = muplylu).

Fhe posterior probability that an individual with response vector y be-
longs to the latent class u is used to construct the allocation rule for each
mdividual to a latent class.

In order to estimate the model parameters on the basis of the observations
Yi, 1= 1....,n, we maximize the weighted log-likelihood

() = E wi log p(y; ).
i
where the weight w; is close to 0 for outliers and 0 denotes the vector of
the model parameters. This maximization is based on the EM algorithm
and uses the weighted complete log-likelihood, which is equal to
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where 7(-) is the indicator function and z;, is an indicator variable equal
to 1if subject 7 belongs to latent class « and to 0 otherwise.

The estimation Is carried out by using a modified version of the EM algo-
rithm. In the standard case, the EM is performed in the following way. At
the E-step, we consider the conditional expected value of the frequency of
subjects in cach latent ('i;xSH v having value y for the j-th response variable.
These arc computed at the current value of the parameters. At the M-step,
the complete data log-likelihood is maximized by using exact solutions for
T, and for ¢y, -

The optimal nmumber of latent classes is selected by considering the Bayesian
information criterion (BIC, Schwarz, 1978) which involves a penalty for the
number of parameters

BID =34 log(n)#par,

where, for a given model, is the maximum of the log-likelihood and #par
is the number of free model parameters. According to this criterion, the
number of classes corresponding to the minimum of the index has to be
selected. The estimmated proportion of classification error is also considered
for each latent class which states how well the latent classes are separated.
Here, we propose to use a similar strategy as that developed by Garcia-
Escudero et al. (2014): see also Nevkov et al. (2007). First, we identify the
number of latent classes according to the BIC index. Then, we perform
the modified version of the EM algorithm for a large number of random
starting values. In the E-step, the observations with the smallest likelihood
contribution are tentatively discarded, by setting the corresponding poste-
rior probabilities z;, equal to zero for all w = 1,...,k. In the M-step the
model parameters are updated on the basis of the selected subsample of ob-
servations. After applyving the trimmed EM steps, the associated weighted
likelihood is evaluated, by setting w; = 0 for the discarded observations
and w,; = 1 for the selected subsample. until convergence of the algorithm.

3 Application

In criminology research a common task is that of clustering criminal behav-
jors accounting for their evolution in time. For this aim, LC models may
be effectively used. We apply the proposed methodology for the analysis
of criminal data referred to males and females offenders in England and
Wales. More precisely, the data refer to the 1953 cohort (Francis et al.,
2010) and concern 38 binary different indicators of criminal activity. We
consider only the voung males and females within the cohort age range
16-20 years old, which covers n = 4558 cases.

We first fit the LC model for an increasing number of latent classes k from
1 to 11. Table 1 shows the results of this preliminary fitting, in terms of
maximun log-likelihood and the corresponding values of the BIC index
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According to this criterion, we select 8 latent classes. The latent classes
identified according to the estimated conditional probabilities are the fol-
lowing:

1. shoplifting (9,8%);

o

criminal damage (7,7%):

3. theft by employee: with some fraud and forgery (3.6%):

e

theft (17,7%);

versatile of type 2: theft from vehicles, handling and receiving stolen
200ds, burglary and going equipped (24,9%):

Ut

6. versatile of type 1: burglary, commercial burglary theft. criminal dam-
age with some burglary, theft, violence, shoplifting (8.8%):

7. violence (13,4%);

8. fraud and forgery with some theft, handling and receiving stolen
coods (14,1%).

We then apply the proposed trimmed estimation strategy, assuming the
selected number of latent classes & = 8. for different trimming levels, 0.25%,
0.9%. and 2%. Preliminary results are reported in Table 2 for the 0.25%
trimming level, which leads to discard 12 observations. For these cases
(outlier), the table reports the corresponding residual deviance.

I particular, the first case refers to a subject convicted for violence, bur-
olary, going equipped and robbery. Case 1884 was convicted for violence,
robbery and theft. Case 181 was convicted for violence, sexual offenses, han-
dling and receiving stolen goods, criminal damage and perjury /attempting
to pervert, course of justice. The group cases made of id’s 1581, 3255, 4264,
1265 refoer to subjects convicted for violence. sexual consensual, burglary
(dwelling), going equipped, theft, theft from vehicles, shoplifting.

The group cases made of id’s 1566, 1f )M 2564 for violence, sexual with
above 16 years old, burglary (dwelling), theft, theft from person, theft by
cmployee and eriminal damage. Case 371 ) was convicted for violence, sexual
with above 16 years old, sexual under 16 years ol 1 ;nul sexual consensual,
burglary (dwelling), burglary (other) and theft from vehicles. Case 1361
was convicted for lethal violence, sexual under l() vears old, going equipped,
shoplifting and criminal damage. These are cases mostly characterized by
sexual offenses with violence and property offenses. This cluster collects
the most dangerous individuals, which were not properly identified in the
standard LC model.

Finally, it is worth noting that the results of the trinnned estimation strat-

coy may also be used to define sensible starting values for the 15M algorithm
in the standard approach, so as to prevent the problem of the multimodality
ol the model log-likelihood.
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TABLE 1. Selection of the number of Tatent classes for the LC model; k 1s the
pumber of latent classes, ¢ is the corresponding maximurm log-like slihood, #Fpar is
the corresponding nunmber of parameters, and index BIC is defined in Section 2.

; ( Hpar BIC
1 -23315.36 34 46916,41
9 -923006,21 69  46592,18
3 -22671,11 104 46216,07
4 -22498.11 139 46164,17
5 -92294,99 174 46052,00
6 -22162,30 209 46080,72
7 -22089,01 244 46228,23
8 -21748,02 279 45840,32
9 2177568 514 46189,74
10 -21588,08 349 46108,62
11 -21539,43 384 46305,41

TABLE 2. Cases with high log-likelihood contribution.

ID numbe » —20*(contribution)

707 68,0585
1864 52,8958

181 49,2723
1581 48,3980
3255 48,3979
4264 48,3979
4265 48,3979
3719 46,9193
1566 45.1571
1576 45,1571
2564 45,1571
1361 42,3028
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