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Abstract 

Affordable energy storage is crucial for a variety of technologies. One option is 

sodium ion batteries (NIBs) for which, however, suitable anode materials are still a 

problem. We report on the application of a promising new class of materials, 

polyoxometallates (POMs), as an anode in NIBs. Specifically Na6[V10O28]·16H2O has 

been synthesized and characterized. Galvanostatic tests revealed a reversible 

capacity of approximately 276 mA h g-1 with an average discharge potential of 0.4 V, 

as well as a high cycling stability. The underlying mechanism was rationalized to be 

an insertion of Na+ in between the [V10O28]6-·anions rather than an intercalation into a 

crystal structure; the accompanying reduction of 𝑉𝑉+𝑉𝑉 to 𝑉𝑉+𝐼𝐼𝐼𝐼 was confirmed by X-Ray 

Photoelectron Spectroscopy. Finally, a working full-cell set-up is presented with the 

POM as the anode, substantiating the claim that Na6[V10O28]·16H2O is a promising 

option for future high-performing sodium ion batteries.  
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Introduction 

In recent years, research in the field of electrochemical energy storage has 

intensified as the need to reliably and economically store electricity has been 

identified as a crucial factor in a broad variety of fields. This includes portable 

electronic devices and electrically powered vehicles, which require high power and 

energy densities. Another area where energy storage will play a key role is the 

stabilization of the electricity grid. As green ways to harvest electricity from 

renewable sources like wind or solar power become increasingly popular, 

economical solutions to smoothen electricity peaks are paramount for these green 

technologies to play a major role in the energy mix. However, for such large-scale 

applications the crucial factor is neither energy nor power density, but rather cost. 

Thus, novel battery technologies that reduce the storage cost are being researched. 

One promising candidate is sodium ion batteries, due to the relative abundance of 

sodium in the earth’s crust and, consequently, its lower cost.1–3 Furthermore, in 

sodium ion batteries copper, current collectors can be replaced with the cheaper 

aluminium as sodium, as opposed to lithium, does not alloy with aluminium.4–6  

However, for sodium ion batteries to become a viable alternative to lithium ion 

batteries, novel materials need to be developed that can compete with regard to 

capacity and cycle behaviour. For cathode materials, layered oxides seem to be the 

material of choice, with a variety of sodium metal oxides (metal: manganese, cobalt, 

vanadium, iron) being researched, including different compositions / doping of 

various metals.6–10 So far, anode materials seem to be a big challenge, as graphite 

anodes commercially employed in lithium ion batteries are unsuitable for sodium ion 

batteries owing to the graphite interlayer spacing that is not sufficient to intercalate 

sodium ions.11 Thus, several prospective anode materials are being researched 



3 
 

which fulfil the requirements for commercial applications of sodium ion batteries12, a 

selection of which is presented in Figure 1. Research focuses on different storage 

mechanisms for Na+-ions in the active material. Recent works on intercalation 

materials include amorphous TiO2
13, and layered P2-Na0.66[Li0.22Ti0.78]O2

14. The first 

forms NaxTiO2 in-situ with an approximate capacity of 140 mA h g-1 at potentials 

between 0.9 and 2.0 V, while the latter provides 130 mAh g-1 (C/10) between 0.4 – 

1.25 V. Phase change materials are mainly metal oxides; titanium-based materials 

seem promising with capacities of approximately 200 mA h g-1 for Na2Ti3O7
15; 

however, only five cycles are shown. Balaya et. al. reported 180 mA h g-1 for this 

material, with 120 mA h g-1 after 50 cycles.16 Li4Ti5O12 was found to provide 155 mA 

h g-1 at an average potential of 0.75V.17 Furthermore, phosphate-based NASICON 

materials have also been explored recently.18 Metal-based anodes react with Na+-

ions by forming alloys; often, a carbon matrix is added to alleviate volume changes. 

Oh et. al., for example, described the application of tin-carbon in a sodium ion full 

cell19. Although alloy materials are considered to be safe anodes with a high 

capacity, cycle stability is usually poor, due to the large volume changes during (de-

)insertion, which is often alleviated by introducing a carbon matrix.20,21 Qian et. al. 

showed that Sb/C composites can deliver around 600 mA h g-1 (100 mA g-1).22 Work 

in the field of carbon-based materials focuses on hard-carbon, which consists of 

partially graphitized areas and irregular regions forming cavities. Stevens et. al. 

found that, for graphitic regions, an intercalation mechanism takes place up to a 

capacity of around 100 mA h g-1, followed by an insertion of Na+ in the cavities, 

which contributes additional 150 mA h g-1 (C/10).23 While hard-carbons combine 

reasonable capacities with high stabilities, safety problems arise due to the low 

insertion voltage which facilitates Na-plating. Another class of materials that has 
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received some attention recently is organic materials. Zhao et. al. and Park et. al., for 

example, recently reported 225 and 300 mA h g-1, respectively, for Na2C8H4O4 at 0.4 

V24,25; here, disodium terephthalate reacts to tetrasodium terephthalate through a 

radical intermediate.  

Polyoxometalates (POM) are anionic metal-oxo clusters of early transition metal 

ions in high oxidation states and they exhibit unique structural and compositional 

properties leading to potential applications in various areas such as catalysis, 

magnetism, electro- and photochemistry, as well as in materials science26–31. It has 

been shown that POMs can also be used as electrode material in lithium ion 

batteries and that their multi-electron redox properties could provide a good capacity 

for lithium-based systems, especially for the Keggin-based POM structures32–37. A 

unique characteristic of POMs as electrode material in batteries is that they do not 

consist of extended crystal structures, but rather of isolated, discrete polyanions, 

making them an intermediate between intercalation electrodes and organic radical 

electrodes32,34,36. Thus, POMs tap into the same advantageous mechanism like 

sodium terephthalate and hard-carbons, i.e., Na+-insertion in intercluster cavities. 

Therefore, strain on crystal structures and resulting structural deterioration can be 

excluded as potential reasons for capacity fading. Moreover, safety features can be 

enhanced when this insertion occurs at a higher potential than the one at which Na-

plating occurs. 

Even though polyoxometalates have been tested for lithium ion batteries, no 

reports of polyoxometalate-based electrodes for sodium ion batteries have been 

published. In this work, we report on the properties of the decavanadate ion in 

Na6[V10O28]·16H2O POM, and show its suitability as anode in sodium ion batteries. 
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We first describe its structural properties, and then discuss the electrochemical data, 

including cyclic voltammetry and charge / discharge performance.  

 

Results and Discussion 

Material characterization of Na6[V10O28]·16H2O. 51V-NMR measurements revealed 

the characteristic signals of the decavanadate, [V10O28]6- (−514, −500 and −424 

ppm), indicating the successful synthesis of the targeted structure (Fig. 2a)38,39. This 

was confirmed by the FTIR spectrum, which showed the typical absorption bands of 

[V10O28]6-, with asym. stretching at 847 and 746, and symmetric stretching at 521  

cm−1 being attributable to the V-O-V bridging, while the mode at 956 cm−1 is 

attributed to the terminal V=Ostretch bond (Fig. 2b)40,41. Inductively coupled plasma 

analysis revealed Na-V ratio of 0.59, confirming the expected stoichiometry within 

the POM.  

TGA of the POM shows a weight loss starting already at temperatures slightly 

above room temperature, which continues until 220 °C (Fig. 2c). The total weight 

loss of 21% is consistent with the removal of 16 water molecules from the structure, 

indicating the presence of 16 molecules of crystal water per formula unit. Thus, the 

overall chemical formula is Na6[V10O28]·16H2O. As the coated electrode were dried 

at 110 °C under vacuum for several hours, it can safely be assumed that no crystal 

water is present after the drying process, and the chemical composition of the POM 

on the electrode is hence Na6[V10O28]. 

Surface area of the material, as measured by BET, was 21 m2 g-1; the 

corresponding adsorption-desorption isotherms can be seen in Figure 3a. Pore-size 

distribution, as elucidated by BJH, ranges from ~ 3 - 5 nm, indicating mesoporosity, 
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for the majority of pores; for the remainder, pore size varies between ~ 5 - 160 nm 

(Fig. 3b). 

According to FESEM and HRTEM measurements (Fig. 4), the Na6[V10O28]·16H2O 

POM shows a rod-like morphology in the solid state; the micro-rods have a diameter 

of 0.5–1 µm and a typical length of several micrometers, resulting in a typical aspect 

ratio of 5-10. According to TEM, the POM microrods are polycrystalline, and show a 

random orientation with d-spacings of 0.769 and 0.333 nm. These findings are 

consistent with the ICSD data file 66807. As discussed above, one characteristic of 

discrete POMs is that they do not consist of extended crystal structures, but rather 

consist of individual, well-separated polyanions. In the case of decavanadate 

examined in this work, the clusters consist of [V10O28]6- units, comprising ten edge-

shared VO6 octahedra. As discussed in previous publications about the lithium salt, 

Li6[V10O28], crystal water molecules and counter cations separate the individual 

[V10O28]6- ions. Upon heating, the crystal water can be removed so that the material 

consists of individual [V10O28]6- clusters separated only by the alkali ions. As the 

same [V10O28]6- units make up the structure of Na6[V10O28]·16H2O, and TGA shows 

that crystal water molecules can be removed from the structure, the same overall 

behavior is assumed. The lattice would then consist only of sodium ions separating 

the individual [V10O28]6- clusters. Thus, sodium is not incorporated into the crystal 

structure of the [V10O28]6- clusters, but rather inserted into the space between 

different clusters. 

 

Electrochemical measurements. In the cyclic voltammogram the half-cell is first 

discharged, and subsequently cycled between 0.01 V and 3 V. In the first discharge, 

i.e., in the first process of inserting Na+ ions into the POM structure, various distinct 
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reduction peaks can be seen at 2.8, 2.2, 1.1, and 0.2 V in Figure 5a. This indicates 

distinct reduction or ordering processes. However, as the corresponding oxidation 

peaks are, if existent, significantly less pronounced, these processes are irreversible. 

In the subsequent cycles, no distinct peaks are occurring and the electrochemical 

processes do not occur at specific voltages. Hence, the cyclic voltammogram 

resembles that of a supercapacitor rather than that of a typical intercalation process 

for the major part of the voltage range. However, two minor peaks become visible at 

a potential of 0.01 V for the reduction and 0.09 for the oxidation, indicating a defined 

electrochemical process. This can potentially be attributed to the acetylene black in 

the electrode. 

The capacitive behavior can be explained by the special structural and 

morphological characteristics of POMs discussed previously. It has been shown 

before for lithium ion batteries that POMs do not act as an intercalation material. In 

fact, the ions move between the polyanionic clusters and seem to be adsorbed at the 

surface.35,36 Thus, the capacitive process for Na6[V10O28] is based on a continuous 

insertion of Na+-ions into the cavities between the [V10O28]6- clusters. X-Ray 

Photoelectron Spectroscopy was employed to examine whether the behavior is only 

physical adsorption, or accompanied by electrochemical redox reactions. As Figure 6 

indicates, in the pristine POM material only vanadium with an oxidation state of +V is 

present. When discharged, however, vanadium with an oxidation state of +IV can be 

observed as well. Thus, it can be said that Na+-ions are not physically adsorbed on 

the surface of the [V10O28]6- clusters, but a reduction from 𝑉𝑉+𝑉𝑉 to 𝑉𝑉+𝐼𝐼𝐼𝐼 is induced. 

Therefore, these clusters seem to act as redox centers in the sense that Na+-ions 

are taken up between them while vanadium ions are reduced to maintain the charge 

balance. 
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The hypothesis of a continuous insertion of Na+-ions is substantiated by the charge 

/ discharge profile, in which the lack of plateaux indicates a steady insertion of Na+ 

(Fig. 5b). Unlike phase change materials, in which Na+ continuously occupies a 

defined lattice space and thus triggers a structural change at a specified voltage, 

POMs do not exhibit these defined insertion processes at a distinct voltage. This 

variety of insertion sites results in a variety of chemical potentials of the Na+-ions in 

the material, which in turn results in a virtually continuous distribution of insertion 

voltages.23 This would explain the absence of peaks in the CV and the slopy charge / 

discharge curves, rather than a distinct plateau. In previous works, similar-looking 

curves for LIBs have been fitted using the Redlich-Kister relation.42,43 However, as 

we do not yet have a full understanding of the Na+-insertion mechanism into our 

POM and have doubts if the theoretical background of the Redlich-Kister 

(thermodynamic of solutions42) derivation justify its application in this case, we refrain 

from performing this fit. The average discharge potential, as measured by the 

potential at which the area under the 10th discharge curve was cut in half, was found 

to be 0.4 V.  

In the first discharge cycles, the capacities exceed 300 mA h g-1; these high values 

are not achieved in subsequent cycles and can probably be attributed to the 

formation of a solid-electrolyte interphase, based on the partial decomposition of 

electrolyte. This is a known phenomenon and is also substantiated by the charges 

transferred during cyclic voltammetry as found by integration. While for the first cycle 

the charge transferred during reduction is approximately 150% of the charge 

transferred during reduction, this number decreases for subsequent cycles. For the 

following cycles, discharge capacities stabilize and for the tenth cycle reach 

approximately 276 mA h g-1 for a current rate of 20 mA g-1. As the rate test in Figure 
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5c shows, discharge capacities decrease for higher current rates, giving 221 mA h g-

1 for 50 mA g-1 (cycle 15), 173 mA h g-1 for 100 mA g-1 (cycle 20) and 97 mA h g-1 for 

200 mA g-1 (cycle 25). When changing the current rate again back to 50 mA g-1, 

discharge capacity is rather stable on a high level, with 220 mA h g-1 for cycle 27, 

compared to 221 mA h g-1 for cycle 15. This indicates that the fading, even though 

capacities are lower at higher current rates, is not exacerbated when increasing the 

currents. The reason for this remarkable cycle stability is probably the unique 

structural and morphological features of POMs. As the Na+-ions (de-)insert into / 

from cavities between the [V10O28]6- clusters and are not built into a defined crystal 

lattice, structural strain is minimized. Consequently, a major cause for capacity 

fading is omitted, and stability is increased. The observable capacity fading is 

possibly due to electrolyte decomposition; as reported in the literature, this can be 

remedied by adding fluorinated ethylene carbonate to the electrolyte.5 Tests to 

examine the effect of this additive to the POM system are under way.  

The achieved capacities are in the same regions as the values reported for hard 

carbon (Fig. 1). However, as the insertion process takes place at higher voltages, the 

risk of Na-plating is eliminated, which leads to an increase in safety. When compared 

to phase-change materials like Li4Ti5O12 and Na2Ti3O7, Na6[V10O28] reaches higher 

capacities in a voltage region that lies between the two aforementioned materials. 

The same classification can be made for intercalation materials, i.e., the POM lies 

between TiO2
13 and P2-Na0.66[Li0.22Ti0.78]O2

14 with respect to voltage, and exceeds 

both materials regarding capacity. Alloy materials exceed Na6[V10O28] with regard to 

capacity; however, they typically have the disadvantage of low cycle stabilities. Even 

though this can be improved by embedding the active material into a matrix (e.g., 

carbon nanotubes), this often requires complex synthesis methods, which is a barrier 
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to commercial applications. Sodium terephthalates24,25 match and exceed 

Na6[V10O28] with regard to capacities, while their plateau during discharge matches 

the average discharge voltage of the POM.  

As discussed above, the chemical formula of the electrode material can be 

assumed to be Na6[V10O28]. With respect to this composition, the capacity of 1 Na+ 

ion is 24.5 mA h g-1. Reduction of all vanadium +V to +IV would be accompanied by 

an insertion of 10 Na+-ions per formula unit Na6[V10O28], i.e., of 245 mA h g-1. As 

discussed, in the first discharge cycles the current occurring with the formation of a 

SEI adds to the reversible capacity of the insertion of sodium ions, which expresses 

itself as a rather high fading during the initial cycles. Furthermore, this is also 

substantiated by a coulomb efficiency of > 100% in the first cycles. This would 

explain that, in case 10 Na+ are inserted, the measured capacity exceeds theoretical 

capacity in the beginning. Another potential reason could be minor electrochemical 

activity of the acetylene black in the electrode. When increasing the current rate to 

50 mA g-1, discharge capacities drop to values around 221 mA h g-1. The insertion of 

Na+ would have to be accompanied by a reduction of 𝑉𝑉+𝑉𝑉 to 𝑉𝑉+𝐼𝐼𝐼𝐼. According to XPS 

measurements, as discussed before, this reduction indeed takes place. However, 

𝑉𝑉+𝑉𝑉 is still present in the discharged sample. This can either be attributed to an 

incomplete reduction of vanadium or to a re-oxidation during ex-situ sample 

handling. As the measured discharged sample was briefly exposed to air during the 

measurement, the oxygen in the air might have re-oxidized some from 𝑉𝑉+𝐼𝐼𝐼𝐼 to 𝑉𝑉+𝑉𝑉. 

However, based on the achieved capacity we assumed, from a mechanistic point of 

view, that ten additional Na+-ions are inserted per cluster, resulting in the following 

reaction:  

𝑁𝑁𝑁𝑁6[𝑉𝑉10+𝑉𝑉𝑂𝑂28] + 10𝑁𝑁𝑁𝑁+ + 10𝑒𝑒−  →  𝑁𝑁𝑁𝑁16[𝑉𝑉10+𝐼𝐼𝐼𝐼𝑂𝑂28] 
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As an additional substantiation to the hypothesis of reversible redox reactions, a 

sodium full cell with Na6[V10O28] as anode and spherical sodium manganese oxide44 

as cathode was built. It is important to note that for this full cell the target was not to 

optimize performance, but rather to conduct a proof-of-concept that Na6[V10O28] can 

be used for full-cells and undergoes reversible redox reactions. As can be seen in 

the cyclic voltammogram in Figure 5a, this is the case. The system exhibits several 

reversible electrochemical processes, even though at this point the variety of peaks 

cannot be attributed to defined electrochemical processes, as the resulting CV is a 

superposition of anodic and cathodic reactions as well as complex sodium ordering 

processes. However, the peaks clearly indicate reversible redox processes, which 

substantiate the assumption that the POM undergoes electrochemical reactions. 

Moreover, as batteries with metallic sodium electrodes pose significant safety risks, 

full cells without metallic sodium are essential for application-based problems. With 

this full-cell set-up demonstrated here, a capacity of 140 mA h g-1 (with regard to the 

mass of Na6[V10O28]) was achieved for a voltage range of 0.1 – 4.0 V. As the sodium 

manganese oxide was the limiting factor in this set-up, a higher mass of this material 

had to be used, so that the capacity with regard to the mass of NMO, would be 

inherently lower (as it would obviously be for the total mass of active material, i.e., 

anode + cathode, in the cell). However, this shows that Na6[V10O28]·16H2O not only 

shows promising half-cell data, but is also an interesting option for sodium ion full 

cells. 

 

Conclusion 

We have introduced POMs as a new class of materials for sodium ion batteries 

and demonstrated their capability as anode material with good cycle stability. 
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Na6[V10O28]·16H2O was synthesized via a known procedure and characterized by 

51V-NMR and FTIR. Cyclic voltammetry and charge / discharge profiles showed no 

distinct peaks or plateaux respectively, but continuous slopes. This can be attributed 

to the insertion of Na+-ions between the [V10O28]6- anions instead of into defined 

crystal interstices. We suggest that this working principle of vanadium POM 

electrodes is also responsible for the good cycle stability and the negligible 

"damage" caused by cycling at higher current rates. Finally, we demonstrated that 

vanadium POM electrodes function as anodes in sodium ion full cells, using sodium 

manganese oxide as cathode material. 
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Methods 

Synthesis. Sodium decavanadate, Na6[V10O28]·16H2O, was synthesized according 

to Domaille et. al.38. Typically, 3 g of NaVO3 is dissolved in de-ionized water (100 

mL); then, 4 M HCl is added to acidify the solution until a pH of 4.8 is reached. The 

solution is filtered and addidtional HCl is added to maintain a pH of around 4.5. 

Subsequently, ethanol (95%, 200 mL) was added to precipitate Na6[V10O28]·16H2O 

as an orange bulk product, which is then filtrated and air-dried.  

 

Characterization. The product was characterized by Vanadium Nuclear Magnetic 

Resonance spectroscopy (51V NMR) and Fourier Transform Infrared Spectroscopy 

(FTIR). NMR measurements were performed on a 400-MHz JEOL-ECX instrument 

in 5 mm tubes at 105.4 MHz. FTIR was measured with a PerkinElmer Frontier FT-IR 

Spectrometer using KBr pellets. For inductively coupled plasma spectroscopy (ICP) 

measurements, a Dual-view Optima 5300 DV ICP-OES system was used.  

Field Emission Scanning Electron Microscopy (FESEM, JEOL JSM 7600F) and High 

Resolution Transmission Electron Microscopy (HRTEM, JOEL-JSM 2100F) were 

used to elucidate information on the morphology of Na6[V10O28]·16H2O.  

N2 adsorption-desorption isotherms were used to determine the Brunau-Emmet-

Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution. 

Thermogravimetric Analysis (TGA) was performed on a TA Instruments SDT Q600 

thermobalance to test the thermal stability of the product. The flow rate of nitrogen 

was 100 mL min-1, and the temperature range was 20 to 800 °C with a heating rate 

of 5 °C min−1. 
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Electrochemistry. The composite electrodes were prepared by mixing the POM 

with acetylene black (Alfa Aesar, > 99%) and polyvinylidene fluoride (PVDF, Arkema, 

Kynar HSV 900) binder in the weight ratio 60:20:20 with N-Methyl-2-pyrrolidone 

(NMP) to form a homogeneous slurry. This mixture was coated on an Al foil using a 

doctor blade; the coating was dried in air at 80 °C to remove the NMP. The coating 

was punched into pieces with a diameter of 16 mm, which were then roll-pressed. 

Subsequently, they were dried at 110 °C under vacuum. These electrodes were then 

assembled in 2016 coin cells with circular metallic sodium pieces with a diameter of 

16 mm as the anode, and glass fibre (Whatman) as the separator. A 1M solution of 

NaClO4 (Sigma Aldrich, ≥ 98 %) in a mixture of ethylene carbonate and propylene 

carbonate (1:1 weight %, EC: 99%, PC: Sigma Aldrich, ≥ 99.7%) was employed as 

electrolyte. Cyclic voltammetry was measured using a BioLogic potentiostat, and a 

Neware battery tester was used for galvanostatic charge / discharge tests.  
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Figure 1 | Overview of different anode materials for sodium ion batteries. 

Illustrates the voltage profiles of different sodium ion battery anode materials. The 

circles represent potentials at which the respective materials have a plateau; for the 

other materials, the voltage profile is indicated. The capacities shown here represent 

approximate values after initial stabilization, i.e., after irreversible reactions in the first 

cycles.  
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Figure 2 | Different characterization methods to identify the compound. (a) 

Shows that the 51V NMR spectrum of our POM similar to what would be expected 

from literature data. (b) Shows the absorption bands of the FTIR spectrum, and as 

an inset the polyhedral representation of [V10O28]6-. (c) Illustrates the weight loss of 

the material during a TGA experiment with Na6[V10O28]·16H2O.   
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Figure 3 | Determination of the surface characteristics of the compound. (a) 

Shows the graph resulting from BET measurements. (b) Illustrates the 

corresponding BJH pore size distribution for Na6[V10O28]·16H2O.  
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Figure 4 | Morphological analysis of the POM. (a), (b) & (c) Illustrates the rod-like 

morphology of Na6[V10O28]·16H2O by SEM (a, b) and bright-field TEM (c) 

measurements. (d) Shows the high-resolution TEM image of the POM. 
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Figure 5 | Electrochemical behaviour and peformance of the POM electrode in 

a sodium cell. (a) Shows the cyclic voltammogram (cycles 1-5) of Na6[V10O28] in a 

half-cell set-up with 1M NaClO4 in EC:PC (1:1 % weight) as electrolyte at a scan rate 

of 0.01 mV s-1 (b) Illustrates the galvanostatic charge / discharge profile in a half-cell 

set-up with 1M NaClO4 in EC:PC (1:1 % weight) as electrolyte at 50 mA g-1. (c) 

Illustrates the rate capability and stability of Na6[V10O28] in a half-cell set-up with 1M 

NaClO4 in EC:PC (1:1 % weight) as electrolyte.  
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Figure 6 | Determination of the oxidation state of vanadium before and after 

cycling. Illustrates the oxidation state of vanadium in the POM by XPS 

measurements of (left) a pristine Na6[V10O28] electrode and (right) discharged 

Na6[V10O28] electrode. This shows that vanadium is reduced during Na+-insertion. 
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Figure 7 | Proof of concept for a POM –based full cell set-up. (a) Shows the 

cyclic voltrammogram of the full cell at 0.2 mV/s. Anode: POM, Cathode: Spherical 

NaxMnO2+y (not weight balanced). Cycles 7 – 9 after cycling six times in a narrower 

voltage ranges. (b) Illustrates the full cell charge / discharge capacities with respect 

to the POM as well as the corresponding coulomb efficiencies. Anode: POM, 

Cathode: Spherical NaxMnO2+y (not weight balanced). Potential range: 0 – 3.8 V; 

previous cycles were cycled in narrower voltage ranges 
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Figure legends 

Figure 1 | Overview of different anode materials for sodium ion batteries. 

Illustrates the voltage profiles of different sodium ion battery anode materials. The 

circles represent potentials at which the respective materials have a plateau; for the 

other materials, the voltage profile is indicated. The capacities shown here represent 

approximate values after initial stabilization, i.e., after irreversible reactions in the first 

cycles.  

 

Figure 2 | Different characterization methods to identify the compound. (a) 

Shows that the 51V NMR spectrum of our POM is similar to what would be expected 

from literature data. (b) Shows the absorption bands of the FTIR spectrum, and as 

an inset the polyhedral representation of [V10O28]6-. (c) Illustrates the weight loss of 

the material during a TGA experiment with Na6[V10O28]·16H2O.  

 

Figure 3 | Determination of the surface characteristics of the compound. (a) 

Shows the graph resulting from BET measurements. (b) Illustrates the 

corresponding BJH pore size distribution for Na6[V10O28]·16H2O.  

 

Figure 4 | Morphological analysis of the POM. (a), (b) & (c) Illustrates the rod-like 

morphology of Na6[V10O28]·16H2O by SEM (a, b) and bright-field TEM (c) 

measurements. (d) Shows the high-resolution TEM image of the POM. 

 

Figure 5 | Electrochemical behaviour and peformance of the POM electrode in 

a sodium cell. (a) Shows the cyclic voltammogram (cycles 1-5) of Na6[V10O28] in a 
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half-cell set-up with 1M NaClO4 in EC:PC (1:1 % weight) as electrolyte at a scan rate 

of 0.01 mV s-1 (b) Illustrates the galvanostatic charge / discharge profile in a half-cell 

set-up with 1M NaClO4 in EC:PC (1:1 % weight) as electrolyte at 50 mA g-1. (c) 

Illustrates the rate capability and stability of Na6[V10O28] in a half-cell set-up with 1M 

NaClO4 in EC:PC (1:1 % weight) as electrolyte. 

 

Figure 6 | Determination of the oxidation state of vanadium before and after 

cycling. Illustrates the oxidation state of vanadium in the POM by XPS 

measurements of (left) a pristine Na6[V10O28] electrode and (right) discharged 

Na6[V10O28] electrode. This shows that vanadium is reduced during Na+-insertion. 

 

Figure 7 | Proof of concept for a POM –based full cell set-up. (a) Shows the 

cyclic voltrammogram of the full cell at 0.2 mV/s. Anode: POM, Cathode: Spherical 

NaxMnO2+y (not weight balanced). Cycles 7 – 9 after cycling six times in a narrower 

voltage ranges. (b) Illustrates the full cell charge / discharge capacities with respect 

to the POM as well as the corresponding coulomb efficiencies. Anode: POM, 

Cathode: Spherical NaxMnO2+y (not weight balanced). Potential range: 0 – 3.8 V; 

previous cycles were cycled in narrower voltage ranges 

 

 


