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Abstract—In this paper a new density-based, non-

frequentistic data analytics tool, called typicality distribution 

function (TDF) is proposed. It is a further development of the 

recently introduced typicality- and eccentricity-based data 

analytics (TEDA) framework. The newly introduced TDF and its 

standardized form offer an effective alternative to the widely 

used probability distribution function (pdf), however, remaining 

free from the restrictive assumptions made and required by the 

latter. In particular, it offers an exact solution for any (except a 

single point) amount of non-coinciding data samples. For a 

comparison, that the well developed and widely used traditional 

probability theory and related statistical learning approaches 

require (theoretically) an infinitely large amount of data samples/ 

observations, although, in practice this requirement is often 

ignored. Furthermore, TDF does not require the user to pre-

select or assume a particular distribution (e.g. Gaussian or other) 

or a mixture of such distributions or to pre-define the number of 

such distributions in a mixture. In addition, it does not require 

the individual data items to be independent. At the same time, 

the link with the traditional statistical approaches such as the 

well-known “n” analysis, Chebyshev inequality, etc. offers the 

interesting conclusion that without the restrictive prior 

assumptions listed above to which these traditional approaches 

are tied up the same type of analysis can be made using TDF 

automatically. TDF can provide valuable information for 

analysis of extreme processes, fault detection and identification 

were the amount of observations of extreme events or faults is 

usually disproportionally small. The newly proposed TDF offers 

a non-parametric, closed form analytical (quadratic) description 

extracted from the real data realizations exactly in contrast to the 

usual practice where such distributions are being pre-assumed or 

approximated. For example, so called particle filters are also a 

non-parametric approximation of the traditional statistics; 

however, they suffer from computational complexity and 

introduce a large number of dummy data. In addition to that, for 

several types of proximity/similarity measures (such as 

Euclidean, Mahalonobis, cosine) it can be calculated recursively, 

thus, computationally very efficiently and is suitable for real time 

and online algorithms. Moreover, with a very simple example, it 

has been illustrated that while traditional probability theory and 

related statistical approaches can lead in some cases to 

paradoxically incorrect results and/or to the need for hard prior 

assumptions to be made. In contrast, the newly proposed TDF 

can offer a logically meaningful result and an intuitive 

interpretation automatically and exactly without any prior 

assumptions. Finally, few simple univariate examples are 

provided and the process of inference is discussed and the future 

steps of the development of TDF and TEDA are outlined. Since it 

is a new fundamental theoretical innovation the areas of 

applications of TDF and TEDA can span from anomaly 

detection, clustering, classification, prediction, control, regression 

to (Kalman-like) filters. Practical applications can be even wider 

and, therefore, it is difficult to list all of them.    

Keywords—TEDA, typicality, eccentricity, data density, pdf, 

non-parametric data distributions. 

I. INTRODUCTION  

Traditional probability theory [1], including the widely 

celebrated Bayesian approach [2], which were introduced two-

three centuries ago are based on the frequentistic approach to 

represent uncertainties and make a number of strong 

assumptions, which usually do not hold in practice. These 

include the requirements to have a theoretically infinite (or 

practically, for an approximation, a very large) amount of 

observations (data samples), these data samples to be 

independent, etc. They are well developed tools to address the 

“pure” random variables and processes for which they were 
designed in the first place, such as gambling, games, etc. The 

basic frequentistic concept was later developed extensively 

into a variety of methods and approaches. In order to apply 

them to real processes of interest (such as climate, 

economical, social, mechanical, electronic, biological, etc.), 

however, the vast majority of them rely on prior assumption 

of smooth and monotonic distributions, such as 

Gaussian/normal, Cauchy, etc.[2],[3] or a mixture of them [4]. 

If use a mixture of (Gaussian) distributions the question arises: 

how to determine the modes of the pdf and, respectively, the 

number of functions in the mixture. This is usually done 

offline by the human user and as a result of approximations 

(not exact) which poses further questions and problems. The 

more recent alternative is to approximate the distributions 

using non-parametric, data-centered functions, such as particle 

filtering [5] or the entropy-based information-theoretic 

learning [6] methods. However, they do not depart completely 

form the Gaussian assumptions which are used for describing 

the distribution around the data points. 

Nowadays, the demand is growing for new concepts in 

Data Analytics that are centered at the data rather than at 

theoretical prior assumptions which are then being confronted 

with the real experimental data. The latter was a dominating 



trend in the last couple of centuries, but it is being increasingly 

shifted towards a data-centric approach lately. Nowadays, 

with the ubiquituous spread of data in nearly every form of 

human activity it is of significant interest to have tools and 

framework/concept to extract the inherent data pattern rather 

than to simply try to fit it to the template of an assumed a 

priori distribution. 

The first step in establishing a systematic theoretical 

framework that is entirely data-driven and makes no prior 

assumptions was the introduction of TEDA (the typicality and 

eccentricity based data analytics framework) in 2014 [7],[8]. 

In the present paper TEDA is further developed by 

introducing the TDF (typicality distribution function) as an 

effective alternative to the well-known probability density 

function (pdf) [2],[3] and membership functions of fuzzy sets 

[9]. TDF is entirely data-driven and does not require any prior 

restrictive assumptions to be made unlike the traditional pdf, 

membership functions and non-parametric approaches such as 

particle filters, information-theoretic learning etc. Moreover, it 

can be calculated recursively and computationally very 

efficiently for Euclidean, cosine, Mahalonobis and Manhattan 

type distance metrics. Simple examples are provided mainly to 

illustrate the concept while the further developments of the 

theory to design new type of anomaly detection, clustering, 

classification, prediction, regression, control, filtering 

approaches and applications to various fields is left for future 

publications due to the space and time limitations.      

The remainder of the paper is organized as follows: section 

II provides a brief introduction of the basic concepts of 

TEDA; section III introduces new TDF, and its standardized 

version, m and provides the mechanism for inference; section 

IV provides some simple examples of TDF and compares 

them with the pdfs; and finally, section V concludes the paper 

with directions of the future work and applications. 

II. INTRODUCTION TO TEDA   

TEDA was introduced in 2014 [7],[8] aiming to offer a fully 

data-driven and prior-assumptions-free framework for Data 

Analytics. It is based on the data density rather than on 

frequency of occurrence assumed distributions [2],[3] or on 

subjective judgment [9] as its predecessors were. It, therefore, 

does not require any prior assumptions to be made, such as for 

example:  

a) independence of the individual data items from each 

other; 

b) large (theoretically, infinite) number of data items; 

c) prior assumption of the distribution or kernel (most 

often, normal/Gaussian). 

Indeed, real processes (e.g. climate, economic, physical, 

biological, social, psychological, etc.) which are of practical 

interest are often complex and uncertain, but they are not 

purely random; they do have inter-sample dependence, not 

necessarily normal/Gaussian distributions and definitely not 

infinite number of observations. It is a well-known fact that 

statistical approaches (and probability theory) does not work 

(well) on small amount of data. However, for many important 

problems such as extreme events analysis and predictions (e.g. 

climate, earthquakes, etc.), fault detection the amount of data 

(for the faulty cases) can be very small. 

TEDA which was introduced recently [7]-[8] offers an 

efficient alternative to the traditional statistical and 

probabilistic framework (as well as to the fuzzy set theory). At 

the same time, it can also be seen as an augmentation of both 

and can work with any real data with as little as a couple of 

data samples. The only exception is if all data samples 

coincide in a single point; for such a singular case both TEDA 

and TDF, in particular, are not defined. In addition to such 

singular case, for pure random variables and processes (such 

as gambling, games, e. g. throwing dices, tossing coins, 

selecting balls from bowls, etc.) the traditional probability 

theory is best fitted, indeed. We can summarize the areas 

where the traditional probability theory (and statistics) is best 

fitted and the area covered better by TEDA are as follows:  

 

 

 

 

 

    

   

 

 

 Fig. 1 Areas for which traditional probability theory and 

TEDA are best fitted 

Let us consider the data space � ∈ ℝ�, which consisit of 

n-dimensional data points. Within this space, we can define 

the distance �ሺ࢞,  ,ሻ, which can be, for example, Euclidean࢟

Mahalanobis, cosine,  ��, or any other. Then, let us consider 

the data points as an ordered sequence

  NiRxxxx n

ik ,...,...,, 21 where the index � may 

have the physical meaning of time instant when the data item 

has arrived. For this reason, � will be referred as time instant 

further for simplicity. Within TEDA we consider [7],[8]: 

 accumulated proximity,  from a particular, jth, j>1 

data point ࢞ ∈ �, to all remaining, k>1 data points: 
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where dij denotes a distance between data points xi and xj. 

 eccentricity of the jth data item calculated when k>2 

non-identical data items are available: 
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where k

jk  denotes accumulated proximity,  from a 

particular, jth, j>1 data point ࢞ ∈ �, to all remaining, k>1 data 

points when k>2 non-identical data items are available. 
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These quantities (π and ξ) can be defined either locally 

(for a part of) or globally (for all data points) and can be 

calculated recursively for certain type of distances. For 

example, if we use cosine distance normalized to be within the 

range [0;1], we come to the following expressions [8]: 
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where  
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or recursively  
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The eccentricity can be determined by: 
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If use Euclidean distance one gets [8]: 
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where  - recursively updated (local or global) mean;  

X is the recursively updated squared norm sum. 

Further, in TEDA a condition which provides exactly the same 

result as the so-called Chebyshev inequality [12] without 

making any assumptions on the amount of data and their 

independence was introduced for Euclidean distance [8],[11]:

   

k
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which can be called the TEDA eccentricity inequality.  

Similar (not the same, but for the case of Mahalonobis type 

distance subject to a coefficient represneting the 

dimensionality of the data vector, x, [11]) inequalities can also 

be derived for other types of distances, such as Mahalonobis 

[11], cosine, L1, In the above expression, n is the well-known 

factor from the so-called “n” principle (where  denotes the 

standard deviation). As a reminder [2],[3], this principle 

guarantees that for normally (Gaussian) distributed random 

variable and a representatively large amount of data the vast 

majority of the data (>99.7% if use n=3) can be considered 

“normal” and the probability for a data item to be abnormal 
(further than 3 away from the mean, μ) is, respectively 

<0.3%. A more general property is given by the so-called 

Chebyshev inequality [12] mentioned above. Namely, for any 

distribution having a large amount of independent data points 

the probability for a data point to be >n away from the mean, 

μ is <1/n2. For example, the probability to have a data point 

distant form the mean more than, 3 is <1/9 (or ~11%). 

Aiming to avoid creating too many false positives they also 

use in practice 6 or even higher n to guarantee that <1/36 (or 

~3%) of the data are declared anomalous [12]. 

III. TDF 

A. Standardized eccentricity, ς 

In this paper, the TEDA is further developed by introducing 

TDF. Let us start by analyzing the expression for the 

eccentricity, (2) and the TEDA eccentricity inequality, (12). In 

this paper, we introduce standardized eccentricity as follows: 
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1  is the average accumulated 

proximity,  from a given point to all other points.  

Please, note the difference between the Greek symbols ξ, ζ, 
and ς which represent, respectively the eccentricity (equation 

(2)), normalized eccentricity [8], ζ= ξ/2 and ς. The latter can 

also be expressed as follows: 

jkjk k                 (14) 

It can easily be seen that ς has some very interesting 

properties. For example, it is very suitable so called Big Data 

problems when k can be very large and both ξ and ζ can 

potentially lead to computational problems (hardware 

dependent, not theoretically restrictive). ς (see (13) and (14)) 

is free form such problems. For normlaised data the distances 

are limited to 1 and k can be updated through an expression 

similar to (9): 
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or by learning [13]-[15] using a learning rate, α (0<α<1): 
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Obviusly, if α=1/k equation (16) reduces to (15) but in 

order to avoid the problems with large k one can select any 

value of α between 0 and 1 and get an assymptotic 

approximation of (15). This learning process is a special case 

of the well known least mean squares principle and has been 

used widely in machine learnrng literature [14]-[16].    

The meaning of ς is that of a comparator between the 
accumulated proximity, π from a given point with the average 

accumulated proximity,   of all data points. The values of ς 

are positive but can be >1 when a point is more than one σ 

away from the mean, μ. That is, we can redefine the TEDA 

eccentricity inequality and discover anomalies by analyzing ς: 
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or equivalently: 

k
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Equation (17) can be called TEDA standardized 

eccentricity inequality and (18) can be called TEDA 

accumulated proximity inequality. Not only they look simpler 

and are more convenient to use (the latter one even does not 

have a division) but for large k they are much more suitable.  

If we analyze further the standardized eccentricity, ς we 

can see that for the vast majority of the data (as described 

above) the values of ς lie in the range ]0; n2+1] and only for 

less than 1/n2 of the data it will have a value bigger than 

(n2+1). Moreover, this conclusion does not require any prior 

assumption to be made about the type of the distribution of 

the data or independence of the data samples or, moreover, 

about the number of data items/points. Indeed, it works 

perfectly well for as little as a couple of data points. 

Furthermore, in this paper we suggest an automatic way of 

determining the value of n as a function of the number of data 

points available as follows: 
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where n* denotes the traditionally used values such as 3 and 6.   

B. TDF definition 

Starting from the standardized eccentricity, ς that was 

introduce above the typicality distribution function, TDF can 

now be defined as follows:  
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or equivalently 
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Obviously, for Euclidean, Mahalnobis, cosine, L1 types of 

distance measures the typicality values can be calculated and 

updated recursively and there is no need to memorise all data 

points. For example, for Euclidean type distance it becomes: 
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where  
22 |||| kjjk x   denotes the deviation form the 

mean of a particular point, xj; 



k

j

jkk
k 1

22 1  denotes the 

well-known squared standard deviation. 

Let us analyze the anlaytic expression of TDF for the 

Eculidean distance. It is, obviously, a quadratic function of the 

partciular, jth data point, xj. The maximum value which this 

function can get is 1 when xj=μk. For all other values of xj it is 

less than 1. It gets exatcly 0 when standardized eccentricity is 

=n2+1 (borderline case for a point to be considered an 

outlier). Obviously, it is dependent on the choice of n, but with 

the suggested automatic mechanism (19) it is automatic. For 

the minority of the cases the value of m can get negative. The 

probability this to take place according to the TEDA 

standardized eccentricity inequality, (17) is <1/n2. 

Analysing TDF we can see that the sum of mj for all values 

of xj; j=1,2,…,k is always bigger than 1: 
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On the surface, the TDF, m resembles very much fuzzy 

sets membership functions (having a maximum value of 1 and 

a sum of vlaues larger than 1, being a smooth monotonic 

function, etc.) but it is quite different in nature. It can (though 

very rarely) have negative values.  

Starting from equation (22) we standardize TDF (equation 

(20) or (20a)) by dividing to the factor 
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results in a new quantity called standardized typicality 

distribution, m : 
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or briefly: 
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It is now easy to check that m sums up to 1: 
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by definition, because: 
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Additionally, for majority of the data (probability for this is 

>1-1/n2) it lies within the range [0;1]: 
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with negative values being associated with outliers (which are 

<1/n2 for any type of distribution): 
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The standardized TDF, m resembles very strongly the 

classical pdf without, however,  requiring the strong restrictive 

assumptions associated with the latter to be made and being 

negative for outliers (thus detecting them automatically). One 

can also argue that it is a function of n (of the choice made by 

selecting n), but this is not a problem- or user-specific 

parameter and the rationale for its choice is quite obvious and 

stable. Apart form this, the only other restriction/requirement 

is to have at least one data point that differes from all others 

and at least a couple of data points in a real, not “purely” 
random process. No any other assumptions are necessary and 

no other restrictions apply.  

While the values of TDF do not diretcly depend on k and 

for any value of k will not suffer form compuational problems, 

the values of the standardised TDF, m can become very 

small nominaly for large k. Unlike, traditional pdf which (at 

leats theoretically) has been defined as a continuous function 

with infinite number of values in the independent argument, 

TDF (and the whole TEDA) is data-centric and is discrete by 

nature (therefore, we used sum and not integral). Therfore, for 

plotting the values it is correct to use stem plot rather than 

continuous envelope curve. For large values of k it is 

recommendable to plot a histogram-like stem plot where the 

values of the independent argument are summed up in bins. 

Obviously, the value of m for a certain bin will be a sum of 

vlaues of m for all data points that fall into that bin. This is 

quite different form histograms used in the traditional 

probability theory to represent the pdf because in TDF case 

these are just presnetational mechanisms and not a reqirement. 

This way of presenting stadnardised TDF values, m  is 

entirely optional and aimes primarily internpretation and 

computation convenience. The exmaples in the next section 

demosntrate that, in general, this is not necessary. In addition, 

TDF can perfectly well work with as little as couple of data 

samples while traditional histograms of pdf do require a large 

amount of data.           

In the next section a number of simple illustrative 

exmaples will be provided and the standardized TDF, m will 

be compared with the traditional pdf. One of the examples will 

demosntrate the confusion when applying the traditional 

probability and pdf while the newly proposed TDF copes very 

well and provides a very logical result. 

C. Inference using TDF 

Finally, the problem of producing an inference using TDF 

and its standardised form, m will be considered. 

Let us have a TDF and/or m derived form the data and let 

us try to infer the standardised typicality of a value of x that 

never took place. To do this, we can simply assume that the 

next data point, xk+1 is the point of interest and update the 

values of μk+1 by equation (9), Xk+1 by (10), 





1

1

)1(
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i

ki  by 

(11), 1k  from (15) in relation with (8), ςk+1 from (13), mk+1 

from (20) and finally, the 1km from (23a). All these 

derivations are non-iterative, can be done online, recursively 

and, thus computationally very efficiently. They will provide, 

as a result in vast majority of the cases a value between 0 and 

1 which can be interpreted as a percentage of the standardised 

typicality (a likelihood). For the minority of the cases when 

these values will be negative the conclusion is that they are 

eccentric and not typical, but possible nevertheless (the 

probability that such values can occur is guaranteed to be 

<1/n2 according to the TEDA standardised eccentricity 

inequality, (17). 

IV. ILLUSTRATIVE EXAMPLES 

Because of the space limitations in this section illustrative 

numerical examples will only be provided aiming primarily a 

proof of concept. First, several simple 1D examples will form 

a TEDA/TDF primer to get started. Then a simple 1D climate 

example will demonstrate that the traditional probability 

theory does not provide a satisfactory representation unlike 

TEDA and TDF or requires many hard assumptions to be 

made and even in such a case does provide an approximate 

one. Finally, couple of still simple, 1D but real climate data-

based examples will demonstrate the TDF and m . 

A. TDF Primer 

Let us start with the basics. Let us consider the simplest 

possible case of just two non-coinciding data points. It is a 

trivial example, indeed, but for completeness, we can start 

with it. If we have two non-coinciding points, A and BA and 

we denote the distance between them as d then we will also 

obviously have k=2; A=B=d that is  dd;2  ; 2=2d; 
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2m . This is quite natural and expected; each of the 

two points (regardless of the specific position of points A and 

B, the type of the distance and dimensionality) is equally 

typical and likely (50% each in terms of m ), see Fig.1 (in 

Fig.1 we depicted a 1D case, but the same conclusion can be 

made for any dimensionality). The TDF does not reach its 



theoretical maximum of 1 because it can be acquired at the 

mean value which is between the two points. 

 

 

 

 

 

Fig. 1 A trivial example: m  for 2 equally spaced data points. 

As a second trivial example we can consider three points, 

so k=3; n=3. Even with this simplistic example there are 

various options. For example, the three points, A, B and C may 

be equally distant from each other in the data space, forming a 

unilateral triangle:  

 

  

 

Fig. 2 An illustration of 3 equally spaced points in a 2D space.  

In such a case,  ddd ;;3  ; 3=3d; d ; }2;2;2{3  ; 

m3={0.2;0.2;0.2};

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3

1
;

3

1
;

3

1
3m . This is also quite expected 

and natural. However, if the data are not equally spaced 

between themselves, for example, if we have the three points 

placed as depicted in Fig.3   

 

 

Fig. 3 A trivial 1D example with three data points which are 

not equally spaced.   

For this case we have k=3; n=3;  ddd 5;3;43  ; 

3=12d; d4 ; }5.2;5.1;2{3 
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8
3m . Even from this trivial 1D example with 

just 3 data points it is obvious that in TEDA (unlike in 

traditional probability theory) what matters is not just how 

often we have an observation with a certain value but also 

how these values are mutually distributed in the data space. 

For example, the point B is somewhat more typical while 

point C is the least typical one.  

 

 

 

 

 

Fig. 4 m  for the second trivial example 

It is obvious that standardized TDF provides a different type 

of information about the importance and likelihood of the data 

points in comparison with the traditional probability theory 

and with the fuzzy sets. We argue that for real processes (not 

dices, coins and other gambling, games or pure random 

processes) this is more realistic that point B is more likely and 

more typical than point A or point C. 

B. Simple 1D climate primer 

This difference is even more obvious if we consider such a 

simple hypothetical example. Let us have five data points 

representing the temperature in a city. For example, we may 

have two cases of 10oC and one case of 16.9oC, 18.1oC and 

19.3oC, respectively. The well known traditional probability 

theory will either suggest that the probability of having 10oC 

is twice as big at 40% (in comparison with the 20% for each 

one of the other observations), Fig.5. Even if assume a 

distribution (e.g. of a Gaussian or other type) it needs to be 

parameterized (finding the mean and standard deviation). If 

assume a mixture of distributions it needs to be pre-

determined the number of such distributions (in this simple 

case, may be 2) and each one of them also need to be 

parameterized. Instead, TEDA offers an automatic and exact 

(not approximate) way of calculating m and m without the 

need to assume/select the type of the distribution, to 

parameterize it or to decide if a mixture of distributions is best 

and how many components such a mixture should have. For 

such a simple example for  Cx
o

3.19;1.18;10;9.16;10  the 

values of  196.0;213.0;186.0;219.0;186.05 m  are 

depicted on Figure 5. It is clear that they are quite logical. 

 Fig. 5 m  for the simple 1D climate example. 

C. Modes detection by TDF 

TDF can be seen and used as an automatic mechanism for 

outliers/anomalies detection which does not require any prior 

assumptions to be made about the distribution, amount of data 

and their independence. It can be used for a screening to find 

outliers and, in this way, to automatically find modes of 

distributions and, in  effect, perform clusteirng and extracting 

multi-modal distributions (if the data pattern requires this) 

without pre-defining how many modes there will be.  

This process can simply start with calcuating the global m 

for each data point (offline, online or in an evolving manner). 

As a next step, the number fo points witin the σ-vicinity 

around the mean, μ can be compared with the number of 

points outside this vicinity. The rationale being that the 

majority of the points have to lie close ot the mean or, 

alterntaively a multi-modal reprensetation is better. If this is 
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not the case (if the number of points outside the σ-vicinity is 

larger than the number of points within the σ-vicinity of the 

mean, μ), e.g. as depicted in Fig.5 (where μ≈14.88; σ≈4) then 

additional modes have to be formed. For all points which lie 

outside σ-vicinity of the mean, μ if the distance between them 

is less than σ are considered toghether and form a local mode 

for which a local mean, μ i (i=1,2,…) is calcuated. These new 

local means replace the global mean, μ. For the simplistic 

example, depicted in Fig.5 this will result in a function with 

two modes around 10oC and around 18oC automatically 

derived from the data. It has to be noted that this is very 

logical and exatcly what a human user would probably decide 

to do manually. The number of points which satisfy this 

condition, ki (i=1,2,…) is also calcuated/updated as well as the 

respective local quantities πi,  i, ςi, mi, and m i (i=1,2,…). In 

an online and evolving mode for each newcoming point the 

distance to all previously discovered modes of the distribution 

(local means) can easily be calculated. The newcoming point 

can then be associated with the nearest one and with the other 

points associated with it. In this way we can get multiple 

modes and data sub-sets (clusters) associated with them.  

D. Simple real 1D illustrative examples  

Finally, let us consider more realistic, but still quite simple, 

1D examples of climate data. In Fig.6 we depict m for the 

temperature during December 2014 in Central England [17].  

 

Fig. 6 m  for December 2014 temperature in Central England. 

Another real, yet simple illustrative example depicts in Figure 

7 the January temperature in Central England for a period 

starting 1772 till present day. 

 

Fig. 7 m  for another simple 1D, but real, climate data 

example (January temperature in Central England since 1772). 

It is clear that one of the days is untypically called (-12oC), 

but is not abnormal ( m is positive). Let us consider A 

hypothetical example of a very warm December (say, 26oC) 

will be extremely unlikely (the value of m will become 

negative indicating this untypical/eccentric case), Fig.8. In this 

example all but one data point are real (same as in Fig.6). 

 
Fig. 8 A hypothetical data point mixed with the real data (an 

extremely warm December day with temperature 26oC). The 

value of m  is negative indicating this is untypical/unlikely. 

Finally, real multivariate data about minimum and maximum 

daily temperature in Marseille, France for the period 1956-

1999 are presented in Figs.9 and 10. One can see the non-

Gaussian nature. 

 

Fig. 9 Min and max daily temperature in Marseille (1956-‘99) 

 

Fig. 10 A 3D plot of m vs peak temperature in Marseille 

(1956-1999, real data). 

V. CONCLUSIONS 

In this paper, the recently introduced data analytics framework 

TEDA is further developed by the introduction of TDF and its 



standardized form, m . It offers a closed analytics (quadratic) 

form formulae which provides the likelihood somewhat 

similar but not the same to the pdf. TDF, on the other hand, 

offers a typicality distribution which resembles a data-derived 

membership function of a fuzzy set. These are based on a 

series of normalizations/standardizations. The proposed TDF 

and m  are free from the restrictive assumptions made and 

required by the traditional probability theory and statistics. In 

particular, it offers exact values for any (as little as a couple) 

number of data points, does not require their independence (on 

the contrary assumes that the process is real and not purely 

random). It does not require the user to pre-select or assume 

smooth distributions (e.g. Gaussian or other) or a mixture of 

such distributions and to pre-define the number of such 

functions in the mixture. The importance of the good choice of 

prior distributions in traditional probability theory is well 

known. For example, in [1] it says on p.23 “…and indeed 
Bayesian models based on poor choice of prior can give poor 

results with high confidence”. Without making any prior 

assumptions and requiring any subjective input TEDA offers a 

direct mechanism for calculating and updating the typicality as 

a form of representing the likelihood of any real variable but 

“pure” random (such as gambling, games, etc. that satisfy the 

strong assumptions listed in section II as a)-c) for which the 

traditional probability theory was actually designed and is best 

suited and without subjective forms of uncertainty 

(preferences) for which fuzzy set theory was designed and is 

best suited for. For all other variables (not the “pure” random 
and not subjective), the inference in TEDA provides and 

updates the typicality distribution automatically.  

The newly proposed TDF can provide valuable 

information for analysis of extreme processes, fault detection 

and identification were the amount of observations of extreme 

events or faults is disproportionally small. At the same time, 

the link with the traditional statistical approaches such as the 

well-known “n” analysis, Chebyshev inequality etc. offers 

the interesting conclusion that without the restrictive prior 

assumptions listed above to which these traditional approaches 

are tied up the same type of analysis can be made using TDF 

automatically.  

Since it is a new fundamental theoretical innovation the 

areas of applications of TDF and TEDA can span from 

anomaly detection, clustering, classification, prediction, 

control, regression to (Kalman-like) filters. Practical 

applications can be even wider and therefore it is difficult to 

list all of them.    

TEDA is entirely based on the density and proximity in the 

data space. It is not tied up to any particular type of distance 

and can be recursively expressed by using a number of types 

of distances, such as Euclidean, Mahalonobis, cosine, 

Manhattan.  

It was demonstrated on some very simple and intuitive real 

data of the temperature distribution in Central England that 

TDF can be generated automatically form the data without any 

prior assumptions and provides logical information about the 

typicality and likelihood of a particular value of the data 

through a straightforward inference. The automatic extraction 

of multi-modal distributions, new clustering methods and 

other applications (including filters, classifiers, predictors, 

controllers etc.) will be a matter of forthcoming publications. 

The problem of anomaly (also the related fault- and novelty-) 

detection using typicality was already described in [8] and its 

extension using TDF was described in this paper (see Fig. 8 

for example).   
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