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Summary

We consider Bayesian inference for mixture distributions of known number of compo-
nents via a set of filtering recursions. We extend the method of direct simulation for
discrete mixture distributions of Fearnhead (2005) in order to analyse continuous mix-
ture models. Furthermore, we introduce resampling steps similar to those in particle
filters within the steps of the filtering recursions, which make calculations efficient and
enable us to analyse larger data sets. The proposed algorithm for “resampled direct
simulation” is a generalisation of the particle filter of Fearnhead (2004) which allows
for merging identical/similar particles prior to resampling. We compare the proposed
algorithm with this particle filter and with the Gibbs sampler using simulated data and

real data sets.

Keywords Direct Simulation, Gibbs Sampler, Importance Sampling, Particle Filters,

Perfect Simulation, Rejection Sampling

1 Introduction

Mixture models are commonly used for both density estimation and classification prob-
lems (see Titterington et al., 1985; McLachlan and Batsford, 1988, for further details).
Bayesian analysis of mixture models has received much interest over the last decade
as a result of advances in computational statistics and especially Markov chain Monte

Carlo (MCMC) methods (Gilks et al., 1996; Richardson and Green, 1997).

One problem with MCMC methods, both in general and for the specific case of mixture
models, is that it can be difficult to diagnose convergence of the MCMC algorithm, and
hence difficult to quantify uncertainty in any approximation to the posterior distribution
based on the MCMC output. For example, the analysis of the coal-mining disaster
data shown in Green (1995) was incorrect due to the MCMC algorithm not converging

(compare the results in Green, 2003); and the MCMC analysis of an epidemic SIR
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Figure 1: Trace plots and acf plots for the larger of the two Normal means. The top
plots summarise the output from the Gibbs sampler while the bottom trace is based on
independent draws from the true posterior distribution and the bottom acf plot of the

Gibbs output is based on the mean of the true posterior distribution.

model in O’Neill and Roberts (1999) also appears to be inaccurate (see Fearnhead and
Meligkotsidou, 2004). Both theoretical and empirical evidence of problems that MCMC
algorithms can have in exploring the tails of a posterior distribution are given in Roberts
(2003). While Celeux et al. (2000) argue that “almost the entirety of MCMC samplers

implemented for mixture models has failed to converge”.

To demonstrate these difficulties we simulated 50 data points from a 2-component nor-
mal mixture model (with common variance), and performed a Bayesian analysis of the
data using a Gibbs sampler. Summary of the output of the Gibbs sampler is given in
Figure 1 where we show a trace plot and autocorrelation function (acf) plot for the
larger of the two normal means. For comparison we also show a trace plot based on
independent draws from the true posterior distribution (obtained by a generalisation
of the method of Fearnhead, 2005, see Section 3) and an acf plot of the Gibbs output
based on the mean of the true posterior distribution of the larger normal mean. It can
be seen that the Gibbs sampler misses the upper tail of the posterior distribution, and

this is hard to diagnose from the acf plot.

Problems with diagnosing convergence of MCMC algorithms have motivated work in
the area of perfect simulation - methods based on the “coupling from the past” idea of

Propp and Wilson (1996) that enables MCMC algorithms to be constructed so that they



produce draws from the true posterior distribution. Attempts have been made to apply
these ideas to mixture models (Hobert et al., 1999; Casella et al., 2002) but the resulting
algorithms have either limited applicability or are impracticable for even simple real-life
problems. More recently Fearnhead (2005) has described a direct simulation method

that enables independent draws from the true posterior to be made.

Whilst more practicable than perfect simulation, the direct simulation method in Fearn-
head (2005) can only be applied to discrete data, relatively small data sets (of the order
of 100 to 1000 data points) and small numbers of components (2 or 3). In this paper
we describe extensions of the direct simulation method that allows it to be applied to
continuous mixture models and data sets of larger size, but again for the analysis of

models with a small number of components (i.e up to 3 components).

The outline of the paper is as follows. In the next section we introduce the class of mix-
ture models we will be considering and briefly describe the direct simulation method
for discrete data. In Section 3 we extend direct simulation to continuous data. The
basic idea is to discretise the data, apply the direct simulation method to the discre-
tised observations, and then correct for this approximation using rejection sampling or
importance sampling. In Section 4 we describe the relationship between direct simula-
tion and particle filters, and show how resampling ideas used for particle filters can be
applied to reduce the computational cost of direct simulation. In Section 5 we perform
comparisons of our method with the Gibbs sampler based on simulated data sets, and
in Section 6 we compare our method with the particle filter of Fearnhead (2004) based

on real data. The paper ends with a discussion.

2 Direct Simulation for Discrete Mixture

We consider mixture models of the form

K
F(18) =) pif (xl0%), (1)

k=1
where 8 = (p1,...,pK,01,...,0K) is the set of parameters, K is known, and here and

throughout we use the generic notation of f(-) for a probability density or mass function.

Consider data x = (z1,...,%,), and let z = (21, ..., z,) where z; denotes the component
of (1) that the observation zj is drawn from. We will assume Dirichlet priors on

p = (p1,--.,pk) and independent conjugate priors on § = (01,...,0k) so that the



conditional distribution f(8|x,z) can be calculated analytically. We have that f(p|x,z)
is just Dirichlet and we have independent posteriors for f(0|x,z) for k =1,..., K. The
Dirichlet distribution on p depends on (x, z) solely through the numbers of observations
allocated to each component. We further assume that f(6x|x,z) depends on (x,z)
through a finite set of summary statistics. We denote by s(x,z) the set of summary
statistics, which will be the union of the number of allocations of observations to each

component and the summary statistics for the f(0|x,z)s, for which

f(ﬂ'xaz) = f(,B|S(X, Z))
In the following we write s for s(x,z) when the meaning is clear.
Example 1: Poisson Mixture

Consider the case where f(z|0;) denotes the probability mass function of a Poisson
random variable with mean 6. Assume a Dirichlet prior on p with parameters o and
independent gamma priors on 61, ...,0k with parameters a and b. Then conditional
on (x,z) we have independent gamma distributions for 6, whose parameters depend
on (x,z) solely through the number of observations allocated to component k, ny, and

their sum, t;. Formally

f(BIx,2) = [f(Bls(x,2))

K
= Dil‘(p; o+ Il) H Gam(&k; ap + tg, by + ’)’Lk),
k=1

where Dir(x; «) denotes the probability density of a Dirichlet distribution with param-
eters « evaluated at x, and Gam(z;a,b) denotes the probability density of a gamma
distribution with parameters a,b evaluated at z. (For full details of these calculations

see Fearnhead, 2005).

Both for this specific example, and for general models which satisfy our assumptions,

we can write
F(Blx) = Zf z|%) f (B, 2), (2)
where

(i) o [ £x,218)78)a8 = [ 1616)1 (3)

We define f(s) to be the right-hand side of this equation. Now (2) is proportional to

Zf f(Bls(z,2)) ZMsx )f(Bls), (4)



where M (s;x) is the multiplicity of sufficient statistics s, the number of allocations of
observations x to components that produce this specific value of sufficient statistics.

This rearrangement is based on drawing together like terms in (2).

The usefulness of (4) is that, for discrete mixture models, while the number of terms
in (2) increases exponentially with n, the number of terms in the right-hand side of
(4) increases only as a polynomial in n. Furthermore, there is a filtering recursion
that enables the multiplicites to be calculated efficiently. The idea behind the direct
simulation method of Fearnhead (2005) is to calculate these multiplicities and then

simulate directly from (4).

The recursion for the multiplicities is as follows. Denote by x1; = (21,...,2;). It is
possible to calculate the M (s;x1.;)s from the M (s;x1.;,_1)s. Let s; denote the value of
the summary statistics for data x1.;_; which will produce a value s if the 7th observation
is allocated to component K. Then M (s;x1.;) = S r; M(sg; X1 1). In practice some
of the M (sg;x1:i—1) may be zero, and calculating the multiplicities for summaries of
data x1.; is most easily achieved by (i) calculating new values of the summary statistics
for all pairs of possible summaries of x1.;_1 and allocations of z; to components; and
(ii) merging identical values of the summary statistics that are produced. If there are
N new values of the summary statistics calculated in (i), then the merging in (ii) can
be achieved in O(N log N) time. For an example see Figure 2 and for fuller details see

Fearnhead (2005).

Simulation from f(f8|x,z) is possible by (i) calculating the normalising constant of
the right-hand side of (4); (ii) simulating s from a discrete distribution which has
probabilities proportional to M (s;x)f(s); and (iii) simulating from f(8|s). Simulation
of samples of arbitrary size is possible efficiently (see Fearnhead, 2005). The normalising
constant calculated in (i) is the evidence of the model, and can be used to calculate

Bayes Factors for comparing different models.

Furthermore, it is possible to simulate from f(z|x) by replacing (iii) above by (iii’)
simulate from f(z|s). The distribution f(z|s) is uniform over all allocations which
produce the required value of the sufficient statistic and it is possible to simulate from

this distribution using a backward simulation method (see Appendix A for details).

This direct simulation method has polynomial storage and computational cost. The
order of the polynomial depends on the dimension of the smallest set of summary

statistics. For the Poisson mixture example the dimension of the set of summary statis-
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Figure 2: The possible values of the summary statistics and their multiplicities for the
data set 1,2,1 for a 2-component Poisson model. The summary statistics, shown in
brackets, are (n1,%1), the number and sum of the observations allocated to the first
component - this uniquely determines the set of summary statistics as the total number
and sum of the observations is known. The arrows show the possible values of the
summary statistics for this data set for each of the summary statistics based on data
(1,2); each of the latter summary statistics has 2 arrows for the possible allocations of
the third observation to either the first or second component. The multiplicity of a set
of summary statistics for the complete data is obtained by summing the multiplicities

of all summary statistics for (1,2) that lead to it.



tics is 2(K — 1), as it is necessary to store both the number of observations allocated
to components 1,..., K — 1 and their sum (the number and sum of the observations
allocated to component K is uniquely defined by these summary statistics for the other
components). The computational cost for the Poisson example is thus a polynomial of
order 2(K — 1); and direct simulation is possible for data sets of up to around 1,000 for

K =2 and 100 for K = 3.

3 Direct Simulation for Continuous Mixture

The reason that direct simulation is possible for discrete mixture models is that there
can be many allocations of observations to components which produce the same values
of the summary statistics. For continuous data this is not the case: each allocation
of observations to components will produce a distinct value of the summary statistics,
though many of these values will be very close. To adapt the direct simulation ap-
proach to continuous data we propose merging terms in (4) that have similar values
of the summary statistics. The simplest method of achieving this is to discretise the
data x to x* and apply direct simulation to the resulting discrete data. This produces
independent samples from the approximate posterior f(3|x*), and the approximation
can be corrected using rejection sampling or importance sampling. (The level of dis-
cretisation used to produce x* leads to a trade-off between the computational cost and
the accuracy of the approximation of f(8|x) by f(8|x*)). It is also possible to use

importance sampling to approximate the evidence for a given model.

To implement either rejection or importance sampling we work with the distributions
f(z|x*) and f(z|x). Given a sample from f(z|x) it is straightforward to produce a

sample from f(f5|x), as it is easy to simulate from f(f|x,z).

Direct simulation is possible from f(z|x*) and the importance sampling weight is

[ 1)
fah) * Fs)

where s and s* are the summary statistics for allocation z and the real and discretised

w(z) o

data respectively. (The probabilities f(s) are defined by the right-hand side of equation
3). Importance sampling produces a weighted sample from f(z|x) by first simulating
values from f(z|x*) and assigning each simulated value of z a weight proportional to

w(z).



Rejection sampling requires a bound L to be calculated such that w(z) < L for all z. If
such a bound can be calculated (see below for an example) then independent samples
from f(z|x) are obtained by (i) simulating a z’ from f(z|x*) and (ii) accepting z’ with

probability w(z')/L.
Example 2: Normal Mixture

Let f(z|0;) denote the probability distribution of a normal random variable with pa-
rameters 0, = (ug, ak) Assume a Dirichlet prior on p with parameters «, independent
inverse gamma priors on the Uk’s with parameters a; and b, and independent normal
priors on the yuy’s of the form N(&,720%), k = 1,...,K. Then conditional on the
observed data x and the latent allocation variables z the posterior distribution of the
model parameters depends on (x,z) only through a set of summary statistics s(x,z):
the number of observations allocated to component %, ng, their sum, ¢z, and the sum

of the squared observations, 7y, i.e.

f(Blx,2)

f(Bls(x,2))
2

K
§k+7'ktk TkO'k

= Di n) ”
ir(p; o + - ( 14y 7',? 1+nk7'k

X

_ i) R tk/nk)2>

1
I1G b
H <0k’ak Tt 2( nk 2(1+ nkT,f)

k=1
where IG(z; a, b) denotes the probability density of an inverse gamma, distribution with
parameters a,b evaluated at z, and N(z;u,0?) denotes the probability density of a

normal distribution with parameters y,o? evaluated at x.

The posterior distribution f(/5|x) can be written in the form of (2), while, if we consider
the discretised data x*, then the approximate posterior f(£|x*) can be written in the
form of (4). Direct simulation is possible from f(z|x*) which is used as an importance

function in order to sample from f(z|x). The importance sampling weight is given by

1 k k - * +ng/2
w(z) X H |:2b+’rk _th/nk +nk(1 +’nk7',?) 1(£k _tk/nk)2 ag+ng |

i L2047 — /g 4 n (1 + np72) 71 (E — tr/nk)?

A weighted sample from f(8|x) is obtained by first obtaining a weighted sample of
allocations z from f(z|x), with weights proportional to w(z), and then simulating the

corresponding parameter values from f(8|x,z).

The form of f(f5|x,z) and the expression for the importance sampling weights is similar

for the case of a normal mixture with different component specific means u, k =



Data x RS acceptance ESS CPU time

(i) 1 0.0004 5034 0.22
(i) 5 0.0264 7819  0.55
(iii) 10 0.1435 9393  1.36
(iv) 20 0.3780 9798  3.53

Table 1: Average acceptance probabilities of the rejection sampling, average effective
sample sizes of 10,000 draws from the importance sampling, and average CPU times for
the calculation of the approximate posterior based on the discrete (i) original data, (ii)

data multiplied by 5, (iii) data multiplied by 10 and (iv) data multiplied by 20.

1,...,K, but common variance o2

(see Casella et al. (2002) for the two-component
mixture). In this case there are two summary statistics, ny and tx. For the special case
that K = 2 a bound L can be calculated such that w(z) < L for all z (see Appendix
B for details) and, therefore, independent samples can be simulated from f(z|x) using

rejection sampling, leading to an exact sample from f(3|x).

We have simulated 100 data sets from a 2-component normal mixture with common
variance, each consisting of 50 observations. We have analysed these data sets following
the approach detailed above, for different levels of discretisation of the data, using both
importance sampling and rejection sampling. The results are shown in Table 1. We
report the average acceptance probability of the rejection sampling, the average effective
sample size (ESS) of Liu (1996) based on 10,000 draws from the importance sampling
scheme, and the average CPU time for the calculation of the approximate posterior
based on the discrete (i) original data, (ii) data multiplied by 5, (iii) data multiplied by
10 and (iv) data multiplied by 20.

It can be seen that the importance sampling approach works well in terms of both
efficiency and accuracy; the variance of the importance weights is small enough that we
can have confidence in the results. Furthermore, the sample obtained by this importance
sampling scheme is an accurate approximation to the true posterior (see Figure 3 for a
comparison with the perfect sample obtained via rejection sampling). For the analysis
of a sample of 50 observations from a two-component normal mixture with different
variances the average effective sample size of 10,000 draws from the importance sampling
scheme is 3576 and the average CPU time is 8.52 sec. Rejection sampling is efficient

only for a low level of discretisation of the data. Furthermore, given that it is difficult
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Figure 3: QQ plot for the comparison of a perfect sample from the posterior distribution
of the mean of a two-component normal mixture with common variance obtained via

rejection sampling with a sample obtained via importance sampling.

to calculate a bound for K > 2 or for more complicated mixture models, like the normal
mixture with different variances, we do not advocate the use of rejection sampling in

general.

4 Use of Resampling

The recursions used to calculate the multiplicities, and hence the probabilities of each
term in (4) are related to particle filters - sequential Monte Carlo methods for analysing
time series data (see Liu and Chen, 1998; Doucet et al., 2001, for an introduction). A
key idea within particle filters is to use resampling, and we now describe how resampling
ideas can be used with direct simulation to limit the computational cost and make it
possible to analyse large data sets. For simplicity we describe the approach for discrete
data (for continuous data, resampling can still be used provided the data is discretised
first). We call the resulting approach “resampled direct simulation” (RDS), and note

that this only produces an approximate sample from the posterior distribution.

We introduce artificial time so that the data at time ¢ is x1.;. The posterior at time i is
FB1) x 3 M50 £69) £ (815) ©

s(9)
To relate this to particle filters, we can think of the values of s(Y as particles and

q(s) = M(s9;x1,;) f(s)) as the weight assigned to particle s(®).

Particles and their weights at time 7 can be calculated recursively from the weighted

particles at time 7 — 1. Specifically if s,(ci_l) denotes the particle at time 7 — 1 which

10



would produce particle s(*) at time i if observation z; is allocated to component k, then

. K ~ ()
q(s®) = q(s(,_l))f(%_
= Y

(i-1)

Note that in practice some of the s, will have zero weight, and hence would not be
included in this sum. In practice, we would calculate the set of weighted particles at
time ¢ by first propagating all particles at time ¢ — 1 and then merging identical particles

at time 1.

Resampling can be used within such a particle filter to limit the computational cost
(see Chen and Liu, 2000; Fearnhead and Clifford, 2003). Assume we wish to store at
most N particles at any time. If we currently have more than N particles, we resample
N particles, update their weights, and then approximate f(/|x1.;) based on these N
new weighted particles. Various resampling algorithms have been suggested for particle
filters (Kitagawa, 1996; Carpenter et al., 1999; Liu et al., 1998), but we use the scheme
of Fearnhead and Clifford (2003) which is optimal, in terms of minimising a square error

condition on the new weights, over all unbiased resampling schemes.
This resampling scheme proceeds as follows:

(i) Assume that our approximation to f(f|x1.) is based on L particles sgi), ... ,s(Li)

with weights qu')’ e ,q(Li).
(ii) Calculate ¢ the solution of N = Zle min(cql(i), 1).

(iii) For I =1,...,L, if cql(i) > 1 then keep particle [ with the same weight. Assume

N* such particles are kept.

(iv) Use the stratified sampling algorithm of Carpenter et al. (1999) to simulate N —N*
particles from the remaining L — N* particles. Assign each resampled particle a

weight 1/c.

The rationale for this algorithm is given in Fearnhead and Clifford (2003).

Simulation from the final approximation of f(8|x) is straightforward. To simulate from

the approximation of f(z|x) is possible as described in Appendix C.
Example 1 Poisson Mixture (revisited)

We applied this resampling algorithm to a 3-component Poisson mixture model. We
analysed data from Leroux and Puterman (1992) of the number of movements by a fetal

lamb over 240 consecutive 5 second periods (see Table 2).

11



Movements 0 1 2 3 4 5 6 7
Frequency | 182 41 12 2 2 0 0 1

Table 2: Number of movements by a fetal lamb over 240 consecutive 5 second periods.

Resampling: 2000 particles
Resampling: 5000 particles

Exact Posterior Exact Posterior

Resampling: 10000 particles
Resampling: 20000 particles

T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8

Exact Posterior Exact Posterior

Figure 4: Quantile-quantile plots for the comparison of a perfect sample from the pos-

terior with samples obtained using RDS for different numbers of particles stored.

We compared the approximate sample we obtained using RDS to a perfect sample from
direct simulation. A comparison of the samples for different values of N is given in
Figure 4. It can be seen that the approximate samples obtained by RDS are quite

accurate even for moderate values of N.

5 Comparison with MCMC

In this section we compare the RDS approach with the Gibbs sampler. The comparison
of these two algorithms is based on analyses of simulated data and it is made in terms

of the computational efficiency of the algorithms.

We consider different simulated data sets from 2-component normal mixtures and sum-
marise the performance of each method on a given data set using the effective sample
size (ESS) of Carpenter et al. (1999). This is done by running both algorithms inde-
pendently 100 times on each data set. For a specific function of the output, the ESS

is given by the ratio of the estimate of the posterior variance of the function to the

12



variance of the posterior mean of the function across the independent runs of the al-
gorithm. This measure of efficiency can be used for both particle filters and MCMC
algorithms. If an algorithm has an ESS of E, then inference based on this algorithm is
roughly as accurate as inference based on FE independent draws from the full posterior
distribution. (Note that this ESS is different to that of Liu, 1996, used in Section 3 -

though the interpretation of the value is the same).

A comparison based on the ESS is equivalent to a comparison based on the variability
of estimates of a given function produced by the different algorithms considered, and is
sensible here as both algorithms produce similar esimates of the posterior means of the

functions we consider.

The results we present are based on using the same number of particles for RDS as the
number of iterations of the Gibbs sampler (after burn-in). The particles in RDS produce
a discrete distribution on the allocation of observations to components. We produce a
sample from the posterior distribution of the parameters by resampling independently
from the distribution of allocations, and then sample a value of the parameters con-
ditional on the allocations. (Actually, we produce a weighted sample due to the need
for importance sampling weights for each simulated allocation). As simulating from
the distribution of allocations is much quicker than producing the set of particles, we

resample a larger number of parameter values than the number of particles.

A fair comparison of the two algorithms would take into account the different CPU costs
of the algorithms. Direct comparisons of the CPU costs is difficult due to variations
in the efficiency of the computer code used, and the speed of the computing language.
However, rough comparisons can be made which will aid the interpretation of the results
we present. For our experiments, the CPU cost of running the RDS algorithm with N
particles is about 2 times the cost of N iterations of the Gibbs sampler. The RDS has
an extra cost due to resampling parameter values from the final set of particles, and
a further computational cost due to the merging of particles prior to resampling. The

Gibbs sampler has the extra cost for the burn-in period, which is relatively small.

We have considered data sets of size n = 50, 100 from 3 different 2-component mix-
tures. In each case the mixture components were labelled according to an identifiability
constraint on the component means; the smallest mean was associated with the first
component. The mixing proportion of the first component was 0.6, and the component

specific parameters were chosen to have different degrees of overlap between the two
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components. (i) p1 =1, pp =2,02 =15,02 =2, (i) yr =1, up =3, 02 =1, 02 = 2,
and (ii) g1 = 1, pu2 = 5, 02 = 1, 03 = 2. All data sets were analysed under the prior
specification of Section 3, with a = (1,1), a1 = a2 =1, b1 = by =1, & =& =2 or

51252233,11(17'%:7'3‘:1.

We analysed these data sets using (a) 2000 particles for the RDS with 5000 resampled
draws, and 2500 Gibbs iterations with the first 500 draws being discarded, and (b) 5000
particles for the RDS with 10000 resampled draws, and 6000 Gibbs iterations with the
first 1000 draws being discarded. For the RDS we discretised the simulated observations
to the nearest integer. The ESS values for some of the model parameters as well as for
some tail posterior probability for the smallest of the two means are shown in Tables

3-5.

It can be seen that the RDS performs much better than the Gibbs sampler in all cases.
The efficiency of both algorithms decreases with the number of observations and, in
general, it is greater at estimating the component variances than at estimating the
component means. The RDS can be up to 20 times more efficient than the Gibbs
sampler. However, taking into account the fact that the CPU cost for the RDS is
roughly 2 times that of the Gibbs sampler, we conclude that the RDS can be up to one

order of magnitude more efficient than the Gibbs, at analysing normal mixture models.

Another advantage of the RDS over the Gibbs sampler is that it enables us to estimate
the evidence of the model. Our simulation studies have shown that the evidence is
actually estimated very accurately. In all our examples, the standard error of the

estimate of the logarithm of the evidence over 100 replications was less than 0.005.

6 Comparison with Particle Filter

As discussed in Section 4, the RDS algorithm is actually a particle filter. Particle filters
for analysing mixture models do exist (Ishwaran et al., 2001; Fearnhead, 2004). The
general approach is that, after having processed sequentially the first ¢ observations,
each of the N current particles consists of a specific assignment of the 7 observations to
components. The N particles are propagated as each new observation is processed by
considering for each particle all the possible assignments of the (i + 1)st observation to
a component. Then, N new particles are produced for the first (7 + 1) observations by

resampling the possible particles.

14



50 observations 100 observations

Gibbs RDS Gibbs RDS

2000 5000 2000 5000 2000 5000 2000 5000

draws draws particles particles draws draws particles particles

1 375 933 3165 4572 215 306 1409 1891
o? 1935 5141 5115 10021 1948 5176 4186 8200
D1 303 018 3217 3728 214 366 1441 1670
Pr(p1 <0) 401 649 2892 5776 229 371 1676 3348

Table 3: Comparison of the efficiency of RDS and the Gibbs sampler at analysing 50
and 100 observations from the normal 2-component mixture with parameters y; = 1,

po =2, 02 =1.5, 02 =2 and p; = 0.6.

50 observations 100 observations
Gibbs RDS Gibbs RDS
2000 5000 2000 5000 2000 5000 2000 5000

draws draws particles particles draws draws particles particles

1 428 982 1922 4405 280 643 564 1292
a? 2023 5239 3662 7439 1686 4366 6623 13454
P1 117 333 2307 8449 93 207 514 1149
Pr(p; <0) 881 2688 3189 6458 232 707 1036 2098

Table 4: Comparison of the efficiency of RDS and the Gibbs sampler at analysing 50
and 100 observations from the normal 2-component mixture with parameters u; = 1,

po =3,02=1,02 =2 and p; = 0.6.
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50 observations 100 observations

Gibbs RDS Gibbs RDS

2000 5000 2000 5000 2000 5000 2000 5000

draws draws particles particles draws draws particles particles

"1 592 1437 2205 3816 78 162 356 562
a? 394 1187 3071 6346 7 203 981 1285
D1 156 299 3996 11928 88 170 657 1812
Pr(u <0) 1523 3982 5170 16216 996 2604 1673 5205

Table 5: Comparison of the efficiency of RDS and the Gibbs sampler at analysing 50
and 100 observations from the normal 2-component mixture with parameters py; = 1,

po =5,02=1,02=2and p; = 0.6.

The particle filters of Ishwaran et al. (2001) and Fearnhead (2004) were designed for
analysing a mixture model where the number of components is unknown; however they
can be easily applied to the case of a known number of components. For such a case,
the particle filter (PF) of Fearnhead (2004) is closely related to our RDS algorithm.
For discrete data, the difference between the PF and RDS is that in RDS particles with
identical values of the sufficient statistics are merged prior to resampling. For continuous
data, the PF can be viewed as a special case of RDS, as for such data the amount of
merging of particles depends on the level of discretisation used. As we discretise the
data less, then there will be less merging of particles, and the PF is the version of RDS

we obtain with no discretisation, and hence no merging of particles.

In this section we compare the RDS algorithm with the PF of Fearnhead (2004) in
terms of the computational efficiency of the two algorithms. Qur comparison is based
on analysing two real data sets using 2-component and 3-component Poisson mixtures.
The first data set concerns the number of death notices of women, 80 years of age and
older, which appeared in the London Times each day for a year period (Schilling, 1947).
This data is given in Table 6. The second data set consists of the fetal lamb movements

data (Leroux and Puterman, 1992) of Table 2.

We used the ESS measure of efficiency (Carpenter et al., 1999) to compare the perfor-
mance of the two algorithms, computed after running both algorithms independently
100 times on each data set. The results we present are based on using the same number

of particles for RDS and for the PF. We resample a much larger number of parameter
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Death Count 0 1 2 3 4 5 6 7 8 9
Frequency 162 267 271 185 111 61 27 8 3 1

Table 6: Number of death notices of women, 80 years and older, in the London Times

each day for a year period.

2-component mixture 3-component mixture
PF RDS PF RDS
2000 5000 2000 5000 20000
particles particles particles particles particles
01 675 1931 8612 17704 2831 1787
D1 603 1882 5397 18871 2289 1136

Table 7: Comparison of the efficiency of RDS and the PF at analysing the fetal lamb

movements data under Poisson mixtures.

values than the number of particles since simulating from the posterior of the parameters
is very fast. Again the mixture components were labelled according to an identifiability
constraint on the component means. The prior specification was as in Section 2 with

ap=1l,ap=1land by =1, k=1,20r k=1,2,3.

We analysed the fetal lamb movements data under a 2-component Poisson mixture
using (a) 2000 particles and 20000 resampled draws, and (b) 5000 particles and 20000
resampled draws. We also analysed this data under a 3-component Poisson mixture
using 20000 particles and 50000 resampled draws. The ESS values for the parameters
associated with the first component are shown in Table 7. For comparison the ESS
values obtained by analysing the fetal lamb movements data under 2-component and 3-
component Poisson mixtures via the Gibbs sampler, with equal number of draws as the
number of particles in the particle filters, were between one and two orders of magnitude
smaller than those of the RDS algorithm. Finally, we analysed the daily death notices
data under a 2-component Poisson mixture using 2000 particles and 20000 resampled
draws. The ESS values for 61 and p; for the RDS algorithm were 34 and 28, respectively,
while for the PF they were 44 and 26, respectively.

It can be seen that, while the RDS algorithm performs much better at analysing the
fetal lamb movements data set under a 2-component mixture, the PF performs better

at analysing this data under a 3-component mixture and slightly better at analysing
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Figure 5: (a) Logarithm of the resampling error against iteration and (b) ESS against the
number of observations for the daily death notices data analysed by the RDS algorithm

and the particle filter under a 2-component Poisson mixture using 2000 particles.

the large daily death notices data under a 2-component mixture. The reason for this
striking difference in the relative accuracy of the two approaches for different data sets
can be understood by looking at the resampling error introduced by the RDS and PF

algorithms.

In Figure 5 is shown a plot of the resampling error against the iteration of the algorithm
for the daily death notices data analysed by the RDS algorithm and the particle filter
under a 2-component Poisson mixture using 2000 particles and 20000 resampled draws.
For this data set the ESS values obtained by analysing subsets of the data of increasing
size were calculated and they are also shown in Figure 5. It can be seen that the
resampling error of the RDS is substantially smaller than that of the PF for the first
150 observations, and thereafter each algorithm has a similar amount of error introduced
via resampling at each iteration. The plot of the ESS shows that RDS substantially
outperforms the PF when analysing the first 150 observations (or fewer), the region for
which the resampling error is substantially smaller for RDS; but the two algorithms
perform similarly when analysing 200 observations or more, when the resampling errors

of the two algorithms are similar.

In Figure 6 are shown plots of the resampling error against the iteration of the algorithm
for the fetal lamb movements data analysed by the RDS algorithm and the particle fil-
ter under (a) a 2-component Poisson mixture using 5000 particles and 20000 resampled

draws and (b) a 3-component Poisson mixture using 20000 particles and 50000 resam-
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Figure 6: Logarithm of the resampling error against iteration for the fetal lamb move-
ments data analysed by the RDS algorithm and the particle filter under (a) a 2-
component Poisson mixture using 5000 particles and (b) a 3-component Poisson mixture

using 20000 particles.

pled draws. In the case of the 2-component mixture the resampling error of the RDS
is substantially smaller than that of the PF; and hence the substantially better perfor-
mance in this case. For the 3-component case, the resampling error is similar for the two
algorithms for the last 150 observations analysed, and hence the similar performance of

the two algorithms.

Thus we see that there is a threshold, in terms of the number of observations, which
governs the relative performance of RDS and the PF. If fewer than this number of
observations is analysed then RDS will subsantially outperform the PF. Otherwise they
will give similar results. This threshold increases with the number of particles. For
example the number of observations of the fetal lamb data that can be analysed under
a 2-component mixture before a resampling error of greater than 0.001 are 90, 202 and

240 (the whole data set) for 1000, 5000 and 10000 particles respectively.

Table 7 suggests that the PF can even outperform RDS if sufficient observations are
analysed, presumably because of the different ways the resampling error accumulates in
the two algorithms. When computational time is taken into account (the PF is quicker
to implement than RDS, as it does not involve a merging step), RDS should only be

preferred to the PF if fewer observations than this threshold are being analysed.

We can use the fact that RDS can often accurately analyse a sub-set of a large data set,
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2-component mixture 3-component mixture
0, 17583 7050
P1 15253 14838

Table 8: Efficiency of the importance sampling approach based on RDS at analysing
the fetal lamb movement data under a 2-component Poisson mixture (half of the obser-
vations were analysed using RDS with 2000 particles) and under a 3-component Poisson

mixture (a third of the observations were analysed using RDS with 20000 particles).

to create a simple importance sampling approach for analysing the complete data. The
idea is to produce a stratified subset of the complete data set. We stratify the subset
in such a way that the proportion of each data value (or range of data values) in the
subset is as close as possible to its proportion in the full data-set. We then use RDS
to approximate the posterior distribution of the parameters for the sub-set of the data.
Finally we use this distribution as a proposal distribution for the full data set. The
importance sampling weights are just the ratio of the posterior density of the full data
to the posterior density of the subset; which is the likelihood of the extra observations

in the full data set.

We have used this approach to analyse the fetal lamb movements data under a 2-
component and under a 3-component Poisson mixture. In the case of the 2-component
mixture we analysed half of the observations using RDS with 2000 particles and 20000
resampled draws. In the case of the 3-component mixture we analysed a third of the
observations using RDS with 20000 particles and 50000 resampled draws. The ESS

values for the parameters associated with the first component are shown in Table 8.

7 Discussion

In this paper we have extended the direct simulation method of Fearnhead (2005),
which enables exact Bayesian inference for discrete mixture distributions to be made,
to the case of continuous mixture distributions. The posterior distribution for mixture
models depends on the allocation of observations to components only through a set
of summary statistics. The direct simulation method is based on a set of forward-
backward recursions, which can be used to calculate the exact posterior distribution of

the allocations and to simulate samples from it. Our approach was based on discretising
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the continuous data, applying direct simulation to the discretised observations, and then

correcting for this approximation via rejection sampling or importance sampling.

A simple extension of the idea we presented is to discretise the values of the summary
statistics for each observation rather than the observation itself. For example, for the
normal mixture models we considered, an observation z; = 10.4, say, could be discretised

to 10 (the nearest integer), with z? discretised to 110 (the nearest ten).

Rejection sampling, if applicable, is in general preferable to importance sampling, since
it provides an exact sample from the posterior distribution. However, calculation of the
upper bound for the weights is not possible for complicated mixture models and, even
when it is possible, rejection sampling is not efficient for high levels of discretisation of
the data. We have shown that a sample from the posterior distribution obtained via
importance sampling is almost as accurate as an exact sample obtained via rejection

sampling.

Both the original direct simulation method for analysing discrete mixture models and
our extension to the case of continuous mixtures become infeasible if the sample size
is large. In order to deal with larger data sets we have introduced resampling steps
similar to those in particle filters within the steps of the recursion for the calculation of
the posterior distribution. The resampled direct simulation is computationally efficient
and particularly accurate. However, while resampling enables large data sets to be
analysed, it does not allow models with a large (or unknown) number of components to

be analysed efficiently.

A comparative study based on simulated data from different 2-component normal mix-
tures has shown that the RDS can be up to one order of magnitude more efficient than
the Gibbs sampler. The advantage of RDS over the Gibbs is greater for Poisson mixture
models where no discretisation, and therefore no IS correction, is required. Analysis of
subsets of observations from two real data sets under Poisson mixtures suggests that
the RDS can be up to 2 orders of magnitude more efficient than the Gibbs at analysing
2-component mixtures and up to 1 order of magnitude more efficient than the Gibbs at

analysing 3-component mixtures.

The RDS algorithm is a generalisation of the particle filter of Fearnhead (2004) for
mixture models with known number of components. The efficiency of the RDS algorithm
is that, even allowing for resampling, many identical particles are produced when the

particles are propagated and these particles can be merged. Analysis of two real data
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sets under Poisson mixtures has shown that there is a threshold number of observations
for which the RDS algorithm can be up to an order of magnitude more efficient than
the particle filter described in Fearnhead (2004). As the size of the data set increases,

the two algorithms tend to be similar.
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Appendix A

To simulate z, from the marginal distribution f(z,|s,x):

(i) Calculate the value, s®), of the summary statistics of observations x1.,_1 that

would produce s if z,, is allocated to component k.

(ii) Simulate z, from the discrete distribution that allocates probability M (s*); x1.,_1)/M (s; x)
to value k, for k =1,..., K.

Simulating z,_1 conditional on 2z, = k is equivalent to simulating from the marginal
f(zn_1|8*,%1:n 1), and can be performed as above. Simulation of z, 9,2, 3,...,21

proceeds in a similar manner.

Appendix B

The importance sampling weights w(z) in the case of a two-component normal mixture
with common variance are given by

— % " a+n/2
26+ Yy (14 ) T (G — B /me)® + L 2 — Y 12

2b+ 7y (L + ) N (€ — te /) + S @ — Sy 6/

In order to compute a bound for w(z) we note that for fixed values of the sufficient

w(z)

statistics, (ni,ne,t},t5), the value of the weight depends solely on the difference d =
t1 — 1] — as the value of d will determine 5 — ¢5. The weight depends on d through the
power of a quadratic in d. It is straightforward to show that maximising the weight will

thus be achieved at either the largest or smallest possible value of d.

We proceed as follows:

(i) Compute the differences d; = z; — =} and order them in ascending order.

(ii) For the jth possible set of sufficient statistics s}(x,z) = ((n1,n2), (¢1,13))

(a) allocate the ny smaller differences to the first component and the ny larger
differences to the second component and set tgl) = ¢+ Y1 di, tél) =
t5 + > ip 41 di- Compute wg-l)(z) for t;, = t,(cl), kE=1,2.

(b) allocate the n; larger differences to the first component and the ny smaller
differences to the second component and set tgz) =t + Zi":m 119, tg2) =

ts+ > 2, di. Compute w§-2) (z) for ty, = tg), kE=1,2.
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(c) Set Lj = max(w!" (z), w}” (z)).

(iii) Calculate the bound L = max; L;, where the maximum is over all the possible

sets of sufficient statistics.

Appendix C

Simulation from the approximate distribution of f(z|s,x) obtained under the resampling
scheme, is similar to that described in Appendix A. We just describe the approach to

simulate f(z,[s,x).

(i) Define sg"_l), ... ,S(I?_l) to be the value of the summary statistics at time n — 1
which produce s at time n if z, = 1,..., K respectively. Then the weight for s
was calculated by

ey, f()
q(s) =Y a(s) ) —"
= s Y)

(Note that the weight for some of these statistics at time (n — 1) may be 0.)

(ii) Set z, = k with probability proportional to g(s\" ") f(s" ).
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