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Abstract 
 

This thesis is focused on the growth of narrow band gap semiconductor nanowires (NWs) on 

silicon and graphite by droplet epitaxy. First, the growth conditions of In droplets suitable for 

the nucleation of NWs was identified. Vertically-aligned and non-tapered InAs NWs were then 

realized on bare Si. It is shown that the diameter and areal density of NWs are defined by the 

geometry of pre-deposited In droplets. The NWs exhibit a dominant PL peak associated with 

the band to band (BtB) emission in addition to a distinct BtB temperature dependent red-shift, 

strong emission efficiency (up to 2500C) and record narrow spectral linewidth of ~20 meV (at 

10K) which is relatively smaller than previously reported values. This demonstrates the high 

optical properties of the droplet epitaxy grown InAs NWs. 

Vertically-aligned and non-tapered InAs1-xSbx NWs have been demonstrated on Si without the 

commonly used NWs stems. In addition, the effect of Sb addition to the morphology of self-

catalyzed InAsSb NWs grown directly on Si is systematically investigated for the first time. It 

is shown that trace Sb flux significantly promotes lateral NWs growth while at the same time 

suppressing axial growth. Furthermore, Sb-induced crystal phase evolution is elucidated as a 

function of Sb content. Although, pure InAs NWs show a mixture of Wurtzite (WZ) and Zinc-

Blende (ZB) phases, a crystal phase evolution from a highly polytypic InAs to a quasi-pure 

WZ InAsSb NWs (2-4% Sb content) and a quasi-pure ZB InAsSb NWs crystals (~10% Sb 

content) is demonstrated in addition to a significant reduction in the stacking fault density in 

as-grown NWs with increasing Sb content.  

The recent discovery of flexible graphene has triggered a new wave of optoelectronic 

revolution. In order to fully exploit the enormous potential of functional monolithic 

NWs/graphene hybrid structures, the optimal growth conditions for realizing morphologically 

and structurally superior InAs NWs on graphitic substrates has been identified. Vertically well-
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aligned and thin InAs NWs were obtained in a narrow growth window of 420-450oC while a 

high yield of NWs was realized within a restricted domain of growth rate and V/III flux ratio. 

Compared to the growths on Si, the graphitic substrate is shown to enhance adatom mobility 

and enable growth at high growth rate which is highly promising for cost-effective devices. In 

addition, the NWs on graphite show a significantly reduced density of defect in comparison to 

the growth on conventional Si substrates owing to van der Waals epitaxy growth technique 

resulting from the absence of dangling bonds.  

Moreover, high aspect ratio NWs are essential for functional device applications however, the 

growth of thin InAs1-xSbx NWs is extremely challenging owing to Sb-induced lateral growth. 

The growth of ultra-high aspect ratio InAs1-xSbx NWs (0 ≤ x ≤ 0.12) on graphite is 

demonstrated for the first time at highly As-rich conditions with potential for applications in 

ultra-sensitive, eco-friendly, flexible and cost-effective infrared photodetectors. It is shown that 

the graphitic thin film promotes Sb incorporation and is more favourable for InAsSb NWs 

growth in comparison to Si substrates.  

Finally, a morphological evolution from InN NCs to three dimensional (3D) InN islands is 

demonstrated with increasing growth temperature attributable to lowered surface free energy 

of the growing crystals with disproportionate growth velocities along different growth fronts.  
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       Chapter 1 

 Introduction 

 

Fuelled by the top-down miniaturization and increased packing density of silicon 

complementary metal–oxide–semiconductor (CMOS) transistors in a single microelectronic 

chip, the exponential rise in the power of electronics with significant improvements in speed 

and logic performance has triggered a microelectronic revolution[1, 2]. This extraordinary 

advancement in the electronic industry is founded on Moore’s law[3] which proposes an 

exponential rise in the number of transistors cramped onto an integrated circuit (single silicon 

chip) without increasing the unit cost while leading to faster and more powerful devices. This 

is illustrated in Figure 1.1[4]. For instance, a single microprocessor can contain a 32-gigabyte 

memory with as many ~256 billion transistors[1]. However, the transistor dimensions have 

shrunk to such an extent that it significantly degrades the electrical characteristics of devices, 

threatening to end the current revolution. In particular, the downscaling is constrained by 

excessive power density dissipation with an accompanying risk of increased packaging and 

cooling costs which is impractical for most applications[2]. Aside from the dearth of suitable 

technique for carving out ever-smaller structures, the control of the quality and uniformity of 

bulk crystals are compromised on the nanoscale[5]. The “bottom-up” approach which involves 

the atom-by-atom assembly of nanoscale device components from their fundamental 

components, as opposed to the ‘‘top-down’’ approach where materials in bulk form are shaped 

down to nanoscale via etching strategies[6] is potentially considered a leading candidate for  

circumventing this challenge. In particular, semiconductor nanowires (NWs) are highly 

promising low-dimensional materials for driving the 21st century microelectronic revolution 

owing to their extraordinary optical, electronic and structural properties coupled with their 
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reproducible and precisely controlled synthesis and geometry[7-10] which are key 

requirements for functional device applications. The bottom-up approach has emerged as a 21st 

century’s cutting edge technique which has enabled the fabrication of sophisticated NWs 

       

devices otherwise not possible with conventional top-down approaches[11, 12]. The properties 

and functionality of NWs are dictated by an increased understanding of optimized growth 

technique as well as the ability to reliably and precisely predict and control their dimensions, 

structures, distribution and optical properties at an atomic level. It is on this premise that this 

thesis seeks to investigate the optimum conditions for the fabrication of high quality narrow 

band gap semiconductor NWs with improved structural and optical properties for applications 

in highly efficient infrared photodetectors and high speed devices. In addition, it explores 

controllable, cost-effective and time-efficient route to fabricating functional monolithic hybrid 

structures of narrow band gap semiconductor NWs on silicon and graphitic substrates. 

 

Figure 1.1 Moore's Law from 1970 - 2005 (Intel) (Extracted from Ref. 4).  
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The outline of the thesis is structured as follows: 

Chapter 1 highlights the motivation for this research. 

Chapter 2 unravels key theoretical concepts in relation to narrow band gap semiconductors, 

NWs growth mechanism and growth technique.  

Chapter 3 presents a review of existing literature focused on InAs(Sb) and InN semiconductors 

NWs 

 In chapter 4, the various experimental techniques employed for the investigation of the 

properties of NWs are reported. In particular, the MBE growth apparatus and the basic set ups 

utilized for the morphological, structural and optical characterization of as-grown NWs are 

described. 

Chapter 5 details the procedure for optimizing the growth conditions of In droplets suitable for 

NWs nucleation. In addition, the results of In-assisted InAs NWs growth on bare silicon are 

reported along with studies focused on the effect of growth parameters on NWs morphology 

and spatial distribution. Finally, the photoluminescence properties of as-grown NWs are 

presented. 

Chapter 6 elucidates the growth and characterization of InAsSb NWs. The effect of Sb addition 

on the morphology and structural property of InAsSb NWs is also explicated. 

Chapter 7 highlights the growth procedure of InAs(Sb) NWs on graphitic substrates as well as 

the growth parameter studies of as-grown NWs. 

The growth and characterization of InN NWs on bare Si (111) substrates is presented in chapter 

8. Additionally, it expounds on the effects of growth temperature on InN NWs growth.  

Chapter 9 presents the conclusion, outlook and future directions.  
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                                                       Chapter 2 

  Theoretical Concepts 

 

Basic theoretical concepts relevant to this study are presented in this chapter including 

semiconductor materials, nanowires, droplet epitaxy, van der Waals epitaxy and nanowires 

deposition techniques. 

2.1 Semiconductors Material  

 

Semiconductors have revolutionised every facet of the human life as drivers of modern 

electronic and optoelectronic devices including transistors, solar cells, light-emitting diodes 

(LEDs) and integrated circuits. They exhibit electrical conductivity in between metals and 

insulators. Most common semiconducting materials are crystalline solids and their properties 

largely depend on their crystalline structure[13]. Electrons in semiconductor crystals are 

arranged in energy levels or bands; the conduction band above and the valence band below, 

separated by a forbidden region also known as the band gap (Eg) defined as the energy 

difference between the lowest point of the conduction band (conduction band edge) and the 

highest point of the valence band (valence band edge) denoted as EC and EV respectively. 

Materials are categorized as insulators, semiconductors or conductors depending on the width 

of the band gap (in energy units) as illustrated in figure 2.1 with the chemical potential (µ) of 

electrons in a semiconductor material at 0K known as the Fermi level. The conductivity or 

otherwise of a pure material to an applied electric field is strongly dependent on the ease with 

which electrons are transferred from the valence to conduction band as a function of the band 

gap. Compared to insulators with filled or empty energy bands and very large band gaps, 

conductors have overlapping bands or partly filled band with small or no band gaps 

consequently they are very good conductors as opposed to insulators which exhibit poor 
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conductivity. Semiconductors possess slightly filled or slightly empty bands[13] with small 

band gaps in between that of insulators and metals such that electrons from the valence band 

can easily gain sufficient energy (> Eg) to migrate into the conduction band. 

 

 

 

2.2 Narrow Band Gap Semiconductors   

 

Among semiconductor materials, the III−V compound semiconductors such as GaAs, GaSb, 

GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN composed of group III and V 

elements provide the material basis for a number of well-established commercial technologies, 

as well as new cutting-edge electronic and optoelectronic devices[14]. Among them, the 

Narrow Band-gap (NB) semiconductors are technologically important optoelectronic materials 

with narrow band-gaps. The possibility of exploiting their small band gaps for functional 

optoelectronic applications has attracted considerable research interest. This work focuses on 

NB semiconductors such as InAs, InAsSb and InN which have emerged as the materials of 

Figure 2.1 Schematic illustration of energy bands showing (a) completely filled valence band and an empty conduction band 

of an insulator; (b) Slightly empty valence band and slightly filled conduction band of a semiconductor (c) overlapping bands 

of a metal. The brown areas indicate the regions filled with electrons while light blue areas indicate empty bands 
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choice for many applications in the Infrared region[15]. Most III-V materials as well as NB 

semiconductors including InAs and InAsSb adopt the Zinc blende (ZB) bulk crystal structure 

but InN crystallize in the Wurtzite (WZ) structure[16]. Figure 2.2 schematically depicts the 

band gap versus lattice constant of some NB and III-Nitride semiconductors. The low 

temperature band gap, lattice parameters and effective electron mass (me*) of some NB 

semiconductors as reported by Vurgaftman et al[14, 17] are presented in table 2.1. The 

following section elaborates on some of the unique properties of selected NB semiconductors. 

                              

     

Table 2.1 Basic Parameters of some Narrow Band-Gap Semiconductors 

Material Crystal 

Structure 

Band Gap, Eg  

 (0K) (eV) 

  Lattice Constant 

  a (Å)           c (Å) 

    Effective 

   Mass (me*) 

InAs Zinc Blende 0.417 6.058 -      0.026m0 

InSb Zinc Blende 0.235 6.479 - 0.0135 m0 

InN Wurtzite 0.78 3.545 5.703      0.07 m0 

          m0 is the electron rest mass 

Figure 2.2 Schematic representation of the band gap versus lattice constant of some 

narrow band gap and III-Nitride Semiconductors. 
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2.2.1 Indium Arsenide Antimonide alloys 

Indium Arsenide (InAs) is considered one of the most promising semiconductor materials due 

to its outstanding properties including a narrow direct band gap (0.35eV)[18], small electron 

effective mass and extremely high electron mobility in the range of ~30 000 cm2/Vs at 

300K[19] which makes it highly suitable for mid infrared photo detection and high-speed 

electronics. Perhaps one of the most fascinating applications of InAs is in the investigation of 

important material-related properties such as spin-orbit coupling and quantum confinement 

effects which occur at larger dimensions than in materials of larger effective mass and wider 

gap. Owing to its small effective mass, it has a large Bohrs Bulk radius (aB) of 34nm[20-22]  

which is significantly larger than most semiconductor materials such as Si where aB ~ 3nm[23, 

24], making it an ideal candidate for studies on quantum confinement-induced phenomena[25] 

(detailed in section 2.3).  

The huge potential of InAs could be further enhanced by the incorporation of antimony (Sb) to 

form the ternary alloy InAs1−xSbx. InAsSb is currently a subject of huge research interest for 

high-performance nanoscale electronic device applications with enormous promise for 

extending the wavelength limit of InAs detectors (1–3.8 µm) to the long-wavelength infrared 

(LWIR) (8–12 µm) [26, 27] range to enable infrared photo detection of highly important gases 

such as CH4, CO, CO2, O3 and N2O[28] as well as increased carrier lifetime [29] with respect 

to InAs and improved carrier mobility, useful for highly efficient field-effect transistors[30, 

31]. InAs1-xSbx is particularly attractive because it has the narrowest band gap among all the 

III-V semiconductors (145 meV, x = 0.63 at 0K) with a band gap covering most of the mid-

infrared spectrum (3-12m) [31, 32]. Figure 2.3 shows the plot[14] of band gap and relative 

band off-sets as a function of lattice parameter  for InAsSb, which clearly reveals the ternary 

alloy’s tuneable band gap which would enable band gap engineering for controlled NWs 

characteristics and device application. It also offers the opportunity to investigate important 
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material-related properties[31]. InAs1−xSbx is a highly promising alternative to current 

HgCdTe-based infrared LWIR detectors which is plagued by concerns related to toxicity [33], 

surface instability, high growth and processing cost as well as non-uniformity resulting from 

variations in electrical properties [34]. 

 

              

                               

2.2.2 Indium Nitride 

InN materials have attracted considerable attention due to their excellent electronic and 

optoelectronic properties such as low effective mass, high carrier mobility, high saturation 

(drift) velocity and relatively high absorption coefficient[35]. Early studies of polycrystalline 

InN films grown by radio frequency (rf)-sputtering reported room temperature direct band gap 

Figure 2.3 Plots of the band gap and relative band gap off-sets as a function of lattice 

constant for the InAsSb alloy. The length of the red and blue vertical lines connecting 

the rectangular (valence band off-set) and circular points (conduction band off-set) 

corresponds to the band gap of InAs and InSb respectively (Data adapted from Ref. 14) 
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of 1.9eV[36], however due to improvements in epitaxial growth techniques high-quality single 

crystalline InN films with comparatively lower electron concentrations have been realized 

leading to a revision of the band gap to  0.7-0.9 eV[37, 38]. This downward band gap revision 

to the near-infrared spectral range has triggered enormous research interest due of its enhanced 

potential for applications in optoelectronic devices[39]. When alloyed with GaN to form 

InxGa1-xN, the ternary system spans from the near infrared region of InN to the ultraviolet of 

GaN (3.4eV) enabling the entire optical window to be encompassed by a single material[40, 

41] rather than the system of several SC materials currently in use with huge implications for 

cost-effectiveness. Despite this huge potential, the growth of InN has been very challenging 

due to its low decomposition temperature, high equilibrium vapour pressure of nitrogen over 

indium and the lack of suitable lattice-matched substrates. The highly promising applications 

of InN in cost-effective and highly efficient nanolasers, LEDs and solar cells[42] has provided 

the motivation for its investigation in this work.  

 

2.3 Semiconductor Nanowires  

 

Nanostructures are defined as objects having at least one critical dimension in the nanometer 

(10-9m) range. They are classified based on the number of nanoscale dimensionalities. 

Semiconductor nanowires (NWs) are wire-like structures with diameters constrained to tens of 

nanometers and lengths much longer, typically in the range of micrometres[5] (10-6 m). 

Specifically, they have two dimensions (diameters) confined to the nanometer scale while the 

third (length) is free. They are also referred to as one-dimensional (1D) nanostructures due to 

its single unconfined dimension. Conversely, nanostructures with three and one dimensional 

confinement along with 0 and 2 unconfined dimensions are described as quantum dots and 

quantum wells (2D) respectively. Usually in bulk materials, when two identical isolated atoms, 
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each with quantized energy levels are  brought closer together due to a reduction in lattice 

constants, there is an overlap of the electron wave functions and the quantized energy levels 

hybridize and split into two different levels[43] consistent with the Pauli exclusion principle. 

More generally, when N atoms are moved closer, the energy levels split into closely spaced N 

levels resulting in the formation of two continuous bands known as the conduction and valence 

bands separated by a forbidden band. For instance, Figure 2.4 shows the formation of energy 

bands of electrons in a carbon crystal as a function of the inter-atomic distance “a”. Isolated 

carbon atoms contain six electrons, which occupy the 1s, 2s and 2p orbital in pairs. An overlap 

of the 2s and 2p orbitals results in the emergence of two distinct energy levels, a lower valence 

band and an upper conduction band. The highest energy level of the valence band and the 

lowest energy level of the conduction band are denoted as E
V
 and E

C
 respectively[44]. The 

energy of an electron occupying the 1s orbital is not shown.  

 

 

 

                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Energy bands for diamond versus lattice constant. (Adapted from Reference 44). 

http://ecee.colorado.edu/~bart/book/book/chapter2/ch2_3.htm#fig2_3_3
http://ecee.colorado.edu/~bart/book/book/chapter2/ch2_3.htm#fig2_3_3
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However, when the dimensions of bulk materials are scaled down to the nanometer range 

completely new and distinct electronic, optical and magnetic properties emerge due to quantum 

confinement effects. For an electron with an effective mass m*, the de Broglie’s wavelength 

(λB) is as expressed in equation (2.1):      

 
𝜆𝐵 =

ℎ

𝑝
=  

ℎ

√2𝑚∗𝐸
 (2.1) 

          where h is the Planck’s constant and p is the electron momentum  

 

 

When one or more dimension of a material is comparable to the wavelength of an electron, 

quantum size effect is introduced along such a dimension. Consequently, as the dimensions 

of nanostructures are confined to the nanometer (10-9 m) range, which is of the same order 

or less than the de Broglie wavelength of electrons (λB) quantum confinement is experienced, 

electron mobility is inhibited [5] and the energy-momentum relation modified. As a result, 

energy bands cease to be continuous or overlap and electrons populate discrete energy levels 

which is quite distinct from the energy bands found in conventional bulk materials[45, 46].  

As schematically illustrated in Figure 2.5,  electrons confinement radically transforms the 

density of states which is the number of available states per unit volume per unit energy in a 

crystal useful for estimating the occupancy of states and determination of optical properties of 

semiconductors including calculation of the optical transition probabilities and/or transition 

rates upon absorbing and emitting light[47].  In addition, NWs particlularly exhibit high aspect 

ratio and large surface-to-volume ratio compared to their bulk counterparts as shown in figure 

2.6. 
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Figure 2.5 Schematic diagrams illustrating the electronic density of states for different dimensionalities of nanostructures  

Figure 2.6 Schematic illustration of the large surface to volume ratio of nanowires compared to their bulk counterparts 
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2.3.1 Why Nanowires 

Semiconducting NWs have being touted as promising building blocks for a wide range of 

applications such as photonics and electronics [48-52]. They have garnered enormous research 

interest due to their novel electronic, optical and magnetic properties resulting from the two 

dimensional quantum confinements of carriers, large aspect ratio and large surface to volume 

ratio. Vertically-aligned NWs are particularly interesting for optoelectronic device applications 

such as solar cells and infrared photo detectors. This is because they have the potential to 

significantly enhance the efficiency and sensitivity of optoelectronic devices[53] due to an 

enhancement in light absorption resulting from their ability to efficiently function as optical 

waveguides. In addition, their unique geometry enables a reduction in optical reflectance[54-

57], longer diffusion length and lifetime of minority carriers[58] and improved carrier 

collection efficiency[59] relative to conventional planar bulk geometry. Furthermore, NWs 

could open up new functionalities to optoelectronic applications because they can be grown in 

various architectures such as axial/radial heterostructures [60, 61] and in tandem with other 

nanostructures including quantum dots[62] enabling the realisation of devices otherwise 

impossible. Additionally, owing to the increasing influence of quantum confinement effect 

with decreasing diameter, NWs exhibit diameter-dependent band gaps[63] which has 

enormous consequences for band gap modulation. Their small footprint can be exploited for 

epitaxial growth on highly lattice mismatched substrates [64, 65]. The dislocation-free growth 

of high quality III-V NWs on foreign substrates resulting from its efficient lateral strain 

relaxation could be leveraged for harnessing the fascinating properties of highly lattice 

mismatched substrates such as silicon and graphene for the fabrication of new and sophisticated 

devices such as flexible solar cells[66]. From an economic perspective, a significant reduction 

in the volume of active materials has the potential to dramatically lower the manufacturing cost 

of NWs based devices translating to improved cost-effectiveness[66]. The realization of a new 



 

 

14 

 

generation of high-performance NWs based devices including solar cells [67-69], light emitting 

diodes [70, 71], transistors[48-50], lasers [51, 52], detectors [72, 73] and emerging new 

capabilities and applications[74] has further motivated more intensive research effort 

particularly on the growth of high quality NWs; although, not without challenges such as the 

large differences in lattice parameters and thermal expansion coefficients which has impeded 

the progress towards NWs based devices.   

2.3.2 Nanowire Growth Mechanisms 

 

Several strategies have been developed for the fabrication of 1D NWs including:  

(I) Metal catalyzed nanowire growth 

(II) Oxide assisted nanowire growth 

(III) SiO2 mask assisted nanowire growth 

(IV) Self catalyzed nanowire growth  

The following section details some of the key distinctive of each of the outlined growth 

mechanisms.  

(I) Metal catalyzed growth (MCG) 

 This is the dominant technique for the fabrication of semiconductor NWs, it employs 

foreign metallic catalyst for promoting NWs growth via the so-called vapour liquid solid 

(VLS) growth mechanism. It was first introduced in 1964 by Wagna and Ellis[75] for the 

growth of Au-assisted silicon whiskers with micrometer scale diameters using H2 for the 

reduction of the SiCl4 precursor. The formation of a eutectic Au-Si (catalyst-substrate) 

liquid alloy and diffusion of a continuous stream of Si vapour into the droplet alloy leads 

to supersaturation and precipitation at the liquid-solid interface and subsequent growth of 

Si whiskers. Some of their findings include: (i) Au catalyst is necessary for facilitating 

whisker growth (ii) The Au droplet is noticeably found on the whisker tip at growth 
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termination (iii) silicon whiskers growth was not promoted by screw dislocation. This 

technique further described by Givargizov[76] for Si whiskers deposited by chemical 

vapour deposition (CVD) is currently being employed for the fabrication of III–V 

semiconductor NWs but with diameters reduced typically to 10–100 nm[77]. In this 

mechanism,  the catalyst serves as a collector and reservoir[78] of growth species which 

are introduced in their vapour phase and incorporated unto the catalyst via three possible 

routes[79] ; direct impingement on the catalyst, impingement on the substrate and 

subsequent diffusion towards the catalyst and finally adsorption on the NWs sidewall and 

eventual diffusion to the catalyst. The growth species first dissolves in the liquid droplet 

from the gas phase, then crystallizes at the liquid (catalyst droplet) – solid interface after 

supersaturation (i.e. contains excess of the growth species in the droplet), leading to the 

nucleation and epitaxial growth of NWs material under the liquid droplet [78]. Hence, the 

droplet remains in the liquid phase throughout the growth process and is visibly present 

on the NWs tip at the end of the VLS growth. However, concerns about the incompatibility 

of Au with the dominant and well-established silicon technology has adversely mitigated 

its potential for use in the monolithic integration of semiconductor NWs with silicon since 

it results in unintentional incorporation of Au impurities[80] which degrade the properties 

of the resulting NWs. Several foreign metals are currently being explored as potential 

alternative catalyst to Au for use in nucleating III-V semiconductor NWs including nickel, 

palladium, platinum, manganese, copper, silver, bismuth and iron[81].  

(II) Oxide assisted growth (OAG) 

The OAG approach of NWs growth was proposed by Lee’s group[82] after being 

successfully deployed for the fabrication of Si NWs[83] and nanoribbons[84]. Oxides 

were reported to play a critical role by inducing the nucleation and growth of high-quality 

semiconductor NWs. The nucleation of Si nanoparticles is assumed to occur at the 
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substrate via the following decompositions of Si oxide (SimO,where m>1) generated by 

thermal evaporation or laser ablation. 

 𝑆𝑖𝑚𝑂 →    𝑆𝑖𝑚−1  + 𝑆𝑖𝑂       (𝑚 > 1)      𝑎𝑛𝑑   (2.2) 

                                                                                 2𝑆𝑖𝑂 → 𝑆𝑖  +  𝑆𝑖𝑂2      (2.3) 

 

Enabled by the mobile oxide layer which surrounds its surface and passivates its side facets the 

Si nanoparticles functions as the nuclei for promoting the precipitation and growth of Si 

NWs[82]. In a similar vein, GaAs NWs have been obtained by oxide-assisted laser ablation of 

a mixture of GaAs and Ga2O3[85]. 

(III)  SiO2 mask assisted growth (SMG)  

This technique employs patterned holes in an oxide mask to facilitate the nucleation and 

growth of NWs which would imply the location of growth is dictated by the opening made 

prior to commencement of growth. The oxide layer plays a very crucial role for the growth 

of NWs.  Openings in the SiO2 mask which are either intentionally formed by lithographic 

etching or by interaction with group III adatoms results in the creation or expansion of 

previously existing nanocavities which functions as preferential nucleation sites for NWs 

growth while at the same time providing favourable conditions for droplet formation [86, 

87]. In addition, the oxide sidewall serves as a scaffold for limiting adatom mobility to 

guide and establish 1D growth[88]. SiOx islands are also believed to catalyze NWs growth 

especially in the absence of any catalyst[89]. SMG may be used in conjunction with other 

growth techniques such as MCG.  

(IV) Self catalyzed growth (SCG) 

This growth technique otherwise called self-assisted growth involves the use of a low 

melting group III element, a constituent of the grown III-V NW material as catalyst for 

NWs growth initiation [81]. For instance, Ga could be furnished as a catalyst for the 
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growth of GaAs NWs. However, it should be noted that no SiO2 template or foreign 

catalyst is required in SCG. This circumvents the problem of unwanted introduction of 

impurities usually associated with the use of foreign catalyst. Due to the fact that the 

catalyst is one of the constituent elements of the NWs, this technique could potentially 

provide extremely clean growth processes translating into high quality NWs structures. 

For instance, the Ga precursors supplied during the growth of the binaries compounds such 

as GaN, GaAs and GaSb could assist in the NWs deposition process as catalyst. SCG is 

often associated with the vapour solid (VS) growth mechanism, mostly evidenced by the 

absence of a catalyst on the NW tip at growth termination. Although, its disappearance 

could also be related to their consumption and crystallization during post-growth 

cooling[90]. 

 

2.4 Droplet Epitaxy Growth (DEG) 

 

2.4.1 Growth of Nanostructures by Droplet Epitaxy   

 

Droplet Epitaxy (DE), a new MBE growth method was first proposed by Koguch et al[91] in 

1991 for InSb microcrystals growth on CdTe substrates. This method which was initially based 

on the formation of In droplets prior to growth initiation with the subsequent incorporation of 

Sb into the droplets to form InSb is thought to show great promise for the fabrication of 

quantum well boxes. DE has since being utilized for the 3D growth of GaAs epitaxial 

microcrystals on sulphur-terminated  GaAs substrate[92]. The incorporation of As atoms into 

the pre-deposited Ga droplets from the vapour phase was found to promote the 3D growth of 

GaAs quantum dots (QDs). The nucleation of liquid Ga droplets and their crystallization into 

GaAs QD has being studied theoretically and experimentally[93]. It was found that all droplets 

transformed into crystalline QDs and the GaAs QD densities were well-defined by the Ga 
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droplet. In addition, it has been demonstrated that the nanostructure size and shape can be 

precisely controlled by the droplet size which itself is tuned by varying the As4 flux and 

substrate temperature[94]. DE has the added advantage of dislocation-free coherent quantum 

structures due to the liquid nature of the droplet[95]. Strain-free GaAs/Al0.33Ga0.67As quantum 

ring solar cells have been fabricated by DE[96]. As a result, this technique has been largely 

employed for the growth of strain-free, high-quality nanostructures including quantum dots[97, 

98], single and double quantum rings[95], concentric multiple nanorings[99] and nanostructure 

complexes [94]. The highly flexible nature of DE technique compared with Stranski-Krastanov 

mode makes it more suitable for the fabrication of nanostructures on both lattice-mismatched 

and lattice-matched materials[100]. DE grown, strain-free GaAs QD Pairs infrared 

photodetectors have recently been demonstrated[100] indicating its enormous potential for 

optoelectronic devices application.  

2.4.2 Growth of Nanowires by Droplet Epitaxy     

 

Droplet Epitaxy (DE) growth potentially holds enormous promises for NWs growth owing to 

its well-established technique and successful deployment in the fabrication of high quality 

nanostructures. Due to the high surface tension exhibited by the group III elements such as Ga 

and In, they have a high tendency to aggregate on the substrate surface and function as 

reservoirs for facilitating the nucleation and growth of NWs. In the DE growth technique, NWs 

growth is preceded by the intentional activation of the substrate surface with a group III element 

to form liquid droplets which acts as preferential nucleation sites for the adsorption of incoming 

growth precursors when the shutters are opened for initiation of NWs growth. For clarity, DEG 

involves a deliberate introduction of a high concentration of group III element, whereas only a 

limited mole fraction of the group III element is spontaneously formed during the conventional 

SCG growth process.  
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This technique has been theoretically predicted[101] and experimentally verified[102] to 

exhibit unique features and advantages superior to other growth techniques for large-scale 

integration including better control of NWs dimensions, higher growth rate and lower growth 

temperature, higher stability and higher probability even for thinner structures. The exceptional 

properties of DEG including strain and dislocation free growth, precisely controlled size and 

shape of nanostructures and its flexibility could be exploited for the precise control of the size, 

position, diameter and distribution of high quality III-V semiconductor NWs.  

2.5 Van Der Waals Epitaxy (VDWE) Growth 

 

The epitaxial growth of III-V semiconductor materials on conventional substrates are promoted 

by the presence dangling bonds at the 3D/3D interface. In contrast, the nucleation and epitaxial 

growth of 3D materials onto 2D layers such as graphene/graphitic substrates devoid of 

unoccupied chemical bonds is driven by weak van der waals like interactions called quasi van 

der waals intermolecular forces. One of the key advantages of van der waals epitaxy (VDWE) 

is the absence of interfacial lattice mismatch induced strain and defects [103]. This is due to 

the fact that lattice matching requirements are unnecessary, given the distinct bonding 

mechanism in VDWE compared to conventional epitaxy with strong chemical bonding[104]. 

VDWE has been shown [103, 105, 106] to readily relieve interfacial strain promoting the 

formation of high-quality heterojunctions between highly mismatch materials. However, the 

lack of surface dangling bonds on graphene makes them chemically inert to foreign atoms, as 

a consequence the growth of 3D semiconductor NWs such as GaAs, InAs and InAsSb on 

muscovite mica, molybdenum disulphide (MoS2) and graphitic substrates is very 

challenging[104]. Figure 2.7 schematically illustrate the difference between conventional 

epitaxy and VDWE growth.        
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2.6 Nanowire Deposition Techniques 

 

Several NWs growth techniques are currently being employed for the formation of 

semiconductor NWs but the most commonly used include the metal organic chemical vapour 

deposition and molecular beam epitaxy. Subsections 2.6.1 and 2.6.2 briefly describe these 

growth techniques. 

 

2.6.1 Metal Organic Chemical Vapour Deposition (MOCVD) 

 

Chemical Vapour deposition (CVD) is a broad family of processes whereby gaseous reactants 

are admitted into a reactor leading to the deposition of a solid material by a chemical reaction 

occurring on or within the vicinity of a heated substrate surface[107]. Metal organic chemical 

vapour deposition (MOCVD) otherwise called metal-organic vapor phase epitaxy (MOVPE) 

is a specific form of CVD involving chemical reactions between metal-organic (MO) 

precursors. It is generally defined as the growth of thin layers of compound semiconducting 

materials by the co-pyrolysis of various combinations of organometallic compounds and 

hydrides[108]. It employs a mixture of Group III metal-organic and Group V hydride 

Figure 2.7 Schematic representations of conventional epitaxy (a) and quasi van der Waals epitaxy (b). 
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precursors in a carrier gas (H2, N2, or mixture of both) for the growth of III-V compound 

semiconductors. Although the process could be much more complex, ignoring intermediate 

steps and reactions the overall chemical reaction that occurs in a typical MOCVD sequence 

could be expressed in a simplified form[109]  as:  

 𝑅3𝑀 (𝑔)    +    𝐸𝐻3 (𝑔) → 𝑀𝐸 (𝑠)     +    3𝑅𝐻 ↑   (𝑔)  (2.4) 

Where R = organic radical, typically a CH3 (methyl) or C2H5 (ethyl), M = Group III metal 

atom, E = Group V atom; and H = atomic hydrogen. 

The vapor phase reactants (R3M and EH3) are introduced into a reaction chamber at 

approximately room temperature and are thermally decomposed at elevated temperatures by a 

hot substrate and susceptor to form the nonvolatile product (ME) which is deposited on the 

substrate and the susceptor, while the volatile product (RH) is carried away by the flush gas 

(eg H2) to the exhaust[108]. For instance, the chemical reaction between Ga (CH3)3 and AsH3 

results in the  production of  GaAs NWs and CH4. 

2.6.2 Molecular Beam Epitaxy (MBE) 

 

Molecular beam epitaxy (MBE) is an advanced ultra-high vacuum epitaxial technique 

employed for the growth of compound semiconductor materials by the reaction of one or more 

thermal molecular or atomic beams of the constituent elements with a heated crystalline 

surface[110]. Derived from the Greek word “epi” meaning on, and “taxis” meaning 

arrangement, “Epitaxy” refers to a crystal growth technique in which thin layers of 

semiconductor materials are arranged layer by layer on the surface of a crystal (substrate). If 

the lattice structure of the layer and the substrate are identical it is termed “Homoepitaxy” if 

otherwise it is “Heteroepitaxy”[111]. As the name connotes, the MBE growth process involves 

the evaporation or sublimation, condensation and impingement of localized molecules or 

atomic beams in an ultra-high vacuum (UHV) environment (~10-11 Torr) from ultrapure 
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elements such as In, Ga and Al contained in crucibles confined in effusion or knudson cells on 

structurally suitable substrates heated to the required growth temperature. The substrate 

temperatuire provides sufficient thermal energy to the arriving atoms for them to migrate over 

the surface to lattice sites and eventually incorporate into the growing film [112, 113] as 

shown[114] in figure 2.8. The question that comes to mind is: Why the need for an UHV 

environment? Semiconductor NWs are very sensitive to the surface states or impurities induced 

by the fabrication processes hence the need for employing high purity growth technique for 

NWs growth [46]. In addition, the UHV environment minimizes contamination of the growing 

surface leading to the growth of high purity semiconductors. 

 

 

 

 

 

  

 

 

 

 

 

It also creates the needed ambience for the atomic and molecular beam to travel in nearly 

collision-free paths until arriving either at the substrate or else at chilled walls of the chamber 

where they condense and are thus effectively removed from the system[112]. Due to the long 

Figure 2.8 Illustration of typical processes occurring on a growing surface during MBE 

growth. It shows atoms impinging and migrating on the surface to lattice sites and 

eventually incorporating into the growing film (adapted from ref. 114)  
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mean free path between collisions of atoms and molecules in a vacuum (10-11 Torr), the effect 

of scattering processes is minimal resulting in minimal degradation of injected beam which in 

turn leads to epitaxial growth of highly uniform films with controlled composition and atomic 

layer precision. Thanks to the UHV in the growth chamber, mechanical shutters are utilized for 

efficient and timely growth initiation, interruption and termination. The ability to easily and 

swiftly interrupt growth for composition modulation, along with the absence of boundary 

layers, both of which are critical requirements for the growth of abrupt interfaces on the atomic 

scale has huge implications for fundamental studies such as quantum confinement in NWs 

structures[115]. The non-equilibrium growth condition has given MBE  additional advantages 

including low growth temperature[112], ability to produce multi-layered structures with 

extremely fine dimensional control and explication of new device phenomena. Furthermore, 

the UHV is advantageous for permitting in situ growth monitoring by sophisticated diagnostic 

methods including Auger Electron Spectroscopy (AEG) for examining the surface chemical 

composition  of the substrate or growing epilayer [112, 116] and Reflection High-energy 

Electron Diffraction (RHEED) which enables direct measurements of the surface structure of 

the growing layer. The schematic diagram depicting the formation of a RHEED pattern during 

MBE growth is shown[117] in Figure 2.9.  

                   

Figure 2.9 Diagram depicting the formation of a RHEED pattern during MBE growth 

(Extracted from Ref. 117) 
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A high energy beam of electrons in the range of 5- 40 keV is directed at the sample surface at 

a low glancing angle and the RHEED diffraction pattern generated is displayed on a phosphor 

screen suitably located in the growth chamber[116]. The periodicity of the growing crystal is 

reflected in the diffracted orders produced which are used in determining the structure of the 

layer. Figure 2.10 shows[118] a real space representation of the formation of a complete 

monolayer of GaAs (001). Atoms arriving on the smooth substrate surface [monolayer 

thickness (θ) = 0] first nucleate in 2-D islands thereafter, arriving atoms migrate to the                  

existing step edges resulting in an increase in monolayer thickness (θ > 0), with an eventual 

transition back to a smooth surface corresponding to a complete monolayer (θ = 1). Thus, the 

surface cycles between smooth and atomically rough, with a period corresponding to the time 

to complete a monolayer of growth. Owing to the fact that the rougher surface causes more 

diffuse scattering of the RHEED beam, the intensity of the diffracted beam is significantly low 

in comparison to that of a smooth surface. Consequently, the intensity of the diffraction beam 

provides useful information about the roughness of the growing sample. In addition, since the 

RHEED oscillation period corresponds to the monolayer growth rate, the RHEED oscillations 

also provides a precise method of measuring growth rates in real time[112]. These powerful 

facilities enable real time control and analysis during growth which could be exploited for the 

growth of sophisticated device structures thereby eliminating undue dependence on guess 

work. In comparison to MOCVD, MBE exhibit a number of advances such as low growth rate 

of typically 1 µmhr-1 (1 monolayer s-1) which combined with the UHV permit precise real time 

composition and monolayer thickness control resulting in growth of high quality crystals with 

smooth surfaces[116]. Finally, no decomposition process is required in MBE compared to 

MOCVD which enables independent control of growth and precursor temperatures. 
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Figure 2.10 Real space representation of the formation of a complete monolayer of GaAs (001),  

θ = fractional layer coverage (Courtesy of Ref. 118)  
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2.6.3 Comparison between MBE and MOCVD 

 

A comparison between MBE and MOCVD growth is summarised in tabulated 2.2. 

 

Table 2.2 Comparison between Molecular Beam Epitaxy (MBE) and Metal organic Chemical vapour deposition  

   (MOCVD)  

 

 

 

             

 

 

                                MBE                                MOCVD 

1.  Ultra-high vacuum environment (~10-11 Torr) 

2.   Precise and real time control of composition   

      and  monolayer thickness using in situ   

      diagnostic tools eg RHEED 

3.  Beam produces very abrupt heterointerfaces   

     and ultrathin layers 

4.   Large mean free path between collisions   

      (~ 5 - 0.05m) 

     High vacuum environment  

    No precise and real time control of composition  

    and monolayer thickness due to absence of in  

    situ diagnostic tools 

   Absence of  abrupt heterointerfaces   and   

   ultrathin layers 

   Small mean free path between Collisions   

    (~50 µm) 

5.   Low growth rate (1 µmhr-1)     High growth rate 

6.   Low growth Temperature     High  growth Temperature 

7.   Independent control of  precursor & growth  

     Temperature due to absence of decomposition 

 

    No Independent control of precursor & growth  

   Temperature  due to the need for decomposition 
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Chapter 3 

Literature Review 

 

A review of relevant literature to semiconductor NW growth and fundamental concepts is 

presented in this chapter. The first part reviews the progress made with respect to NW growth 

over the past two decades while the second and third sections highlight recent development in 

NWs growth on III-V and Silicon substrates respectively. The final section provides an insight 

into recent advances in the growth of NWs on graphitic substrates via van der Waals epitaxy 

(VDWE). 

3.1 Two decades of Nanowire Growth 

Studies of semiconducting NWs date back to 1964 when for the first time R. S. Wagner and 

W. Ellis[75] fabricated silicon NWs via the VLS technique. It was however not until the early 

1990s that renewed and pioneering research effort led to the demonstration of InAs [119, 120] 

and  GaAs[121, 122] NWs following the earlier developed VLS mechanism. In the late 1990s, 

Liber’s group at Harvard University, USA, made significant contributions [123, 124] to NWs 

research. However, the last decade has witnessed an explosion in NWs-based research as 

depicted in figure 3.1 with a record of over 20,000 NWs related publications within the last 

three years due to their highly promising potential applications. Significant progress has been 

made by several groups, including but not limited to the groups of Z.L. Wang (Georgia Tech) 

[125, 126], S.T. Lee (Soochow University, China) [127], CM lieber (Harvard University)[52] 

and L. Samuelson (Lund University, Sweden) [128]. NWs based research has matured over the 

last few years with several advances made on different fronts to develop new fundamental 

science as well as potential applications[129]. They have emerged as promising candidates for 

novel electronic and optoelectronic devices such as lasers, LEDs, photodiodes and solar cells. 

Significant progress has been made in the development of a new generation of high-
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performance NWs based devices including transistor[48-50], solar cells [67, 68], light emitting 

diodes[70, 71], lasers[51, 52], detectors[72, 73] and other sophisticated applications[74].  

                            

  

Among the several materials been studied, InAs has been of great interest because of its small 

band gap and key role in infrared detectors. As shown in the inset of Figure 3.1, there has been 

an upward surge in InAs NWs related research particularly at the turn of the 21st century. 

However, shortly after concerns were raised by Allen et al[80] in a paper published in 2008 

regarding Au contamination in Si NWs, there has been a significant increase in the number of 

papers devoted to NWs realized via the self-catalyzed technique. This is reflected in Figure 3.2 

which shows the number of papers published per year on self catalyzed NWs and specifically 

InAs NWs (inset of Figure 3.2). Thus SCG is still in its formative stage and requires enormous 

research activity in order to fully exploit its inherent advantages. 

Figure 3.1 The rise in the number of research papers published per year on 

nanowire related topics. The inset shows the number of InAs nanowires papers 

published. (Source, ISI; keywords: nanowires and InAs nanowires). 
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3.2 Nanowire Growth on III-V substrates 

 

3.2.1 InAs Nanowires Growth 

 

Au has undoubtedly been the most widely used catalyst for InAs NWs growth. Several 

reports of Au-catalyzed InAs NWs growth on III-V substrates are documented in literature. 

Here, an attempt is made to highlight some of the key findings.   

In 2004, Jensen et al[130] investigated the growth of InAs NWs from lithographically 

positioned Au seeds on InAs (111)B substrates by chemical beam epitaxy (CBE). The influence 

of the NWs growth rate as a function of diameter was studied. Analysis of the NWs revealed 

80% of the growth resulted from diffusion of In species from the (111) B substrate surface. In 

addition, it was established that the diffusion length on the {110} NWs side facet exceeded 

10µm while the NWs axial growth rate was found to decrease with increasing NWs diameter.  

Figure 3.2 The rise in the number of publications per year on self– catalysed nanowire 

related topics.  The inset shows a similar number of papers for InAs nanowires (Source, 

ISI; keywords: Self-catalysed nanowires and Self-catalysed InAs nanowires). 
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Dick et al[131] grew InAs NWs by MOVPE on InAs (111)B substrates using Au aerosol seed 

particles. The variation of growth rate and morphology as a function of substrate type were 

investigated. NWs growth rate was found to decrease with increasing diameter due to the 

increase in collection area relative to particle volume for small particles. In addition, it was 

shown that the availability of In and NWs growth rate is highly dependent on the nature of 

substrates used.  

Tchernycheva et al[132] reported the Au-assisted MBE growth of InAs NWs on InAs (111)B 

substrates. They investigated the variation of NWs growth rate with temperature and observed 

NWs can be produced only in a relatively narrow temperature window of 380 – 430 °C. No 

growth was observed at a lower temperature of 360°C or higher temperature of 440°C. At a 

relatively low temperature of 390 °C, the NWs developed a pencil-like shape and the NW top 

tapered in addition to the observation of side wall nucleation (Figure 3.3a).                                                     

                               

Figure 3.3 InAs NWs grown at (a) 390oC; (b) 410 oC ; and (c) 430 

oC for 20 min. scale bars correspond to 0.5µm. (Adapted from Ref. 

132). 
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The mixed axial/lateral growth at low temperature was believed to occur when the mean 

diffusion length (λdiff) of species on the NW facets becomes smaller than the NW height, in 

which case, the In adatoms cannot reach the catalyst to participate in axial growth. The 

temperature had to be raised to increase the adatom diffusion length and permit uniaxial NWs 

growth as revealed in figure 3.3b. However, at a slightly higher temperature of 430°C the 

average growth rate was reduced possibly due to increased desorption of growth precursors 

(Figure3.3c).    

In 2011, Borg et al[28] demonstrated the MOCVD growth of axial InAs/InAsSb NWs 

heterostructures. It was shown that the InAsSb segment on top of the InAs segment had a larger 

diameter than that of the InAs stem. The incorporation of Sb in the NWs was significantly 

higher than that for the planar epitaxy under the same conditions; this was associated with the 

dramatically decreased effective V/III ratio at the growth front. Similarly, Ercolani et al[60] 

reported the CBE growth of InAs/InAs1-xSbx single and double heterostructured NWs by Au-

assisted CBE. Significant lateral overgrowth in the InAs1-xSbx segments was observed at 

intermediate Sb compositions, this was linked to the nucleation and step-flow on the lateral 

{110} facets. Pea et al[33] reported a suppression of the lateral growth by increasing the growth 

temperature of the InAsSb segment and reducing the InAs stem length. This suppression was 

explained by the increased re-evaporation of material from the InAsSb sidewalls and the 

increase in diffusion length with increasing growth temperature. In addition, decreasing the 

InAs stem length was accompanied by a decline in lateral growth, probably because less 

material arrived at the InAs/InAsSb interface from the InAs stem.   

More recently, the catalyst-free, MBE growth of InAsSb NWs (0 ≤ x ≤ 0.15) via short (150−200 

nm) InAs nucleation NWs was demonstrated on silicon (111) substrates by Sourribes et al[30]. 

The influence of antimony incorporation on the defect density was also investigated. A sharp 

decrease in stacking fault density in the InAs1−xSbx NWs crystal structure with increasing 
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antimony content was observed. This decreased defect density led to a significant increase in 

the room temperature field-effect mobility by more than three times greater for the 

InAs0.85Sb0.15 NWs than for the InAs NWs. The suitability of InAsSb NWs for infrared 

photodetectors has also been demonstrated[72] using vertical arrays of InAs/InAs1-xSbx NWs. 

The spectrally resolved photocurrents are strongly diameter dependent, particularly for NWs 

with large diameters in the range of 269 to 661 nm (identical composition of 0.27%) which 

implies there is minimal surface leakage. As the diameter was increased, a clear peak in the 

response appears that is shifted toward longer wavelengths. In contrast, the photo response of 

smaller NWs strongly dependent on the composition of Sb. Consequently, the diameter and 

composition of the NWs can be adjusted to obtain peak photoresponse. 

 

3.2.2 InN Nanowires Growth 

 

A large direct band gap of 1.9eV was initially suggested for InN [133] in 1972 but this was 

later attributed to the poor crystal qualities of the polycrystalline films. Remarkable 

developments in epitaxial growth techniques led to a significant improvement in material 

quality which made it possible to obtain single-crystalline InN layers. In 2002, Davydov et 

al[37, 38] provided experimental evidence for a narrow fundamental band gap in the range 0.7 

- 0.9 eV, much smaller than the previously reported value of 1.9eV resulting in a revision of 

the fundamental band gap of InN to the infrared (IR) region.  

Hsiao et al[134] investigated the growth of various InN structures on AlN buffered Si(111) 

substrates by MBE. The structural evolution of InN from microsized grains to NWs and to 2D 

epifilm grown was reported by controlling the growth parameters including beam equivalent 

pressure (BEP) of N/In, substrate and buffer layer temperatures. Whereas polycrystalline InN 

grains were obtained at a higher substrate temperature, higher N/In BEP ratio and low-
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temperature buffer layer by decreasing only the growth temperature while keeping all other 

variables fixed, columnar InN structures were formed. A high-quality InN epifilm was grown 

at a lower substrate temperature, lower N/In BEP ratio and a high-temperature grown AlN 

buffer layer. Similarly, Calleja et al[135] studied the growth condition to achieve group-III-

nitride NWs by MBE from compact layers on AlN buffered-Si (111) layers. It was found that 

nitrogen rich condition favours the formation of NWs whereas stoichiometric conditions led to 

the coalescence of InN layers. 

 

3.3 Nanowire Growth on Silicon Substrates 

 

During the last few years, there has been renewed interest in the monolithic integration of III-

V semiconductors on silicon in order to exploit the fascinating electronic and optoelectronic 

properties of NWs as well as the scalability, availability and high quality of silicon to enable 

cost-effective devices, new applications and integrated circuits based on well-established 

technology. Moreover, the heteroepitaxial growth of high quality III-V nanowires on Si 

substrates would undoubtedly open the flood gates for the experimental study of the band 

structure, carrier transport and other important fundamental properties of III-V NWs/Si 

heterojunctions which are not readily available in conventional thin film structures[53]. 

However, the epitaxial growth of III-V semiconductors on Si is challenging owing to  large 

differences in lattice mismatch, thermal expansion coefficient and differences in crystal 

structure (III-Vs have a zinc blende or wurtzite structure whereas Si has a covalent diamond 

structure)[136]. Numerous growth techniques are currently being investigated for the growth 

of InAs NWs on Si including metal catalyzed growth (MCG), SiO2 mask assisted growth 

(SMG) and self-catalyzed growth (SCG). 
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3.3.1 InAs Nanowire grown on SiO2 Patterned Template 

 

Recently, there has been an increasing research activity in Au free growth of NWs. InAs has 

enormous potential to be used in combination with Si for applications in high-speed electronics 

however, Au-assisted NWs growth impose severe restrictions because of the introduction of 

deep-level defects into Si[89]. For this purpose, several techniques are being explored to avert 

Au contamination, among these SiO2 patterned template has been the predominant technique 

extensively utilized for the growth of InAs NWs.  

A method for growing InAs NWs in MOVPE via SiO2 patterned template without using Au or 

other metal as “catalyst” was first revealed by Mandl et al[89] in 2006. It was shown that InAs 

NWs can be epitaxially grown on various substrates including silicon without any metal 

catalyst by covering the substrates with a thin layer of SiOx (x≈1) prior to the NWs growth. 

The thin film of SiOx, evaporated onto the substrate surface functions as the “catalyst”. The 

NWs were observed to grow randomly or epitaxially oriented on the substrate surface. 

 In 2008, Tomioka et al[7] demonstrated the position-controlled SMG-grown InAs NW arrays 

by MOVPE with much improved vertical directionality via control of the initial growth stages. 

The NWs were formed within pre-patterned regions (each 50×50µm2) fabricated by using 

electron-beam lithography and wet chemical etching. 60 nm sized openings with pitch in the 

range of 400 to 800 nm were used. The InAs NWs which were only realized in the opened 

circles were oriented perpendicular to the surface, ~ 60 nm in diameter and ~3µm in height. 

Mandl et al[137] studied the nucleation and growth of InAs NWs on patterned SiO2/Si(111) 

substrates. Several growth runs were performed with and without intentional In pre-deposition 

in order to investigate the influence of the In particle. It was found that In particles are required 

for the nucleation of NWs and there is an optimum In particle size range for NWs nucleation; 

The In particles outside of this range do not lead to NWs growth. It was shown that NWs only 
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nucleate if In droplets are smaller than 250 nm. In addition, the SiO2 layer was found to be 

critically important for the suppression of In adatom mobility by limiting its migration within 

the oxide openings for the creation of required sized droplets necessary for nucleating the NWs. 

A series of equal patterns with different opening dimensions were created on single samples. 

A total of 12 different opening sizes in this range of 85 nm to 220 nm were arranged in regular 

triangles with a 800 nm pitch. It was discovered that the NWs yield was strongly dependent on 

the size of the etched holes in the SiO2, where openings smaller than 180 nm led to a substantial 

decrease in nucleation yield, while openings larger than ≈500 nm promoted nucleation of 

crystallites rather than NWs. This observations strongly indicate that the optimum size of 

opening that facilitate NWs nucleation using liquid indium particle lies in the range of about 

180-500nm. 

Hertenberger et al[138] investigated the catalyst free SMG of InAs NWs by MBE for the first 

time. They addressed the crucial interplay between NW position (i.e., interwire distance), 

growth kinetics, and related size effects in III-As-based NWs on Si during noncatalytic growth 

processes leading to the growth of vertically oriented InAs NWs. Significant size variation in 

the NWs was found depending critically on the interwire distance and growth time. Two growth 

regimes were identified (i) a competitive growth regime with shorter and thinner NWs for 

narrow interwire distances and (ii) a diffusion-limited growth regime for wider distances where 

growth is limited by the surface diffusion length of In adatoms on the SiO2 surface, providing 

good estimates for the surface diffusion lengths. 

3.3.2 InAs Nanowire grown directly on bare Si (111) 

 

It is well established that SMG offers the advantages of good control of NWs position, 

directionality and size. However, it relies heavily on electron beam lithography for patterning 

the SiO2 template which is a slow, expensive and scarcely scalable[138, 139] process and 
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requires a considerable investment of material resources and technical expertise resulting in 

significantly increased cost and huge investment of valuable time. The growth of InAs NWs 

on bare (oxide-free) silicon substrates would be cost effective, fast and favourable for the 

monolithic integration of the NWs to current CMOS technology.  

Significant revelations by Ihn and song[140] demonstrated the feasibility of NWs growth on 

bare Si substrate. They successfully grew InAs NWs on Si substrates by MBE with the 

assistance of Au catalyst. Epitaxial growth of InAs NWs was found to be very sensitive to the 

surface condition of the Si substrates. InAs NWs having a <111> growth direction were 

realized by a high-temperature pre-annealing process in the MBE growth chamber to remove 

residual oxides from the surface of the Si substrates as opposed to the randomly oriented NWs 

obtained without the pre-annealing sequence.    

There are very limited reports of self catalyzed InAs NWs on bare Si substrates. Jing et al[139] 

studied the catalyst-free MOCVD growth of InAs NWs on Si substrates with various growth 

parameters and surface treatments. They suggested the complete removal of native oxide is 

critical to achieve InAs NW growth. In addition, it was shown that longer deposition time 

resulted in longer NWs with a larger length variation and higher density, which suggests 

nucleation of new NWs occurred during the growth process, leading to larger variation of the 

NW length and diameter and much longer NWs.  

A significant contribution to SCG of InAs NWs was made by Dimakis et al[141] in 2011. They 

investigated the nucleation and growth of InAs nanowires on bare Si (111) by MBE without 

the use of catalyst particles. The study concluded InAs nucleation takes place in In-rich areas 

spontaneously formed on the substrate. A transition to As-rich conditions was observed and 

correlated with the subsequent NW formation and growth under As-rich conditions. The 

diameter, the number density, and the axial growth rate of the NWs were found to depend 
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exclusively on the surface diffusivity of In adatoms on the substrate, as a result, the surface 

diffusivity of In adatoms on Si is of major importance. However, the growth resulted in low 

dense, thick and less controllable NWs which require further investigation for improved NWs 

geometry and density to enable optimal device application.  

Wei et al[53] accomplished the catalyst-free, direct heteroepitaxial growth of vertical InAs 

NWs on Si(111) substrates by MOCVD. Heterojunction photodiode devices based on 

heteroepitaxial n-type InAs NWs on p-type Si substrate (conduction band offset of InAs 

NWs/Si heterojunction ∼0.10-0.15 eV) were demonstrated. Figure 3.4 shows the band 

alignment of  n-InAs nanowire/p-Si heterojunction. 

 

 

 

 

 

 

 

To understand the nucleation mechanism, growth was conducted on Si substrates with 

reoxidation, i.e. after etching, the native oxide was allowed to regrow by exposure to humid air 

(∼85% relative humidity at room temperature) for various durations. Upon surface reoxidation, 

thin oxide (SiOx) islands provided competing nucleation sites and reactant sinks which assisted 

in   increasing the growth of nonvertical NWs. The nonvertical NW growth increased with 

reoxidation time of the substrates, becoming obvious and dominating after 130 h (Figure 3.5). 

Figure 3.4  Band alignment of n-InAs nanowire/p-Si heterojunction. 

Adapted from Ref.53. 
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It was revealed that no NW growth was realized for unetched (with native oxide) or completely 

reoxidized Si substrates since the Si surface was unexposed.        

 

                                                  

 

It can therefore be concluded that SMG require a careful selection of critical experimental 

conditions resulting in the formation of randomly oriented InAs NWs if such conditions are 

not strictly satisfied[53, 140] as even a very thin layer of native oxide may sometimes be 

detrimental to epitaxial growth[136].  

 

3.3.3 InAsSb Nanowire grown directly on Si (111) 

 

The optimal exploitation of the enormous potential of InAsSb materials has been thwarted by 

the large differences in thermal expansion coefficients and lattice parameters between the 

ternary alloy and most conventional planar substrates leading to strain-induced defects and 

degradation of material quality[28, 60]. This has resulted in the quest for new techniques for 

circumventing this challenge among which the use of NWs stems such as InAs and InP[31] has 

Figure 3.5 45° tilted FE-SEM image of InAs nanowires 

grown for 5 min on Si (111) substrate reoxidized for 130 h 

and grown at 535 °C (Adapted from Ref. 53). 
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become a preferred alternative. This is due to its ability for lateral strain relaxation and 

dislocation-free growth on highly lattice mismatch substrates. In addition, the nucleation of  

polar (such as In or As-terminated) InAsSb NWs directly on nonpolar (neutral) Si substrates is 

hampered by the polar/nonpolar nature[7] of the InAsSb/Si system and the strong surfactant 

effect of Sb[142].  

The growth of InAsSb NWs directly on Si substrates is scarce owing to the above outlined 

challenges. It was not until 2014 that Du et al[143] realized for the first time the growth of 

InAsSb NWs/Si via the self-seeded mechanism by MOVPE. Short (≤0.3µm) NWs were 

obtained for the limited growth duration of 2 minutes. The Sb content was found to have a 

significant effect on the morphology and crystal quality of the NWs. However, since the growth 

was realized after only 5 min annealing at 635oC, it is highly likely that a thin native oxide 

layer is still present.  

To the best of my knowledge, there has been no report of InAsSb NWs growth directly on bare 

Si(111) substrates hence, the need for increased research activity in this direction. 

3.3.4 InN Nanowire Growth  

 

Various substrates are being explored for the growth of InN. However Si is the most 

suitable[144] one among the common substrates owing to the lowest thermal and lattice 

mismatch of 8% (compared to 25% for InN/Al2O3 and ~12% – 13% for InN/AlN[145]). In 

addition, it is competitively advantageous due to its relatively  low cost, availability of large 

sized wafers and good thermal conductivity (3 times larger than sapphire) [64, 144, 146]. 

However, the formation of an amorphous SiNx layer at the growth interface during growth 

prevents the realization of vertically aligned NWs thus limiting its development.  
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Recently, Chang et al[146] performed a detailed investigation of the MBE growth and 

characterization of InN NWs spontaneously formed on Si(111) substrates under nitrogen rich 

conditions. By employing an in-situ deposited thin (∼0.5 nm) In seeding layer prior to growth 

initiation, single crystalline, non-tapered, epitaxial InN NWs, relatively free of dislocations and 

stacking faults were obtained. They achieved for the first time on Si the growth of NWs 

exhibiting record narrow spectral line widths of 14 and 40 meV at 5 K and 300 K respectively 

despite the presence of a relatively thick (>4–5 nm) SiNx layer. The achievement of non-

tapered, nearly homogeneous InN NWs also enabled the derivation of the band gap of InN 

directly from PL spectroscopy in the temperature range of 5–300 K.  

Stoica et al[147] realized the growth of uniform InN NWs exhibiting high crystal quality using 

plasma-assisted MBE. They identified the optimal growth conditions including growth 

temperature (440-525℃) and its influence on InN NWs morphology. The NW structure was 

found to strongly depend on the growth temperature. A relatively high density of NWs with no 

visible tapering was obtained at a low growth temperature of 440OC but the NWs displayed a 

tendency to coalesce into a compact layer. In comparison, the NWs deposited at a higher 

temperature of 475 OC were longer and more separated from each other. However, a further 

rise in growth temperature to 525OC resulted in a low density of NWs which were highly non-

uniform in height and shape as shown in Figure 3.6. Photoluminescence (PL) peak energy in 

the range of 0.76–0.82 eV was demonstrated, while the PL intensity increased with NWs length 

and growth temperature which suggests higher crystalline quality and less intrinsic doping at 

higher growth temperature. 
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3.4 Recent advances in Semiconductor Nanowire Growth on Graphite 

 

The recent preparation and characterization of graphene by Geim and Novoselov[148, 149] in 

2004 has triggered a new wave of optoelectronic revolution. This is due to its exceptional 

electronic and optical properties including extraordinary electrical and thermal conductivity, 

high optical transparency and flexibility [150, 151], which offers huge potential for the 

development of flexible devices. The monolithic integration of semiconductor NWs on 

graphene/graphitic substrates has stimulated huge research interest as it would enable the 

exploitation of the exceptional properties of both materials and provide a unique platform for 

the development of novel, sophisticated, high performance, transparent, foldable and flexible 

optoelectronic nanodevices including flexible displays, printable electronics and sensors with 

improved stability and relatively cheap cost[152, 153]. In addition, the scalability[154, 155] 

and relative abundance of graphene further provides greater opportunities for large scale 

fabrication and integration of photovoltaic technologies with non-conventional surfaces 

otherwise not possible[156]. Over the last few years, several graphene-based devices have been 

demonstrated including light emitting diodes[157], transistors[148], solar cells[66, 158], 

supercapacitors[159], transparent conductors[160], photodetectors[161, 162] and gas 

Figure 3.6 Influence of growth temperature on InN NWs morphology. The deposition was performed with In- BEP 

of 3.9 x 10-8, for 4 h. (Extracted from ref. 147). 
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detectors[163]. Recent advances in the growth of semiconductor NWs on graphene/graphitic 

substrates are reviewed in the following section. 

Munshi et al[164] showed that the epitaxial growth of semiconductor NWs can be achieved on 

graphene. A generic atomic model by which semiconductor NWs materials can be epitaxially 

grown on graphene and other graphitic substrates was presented. The possible semiconductor 

adsorption sites on top of graphene includes (1) above the centre of the hexagonal carbon rings 

(H-site) of graphene (Figure 3.7 a, b, and d) and (2) above the bridge    

                                                                                 

Figure 3.7 Possible adsorption sites for semiconductor atoms on H- and B-sites 

(a, b, d) and H- or B-sites (c). The bandgap energies of the III−V semiconductors 

(along with that of Si and ZnO) plotted as a function of their respective lattice 

constants (e). The lattice constants for lattice-matched atomic arrangements of 

atoms adsorbed on graphene as illustrated in figures (a) (black vertical line), (b) 

(green vertical lines), (c) (blue vertical line), and (d) (red vertical line) are also 

shown. Dashed and solid lines indicates the hexagonal (ahex) and cubic (acub =ahex 

×√2) crystal phases of these lattices, respectively. The square (■) and the hexagon 

( ) represent the cubic and hexagonal phases, respectively, for Si, ZnO, and III−V 

semiconductors. (Extracted from Ref. 164). 
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between carbon atoms (B-site) as shown in Figure 3.7 c. Various degrees of strain is introduced 

at the NW/graphene interface depending on the sites taken up by the semiconductor atoms on 

top of graphene which in turn depends on the nature of semiconductor material and the 

symmetry of a cubic semiconductor in the (111) plane or hexagonal material on the (0001) 

plane. The band gap energies of the III−V semiconductors along with that of Si and ZnO are 

plotted as a function of their respective lattice constants in Figure 3.7e. As shown, ZnO and 

InAs materials are likely to exhibit heteroepitaxy (vertical directionality) with graphene owing 

to the near coherent lattice matching. The model was experimentally verified by the growth of 

vertically aligned GaAs NWs on graphite and few-layer graphene via the self-catalyzed VLS 

technique using MBE.  

Recently, Hong et al[165]  proposed a new mechanism of van der Waals epitaxy (VDWE) of 

InAs NWs growth on graphitic substrates. The graphitic substrates were processed by oxygen 

reactive ion etching (O2 RIE) to artificially form monomolecular layer ledges or kinks on the 

graphitic surface to trap adatoms and facilitate NWs growth. Vertically oriented NWs were 

then realized by catalyst-free MOCVD growth. Cross-sectional transmission electron 

microscopy analysis revealed the 1-2 monomolecular layer ledges or kinks facilitated the 

heterogeneous nucleation of InAs on nonwetting graphitic surfaces, consequently forming the 

nuclei and promoting the subsequent NWs growth with strong VDW interactions at the 

heterojunction. In addition, the unconventional, noncovalent heteroepitaxial relationship 

between the InAs NWs and the graphitic surface was largely attributed to the nearly coherent 

in-plane lattice matching (misfit of 0.49%) between them. Otherwise, islands morphologies 

were observed for GaAs due to the high mismatch of 6.22% at the GaAs/graphite 

heterojunction. Furthermore, the NWs and island densities were investigated as a function of 

O2 plasma treatment times for the graphite. A higher density of NWs with lower density of 
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islands were obtained at optimized O2 plasma treatment times while longer O2 plasma treatment 

times produced less dense NW arrays and higher island density. 

In 2012, Hong et al[166] reported the VDWE growth of InAs NWs vertically aligned on large-

area single-layer graphene films by MOCVD. The strong correlation between the growth 

direction of the InAs NWs and surface roughness of graphene substrates was investigated using 

various graphene films with different numbers of stacked layers. Whereas the single-layer 

graphene films yielded vertically well-aligned InAs NW arrays with a number density of about 

(1.6±0.7)×108 cm−2, the same growth conditions resulted in vertically less-aligned NWs on 

multilayer graphene films with an increased number density of (6.9 ±1.1) ×108 cm−2. The 

vertical alignment of the NW arrays depended strongly on the number of stacked layers in the 

graphene films with the thicker graphene films exhibiting higher surface roughness with many 

graphene ledges or kinks. Although the extremely flat graphene surfaces yielded vertically 

well-aligned NW arrays, the vertical directionality depreciated with increased root mean square 

roughness of the graphene substrates due to weakly bound VDW heterojunctions between InAs 

and graphene. It was shown that the NWs density increased as a function of graphene roughness 

due to the presence of ledges which facilitated the heterogeneous nucleation and growth of the 

NWs on the graphene surfaces.  

The Au-seeded MOCVD growth of four common III−V materials (InAs, InP, GaP, and GaAs) 

on graphite was investigated by Wallentin et al[167]. The highest yield of undoped vertical 

NWs was obtained for InAs in comparison to the other materials. The challenges of growing 

III−V NWs by VLS on graphite or graphene in general were discussed using classical 

nucleation model based on the interfacial energies of the VLS system.  

Finally, Mohseni et al[168] realized the MOCVD growth of InAs and InGaAs NWs on 

graphene. Spontaneous phase separation was observed in the InGaAs NWs starting from the 
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beginning of growth, yielding a well-defined InAs−InxGa1−xAs (0.2 < x < 1) core−shell 

structure. After attaining a height of ~2μm the core−shell structure was abruptly terminated 

leading to the axial growth of uniform composition InxGa1−xAs with constant diameter. An 

indium flow dependent InxGa1−xAs shell composition was observed however, the core and shell 

thicknesses and the onset of non-segregated InxGa1−xAs axial segments were reported to be 

independent of the indium composition. The phenomenon of phase segregation was elucidated 

as a special case of VDWE on 2D sheets. Given the near coherent lattice matching between the 

InAs and graphene, the InGaAs NW was forced to segregate into InAs core and InGaAs shell 

segments due to the lack of dangling bonds on the graphene layers and the absence of elastic 

deformation between the InGaAs NWs and the graphene film. In contrast, no phase segregation 

was observed in the InGaAs NWs when grown on Molybdenum disulphide (MoS2).  
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Chapter 4  

Experimental Techniques 

 

This chapter provides a brief description of the MBE growth apparatus and the characterisation 

techniques employed for the investigation of morphological, structural and optical properties 

of as-grown nanostructures.  

4.1 Substrate Preparation  

 

In this study, all the NWs were grown on commercially available single-side polished Si (111) 

substrates and graphite thin film. The Silicon wafers were first soaked in acetone for a 

maximum of ~ 5 minutes, then rinsed in methanol and Isopropyl alcohol (IPA) to remove 

organic contaminants and subsequently cleaned in hydrofluoric (HF) acid via a two-step 

procedure. Firstly, the wafers were dipped in 12% HF solution for ~3 min to remove the native 

oxide then mounted on sample holders and cleaned with HF solution for ~ 2 min to get rid of 

any likely reoxidized layer and immediately loaded into the MBE system to avoid re-oxidation. 

The Si substrates were then thermally outgassed in an UHV environment at a temperature of 

550 – 7000C for at least one hour prior to growth initiation to possibly eliminate adsorbed 

gaseous contaminants. The graphite films used for the NWs growths were mechanically 

exfoliated from highly oriented pyrolytic graphite (HOPG) and transferred onto Si (111) 

substrates, then loaded into the MBE system and thermally outgassed as described above for 

the Si substrates. 

4.2 MBE Apparatus 

 

A Veeco (VG-V80H MBE) solid source MBE system equipped with Al, Ga and In effusion 

cells with crackers for As and Sb was used for the InAs(Sb) NWs growths. For the InN growth, 
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an Oxford Applied Research HD25 radio-frequency nitrogen plasma source was employed. 

Figure 4.1 shows the key components of the solid source MBE facility used for the growths 

including the load lock entry for loading and unloading wafers; the outgas unit for thermally 

desorbing gases out of the substrates; the preparation chamber which serves as a channel to 

transfer wafers/samples between the entry lock and the growth chamber where the actual layer 

by layer deposition of semiconductor materials takes place. In addition, the Reflection high-

energy electron diffraction (RHEED) set-up allows for in-situ analysis of the surface structure 

of the growing layer while the view window enable the internal monitoring and control of the 

various growth stages. A schematic representation of an MBE growth chamber (Figure 

4.2)[117] provides detailed insight of the essential components. 

 

 

 
Figure 4.1 III-V solid source MBE system. The basic components are labelled.   
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Molecular beams are generated by thermal evaporation or sublimation of elemental sources 

(such as In, Ga, As) which are contained in high purity crucibles made of pyrolytic boron nitride 

or graphite which are in turn housed in effusion cells. The source temperature (and in effect 

the beam flux) is controlled by heating the crucibles with high performance proportional-

integral-derivative (PID) feedback algorithms using a refractory metal wire wound 

noninductively either spirally around the crucible or from end to end and supported on 

insulators or inside insulating tubing. A flux stability of better than ±1% is obtained. Tantalum 

(Ta) heater elements and radiative shields are considered one of the best refractory metal 

because they are not fragile after heat cycling, have a high resistivity and are relatively easy to 

thoroughly outgas. Because of the strong dependence of the beam flux on temperature, the 

Figure 4.2 Schematic of the essential components of an MBE growth chamber showing the essential components 

including the effusion cells, shutters, and the RHEED system (Extracted from Ref 117). 
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homogeneity of the cells temperature is very crucial. Tungsten-Rhenium (W-Re) 

thermocouples in contact with cell bottom or sidewall are used for the chemical stability at high 

temperatures and for measuring the temperature of the crucibles. By choosing an appropriate 

cell and substrate temperature, epitaxial films of the desired chemical composition can be 

obtained[116]. The shutters usually made of Ta or Molybdenum (Mo) placed in front of the 

cell allows for switching of the beams on and off during growth initiation and interruption. To 

ensure uniformity in film thickness, the Ta or Mo substrate (with the sample) holder is rotated 

with the aid of a substrate manipulator which is capable of continuous azimuthal rotation 

around its axis. A heater placed behind the sample is designed to maximize temperature 

uniformity and minimize power consumption and impurity outgassing. Positioned directly 

opposite the substrate holder is an ionisation gauge (ion gauge) which monitors the beam 

flux[113]. The cryopanel which internally surround the main chamber wall is cooled by liquid 

nitrogen enable the extraction of condensable contaminants such as H2O and CO2 for an ultra-

high vacuum environment and provide thermal insulation among the closely positioned cells 

permitting the independent control of beam fluxes[115].  

                       

4.3 Characterization Techniques  

 

4.3.1 Scanning Electron Microscopy 

 

The scanning electron microscope (SEM) is one of the most versatile instruments used for the 

examination and analysis of the morphology of nanostructures[169]. Invented in 1931 to 

circumvent the limitations imposed by the wavelength (410-660 nm) of photons (light rays), 

SEM uses electrons rather than visible light and have a greater depth of field compared to light 

microscopes. They are capable of higher resolution and magnification which allow for the 

visualization of structures on a nm to µm scale that would normally be invisible by optical 
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microscopy. The bombardment of an incident electron beam on the specimen material being 

investigated results in the production of different kinds of signals including secondary 

electrons, backscattered electrons, Auger electrons and X-rays. SEM investigation utilizes the 

secondary and backscattered electrons which are the imaging signals of greatest interest for 

SEM analysis due to their dependence on differences in surface topography while characteristic 

x-rays provide obtain compositional information[169, 170].  

 

Secondary Electrons: Secondary electrons are loosely bound outer shell-electrons 

inelastically generated during the ionization of specimen atoms when excited by incident 

primary electron beams. Conventionally, they possess energies of less than 50 eV and can be 

used to image or analyse samples and capable of providing high resolution topographic 

information owing to their low energy (~3–5 eV) permitting their exit very close (a few nm) to 

the specimen surface.  

 

Backscattered Electrons: Backscattered electrons are defined as one which has undergone a 

single or multiple scattering events which escapes from the surface with an energy greater than 

50 eV. They are scattered backward or bounced out of specimens’ atomic nucleus with wide-

angle directional change after elastic collision with an electron. The back scattered signal is 

highly dependent on the specimens atomic number since atoms with higher atomic numbers 

possess more positive charges on the nucleus.  

Characteristic X-Ray: A vacancy is created in the inner shell of a specimens’ atom due to the 

generation of a secondary electron. As a result, an electron from the outer shell falls into the 

inner shell to fill this vacancy in order to compensate for the charge imbalance accompanied 
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by the emission of a characteristic x-ray unique to the specimen atom. This enables the 

determination of the distinct chemical composition of specimens, allowing for the 

identification of atoms. 

 

Auger Electrons: Similar to characteristic x-rays, auger electrons are generated as a result of 

a vacant inner shell however, the surplus energy is transferred to a second (Auger) electron 

rather than being emitted in form of x-ray radiation. This leaves the atom doubly ionized. Auger 

electrons can also provide vital chemical information because of their unique and characteristic 

energy. They are mostly used in surface analysis due to their low energies and low depths (only 

a few nm).  

The Schematic diagram[171] of a typical SEM is shown in Figure 4.3. The electron gun 

provides a steady stream of electrons of adjustable energy. Emitted electrons in the gun are 

accelerated from the high negative potential of the filament to the ground potential at the 

anode[170]. A hole in the anode allows for the transmission of the electrons towards the lenses. 

The Condenser and objective lenses are used for the demagnification of the spot size of the 

electron beam in addition to the use of the objective lens control to focus the beam on the 

specimen surface.  

 

The FEI XL30 SFEG SEM at the University of Liverpool (Figure 4.4) was mostly utilized for 

the investigation of the morphology of as-grown NWs in addition to the Sirion field emission 

scanning electron microscope (FESEM) at Lancaster University. 
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   Figure 4.3 Diagram of a scanning electron microscope (Adapted from Ref. 171). 

                  

 

        Figure 4.4 FEI XL30 SFEG Scanning Electron Microscope 
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4.3.2 Transmission Electron Microscopy  

 

The Transmission Electron Microscope (TEM) is an indispensable, highly sophisticated 

instrument with unparalleled ability to provide detailed atomic scale structural information of 

nanomaterials with widespread application across different scientific disciplines[172]. It was 

developed by Ernst Ruska and Max Knolls in 1931[173]. The TEM consists of three essential 

components[174] (Figure 4.5): (1) An electron gun for producing the electron beam, and the 

condenser system, which focuses the beam onto the specimen; (2) The image-producing 

system, consisting of the objective, intermediate and projector lenses, for focusing the electrons 

passing through the specimen in order to form a highly magnified image and (3) The image-

recording system, which converts the electron image into some forms perceptible to the human 

eye. The image-recording system is made up of a fluorescent screen for viewing the image as 

well as a digital camera for recording the image.  

 

                 

Figure 4.5 Schematic of a transmission electron microscope (Extracted from Ref.174).  

 
  

http://www.britannica.com/EBchecked/topic/183547/electron-gun
http://www.britannica.com/EBchecked/topic/183374/electron
http://www.britannica.com/EBchecked/topic/183374/electron
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For this study, TEM analysis was performed with a JEOL 2100 LaB6 working at 200kV and 

housed at the university of Warwick (Figure 4.6)[175]. The specimens were prepared using 

conventional method and transferred onto a TEM holey carbon grid. The analysis was carried 

out with the electron beam perpendicular to the growth direction. 

 

4.3.3 X-Ray Diffraction   

 

X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen for which he 

earned the Nobel Prize for physics in 1901. They are electromagnetic waves similar to visible 

light but of very much shorter wavelength, having wavelengths lying approximately[176] in 

Figure 4.6 Picture of JEOL 2100 LaB Transmission Electron Microscopy 

                                                 (Extracted from Ref.175).  
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the range of 0.5-2.5Å (for x-rays used in diffraction), whereas the wavelength of visible light 

is of the order of 6000Å. X-ray diffraction (XRD) is a non-destructive and very sensitive 

technique for the determination of the structure of crystalline solids. Generally, diffraction 

occurs only when the wavelength of the wave motion is of the same order of magnitude as the 

repeat distance between scattering centers[176]. Since X-rays are primarily generated from 

inner atom core transitions, the photon wavelengths are in the region of 0.1nm (1Ǻ), which is 

of the order of the interatomic spacing in materials[177], as a consequence,  x-rays are generally 

utilized for the creation of diffraction patterns and analysis of crystal structures. According to 

Bragg’s law, the interaction of an x-ray beam with the parallel planes of a crystal results in 

constructive interference if the difference in path length between the rays is an integral multiple 

of wavelength of the incident ray as illustrated[178] in Figure 4.7. 

 

 

                        

 

 

                 Figure 4.7 Illustration of Bragg law (Courtesy of Ref. 178). 
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This is mathematically represented as:  

                                  2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆          (4.1) 

Where: 

 d is the distance between atomic layers in a crystal 

 θ is the incident angle 

λ is the wavelength of the incident beam and 

 n is a positive integer 

For this study, the Philips PW 1720 X-ray diffractometer (Figure 4.8) was employed using the 

Cu Kα1 radiation line (1.54056Å). XRD measurements were firstly calibrated by the diffraction 

from Si (111) substrate.  

                               
           Figure 4.8 Philips PW 1720 X-ray diffractometer used for this study 
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 4.3.4. Atomic Force Microscopy  

 

Scanning probe microscopy (SPM) is a technique used to image and measure the geometrical 

properties of materials by scanning across the surface with a sharp probe that monitors and 

assembles the tip–sample interactions. There are two forms of SPM: Scanning tunnelling 

microscope (STM) and atomic force microscope (AFM). Invented by Gerd Binnig and 

Heinrich Rohrer in the early eighties STM was limited by the fact that it could only analyse 

materials that conduct tunnelling current. AFM was then invented by Binnig and Quate in 1986 

to overcome this limitation[179]. An AFM is a mechanical imaging instrument that measures 

the three dimensional topography as well as physical properties of a surface with a sharpened 

probe[180]. Extremely high-resolution (on the order of fractions of a nm) images are created 

in AFM by quantifying the forces between an ultra-small probe tip at the end of a cantilever 

and the sample surface[179]. 

 There are 3 primary imaging modes in AFM: contact, tapping and non-contact modes with 

probe-surface separations of < 0.5nm, 0.5-2nm and 0.1-10nm respectively. In contact mode, 

the tip which softly makes contact with the specimen scans in a sideways direction across the 

surface of the sample while the contours of the surface are measured. On the other hand, in the 

tapping mode the cantilever is made to oscillate up and down at near its resonance frequency 

in order to measure the force between the cantilever probe and the specimen. In ambient 

conditions most samples develop a liquid meniscus layer; hence by keeping the probe tip close 

enough to the sample surface short-range forces become detectable. Finally, in order to measure 

long-range forces such as VDW force which are strongest from 1 nm to 10 nm above the 

surface, the non-contact mode is employed during which the tip of the cantilever makes no 

direct contact with the sample surface as the cantilever oscillates above the surface with small 

amplitude at a frequency larger than its resonance frequency[179, 181]. Figure 4.9 
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illustrates[182] the force sensor in an AFM constructed from a light lever. In the light lever, 

laser beams are focused on the backside of a cantilever and the reflection fed into a 

photodetector with two sections. The output of each of the photo-detector sections is compared 

in a differential amplifier. The interaction of a cantilever probe with the surface of a specimen 

results in the bending of a cantilever which in turn leads to changes in the light path causing 

the amount of light in the two photo-detector sections to change. Thus, the force between the 

probe and sample is proportional to the electronic output of the light lever force sensor. The 

resulting image provides an excellent view on the sample’s topography at an extremely high 

level of resolution. The resulting image provides an excellent view on the sample’s topography 

at an extremely high level of resolution. The resulting image provides an excellent view on the 

sample’s topography at an extremely high level of resolution. [183]. 

                                              

                               . 

The morphology of the indium droplets in this work was investigated by AFM using Digital 

Instruments multimode scanning probe microscope (MM-SPM) fitted to a nanoscope IIIa 

controller unit (Figure 4.10) in the tapping mode. 

Figure 4.9 Illustration of the light force sensor of an atomic force microscope                                 

(Image extracted from Ref. 182). 
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4.3.5 Photoluminescence Spectroscopy 

 

Photoluminescence spectroscopy is a non-destructive and contactless technique used for the 

optical characterization of semiconductors. When light of sufficient energy is incident on a 

material, photons are absorbed and electronic excitations created. If radiative relaxation occurs, 

the electrons return to the ground state with the spontaneous emission of light in a process 

termed photoluminescence (PL). Analysis of the optical emission provides important 

information including the electronic bands or states, impurity and defect levels. The radiative 

recombination of electron (e) hole (h) pairs localized in different energy states results in distinct 

optical emission typical of the respective transitions in the semiconductor. Figure 4.11 depicts 

the possible radiative transitions during photoluminescence in semiconductor materials 

including: 

 

Figure 4.10 Digital Instruments multimode scanning probe microscope 

(MM-SPM)  
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Band to Band transition:  The radiative recombination of conduction band electrons and 

valence band holes leading to the emission of excess energy in the form of photons (light) is 

referred to as band to band (BtB) transition with energy similar to the semiconductor direct             

band gap (Eg) and equal to the difference between the lowest point of the conduction band (EC) 

and the highest point of the valence band (EV). This is the dominant transition in direct band 

gap semiconductors. 

Excitonic Transitions:  Excited electron and holes could be attracted to one another by 

Coulomb interactions leading to the formation of hydrogenic-like excitons which could 

participate in radiative transitions either as free excitons or bound excitons depending on the 

level of purity of the semiconductor. Owing to the absence of defects or impurities in quasi 

pure semiconductors, free electrons and free holes recombine to form free excitons (FX) 

emitting a narrow spectral line of photons with energy (EFX) equal to the energy difference 

between Eg and the exciton binding energy (EX). Conversely, in the presence of low 

concentrations of donors or acceptors (defects) localized in donor (ED) and acceptor (EA) levels 

Figure 4.11 schematic illustrations of possible radiative transitions during photoluminescence in 

semiconductor materials. EC, EX, ED, EA and EV denote the conduction band edge, free-exciton 

state, donor and acceptor levels & valence band edge respectively. 
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respectively, excitons could be trapped by the defects to form bound excitons. At low 

temperatures, donors bound excitons (D0, X) and acceptors bound excitons (A0, X) are created 

by the VDW attraction of excitons to neutral donors and acceptors respectively.  

Free-to-bound Transitions: At low temperatures, photoexcited free electrons and holes could 

be trapped by carriers which are frozen (bound) at acceptors and donors sites accompanied by 

radiative emission. The radiative recombination of a free conduction band electron with a hole 

bound to an acceptor results in an eA0 transition while a free hole recombination with a donor 

bound electron leads to a hD0 transition (Figure 4.11). Hence the name “free to bound 

transition” denotes a transition which involves the recombination of a free carrier with an 

impurity bound carrier. However, at significantly high temperatures, the frozen carriers are 

unbound and excited to the conduction or valence band favouring BtB emissions while 

annihilating free to bound transitions. 

Donor-acceptor pair Transition: Donors and Acceptors exist concurrently in some doped 

semiconductor materials. The donor-acceptor pair (DAP) transition is associated with the 

radiative recombination of neutral electrons from the donor level with holes on the acceptor 

levels. This could potentially result from an overlap between the electron and hole orbits if 

positioned sufficiently close to each other.  

In practice, defect related emissions are distinguished from BtB PL spectrum using temperature 

dependent PL measurement due to their temperature sensitivity. At low temperatures, carriers 

can be trapped at defect sites however, as the temperature is raised, the carriers are unbound 

and excited to the conduction or valence band favouring BtB emissions. Consequently, defect 

related emissions are mostly absent at significantly high temperatures leaving the BtB 

emissions as the dominant emissions.  
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For this study, the PL setup at Lancaster University and Nanyang Technological University, 

Singapore was utilized. Figure 4.12 shows the diagram of a typical experimental set up used 

for PL investigation at Lancaster University. To perform PL measurements, the samples are 

first mounted on a copper cold finger which are then inserted in an oxford instruments 

continuous flow helium cryostat filled with helium gas to allow for thermal contact. Liquid 

helium was used for cooling down the sample from 300K to liquid helium temperature (4K) 

using a Bentham temperature controller. A spectra-physics model 2011 Ar+ ion laser was used 

as the excitation source. The beam was then pulsed using a Bentham 218 mechanical chopper 

and passed through a series of filters to cut off unwanted signals while exclusively allowing 

the 514 nm line. The sample loaded in the cryostat is sandwitched in between two lenses for 

collimating the light unto the sample and into the monochromator slit. The monochromator  

  

Figure 4.12 Schematic diagram of the experimental set-up for photoluminescence measurement 
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filters out stronger laser emissions not originating from the sample. The sample signal detected 

by liquid nitrogen cooled InSb photodiode detector was then fed into a lock-in-amplifier after 

amplification by a preamp.  Using the reference chopper frequency the lock-in-amplifier 

isolated the sample signal which was then inputted into a computer for data collection.  
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Chapter 5 

InAs Nanowires Growth on Bare Si (111) Substrates 

 

In this chapter the optimal growth conditions for indium droplets suitable for nucleation and 

growth of NWs is first presented. Then, the In-assisted droplet epitaxy growth of InAs NWs 

on silicon substrates by MBE is detailed. Here, optimized indium droplets are employed for 

the preferential nucleation of the NWs without using any foreign catalyst or SiOx mask. The 

morphology and structure of as-grown NWs were investigated using scanning electron 

microscopy, X-ray diffraction and transmission electron microscopy. In order to establish 

optimum growth conditions for In-assisted droplet epitaxy growth of InAs nanowires, an 

investigation of the influence of basic growth parameters such as growth duration, growth 

temperature, In/As flux ratio and the growth rate on the NWs morphology is elucidated.  

 

5.1 Optimization of In Droplets for Nanowire Nucleation and Growth  

 

In order to establish optimal growth conditions for indium droplets (Indrop) suitable for the 

preferential nucleation and growth of NWs, a series of four (A, B, C and D) Indrop samples were 

grown on bare Si substrates at various temperatures of 145–310 °C using In flux in the range 

of 2.2 – 6.0 ×10–7 mbar for a nominal thickness of 3 ML. Prior to the deposition, the Si 

substrates were mostly cleaned in hydrofluoric acid solution as previously described in section 

4.1 and immediately loaded into the MBE system to avoid re-oxidation and thermally 

outgassed. The morphology of the Indrop was then investigated by AFM using digital 

Instruments multimode scanning probe microscope (MM-SPM) fitted to a nanoscope IIIa 

controller unit in the AFM mode. Figure 5.1 shows the top-view (top panel) and 3D (bottom 

panel) AFM images of the droplets deposited at various growth conditions. The diameter, 



 

 

65 

 

height and number density of the droplets were deduced from AFM images and presented with 

the corresponding growth conditions in Table 5.1. It was found that the geometry of the droplets 

is sensitive to both growth temperature and In deposition rate. Low deposition temperature 

(145 °C) led to small and highly dense droplets with diameter, height and number density of 

about 10.73 ± 11.82 nm, 3.87 ± 4.72 nm and 7.78 × 1010 cm–2  respectively. 

     

            

           Table 5.1 Growth conditions and geometrical parameters of indium droplets grown on bare Si substrates 

 

Sample Deposition 

Temperature 

     (0C) 

In-Flux 

(mbar) 

(x10-7) 

Group Average 

Diameter 

 (nm) 

Average 

Height  

(nm) 

 

Number 

Density 

(cm-2) 

 

A 145 2.2 - 10.73±11.82 3.87±4.72 7.78x1010 

B 220 2.2 BS 55.05±0.65 19. 66±3.88 2.03x109 

 220 2.2 BL 70.36±2.50 20.62±1.21 6.33x108 

C 310 2.2 CS 111.53±28.95 

 

30.77±4.99 6.15x107 

 310 2.2 CL 202.28±8.48 82.71±10.14 5.76x107 

 

D 220 6.0 - 13.44±7.55 01.85±0.37 6.42x1010 

       

Figure 5.1 AFM images showing the top-view (top panel) and 3D view (bottom panel) of indium droplets deposited on     

 Si (111) at various temperatures and Influxes: (a) 145 °C, 2.2 ×10–7 mbar; (b) 220 °C, 2.2 ×10–7mbar; (c) 310 °C, 2.2 

  ×10–7mbar and (d) 220 °C, 6.0 ×10–7 mbar 
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 Higher deposition temperatures led to a bimodal size distribution of small (S) and large (L) 

droplets, hereafter referred to as BS and BL for sample B, CS and CL for sample C, respectively. 

Conditions for sample B led to uniform droplets with an average diameter, height and density 

of about 55.05 ± 0.65 nm, 19.66 ± 3.88 nm and 2.03 ×109 cm–2 for BS, 70.36 ± 2.50 nm, 20.62 

± 1.21 nm and 6.33 ×108cm–2 for BL, respectively. A further rise in growth temperature resulted 

in droplets with increased diameter, height and reduced density (111.53 ± 28.95 nm, 30.77 ± 

4.99 nm and 6.15 ×107 cm–2 for CS, 202.28 ± 8.48 nm, 82.71 ± 10.14 nm and 5.76 ×107cm–2 

for CL). The histograms in Figure 5.2 depict the diameter and height distribution of the indium 

droplets samples. It is believed that this behaviour is connected to the increased diffusion length 

of In adatoms which results in larger and less dense droplets [98]. An increase in In-flux led to 

the formation of nearly coalescent droplets with an average diameter, height and density of 

13.44 ± 7.55 nm, 1.85 ± 0.37 nm and 6.42 ×1010cm–2, respectively. This observation is 

attributed to the reduced adatom diffusion time which leads to dense and small droplets.                                                                           

There is a certain critical diameter for NWs growths below that value no growth is possible. 

This is due to the limitation posed by the Gibbs–Thomson effect[76, 184] which defines the 

thermodynamic dependence of the chemical potential and NWs growth rate on its curvature 

and hence droplet diameter. By implication, extremely small droplets do not favour NWs 

growth however, the diameter of NWs can still be controllably manipulated for larger droplet 

diameters.  It can be inferred that sample B is the optimal droplets for NWs growth owing to 

its unique geometry and areal density. As a result, all InA(Sb) NWs samples reported in this 

work employed In droplets with identical conditions to sample B for  facilitating NWs 

nucleation.  

 

 



 

 

67 

 

 

 

 

 

Figure 5.2 Histograms of the diameter (top) and height (bottom) size distributions of  Indium droplets samples A (a);  small B 

[Bs] (b); large B [BL] (c); small C [Cs] (d) ; large C [CL] (e) and D (f). 
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5.2 Growth Procedure of InAs Nanowires by In-assisted Droplet Epitaxy  

 

A series of InAs NWs samples (t25- t144) were grown on bare Si substrates by In-assisted droplet 

epitaxy (DE) growth technique. In-droplets were pre-deposited on the Si substrates to act as 

preferential nucleation sites at pre-optimised growth conditions using a temperature of 220°C 

with an indium beam equivalent pressure (BEP) of 2.2 x 10-7 mbar for a nominal thickness of 

3 ML. The substrate temperature was then ramped up to 440 - 500 °C followed by the 

simultaneous opening of the In and As shutters (As/In flux ratio > 45) for NWs growth. The 

growth was terminated by closing both shutters simultaneously. Except where otherwise 

mentioned, all the InAs NWs were fabricated under similar conditions with growth time of 25-

144 min. The surface morphology of as-grown NWs (Figure 5.3 (a)–(d)) was investigated using 

a LEO 1530 Gemini FEG SEM working at 15 kV.  

 

                          

Figure 5.3 Tilted SEM images of vertically-aligned InAs NWs grown for (a) 25 min, (b) 40 min, 

(c) 60 min, and (d) 144 min. (e) and (f) are the cross-sectional and high-magnification images of 

NWs grown for 40 min. Tilt angles for (a) and (b) are 30°, while for (c) and (d) they are 40° and 

60°, respectively. 

 



 

 

69 

 

 As can be seen, the NWs are vertically-aligned and non-tapered, without kinking along the 

entire wire length with well-facetted hexagonal cross-sections (Figure 5.3(e)). The uniform 

diameter across the NWs length can also be observed in Figure 5.3(f). A plot of the NWs 

diameter (DNW) and density (NDNW) as a function of growth time (tgr) is shown in Figure 5.4. 

The diameters and densities of the small (BS) and large (BL) optimal Indrop are also shown for 

comparison. It is clear that the NWs diameters are comparable to the diameter (70.36 ± 2.50 

nm) of the large In droplets (BL). This indicates that the lateral size of the NWs is likely 

determined by the diameter of the catalyst droplets as reported previously[184]. Furthermore, 

the NWs densities of 6.25 ×108cm–2 (25 min), 4.54 ×108cm–2 (40 min), 4.78 ×108cm–2 (60 min) 

and 1.58 ×108cm–2 (144 min) correlate to the density of the large (BL) droplets (6.33 ×108cm–

2), but are much lower than that of the small (BS) droplets (2.03 ×109cm–2). These suggest only 

the droplets with diameter ≥ 70 nm contribute to the nucleation of the NWs suggestive of a size 

dependent nucleation associated with the Gibbs-Thomson effect which shows the diameter 

  

 

 

 

 

 

 

     
Figure 5.4 Plot of nanowire diameter (DNW) and number density (NDNW) as a function of growth time (tgr). 

The diameters (Ddrop) and densities (NDdrop) of small (BS) and large (BL) optimal indium droplets (Indrop) are 

also shown for comparison. 
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dependence of NWs growth rate. Specifically, it demonstrates that the growth rate of NWs 

scales inversely with the droplet diameter and curvature due to changes to the chemical 

potentials difference. This is particularly relevant at low supersaturation [185, 186] and in turn 

high In concentration. This demonstrates that the diameter and density of NWs are defined by 

the geometry and spatial distribution of pre-deposited droplets [187]. Worthy of note is the 

insignificant increase in DNW (~ 10nm) for about 120 min of growth which sharply contrast the 

commonly observed diameter expansion as a function of growth time (more details in 

subsection 5.4.1). However, the slight decline in NW density particularly for tgr = 144 min is 

attributed to its suppression with increased growth of large Islands. 

 

5.3 Structural Characterization of Droplet Epitaxy Grown InAs Nanowires   

 

The crystal quality of the NWs was investigated by XRD (Philips PW 1720). Figure 5.5 shows 

a typical XRD pattern (t144) of as-grown InAs NWs. The visible peak at 2θ values of 25.4° and 

52.2° are assigned to the (111) and (222) diffractions corresponding to zinc-blende (ZB) InAs 

which agree well with that of bulk ZB InAs[185] and ZB NWs structures[140]. The peak at 

28.4° is associated with the diffraction from Si (111). The typical 2θ diffraction angles from 

wurtzite (WZ) InAs at 25.3° (002) and 27.2° (101) [90] are not visible in the XRD scan, this 

suggests a dominant ZB crystal in the NWs.  

High-resolution TEM investigation was performed on a JEOL-JEM 2100 microscope working 

at 200kV to gain further insight into the structural property of the NWs. A representative 

HRTEM image (t60) depicted in Figure 5.6a reveals that the NWs present a ZB structure with 

a high density of stacking faults (SFs) and twin boundaries. Typically, III−V semiconductor 

NWs crystallize either in the pure ZB phase, pure WZ phase or a combination of both ZB and 

WZ (ZB/WZ mixtures). 



 

 

71 

 

                               

A III-V semiconductor crystal bilayer (BL) is composed of a pair of a single group III and 

group V atom. The crystal structure of a NW is dictated by the sequential arrangement of the 

BL. A typical ZB sequence is …ABCABC… while a WZ sequence is …ABABAB… where 

each letter represents a bilayer. A SF results from a partial distortion of the vertical stacking 

sequence either by the absence of a segment in the normal sequence or the inclusion of a single 

segment of the other crystal structure.  In the ZB phase, a sequence of ABCABABC indicates 

a SF with the fault line between C and A leading to the inclusion of a WZ unit (AB) between 

the ZB segments. Similarly, for a WZ phase a SF exists in a stacking sequence of the form 

ABACBAB due to the inclusion of C which alters the regular WZ sequence. Closely related to 

SFs are rotational twins (RTs) which are created when a segment of a crystal is rotated by 60o 

around the growth axis (<111>) such that it is translated to a mirror image of the regular 

segment. The interface between the regular and mirror segments is referred to as the twin 

boundary. A stacking sequence of ABAB C BABA for WZ phase and ABC A CBA for the ZB 

phase illustrates the presence of RTs. The observed continuous streaks running parallel to 〈111〉 

Figure 5.5 X-ray diffraction (XRD) patterns of InAs nanowires on Si (111) 
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direction in the selected area electron diffraction (SAED) pattern (see inset in Figure 5.6(a)) 

further confirms the presence of microtwins and SFs in the NWs. This could be associated with 

the relatively high stability of the hexagonal phase of thin NWs owing to its lower surface 

energy in comparison to the corresponding ZB crystal orientation[186]. This phenomenon is 

consistent with previous reports of self-assisted InAs NWs growths [53, 139, 141]. The TEM 

image of a NW (Figure 5.6(b)) shows the uniform diameter along the entire NW length. A ∼1–

2 nm thick amorphous layer surrounding the InAs NWs is also visible which could be linked 

to native indium oxidation upon exposure to ambient air[187]. 

 

 

             

          

                                      

Figure 5.6 (a) Typical HRTEM image of NWs showing zinc-blende structure containing high density 

of stacking faults and twin boundaries (inset corresponds to an electron diffraction pattern recorded in 

areas containing InAs NWs); (b) Bright-field TEM image showing the uniform diameter along the 

NW length.  
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5.4 Effect of Growth Parameters on InAs Nanowires Growth on Silicon    

                                                                     

5.4.1  Time Evolution of Nanowire Growth  

 

The time dependent studies of NW morphology provides valuable insight into the nucleation 

and growth of these structures. In order to investigate the evolution of InAs NWs morphology 

as a function of growth time with a view to better understand the mechanism of NWs growth 

on Si as well as determine the required growth duration for realizing long NWs (with high 

aspect ratio), the effect of growth duration on InAs NWs growth was studied by examining the 

morphology of samples t25- t144 (Figure 5.3) grown for 25, 40, 60 and 144 min respectively 

(details of growth methods can be found in subsection 5.2). In Figure 5.7, the evolution of 

average LNW and DNW as a function of growth time (tgr) is depicted. A linear increase of LNW 

with tgr can be observed suggestive of a constant growth rate. It is generally accepted [132, 

188] that NW lateral growth is activated when LNW exceeds the adatom diffusion length (λL) 

along the sidewall which was not observed in the NWs evidenced by the almost constant NWs 

diameter along the entire length for all growth durations (LNW = 3.82µm for t144). It is well 

established that metal assisted NWs growth is comprised of two distinct regimes: at the initial 

stage, the NWs grow purely along the axial direction until they reach a certain critical length, 

where LNW > λL. At this point, sidewall nucleation is triggered leading to diameter 

expansion[188]. The monotonic increase in LNW (Figure 5.7) and the absence of any significant 

lateral broadening (only ~11nm increase in DNW for tgr increase from 25 to 144min) suggest a 

purely uniaxial growth regime (λL ≥ 3.82µm). The axial growth of such thin NWs (DNW <100 

nm) is mainly dictated by adatom diffusion and not so strongly by the adsorption on the drop 

surface[189].  In addition, the axial growth rate of the InAs NWs is 15-20 times of the nominal 

deposition rate of 0.1µm/hr, a signature of diffusion induced (DI) InAs NWs growth typical of 

the MBE growth technique[190]. As a result, the observed high axial growth rate is attributed  
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Figure 5.7 Evolution of the nanowire length (LNW) and diameter 

(DNW) as a function of growth time (tgr) 

                        Figure 5.8 Histogram of InAs nanowires length as a function of growth time (tgr). 
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to the large diffusivity of In adatoms along sidewall facets[141]. The observed large error bar 

for t144 possibly suggests a prolonged nucleation of NWs with time leading to large variations 

in LNW. Figure 5.8 shows the statistical distribution of the lengths of as-grown NWs as a 

function of tgr. This study demonstrates that InAs NWs growth on Si follows a diffusion 

induced growth technique characterized by high uniaxial growth rate resulting from large 

diffusivity of In adatoms along the NWs sidewall. In addition, long (~ 4µm) and high aspect 

ratio NWs suitable for high performance optoelectronic devices such as ballistic transistors 

operating in the quantum capacitance limit (QCL) were realized for a long growth duration (> 

120 min).       

5.4.2 Effect of Temperature on Nanowire Growth 

 

Growth temperature is an essential parameter for tuning the NWs morphology owing to its 

significant influence on NWs growth kinetics. In order to investigate the influence of growth 

temperature (GT) on NWs morphology as well as determine the optimum conditions for  

achieving a high yield of InAs NWs, a series of InAs NWs samples were deposited on Si (111) 

substrates under As-rich condition (As/In flux ratio > 45) for the about 1 hour while the 

temperature was varied in the range of 400 - 475oC at a fixed In [(1.75 - 2.25) x 10-7 mbar] and 

As (8.0x10-6 – 2x10-5 mbar) flux. Prior to growth initiation, the Si substrates were first dipped 

in 12% hydrofluoric acid solution for 3 min to remove the native oxide, then immediately 

loaded into the MBE system to avoid re-oxidation and thermally outgassed. In droplets were 

then deposited on the substrates at pre-optimized conditions as described previously. The NWs 

densities in this work were mostly estimated from an area of about 25-100 µm2 of the samples. 

Figure 5.9 shows the SEM micrographs of InAs NWs grown at different temperatures while 

Figure 5.10 shows the dependence of nanowire areal density (NDNW) on temperature. Notably, 

at 400oC the growth was dominated by InAs clusters which suggests a kinetically limited 
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Figure 5.9 Tilted SEM images of InAs NWs grown on Silicon substrates with fixed In-

flux of 1.75 x 10-7 mbar at various temperatures in the range of 400 - 475°C. Tilt angle 

for each figure is 45° except figure c which is 40°.  

Figure 5.10 Plot of nanowire areal density (NDNW) versus growth 

temperature (GT). 
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adatom diffusion owing to the significantly low temperature. In sharp contrast, NWs growth 

was realized within a narrow growth window of 420-475oC, with the highest yield of vertically-

aligned NWs obtained at ~ 450oC while a low yield of NWs was obtained at 475oC resulting 

from a long adatom diffusion length. This indicates the strong influence of GT on NWs growth 

kinetics. A plot of LNW and DNW as a function of GT shown in Figure 5.11 reveals changes in 

the axial growth of the nanowires; initially LNW slightly increases with temperature up to 450oC 

after which there was no significant change in LNW resulting in the realization of maximum 

axial growth rate at 450oC. On the other hand, although thick NWs were realized at 420oC, the 

diameter of NWs decreased with increasing temperature in the range of 450oC to 475oC due to 

Figure 5.11 Plot of InAs nanowires length (LNW) and diameter (DNW) on silicon 

substrates as a function of growth temperature (GT). 
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the increased adatoms diffusion to the NWs tip in favour of axial growth. This observation 

suggests higher temperatures (≥ 450oC) favour the growth of high aspect ratio NWs and can be 

interpreted in terms of the temperature dependent adatom diffusion flux from the substrate to 

the NWs tip [191, 192]. This study demonstrates that InAs NWs growth can be realized on bare 

Si by droplet epitaxy within a relatively narrow growth window of 420-475oC, with the highest 

yield of vertically-aligned NWs obtained at ~ 450oC. 

 

5.4.3. Effect of V/III ratio on Nanowire growth 

 

Aiming to elucidate the required V/III flux ratio suitable for realizing InAs NWs growth by 

droplet epitaxy on bare Si and the influence of the V/III flux ratio, three InAs NWs samples 

were grown on Si (111) substrates following established procedure at a constant temperature 

of 440 - 500 °C for growth duration of 20 minutes. The In –flux was fixed (~1.75 x 10-7 mbar) 

while the V/III flux ratio (AsFx/InFx) was tuned from 27 to 55 by varying the As-flux from 4.8 

- 9.6 x 10-6 mbar. Figure 5.12 demonstrates the variation of NWs morphology and density with 

AsFx/InFx ratio. It is clear that NWs nucleation probability is strongly influenced by the 

AsFx/InFx ratio. NWs growth was completely inhibited at relatively low AsFx/InFx of ~27 

evidenced by the growth of InAs clusters (islands). This is in good agreement with previous 

reports [193, 194] and can be understood given the fact that group V-rich conditions are 

required for the nucleation and growth of NWs[135] in contrast to excess In–rich conditions 

which prohibit NWs growth. It is well established that the axial growth of self- catalysed NWs 

is highly dependent on the group V flux [195, 196]. By slightly raising the AsFx/InFx to ~ 51, a 

transition to the NWs morphology was induced with the realization of highly dense (NDNW= 

4.23 x 109) NW arrays. This demonstrates that As-rich conditions are required for the  
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nucleation and growth of NWs via the droplet epitaxy technique similar to previous 

report[197]. A slight increase in AsFx/InFx to 55 was accompanied by a slight decrease in the 

NWs number density due to the strong dependence of NWs nucleation on In-flux. This 

observation is consistent with previous studies by Dayeh et al[198]. It was shown that the NW 

nucleation rate drops as the effective V/III ratio is increased due to the depletion of In from the 

NW growth sites. Detailed analysis of the SEM images revealed a strong dependence of axial 

 Figure 5.12 45o tilted SEM images of InAs nanowires on Si grown with a fixed growth temperature (GT) of 450oC and      

different V/III flux ratio (AsFx/InFx) of 27 (a), 51(b) and 55(c). 

Figure 5.13 Plot of nanowire length (LNW) and diameter (DNW) as function 

of arsenic/indium flux ratio (AsFx/InFx) at a constant temperature of 450oC. 
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NWs growth on the AsFx/InFx (Figure 5.13). LNW (and in effect axial growth) increases 

monotonically with increasing As-flux (high AsFx/InFx) in good agreement with previous 

studies[197]. It has been demonstrated that self-catalyzed NWs elongation rate is controlled by 

the group V flux [195, 196].  On the other hand there was no significant change in DNW. This 

demonstrates that As-rich conditions (As/In > 50) are required for the nucleation and growth 

of InAs NWs on bare Si via the droplet epitaxy technique and the axial growth of InAs NWs 

is limited by As-flux. 

 

5.4.4 Effect of Growth Rate on Nanowire Growth 

 

To investigate the dependence of NWs morphology on the growth rate, a series of experiments 

were performed at 440 - 500 °C and fixed As-flux (8.0x10-6 –2x10-5 mbar) while the 2D 

equivalent growth rate was tuned from 0.1 to 0.3µm/hr by varying the In-flux for the I hour 

growth duration.  Figure 5.14 shows the SEM images of InAs NWs grown on Si as a function 

of growth rate.  As can be seen, NWs nucleation decreases by an order of magnitude with 

increasing growth rate from 0.1 to 0.2 µm/hr at a constant GT (Figure 5.15). Almost no NWs 

growth was observed at a growth rate of 0.3 µm/hr suggesting NWs growth is promoted by low 

growth rates. This could likely be associated with the availability of excess In adatoms possibly 

 

 
                Figure 5.14 InAs nanowires growth on Si (111) at a constant temperature and different growth rates 
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as a direct consequence of contributions from the pre-deposited In drop. Excess accumulation 

of Indium and surface growths imposes certain restrictions in the collection area thereby 

inhibiting adatom mobility resulting in a suppression of NWs nucleation probability with 

reduced NDNW. The high volume of InAs clusters (islands) shown in Figure 5.14 (0.3µm/hr) 

provides clear evidence of the presence of excess surface growth on the substrate[199].  Figure 

5.16 shows the variation of LNW and DNW as a function of growth rate. There was almost no 

Figure 5.15 Variation of nanowire density (NDNW) as a 

function of growth rate. 

  

Figure 5.16 Dependence of InAs nanowire length (LNW) and diameter (DNW) 

on growth rate at a constant temperature. 
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significant change to LNW and DNW with increasing growth rate from 0.1µm/hr to 0.2µm/hr. 

However, when a growth rate of 0.3µm/hr was utilized, LNW decreased by over two orders of 

magnitude while DNW reduced by ~2x. The observed trend can be explained by the significant 

decrease in the available adatom at the growth front due to the suppressed adatom diffusion 

length with increased cluster growth as described earlier. This shows that a high yield of droplet 

epitaxy grown, vertically-aligned InAs NWs on bare Si is promoted by a low growth rate 

(~0.1µm/hr). These studies demonstrate that the size and density of NWs can be independently 

controlled by tuning any of the basic growth parameters such as growth duration, growth 

temperature, growth rate and V/III flux ratio while keeping the others fixed. 

 

5.5  Photoluminescence Properties of Droplet Epitaxy grown InAs Nanowires 

on Bare Si 

 

An understanding of the optical properties and the mechanisms of carrier recombinations in 

droplet epitaxy grown NWs is crucial for application in functional optoelectronic devices. The 

optical properties of as-grown InAs NWs samples t25 and t144 deposited for 25 and 144 min 

respectively (details of growth methods are provided in subsection 5.2 along with SEM images 

depicted in Figure 5.3) were investigated. In order to perform the PL measurements, the InAs 

NWs samples were first mounted on a copper coldfinger and then inserted in an oxford 

instrument continuous flow cryostat filled with helium gas to allow for thermal contact. Liquid 

helium was used for cooling down the samples from 300 to 10K using a Bentham temperature 

controller. A spectra-physics model 2011 Ar+ ion laser (514 nm) was used as the excitation 

source while a liquid N2 cooled InSb photodiode detector was used for the detection of PL 

signal from the samples. A lock-in amplifier and an optical chopper were used to suppress 

unwanted noise. Typical low temperature (10k) PL spectra of as-grown InAs NWs and a 
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reference bulk InAs is depicted in Figure 5.17. As can be seen, the InAs NWs exhibit a 

multipeak emission which can be resolved into a series of five emission peaks. The labelled 

peaks α3 and α4 are assigned to deep Impurity or defect related (IDR) [63, 200-202] and donor 

acceptor pair (DAP) [200, 203],[204],[205] emissions respectively while peak α5 is ascribed to 

the band to band (BtB) [202],[63] emission in good agreement with previous reports; however, 

likely contributions from type II related emission cannot be completely ruled out due to the 

presence of ZB/WZ crystal phase mixtures. The origin of peak α1 also observed by Sun et al 

 

                                 

 

[200] is yet unclear and requires further investigation while peak α2 which has only been 

observed in InAs films corresponds to a phonon replica of IDR[202]. The InAs bulk shows a 

dominant peak α5 and a low intensity peak α3 (inset of Figure 5.17) while the PL spectra of 

Figure 5.17 PL spectra of as-grown InAs NWs samples showing multipeak 

emissions at 10 K. The PL spectrum of InAs bulk is also shown for 

comparison.  
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both samples show a strong and dominant peak emission (α5) associated with the BtB 

recombination similar to the bulk InAs. Noticeable, there is no significant difference in the BtB 

PL peak position of as-grown InAs NWs samples with respect to the bulk sample which is a 

signature of optically superior NWs. No significant contribution from quantum confinement is 

anticipated due to the large diameters of the NWs (~65nm for t25, ~77nm for t144) relative to 

the InAs Bohr radius (∼34 nm). However, the BtB peak position of sample t25 is slightly blue 

shifted by ~4meV with respect to that of t144. This could be associated with the diameter-

dependent blue-shift in PL peak energies[63] owing to the relatively small diameter of t25 

compared to t144. In order to gain further insight into the PL properties of as-grown NWs, the 

emission peaks were de-convoluted using Lorentzian approximations as shown in Figure 5.18 

(a-c). The PL energies for the identified peaks are assigned to the various transitions in InAs 

NWs in comparison to that of bulk InAs as summarized in Table 5.2  

 

 

 

 

 

Figure 5.18 PL spectra of InAs bulk (a); InAs nanowires samples t25 (b) and t144 (c) deconvoluted into various Lorentz curves with peaks α1 to α5 (1-5 for 

bulk) corresponding to unknown peak, Phonon replica of deep impurity/defect related, deep impurity/defect related, donor-acceptor-pair and band-to-band 

emissions respectively.  
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Table 5.2 Assigned low Temperature (10k) PL emission energies of self-catalyzed InAs nanowires grown on Si compared to  

               bulk InAs values with references (all energies are in  eV). 

 

 

Detailed analysis of peak α5 of sample t25 revealed a spectral line width (full width at half 

maximum) of ~35meV which is ~5x that of the bulk InAs reference (~7meV). Intriguingly, 

peak α5 of t144 exhibits a record narrow spectral linewidths of ~20 meV which is closer to the 

bulk value and relatively smaller than the commonly reported values (>29) meV[63, 200, 206].  

In order to elucidate the origins of the various transitions in as-grown NWs, temperature and 

power-dependent PL measurements were performed at ~1W and 4K respectively. The 

temperature-dependent PL spectrum of bulk InAs depicted in Figure 5.19a shows a clear red-

shift in peak α5 PL energy. In sharp contrast, peak α3 exhibits no significant shift in energy 

(insets) which provides further confirmation of its assignment to deep impurity or defect related 

emission. The temperature-dependent PL spectrum of sample t25 along with its corresponding 

Lorentz fits are shown in Figure 5.19(b-c) respectively. As can be seen, peaks α3 and α4 shows 

no obvious shift with increasing temperature which further confirms they are defect related. 

Conversely, peak α5 shows an obvious red-shift of about 5meV with decreasing PL intensity 

for a rise in temperature from 10 to 160k while the FWHM increases from ~35 meV (10 K) to 

~57 meV (120 K). Similarly for sample t144, the peak intensity decreases with an increase in 

Sample (Peak α1) 

Unknown 

(Peak α2) 

Phonon Replica 

 of peak 3 

(Peak α3) 

Deep Impurity 

/Defect Related     

(Peak α4) 

Donor- Acceptor pair 

(Peak α5) 

Band-to-band 

t25        -       -                 0.381 0.389 0.414 

t144 - 0.359 0.372 0.397 0.409 

Film - - 0.388 - 0.414 

Refs. [200] [202] [63, 200-202]        [200, 203],[204],[205] 

 

[202],[63] 
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temperature as expected. Peaks α2 and α4 (Figure 5.19(d-e)) exhibit a temperature  

independence over the investigated temperature range (10 – 250k) which is typical of defects 

or impurity related emissions[202]. However, peak α3 slightly show an anomalous blue-shift 

with an increase in temperature from 80k to 250k, which sharply contrasts the usual band-gap 

shrinkage with increasing temperature. Owing to the large diameter of the NWs (77nm),  

Figure 5.19 Temperature-dependent PL emission spectra of InAs bulk (a) and InAs nanowires samples t25 (b)  with its 

corresponding Lorentz curves for the dominant peaks [α3 and α5 ] (c) and sample t144 (d) with its corresponding 

Lorentz curves for the dominant peaks [α3 and α5 ] (e). 
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quantum confinement effect is rule out and the behaviour is attributed to thermally-induced 

population of electrons localized at the defect state[207].  As shown in Figure 5.19 (e-f)), the 

PL peak α5 shows an obvious red-shift with increasing temperature from a 0.409 to 0.403 eV 

with the PL FWHM increasing from ~20 to 42 meV for the investigated temperature range (10 

K - 250 K) due to phonon scattering. The observed band gap shrinkage which is due to the 

temperature-induced lattice dilatation and electron-lattice interaction provides convincing 

evidence of a BtB emission of α 5. However, the slight temperature-induced shift exhibited by 

both NWs samples in comparison to bulk InAs[208] could be attributed to the influence of a 

native electron accumulation layer on the NWs surface resulting in the Fermi level (EF) being 

pinned above the conduction band minimum[209-211]. In addition, the presence of WZ 

segments in the ZB dominant crystals could potentially modify the NWs energy gap due to its 

higher energy. It has been demonstrated [212-214] that the band gap of InAs NWs is crystal 

phase-dependent, with the WZ phase blue shifted by about 40–66 meV[212, 215, 216] in 

relation to their ZB counterpart. Interestingly, peak α5 of sample t144 saturates at a significantly 

higher temperature (250k) than that of t25 (160k) as well as previously reported unpassivated 

(130-200k)[63, 200] and passivated (110k)[206] InAs NWs. This further confirms the presence 

of a relatively low density of defects in the NWs sample t144. Figure 5.20a shows the variation 

of InAs NWs (samples t25 and t144) PL peak energy as a function of temperature. It reveals the 

temperature dependence of the energy gap (Eg) of peaks α5 agree reasonably well with the well-

known Varshni empirical formula[217] [Eg (T) = E0 - 𝐴𝑇2 (𝐵 + 𝑇)⁄ , where E0 is the energy 

gap at 0K, T is the temperature, A and B are associated with the thermal expansion coefficient 

and the Debye temperature respectively] after the usual kBT/2 correction which is generally 

applied to narrow-band gap semiconductors, where the dotted lines represents the Varshni fits. 

From the fitting, values of (1.98, 1.37 & 3.21) x 10-4 for “A” and 263, 218 & 267 for “B” were 

obtained corresponding to samples t25, t144 and bulk InAs respectively. 
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 In order to evaluate the temperature PL quenching process of sample t144, the integrated PL 

intensities of peak α5 was plotted as a function of 1/kT [Figures 5.20(b)] using Arrhenius 

equation which is expressed as I (T) = (𝐼(0)  [1 + 𝐴𝑒−𝐸𝑎
𝑘𝑇 ⁄    +   𝐵𝑒−

𝐸𝑏
𝑘𝑇 ], where I (0) is the 

spectral intensity at low temperatures, A and B measures the quenching mechanism, kB is the 

Boltzmann constant and  T the temperature while Ea and Eb denote the thermal activation 

energies at high and low temperatures respectively. Thermal activation energies of 24.87 meV 

and 9.59 meV  for the bulk InAs and 24.28 meV and 24.29 meV for as-grown NWs sample t144 

corresponding to electron-hole plasma emission[63] were extracted from the fitting within the 

regime of high and low temperatures respectively. This suggest similar quenching processes at 

both low and high temperatures in the droplet epitaxy grown InAs NWs. Illustrated in Figure 

5.21 (a-b) are the PL spectra of InAs NWs samples t25 and t144 measured under various laser 

powers at ∼4K compared to the InAs bulk. The α5 peak position of t25 slightly blue- shifts by 

~4meV due to band filling of photogenerated carriers while there was no significant shift  

Figure 5.20  (a) Variation of PL peak energy of InAs nanowires (samples t25 and t144) and InAs bulk as a function of temperature. 

The dotted curves represent the best varshni fits. (b) The Arrhenius plot of Integrated PL intensity versus 1/T  for InAs bulk and 

sample t144. The dotted curves represent the best arrhenius fit while Ea and Eb indicate the obtained activation energies at high and 

low temperatures. 
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(0.19meV) in the t144 peak α5 position as a function of varying excitation power which is 

consistent with previous report[200]. The near absence or weak excitation power dependence 

of the PL peak positions can be attributed to a slight broadening of the PL peak resulting in the 

local band filling effect being concealed[63, 218]. Such a near insensitive behaviour to 

variations in excitation power has being previously reported for high quality NWs [219] and 

was also observed in the InAs bulk sample (Figure 5.21c). It has been shown[214] that a 

quantum well related type-II band alignment between the WZ and ZB sections of polytypic 

crystals results in large blue-shift with significant broadening as a function of excitation power. 

A large blue shift of 15-30 meV with distinct peak broadening was observed for an increase in 

excitation power in the range of 0.01- 0.5w and was attributed to the band bending induced by 

the carrier accumulation at the interfaces and the band filling effect.  However, the near 

insensitivity of the band energies to a large increase in excitation power (0.2 -1.6w) and the 

absence of a temperature dependent blue shift in as-grown NWs suggests any type II related 

emissions are possibly concealed by the dominant BtB peak. It is worthy to note however that 

the presence and intensity of the type II band alignment related emission in InAs NWs PL 

spectrum is highly dependent on the density of crystal phase mixtures and SFs which in turn 

Figure 5.21 Power-dependent PL emission spectrum of InAs nanowires samples t25 (a) and t144 (b) measured at 4K compared to 

an InAs bulk (c). The inset shows the dependence of PL intensity on excitation power. 



 

 

90 

 

are significantly influenced by the growth conditions and NWs geometry. However, both 

samples exhibit higher PL efficiencies with increasing excitation power and the BtB emissions 

are linearly related to the excitation power (insets of Figure 5.21). This demonstrates the high 

optical properties of the droplet epitaxy grown InAs NWs. 
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Chapter 6 

Growth and characterization of InAsSb Nanowires 

 

The droplet epitaxy growth of InAsSb nanowires and the influence of Sb 

incorporation on the  morphology and structural properties of InAsSb nanowires will 

be explicated in this chapter. 

 

6.1 Growth Procedure for InAsSb Nanowires by Droplet Epitaxy 

 

MBE growth of InAs1-xSbx NWs was performed under As-rich condition on bare Si (111) 

substrates initially cleaned following pre-established procedures (Section 4.1) and immediately 

loaded into the MBE system. In droplets were pre-deposited on the Si substrates as previously 

described (Section 5.1). The substrate temperature was then ramped up to 420-470oC for 

initiation of InAs1-xSbx NWs growth by the simultaneous introduction of all growth precursors. 

A time dependent series of two InAs1−xSbx NWs samples were grown with fixed In and As 

BEP (about 5.8 x10-6 mbar) for short growth (SG) time of 20 minutes and long growth (LG) 

time of 120 minutes, denoted as “SG” and “LG” respectively. Similar SG and LG Sb-free InAs 

NWs (previously discussed in sections 5.2 and 5.3) were used as reference. The Sb content in 

the NWs was controlled by tuning the Sb fractional flux (FFsb) fed into the MBE chamber, 

where FFsb is the ratio of Sb flux (ψSb) to the combined group V (As + Sb) precursor fluxes 

(ψv) which is expressed as:  

                      FFsb= 
ψ𝑠𝑏

ψ𝐴𝑠+ ψ𝑠𝑏
                                          (6.1) 

 

Here, ψAs is the arsenic flux. Consequently, the Sb flux fluctuation in the range of 7.6x10-8 to 

5x10-7 mbar led to a variation in FFSb of about 0.79%, 4.95%, 2.93% and 4.95% in samples 
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S4.3, S4.5, L10.2 and L14.5 respectively. The Sb content of the InAs1−xSbx NWs was determined by 

X-ray diffraction (XRD) performed on a Philips PW 1720 X-ray diffractometer with the Cu 

Kα1 radiation line (1.540Å) and further confirmed by Energy-dispersive X-ray spectroscopy 

(EDX) measurement using a FEI XL30 SFEG scanning electron microscope (SEM) at the 

University of Liverpool also utilized for investigation of the surface morphology of the as-

grown NWs.  

 

6.2 Sb Composition in InAsSb Nanowires 

 

The percentage Sb mole fraction (xm) in the NWs was evaluated by comparing the angular 

positions of the diffraction peaks from the (111) Zinc-blende (ZB) InAsSb (111) (Figure 6.1, 

FFsb = 0.79 - 4.68%) to that of the InAs NWs reference sample (Figure 6.1, FFsb = 0%). The 

peak at 28.4° is associated with the Si (111)[220] substrate while the diffractions at around 25° 

are assigned to the InAs1-xSbx NWs along the (111) direction. The interplanar spacing (d) 

between the (111) planes were extracted from the identified InAs1−xSbx (111) 2θ values using 

Bragg’s law (equation 4.1) and the lattice parameters “a” deduced from the calculated lattice 

spacing. An increase in Sb incorporation was indicated by a shift in the (111) peak from 25.4o 

in the reference ZB InAs to lower angles with a corresponding increase in “a” values. The Sb 

content in the NWs was then deduced from the estimated lattice constants using the bulk[221] 

InSb (111) 2θ value (23.7660) according to Vegard’s law [222].  

 

                                        x =  
𝑎𝐼𝑛𝐴𝑠𝑆𝑏−𝑎𝐼𝑛𝐴𝑠

𝑎𝐼𝑛𝑆𝑏−𝑎𝐼𝑛𝐴𝑠
                                         (6.2) 

Where a is the lattice constant 



 

 

93 

 

                               

 

The estimated Sb content in as-grown InAsSb NWs is detailed in Table 6.1. To further confirm 

successful Sb incorporation, sampled InAs1−xSbx films were analysed by energy dispersive x-

ray (EDX) measurements. The obtained Sb content in most NWs closely correlates with the 

XRD values (XRD and EDX derived Sb content of 10.2% and 8.93% respectively were 

estimated for sample L10.2). A typical EDX spectrum is depicted in Figure 6.2. Table 6.1 reveals 

a disproportionate dependence of Sb content on Sb flux particularly for the samples deposited 

for short growth duration. It is clear that the introduction of trace Sb flux (FFSb=0.79%) led to 

a significant incorporation of Sb (xm = 4.3%) in contrast, a significant increase in FFsb (4.16%) 

resulted in only 0.2% rise in Sb incorporation[223]. A similar behaviour has been reported for 

self-catalyzed InAsSb NWs grown for 2 min[143]. Conversely, for the long growth time 

samples, a 1.75% rise in FFsb was accompanied by a significant (4.3%) increase in Sb mole 

Figure 6.1 X-ray diffraction (XRD) patterns of InAs1−xSbx nanowires 

grown on Si. The Sb fractional flux ratio (FFSb) for the short growth 

(SG) and long growth (LG) samples are labelled with the associated 

spectrum. 
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fraction. The following section explicates the surfactant effect of Sb on NWs morphology and 

adduces possible reasons for the observed trend. 

 

                                Table 6.1   Growth parameters, “a” values and Sb content in InAs1−xSbx samples 

 

 

 

 

 

                                     

  

                 

6.3  Effect of Surfactant Sb on Nanowire Morphology 

 

Figure 6.3 (a-d) shows the SEM images of SG (a) and LG (b-d) reference Sb-free InAs NWs 

with highly uniform diameter. Aiming to elucidate the effect of Sb incorporation on the 

morphology of the NWs, the detailed analysis of the geometry of Sb-free InAs NWs reference 

Sample 

Name 

 

Series Growth duration 

(min) 

FFsb 

(%) 

 ‘a’ 

(Å) 

χm 

(%) 

S4.3 SG 20 0.79 6.076 4.3 

S4.5 SG 20 4.95 6.077 4.5 

L10.2 LG 120 2.93 6.101 10.2 

L14.5 LG 120 4.68 6.119 14.5 

Figure 6.2 Typical EDX spectrum of as-grown InAs
1-x

Sb
x
 film confirming 

Sb incorporation with signals characteristic of As, In, and Sb. 
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samples was first undertaken. A plot of the NWs diameter (DNW) and lateral growth rate 

(Lateral GRNW) as a function of growth time (tgr) are depicted in Figure 6.4. As can be 

 

 

   

 

 

 

 

 

 

 

 

                                       

 

 

 

 

 

 

 

 

 

Figure 6.4  (a) Plot of nanowire diameter (D
NW

) and lateral growth rate 

(Lateral Gr
NW

) as a function of growth time (t
gr

); the close-up SEM 

images for the various growth times are shown as insets. The scale bars 

correspond to 100 nm except t
gr

 = 144 which is 500nm.   

 

Figure 6.3 Tilted SEM images of short growth (a) and long growth reference InAs nanowires (NWs) grown for 

40min (b) 60 min (c) and 144 min (d); Short growth (e-f) and long growth (g-h)  InAs
1-x

Sb
x 
NWs with Sb 

incorporation (x
m
) of 4.3% (e); 4.5 % (f); 10.2 % (g) and 14.5 % (h) respectively. A NW exhibiting a broad base is 

marked in f. 
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seen, the lateral dimensions of the NWs vary in the range of ~65.00-76.57 nm. This indicates 

that there was no significant increase in the lateral dimensions of the NWs with increasing 

growth duration. The longest growth (144 minutes) led to NWs with diameter of ~76.57 nm, a 

slight increase of only 11.57nm in comparison with the shortest growth as shown in the insets 

(close-up SEM images of Figure 6.4). This observation indicates that there was no significant 

lateral growth (diameter expansion). Furthermore, detailed investigation of the evolution of 

NWs length (subsection 5.4.1) revealed a purely uniaxial growth of long NWs attributable to 

the large diffusivity of adatoms with a likely diffusion length ≥ 3.82µm. Typical SEM images 

of SG InAs1-xSbx (Figures 6.3 e-f) NWs reveal the addition of Sb led to the display of 

contrasting NWs geometries. Whereas the SG reference InAs NWs were ~65 nm in diameter 

and ~900 nm long, the introduction of Sb led to a clear increase in the lateral dimensions and 

a slight decrease in LNW. The addition of trace Sb content (4.3%) in sample S4.3 led to a 

significant increase (~ 68%) in DNW and a slight drop (~3%) in LNW. An increase in xm to 4.5% 

(sample S4.5) was accompanied by a disproportionate (~77%) expansion in DNW and a 

corresponding shrinkage (~ 8%) in LNW (Figure 6.5).  

 

 

Figure 6.5 (a) The evolution of the nanowire length (L
NW

) and diameter (D
NW

) as a function of Sb mole fraction 

(x
m
) for short growth (SG) and long growth (LG) durations. (b) Effect of Sb mole fraction (x

m
) on nanowire 

lateral growth rate (Lateral GR
NW

) and axial growth rate (Axial GR
NW

) for both SG and LG grown samples.   
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Turning to the LG series (Figure 6.3 g-h), in comparison to the Sb-free InAs reference NWs 

deposited for long growth (LG) durations [60 min (DNW = ~72nm, LNW =1.57µm) and 144 min 

(DNW = ~77nm, LNW = 3.82 µm) shown in Figure 6.3c and d respectively], a dramatic 

modification to the geometry of the NWs was observed with Sb addition. Sample L10.2 (xm = 

10.2%) exhibited a significantly large DNW of ~155 nm with stunted LNW of 0.7 µm (Figure 

6.3g), and an increase in Sb content (xm =14.5%) in sample L14.5 favoured a further increase in  

lateral growth while significantly suppressing axial growth leading to the growth of 2D films 

(Figure 6.3h). Figure 6.5b shows the effect of xm on the lateral GR
NW

 and axial growth rate 

(axial GR
NW

) of InAs1-xSbx NWs. It is clear from the figure that the diameter expansion and 

axial growth shrinkage as a function of Sb content correlates with the growth rates. The 

observed geometrical modifications can therefore be attributed to the rapid rise in the lateral 

GR
NW

 with a corresponding contraction in axial GR
NW

.  

In order to fully understand the possible reasons for the observed changes in axial and lateral 

growth rate, an investigation of the thermodynamic mechanism that accounts for Sb 

segregation in InAsSb NWs was first carried out. The phenomenon of Sb segregation in InAs 

is linked to the bond energetics of the surfactant and the InAs binary alloy; the Sb-Sb bond is 

less tightly bound (30.2Kcal/mol)[224, 225] compared to the strong bonding of In-As 

(48.0Kcal/mol)[226, 227],  hence there is a ready preference for the Sb atoms to be expelled 

and form a floating layer[228, 229]. This phenomenon is further promoted by the low volatility 

of the relatively heavy Sb atom (atomic number of 51) [230, 231]. Generally, Sb segregation 

is driven by three principal factors[232]: 

(I) The difference in surface energy between (Sb) and the solvent (InAs) 

(II) The difference in atomic size[233] and 

(III) The tendency towards phase separation. 
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Analysis of the ternary In-As-Sb system reveals: (I) Sb has a smaller surface energy 

(0.38j/m2)[232] compared to Arsenic (As) [234],  its addition will lead to a decrease in the 

surface energy of the binary alloy (InAs) which implies an increase in the Sb segregation 

enthalpy in favour of  segregation; (II) Sb has a larger atomic size, its addition increases the 

alloy lattice parameter and thus decreases the steric effect, and (III) Sb/As is known to exhibit 

energy intermixing[235] and InAsSb has a strong tendency to phase separation[236]  which 

further favours Sb segregation. This observation is consistent with previous studies[237, 238]. 

Owing to these reasons, Sb segregation is highly favourable and its inclusion mitigates the axial 

growth of InAsSb materials. Thus, a rise in Sb content with increasing flux results in heightened 

Sb segregation with increasing Sb coverage[239]. This explains the disproportionate 0.2% rise 

in Sb content in the SG samples corresponding to a significant FFsb increase (4.16%) in sample 

S4.5 when compared to S4.3. In contrast, for the LG samples, a 1.75% rise in FFsb was 

accompanied by a significant 4.3% increase in Sb mole fraction. This can be explained by the 

long Sb surface occupancy which enabled higher Sb incorporation probability for the long 

growth duration (120min) in comparison to the short duration (20min) employed for the SG 

samples.  

The enhancement in lateral growth and suppression of axial growth is attributed to the 

surfactant effect of Sb with contributions from two distinct regimes. Regime I is concerned 

with the influence of Sb addition on the nucleation In droplet while regime II involves the Sb 

surfactant effect on the follow up NWs growth kinetics[240]. During the first regime, the 

introduction of trace amount of Sb species at growth initiation significantly modifies the 

geometry of pre-deposited In droplets by a combination of both thermodynamic and kinetic 

effects. From a thermodynamic perspective, the growth mode adopted by atoms of a 

crystallizing layer on a rigid dissimilar substrate is dictated by the balance of the equilibrium 

surface free energies[241]. The surface energies at the solid-vapour (ϒsv), solid-droplet (ϒsd) 
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and droplet-vapour (ϒdv) interfaces depicted in Figure 6.6 are combined in Young’s 

equation[242]: 

        γsv =  γsd +  γdv cosβ       (6.3) 

Where β is the contact angle. 

 A slight modification of the surface energy on any of the interfaces would favour one of three 

possible growth modes: islanding (Volmer-Weber) [243] , layer-by-layer (Frank-Van der 

Merwe) [244], or layer-plus-island growth mode (Stranski-Krastanov) [242, 245]. The 

presence of the minutest concentration of Sb partially induces a decrease in surface energy at 

Figure 6.6 Schematic illustration of the effect of Sb surface segregation on the geometry of indium droplet (a-c) and 

suppression of InAs NWs axial growth (d-f). JIn, JSb and JAs denote the In, Sb and As flux respectively. The balance of  forces  

acting  on  a droplet placed on a substrate are also shown with ϒdv , ϒsd , ϒsv  representing the surfaces energies at the  droplet 

– vapour, solid-droplet and solid-vapour interface respectively, β is the contact angle between droplet and substrate. Note that 

the NWs dimensions are not drawn to scale and do not represent the extent of Sb-induced modification to NW geometry 
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the growth front and kinetically inhibits In adatom mobility[246]. The introduction and 

subsequent adsorption of Sb results in surface segregation which potentialcly lowers the 

surface free energy at the growth interface and ϒdv[143] due to its small surface energy 

(0.38j/m2)[232]. Such modifications in interfacial surface energy between the droplet and the 

substrate by the introduction of Sb flux (JSb) along with changes in composition[247] could 

lead to significant nucleus and contact angle changes[231] culminating in droplet expansion as 

depicted in Figure 6.6. It is well known that the shape of the catalyst droplet is determined by 

the concentration and type of material in the catalyst as well as a balance of the forces of free 

surface energy and interface forces at the triple phase line[248]. The dependence of the contact 

angle on the surface energy can be deduced by a rearrangement of equation 6.3 to obtain the 

classical Young’s equation of the form:  

                                         β =  𝑐𝑜𝑠−1  
γ𝑠𝑣− γ𝑠𝑑

γ𝑑𝑣
     (6.4) 

This implies Sb induced reduction in γsd and/or γdv would lead to a decrease in β.  

On the other hand the reduced diffusion length of adatoms could be connected to the 

segregation of Sb at the growth interface which imposes an exchange reaction between adatoms 

and surfactant, resulting in subsurface incorporation and subsequent integration into the 

droplets thereby mitigating adatom mobility. In order to migrate, adatoms need to break out 

from its bonding with neighbouring atoms as well as with surfactant atoms which implies 

heightened energy barrier for hopping and eventual reduction of the adatom migration 

length[249, 250]. Hence, it is suggested that the introduction of minute concentration of Sb at 

NWs growth initiation results in a decrease in both surface energy and In adatom diffusion 

length [239, 246]. These are in addition to a reduction in contact angle which enables the 

enlargement of pre-deposited In droplets with a corresponding height reduction as illustrated 

in Figure 6.6. Using the reference InAs NWs diameter and length hereafter denoted as DREF 
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and LREF respectively as reference, the expansion in the lateral dimension (DEXP) and 

corresponding reduction in length (LRED) of the InAsSb NWs are expressed as DEXP = DNW - 

DREF and LRED = LNW - LREF respectively. The lateral size of NWs are defined by the diameter 

of pre-deposited In droplets[189] as a result the use of broader droplets translates to the 

nucleation of NWs exhibiting DEXP. Similar results have been previously reported for InP/InSb 

heterostructures[247] and InAsSb NWs[143]. Modifications to In droplet geometry has 

profound effect on the NWs axial growth rate. Nebolsin[142] has shown that surfactant 

adsorption on the catalyst surface substantially impedes NWs growth. 

The following section will be focused on the influence of Sb on InAsSb NWs growth in the 

second regime. Sb segregation modifies the InAs NWs growth mechanism leading to the 

observed DEXP. Compared to the long length and growth time (LNW ≤ 3.8µm, tgr ≤ 144 min, LNW 

≤ λL) of uniaxially grown Sb-free InAs NWs, the short LNW (~700-870 nm) and limited growth 

duration (tgr = 20 min and 120 min for SG and LG InAs1-xSbx NWs samples respectively) 

excludes the possibility of lateral base broadening for LNW > λL. This suggests that the observed 

DEXP in the InAs1-xSbx NWs is most possibly related to the presence of Sb. A number of factors 

related to Sb inclusion could be responsible for the observed trend. Firstly, Sb addition reduces 

the incorporation of growth species into the NWs as a result the axial growth rate is 

dramatically reduced as has been experimentally demonstrated[251]. Surfactants have been 

reported to induce a site blocking or "poisoning" effect on the incorporation of growth species 

[252, 253]. It is believed that Sb segregation at the In droplet surface (ϒdv) blocks the 

incorporation of species (In and As) at the growth front (Figure 6.6 a-c) suppressing NWs 

growth which in turn results in a slight decrease in axial growth rate while favouring lateral 

GR
NW

. This effect is schematically illustrated in Figure 6.6 (d-f) which is typically observed in 

the SG samples. However, worthy of note is the fact that whereas Sb inclusion significantly 

promotes lateral expansion, its influence on axial growth is relatively smaller for the SG 
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samples compared to that of LG samples, where axial NWs growth is completely suppressed 

due to high Sb incorporation leading to the growth of 2D film [Figures 6.3 (e-h) and 6.6].  

Secondly, the diffusion induced (DI) growth exhibited by the reference samples would imply 

that the NWs growth proceeds via the diffusion of adatoms from the substrate along the side 

facets to the droplet. It has been theoretically and experimentally shown that the elongation of 

NWs during MBE growth is strongly dependent on adatom diffusion from the substrate to the 

droplet [189, 254]. The adsorption of Sb on the NWs side facets kinetically impose certain 

limitations on adatoms diffusion from the substrate and side walls towards the growth front, 

reducing the adatom diffusion flux to the NW top and mitigating axial growth. At higher Sb 

flux, the effective diffusion length is further suppressed by increased surface segregation due 

to high Sb coverage leading to more pronounced suppression of axial growth. The DI axial 

GR
NW

 as a function of its radius (DNW/2) is given by[189]: 

              
 Axial GRNW = 𝑉[𝜀 −  𝛾 +  

𝑅𝑐
𝐷𝑁𝑊

2
 ∗cosh(𝜆)

]                              (6.5) 

where ε ≡ (V−Vs)/V is the relative difference between the deposition rate V and surface growth 

rate Vs. Rc is the characteristic scale at which the DI effects become predominant, γ accounts 

for the desorption from the drop surface while λ ≡ LNW/Lf is the ratio of LNW to the adatom 

diffusion length on the side surface (Lf). A careful inspection of equation 6.5 reveals the axial 

GR
NW

 scales inversely with DNW/2 which is a key independent variable. Hence LNW decreases 

with an increase in DNW. Consequently a kinetically limited adatom diffusion and suppression 

of Axial GR
NW

 with LRED would lead to increased lateral GR
NW

 with DEXP. As depicted in 

Figure 6.6 (d) adatom migration is unhindered in the absence of Sb (InAs reference) whereas 

the presence of Sb (x
m

= 4.3%) is accompanied  with Sb segregation which inhibits adatom 

mobility and incorporation in the droplet leading to a suppression of axial growth along with 
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diameter expansion (Figure 6.6 e). However, increased Sb content in the range of 4.5-10.2 % 

is accompanied by heightened Sb accumulation and more pronounced axial growth suppression 

with lateral GR
NW 

leading to a monotonic LRED and DEXP with an eventual transition to 2D film.  

Finally, NWs side wall nucleation could possibly contribute to modifications in NWs 

morphology. As can be seen in Figure 6.3f, there is slightly conical NW with a broad base 

which suggest a possible contribution of side wall nucleation to DEXP. Cone shaped NWs with 

distinct lateral growth at low temperature have been experimentally observed[60, 255]. The 

observed morphology was attributed to nucleation on the side facets, followed by lateral growth 

and thickening of the NWs base. Hence, side wall nucleation may possibly play a role in the 

increase in lateral growth.  

 

6.4 Effect of Sb Incorporation on the Structural Property of Nanowires  

 

In order to investigate the influence of Sb incorporation on the structural property of NWs, the 

growth temperature was set in the range of 420 - 460oC with an As BEP of about 5.8 x10-6 

mbar while the Sb BEP was varied in the range of 0.8 - 1.6 x10-7 mbar for total growth duration 

of 20-120 minutes. A reference InAs NWs sample was similarly grown with the Sb shutter 

closed. All investigated NWs were grown with the assistance of optimal In droplets (~70nm in 

size) on bare Si (111) substrate as previously described in section 5.1. The incorporated Sb 

content in the NWs was estimated using a combination of XRD and EDX measurements. FEI 

XL30 SFEG SEM at the University of Liverpool was utilized for the investigation of the 

surface morphology of the NWs. To gain insight on the NWs structure, transmission electron 

microscopy (TEM) analysis was carried out in JEOL 2100 LaB6 and 2100F facilities at the 

University of Warwick working at 200kV. The specimens were prepared using conventional 



 

 

104 

 

method and transferred onto a TEM holey carbon grid. The analysis was carried out with the 

electron beam perpendicular to the growth direction and parallel to the <110>ZB/<11-20>WZ 

direction. Low temperature (10 K) PL measurement was also performed at the Nanyang 

Technological University, Singapore to investigate the optical properties of the NWs. A diode 

laser (wavelength of 980 nm) was used for exciting the sample and the emission signal detected 

by liquid nitrogen cooled InSb photodiode detector with a standard digital lock-in amplifier. 

EDX estimated Sb content (xm) of 2%, 4% and 10% was obtained for the InAs1-xSbx NWs 

exhibiting average diameters of about 61nm, 109nm and 155nm as revealed in Figures 6.7 (b-

d) respectively. 

                                 

High resolution TEM images in Figure 6.8 shows the evolution of NWs structure as a function 

of xm from a zinc blende (ZB) dominant structure in the reference InAs NWs to a quasi-pure 

wurtzite (WZ) phase and then ZB dominant crystal phase with increasing xm. Specifically, the 

InAs NWs (Figure 6.8a) show a polytypic ZB dominant (75%) crystal structure along with a 

Figure 6.7 Tilted SEM images of vertically-aligned InAs1-xSbx NWs 

with varying Sb molar fraction (x
m
) of 0% (a); 2% (b); 4% (c) and 

10% (d).  The scale bars correspond to 1m.  
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high density of defects (SFs and TPs) which are typical of self-catalyzed (SC) InAs NWs[53, 

139, 141].   

Bulk III-V materials with the highest ionicity such as the III-Nitrides often adopt the WZ phase 

whereas the ZB phase is favoured in other III–V materials. However, nearly all III–V NWs 

materials including InAs, InP, GaAs and GaP with moderate ionicity values generally have a 

strong tendency for the formation of stacking faults (SFs), twin planes  (TPs), and polytypism 

which are independent of the growth synthesis methods[256, 257]. As a result, InAs NWs often 

display mixtures of ZB and WZ phases (polytypes) and is more pronounced in SC NWs with 

the ZB structure being the dominant phase[53, 139, 141]. This behaviour is often relevant to 

surface-to-volume ratio [186, 258]. 

      

 

Figure 6.8 High-resolution TEM (HRTEM) images of InAs NWs (a) and InAs1-xSbxNWs with Sb content of 2% (b), 

4% (c) and 10% (d). The pure InAs NWs have a ZB dominant structure with WZ fraction of 20%, while addition of 

2-4% Sb resulted in a WZ dominant phase. A further rise in Sb content to 10% led to a ZB dominant structure. The 

magnified HRTEM image of the highlighted region is also shown (b-I) along with the selected area electron 

diffraction (SAED) pattern (b-II) of the InAs0.98Sb0.02 NWs. In addition, the magnified HRTEM images (d-I and d-

II) of the highlighted region and the SAED pattern (d-III) of the InAs0.90Sb0.10NWs are shown. The magnified images 

show the ZB/WZ stacking in the structure with SF and TP present. 
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The WZ phase has a lower surface energy in comparison to the corresponding crystalline 

orientation of the same material in the ZB phase owing to its smaller third-nearest-neighbour 

atom spacing (resulting from its distinct stacking sequence); as a consequence, the WZ phase 

is more stable in NWs structures characterized by high surface-to-volume ratio. It has been 

shown[259] that the occurrence of polytypes (PTs) in ZB III-V NWs is correlated to the small 

radius of NWs, which generally results in a large relative contribution of lateral surfaces to the 

total free energy of fully formed NWs.       

          

Turning to the InAsSb samples, the NWs with xm = ~2% (Figure 6.8b) exhibit a WZ- dominant 

(87%) crystal structure which has not been previously reported. The magnified HRTEM image 

of a WZ phase section shown in Figure 6.8(b-I) reveals …ABAB… and ABAB CBCB stacking 

sequences corresponding to the WZ structure and SFs respectively. The quasi-pure WZ 

structure of the NWs is corroborated by the selected area electron diffraction (SAED) image 

depicted in Figure 6.8(b-II). The 111ZB and/or 0002WZ spot indicates the growth direction both 

in ZB and WZ phases. It is clear that the WZ reflections are more intense than the ZB ones 

confirming the dominant WZ structure. The streaks passing through the spots along the growth 

direction indicate the presence of stacking faults in the structure, lying on the (111) ZB/(0002)WZ 

planes. For an increase in Sb content to 4% (Figure 6.8c) the WZ segments in the NWs 

increased to 90%. A further increase in xm to 10% (Figure 6.8d) led to the observation of a ZB 

dominant structure with less WZ portion (40%) indicative of a WZ→ZB phase transition. 

Figure 6.8 (d-I) corresponds to a magnified image of the highlighted section of the HRTEM 

micrograph demonstrating the dominant ZB (….ABCABC….) stacking sequence with TPs 

(..CBA C ABC..) and SF (…ACBCBAC…). 
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Areas corresponding to the WZ structure were also observed in this sample (Figure 6.8 d-II). 

The observation of a ZB dominant structure was also corroborated by SAED (figure 6.8 d-III). 

The spots in the diffraction pattern indicate the ZB structure is predominant in addition to 

twinning. As before, the streaking indicates the presence of SFs however, it is less pronounced 

than the InAsSb NWs with 2% Sb [Figure 6.8 (b-II)] indicating a lower SFs density in this 

sample. To further clarify the effect of Sb incorporation on the crystal structure evolution, the 

dependence of the percentage WZ crystal inclusion is plotted as a function of χm (Figure 6.9a). 

It can be seen that the WZ sections increases with Sb content up to 4%, after which a further 

increase leads to a ZB phase dominant structure (χm = 10%) while the defect (combination of 

SFs and TPs) density is slightly reduced with Sb addition. Specifically, the SFs density 

monotonically decreases with increasing Sb content (Figure 6.9b) while at the same time the 

TPs density sharply increases. This demonstrates Sb potentially induces a ZBWZZB 

crystal phase transition in InAsSb NWs and significantly promotes a reduction in SFs 

density[260]. 

Figure 6.9 Plot of Wurtzite phase (in %) and total defect density (a), stacking faults (SFs) and twin plane (TPs) density in 

the InAs1−xSbx nanowires as a function of antimony composition. 
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In section 6.3, the InAsSb NWs were shown to exhibit diameter expansion with Sb 

incorporation which is consistent with previous reports [60, 143]. Based on the Sb-induced 

morphological evolution, it is reasonable to conclude that the increase in NWs diameter with 

increased Sb content can be correlated to a decrease in contact angle[231, 240]. Therefore, the 

following section details the possible reasons for the observed increase in WZ phase in the 

NWs using the modified nucleation model proposed by Wallentin et al [261]. Considering the 

critical interfacial energies of γdS and γdV which determine the dominant crystal phase of NWs 

[262, 263] (excluding the phase independent γSV), one can conclude from equation 6.4 that cos 

β ∝ (-γdS/γdV). This indicates an increase in NWs diameter with a corresponding decrease in 

contact angle would result in a decrease in the γdS/γdV ratio.  The ratio (η) between the effective 

surface energies of the WZ (ΓWZ) and ZB (ΓZB) phase is given by [254, 261]:  

                        η =
𝛤𝑊𝑍

𝛤𝑍𝐵
=  

(1 − 𝑥) 𝛾𝑑𝑆
1  −  𝑥𝛾𝑑𝑉  𝑠𝑖𝑛 𝛽 + 𝜏𝑥𝛾𝑤𝑧

(1 − 𝑥) 𝛾𝑑𝑆
1   −  𝑥𝛾𝑑𝑉 𝑠𝑖𝑛𝛽 +𝑥𝛾𝑍𝐵 

                     (6.6) 

Here, x is the fraction of the nucleus perimeter that is in contact with the vapour phase and τ = 

γWZ/γZB is the ratio of the lateral solid-vapour surface energies of WZ and ZB NWs in contact 

with the vapour. The condition for the formation of NWs in the WZ phase is τ < 1 due to the 

presence of less dangling bonds on the WZ surface [254, 261, 264]. The ratio (ξ) between the 

WZ (ΔGWZ) and ZB (ΔGZB) nucleation barriers is expressed as [261, 263]: 

                         ξ   =  
𝛥𝐺𝑊𝑍

𝛥𝐺𝑍𝐵
=  

𝛥µ𝑑𝑆𝜂2

𝛥µ𝑑𝑆−Ѱ𝑊𝑍
                                           (6.7) 

Where ΔµdS is the supersaturation at the droplet-solid interface and ѰWZ is the additional 

cohesive energy required for the formation of a WZ layer at the triple phase line (TPL), 

representing the comparatively low cohesive energy of the ZB phase. As can be seen from 

equation 6.7, the deposited NWs would adopt the WZ structure when ξ < 1, which would imply 

η << 1.  As a consequence, a significant lowering of γdS or an increase in γdV will promote a 
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decrease in both η and ξ, favouring the WZ phase nucleation probability. Thus, the WZ phase 

is preferentially formed at the TPL when its nucleation barrier is lower than that of its ZB 

counterpart although the latter is more stable in bulk form[190, 264]. This implies that an 

increased Sb incorporation in the NWs could possibly result in modifications to the surface 

energetics at the γdS and/or γdV interface leading to a ZB→WZ phase transition as observed in 

previous reports [265, 266]. Surfactants have been recognized as crucial elements for 

engineering NWs crystal and defect structure[262]. However, the decline in the WZ fractions 

at high Sb content (xsb = 10%) is likely associated with modifications in the balance of forces 

and/or changes to the V/III flux ratio with increased Sb segregation and surfactant effect [143, 

267]. This suggests that the Sb-induced tuning of crystal phase is composition dependent. Since 

the required condition for WZ phase formation involves altering the balance of surface 

energies, an appropriate choice and composition of surfactants would enable the control of the 

preferred crystal phases in NWs.  

To further verify the observed structural evolution of InAsSb NWs as a function of Sb content, 

the optical properties of the InAsSb NW ensembles were investigated by low temperature (10 

K) photoluminescence (PL) measurements. Typical PL spectrum of the reference InAs NWs 

and the InAs
0.957

Sb
0.043 

NWs are depicted in Figures 6.10a and 6.10b respectively. It shows that 

the InAs NWs displays peak emissions at ~0.389 and 0.415 eV. The lowest emission is 

attributed to the impurity or defect-related transition[63, 200-202] while the dominant emission 

centred at 0.415 eV is associated with the presence of the WZ/ZB mixture[214]. The WZ/ZB 

mixture of InAs crystals forms a type II related quantum wells (QW), where electrons are 

confined in the QWs of the ZB segments and holes localized in the WZ regions[215, 268] as 

schematically illustrated in Figure 6.11. 
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Optically excited electrons undergo a transition from the ground state ZB conduction band to 

the top of the WZ valence band followed by radiative recombination[214] in the so-called “type 

II QW related emission”. Similarly, for the InAs0.96Sb0.04 NWs sample, the PL spectrum shows 

two emission peaks, the first is positioned at 0.375 eV and the other at 0.437 eV, which are 

attributed to impurity or defects-related transition and BtB transition in WZ InAsSb 

respectively. Worthy of note is the conspicuous absence of the type II related QW emission 

Figure 6.10 PL spectra of (a) InAs and (b) InAs0.96Sb0.04 

NWs at 10 K.  

Figure 6.11 Schematic diagram of band alignment and recombination 

processes for carriers transiting between conduction band (CB) and valence 

band (VB) in InAs NW containing ZB and WZ phase mixtures. 
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indicating the absence of crystal phase mixtures (quasi-pure WZ structure) in the NWs. This is 

consistent with the HRTEM studies. This provides further evidence of the phase transition from 

the highly polytypic ZB dominant InAs crystal to a quasi-pure WZ phase in the InAs
0.96

Sb
0.04

 

NWs. The observation of the BtB emission from the WZ InAs0.96Sb0.04 NWs at a slightly higher 

energy (~0.437 eV) than the ZB InAs NWs BtB emission (0.415 eV) [208] is contradictory to 

the predicted lower bandgap energy resulting from Sb incorporation. This can be explained by 

the difference in bandgap energy between the WZ and ZB phases. Previous reports indicates 

that the WZ phase InAs NWs has a larger bandgap energy in comparison to that of ZB 

InAs[212-214] by a predicted value of 40–66 meV[212, 215, 216]. This has been 

experimentally verified (~ 0.46 eV)[214]. Assuming the bandgap energy difference between 

the WZ and ZB phases is same for InAsSb alloys at low Sb composition, the bandgap energy 

of WZ InAsSb NWs can be estimated from that of ZB InAsSb. At ~4% Sb content, the ZB 

InAsSb alloy gives a bandgap energy of 0.375 eV if a bowing effect of 0.67 eV is taken 

(shrinkage of 0.035 eV)64. This gives an estimated bandgap of WZ InAs0.957Sb0.043 NWs of 

around 0.415-0.441 eV, which is in good agreement with the obtained value. It is obvious that 

the impurities and defects related emission is quite strong in both samples. This could be 

associated with the presence of high density of crystal twinning defects which corroborates the 

earlier HRTEM and SEAD results. 
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Chapter 7  

InAs(Sb) Nanowires Growth on Graphitic Substrates 

  

This chapter will provide insight into the van der Waals epitaxy growth of InAsSb nanowire 

(NWs) alloys on highly oriented Pyrolytic graphite (HOPG) via the In droplet-assisted growth 

technique. The chapter starts with the growth of InAs NWs including the effect of growth 

parameters on NWs growth, followed by the growth of InAsSb NWs. Finally, a comparison 

between the droplet epitaxy growth of InAs NWs on Si (111) and graphitic thin films will be 

elucidated. 

 

7.1 Growth of InAs Nanowires on Graphite 

  

7.1.1 Growth and Characterization of InAs Nanowires on Graphite 

 

InAs NWs were grown on graphite using In droplet (as described in section 5.1) for preferential 

NWs nucleation. The graphitic films were mechanically exfoliated from HOPG, transferred 

onto Silicon substrates then loaded into the MBE system and thermally outgassed at a 

temperature of 550 – 7000C for at least one hour prior to growth initiation. The substrate 

temperature was then ramped down to 440-500oC for NWs growth followed by the spontaneous 

opening of In and As shutters for NWs growth initiation. A series of samples were then grown 

using As-rich conditions (As/In flux ratio > 45) for total growth duration of 10-144 min. The 

morphology of the resulting NWs was examined by SEM while XRD and HRTEM 

investigations were performed to investigate the crystalline quality of the NWs. 

Figure 7.1 shows the 45o tilted SEM images of InAs NWs on graphite. All the NWs are 

vertically-aligned without tapering. It can be seen from the SEM images that the NWs exhibit 
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a homogeneous diameter distribution with a hexagonal cross-section and no metal droplets 

present at the wire top. A typical XRD pattern of InAs nanowires deposited on graphitic thin 

films is depicted in Figure 7.2. The identified 2θ diffraction angle of 25.45o is indexed to ZB 

InAs (111). This coincides with that of bulk ZB InAs which suggests a ZB dominant crystal 

structure in the NWs with no remaining strain. The peaks at 26.5o and 54.6o correspond to the 

graphite (002) and (004) diffractions respectively. The WZ InAs (111) peak usually observed 

at 2θ values of 25.3° could not be resolved in the scan. The InAs (111) peaks exhibit a narrow 

full width at half maximum (FWHM) of ~0.14o indicating the low-crystal tilt, superior  

     

                   

 
Figure 7.1 45° tilted SEM images of InAs nanowires grown on graphite for (a) 10, (b) 60 and(c) 144 min. 

 
Figure 7.2 X-ray diffraction pattern of InAs nanowires deposited on graphitic thin films 
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crystalline quality and vertically-aligned directionality (InAs[111]||Graphite[0001]) of the 

InAs NWs[138]. To gain further insight into the crystal structure of the InAs NWs, high 

resolution TEM experiments were performed. The typical TEM image shown in Figure 7.3a 

reveals the presence of SFs on the (111) plane. This was further confirmed by HRTEM (Figure 

7.3b) which also suggests the NWs exhibits a mixture of ZB/WZ crystal phases. The polytypic 

structure of the NWs is corroborated by the selected area electron diffraction (SAED) image 

shown in Figure 7.3c evidenced by the presence of streaks passing through the spots along the 

growth direction. 

 

          

 

7.2 Effect of Growth Parameters on InAs Nanowires Growth 

 

7.2.1 Time Evolution of Nanowire Growth 

 

To investigate the influence of growth duration on the morphological evolution of InAs NWs 

on graphite as well as determine the growth time necessary for realizing high aspect ratio NWs, 

the geometry of as-grown InAs NWs deposited for various growth durations (details of growth 

Figure 7.3 Typical TEM image (a); HR-TEM micrograph (b) and selective area electron diffraction 

pattern (c) of zinc-blende InAs nanowires grown on graphitic thin films. 
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conditions are described in subsection 7.1.1) were evaluated. The strong dependence of NWs 

morphology on growth duration is revealed by the changes to length and diameter with 

increasing growth time as shown in Figure 7.4. Axial growth rate shows two different 

dependences on growth time i.e. in the beginning it increases quickly but after 20 min, the rate 

of increase lessens[269]. NWs growth is enabled by the impingement and diffusion of adatoms 

from three possible pathways: direct impingement on the solid-droplet interface, adsorption on 

the NWs sidewalls and impingement on the substrate. Direct impingement on the growth 

interface contribute to axial NW growth whereas adatoms adsorbed on the NW sidewall can 

either contribute to axial growth, lateral growth or simply desorb. Finally, adatoms adsorbed 

on the substrate will either migrate toward the NWs and diffuse along the NW sidewalls to 

contribute to axial growth, contribute to 2D film growth or desorb[188]. However, owing to 

the diffusion-induced growth observed in the NWs, the diffusion of adatoms from the substrate 

to the wire top is the crucial determinant of axial NWs growth. Axial growth is promoted by 

the unperturbed migration of adatoms from the substrate surface to the wire top leading to the 

fast increasing growth rate observed in the beginning. Conversely, for the longer growth time, 

more and larger parasitic islands are deposited on the surface which reduces the collection area 

and results in a significant decline in the adatom contribution from the substrate surface. It has 

been demonstrated that InAs NWs growth on graphite which is strongly dependent on adatom 

diffusion exhibits two dependences as a function of growth time; the NWs initially grows 

rapidly in an axial direction within the first few minutes (20min) after which axial NWs growth 

slows down. Ultra-long (> 6µm) InAs NWs with enormous potential for applications in high 

performance transistors were realized for the longest growth time > 120 min). 
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7.2.2 Effect of Temperature on Nanowire Growth 

 

To identify the optimal temperature for obtaining a high yield of InAs NWs on graphite, a 

series of InAs NWs samples were grown under As-rich conditions following previously 

established procedures (subsection 7.1.1) at various growth temperatures (400 - 4750C) with 

fixed In [(1.75 - 2.25) x 10-7 mbar) and As (8.0x10-6 – 2x10-5 mbar) flux for about 1 hour. The 

SEM micrographs in Figure 7.5 show the distribution and morphology of the NWs as a function 

of growth temperatures (GT). All the NWs exhibit homogenous diameter across the entire 

length without any measurable tapering. As can be seen in Figure 7.6, a dominant cluster 

(surface Islands) growth was observed at a lower temperature of 400°C. A slight increase in 

GT to 420°C yielded a sparse NWs distribution (∼5.28 ×108 cm−2) while a further increase in 

temperature to 435°C led to a high density (∼8.09 ×108 cm−2) of NWs. Conversely, a further 

rise in GT (450°C-475°C) led to a monotonic decrease in NWs density. 

Figure 7.4 Dependence of nanowire length (LNW) and diameter (DNW) 

on growth time (tgr). 
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Figure 7.5 45o tilted SEM images of InAs NWs grown on graphitic substrates with a fixed 

In -flux of 1.75 x 10-7 mbar and different temperatures. 

Figure 7.6 Plot of nanowire areal density (NDNW) as a function of 

growth temperature (GT). 
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The dependence of NWs density on GT can be explained by the kinetic modification to adatom 

mobility as a function of temperature. At a low growth temperature (400°C), the kinetically 

inhibited adatom mobility promotes the development of surface clusters at the expense of NWs. 

A rise in GT increases the adatoms diffusion length leading to the realization of peak NWs 

density (8.09 ×108 cm−2) at 435oC. However, for a further increase in temperature (435°C ≤ GT 

≤ 475°C) the adatom diffusion length is further increased and the surface coverage of adatoms 

longer but fewer resulting in the nucleation of less dense NWs[88]. Figure 7.7 shows a strong 

dependence of NWs length (LNW) on GT. as summarised in Table 7.1. It clearly indicates a 

temperature dependent increase in LNW for GT in the range of 400-435oC which is in contrast 

to the drop in LNW at high temperatures (435°C < GT ≤ 475°C). Maximum LNW was observed 

at a GT of 435°C consistent with previous report[90]. Conversely, the rise in GT to 435oC is 

accompanied by a decrease in NWs diameter (DNW) with the reversed effect on DNW for a 

further increase in GT to 475 oC. At an optimal temperature of 435°C the longest (2.58± 0.34µm) 

and narrowest (~31.21± 6.59nm) NWs with high aspect ratio (>82) was realized. 

 

                                          

Figure 7.7 Plot of length (LNW) and diameter (DNW) of InAs nanowires on 

graphite as a function of growth temperature (GT). 
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              Table 7.1 Geometries of InAs Nanowires on Graphite as a function of growth temperature 

 

 

                 

 

 

 

This also corresponds to the temperature at which a dense array of NWs was formed. Notably, 

despite the high aspect ratio, the NWs are vertically-aligned with no randomly oriented NWs. 

This provides an insight into the optimal temperature for the fabrication of InAs/graphite NWs 

with geometries within the technologically important range for fundamental studies such as 

size-dependent quantum confinement effect. The observed phenomenon is understandable 

considering the diffusion-limited growth of NWs by MBE. It has been theoretically and 

experimentally shown that the elongation of NWs during MBE growth is strongly dependent 

on adatom diffusion from the substrate to the droplet [189, 254]. As a result, at low GT (400oC) 

adatom diffusion is kinetically limited which impedes the diffusivity of adatoms and suppresses 

axial NWs growth while favouring cluster growth. A slight increase in GT to 420oC increases 

the diffusion length of adatoms resulting in the initiation of NWs growth which explains the 

observed growth of short and thick NWs. A further rise in GT to 430oC induces faster diffusion 

of adatoms which in turn leads to increased diffusion flux to the NW top at a low desorption 

rate from the sidewalls. This results in a surge in LNW and a shrinkage in DNW as reported 

previously [191, 192, 270]. However, for the upper temperature limit (GT > 435oC), the adatom 

incorporation probability and diffusion flux towards the growth front is significantly reduced. 

This is attributed to the increased adatom desorption from the NWs sidewalls[191] and the 

Growth  

Temperature  

(0C) 

Average  

Length 

 (μm) 

Average  

Diameter  

(nm) 

 

Number 

Density 

(cm-2) 

400 0.27 ± 0.09 51.03 ± 4.65 6.47 ×107  

420 1.08 ± 0.29 42.10 ± 3.73 5.28 ×108  

435 2.58 ± 0.34 31.21 ± 6.59 8.09 ×108 

450 2.23 ± 0.40 54.02 ±  21.36 4.70 ×108 

 

475 1.75 ± 0.20 86.83 ± 30.50 3.73 ×108  
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unfavourable chemical potential gradient[132]. This study has demonstrated that the growth of 

InAs NWs on graphite via the droplet epitaxy technique is strongly dependent on growth 

temperature; a high yield of vertically-aligned NWs was realized within a narrow temperature 

regime of 420-475oC while long (> 2.5µm) and high aspect ratio NWs were obtained at 

temperatures of ~435oC. 

 

7.2.3 Effect of III/V Ratio on Nanowire Growth 

 

In order to investigate the dependence of InAs NWs growth on graphite a series of samples 

were deposited. The In-flux was fixed at ~1.75 x 10-7 mbar  while the V/III flux ratio (AsFx/InFx) 

was varied from 27 to 55 by changing the As-flux from 4.8 - 9.6 x 10-6 mbar at a constant 

temperature of 440 - 500 °C for a growth duration of 20 minutes. Figure 7.8 depicts the 

influence of V/III flux ratio on the growth of InAs NWs on graphite at a constant In-flux and 

temperature. It reveals a strong dependence of NWs nucleation on the AsFx/InFx flux ratio. No 

NWs growth was realized at a relatively low As flux, an increase in the AsFx/InFx flux ratio to 

27 enabled the growth of NWs. The NWs nucleation probability was further enhanced by 

utilizing a significantly high As flux (AsFx/InFx = 55). This demonstrates that high As flux is 

required for suppressing cluster growth for the realization of vertically-aligned NWs structures 

and for increasing the nucleation of InAs NWs. Worthy of mention is the presence of InAs 

Islands grown alongside the NWs in all the samples. An evaluation of the NWs geometry 

indicates axial NWs growth is favourable at high AsFx/InFx ratio of 51 evidenced by the increase 

in LNW with increasing As flux (Figure 7.9), although there was no significant change in LNW 

for a further rise in AsFx/InFx ratio to 55. Interestingly, As-rich conditions (AsFx/InFx = 55) 

enhanced the growth of thin NWs. This shows that As-rich conditions (As/In > 50) are 

necessary for the suppression of Island growth in favour of InAs NWs nucleation and growth  
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on graphite via the droplet epitaxy technique in addition, axial NWs growth is highly dependent 

on As-flux. 

7.2.4 Effect of Growth Rate on Nanowire Growth 

 

To investigate the influence of growth rate on InAs NWs, a series of samples were deposited 

at a fixed As-flux (8.0x10-6 – 2x10-5 mbar) and constant growth temperature of 440 - 500 °C 

for the 60min growth duration, while the growth rate was adjusted between 0.1- 0.3µm/hr. The 

Figure 7.8 45o tilted SEM images of InAs nanowires deposited on graphite with a constant In-flux and varied As flux  

Figure 7.9 Plot of nanowire length (LNW) and diameter (DNW) as a function of As/In 

flux ratio (AsFX/InFx) 
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SEM images and the plot of areal density as a function of growth rate are depicted in Figures 

7.10 and 7.11 respectively. It reveals InAs NWs/graphite nucleation probability is strongly 

dependent on the growth rate. The use of high growth rate yielded a dense array of vertically-

aligned NWs which implies the graphitic substrate enables growth at high growth rate which 

is favourable for the fabrication of cost-effective devices. The increase in NWs density with 

increasing growth rate is associated with the dependence of NWs nucleation on the effective 

In-flux. Intriguingly, the average LNW slightly decreased with increasing growth rate while DNW 

remained almost constant (Figure 7.12). The slight decline in axial growth rate (Figure 6.12) is 

understandable given the sharp rise in NWs density at constant supply of precursor flux. This 

implies a reduction in the available growth species due to the huge material consumption for 

  

 

                              

                            

Figure 7.10 45o tilted SEM micrographs of InAs NWs/graphite grown with a constant growth temperature and In-flux but at 

different growth rate. 

Figure 7.11 Plot of nanowire areal density (NDNW) as a function of growth rate. 
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NWs nucleation. In addition, it can be seen that an increase in growth rate leads to increased 

surface coverage and heightened cluster (InAs islands) deposition. This in turn results in the 

suppression of adatom surface diffusion and reduced diffusion flux from the substrate towards 

the growth interface leading to a reduction in LNW. This research has demonstrated that the 

droplet epitaxy growth of InAs NWs on graphite is strongly dependent on the growth rate. A 

high yield of NWs is promoted by a high growth rate of 0.3µm/hr. 

 

                                    

 

7.2.5 Comparison between InAs Nanowires growth on Si (111) and Graphite 

 

To elucidate the influence of the substrate on the droplet epitaxy growth of InAs NWs, the 

distribution and geometry of as-grown NWs deposited on Si (111) and graphitic thin film with 

similar growth conditions were compared as function of various growth parameters.   

Figure 7.12 Dependence of the length (LNW) and diameter (DNW) of InAs 

nanowires deposited on graphite on growth rate. 
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The Influence of various growth parameters on the lengths (LNw) [top panel] and diameters 

(DNW) [bottom panel] of InAs nanowires deposited on Silicon and graphitic substrates is 

depicted in Figure 7.13. It reveals the morphology of the InAs NWs reveal axial growth is more 

strongly influenced by increasing growth time for the NWs deposited on graphite in 

comparison to the NWs on Si (Figure 7.13a). NWs as long as ~ 6µm were realized on graphite 

whereas the InAs NWs/Si was only ~4µm long for the maximum growth duration (144 min). 

This suggests a longer adatom diffusion length (λdiff) on graphite in comparison to Si. This 

behaviour has huge implication for the quick and time-saving growth of NWs on graphite with  

Figure   7.13 The influence of various growth parameters on the lengths (LNw) [top panel] and diameters (DNW) [bottom panel] of InAs nanowires 

deposited on Silicon and graphitic substrates. 

Figure 7.14 Effect of (a) growth temperature (GT); (b) As/In flux ratio and (c) growth rate on the density of InAs nanowires deposited on graphite and 

Silicon. 
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enormous promise for the fabrication of cost-effective devices. The maximum diameter of the 

NWs on graphite is nearly double that of the corresponding NWs on Si (for tgr = 144 min) 

which could be related to the differences in the growth mechanisms on both substrates. This 

observations suggests NWs growth is strongly dependent on the substrate.  Furthermore, 

although the growth on both substrates displayed a high density of islands at a low temperature 

of 400oC, a relatively high yield of NWs (6.47 ×107 cm−2) was obtained on graphite in 

comparison to that on Si (3.66 ×107 cm−2). A similar pattern of NWs density was mostly 

observed for a further increase in growth temperature in the range of 420-475oC with the NWs 

on graphite displaying a higher yield of vertically-aligned NWs compared to that on Si (Figure 

7.14a).  The growth of InAs NWs on graphite is more strongly dependent on temperature than 

on Si (Figure 7.13b). This is evidenced by the significant enhancement in axial growth in 

response to a slight increase in growth temperature on graphite. A maximum LNW of 2.58 µm 

was realized on graphite while only 1.57 µm long NWs were obtained on Si for the investigated 

temperature range. In addition, the behaviour of the NWs diameter on graphite is in complete 

contrast to that on Si due to the increase in axial growth in the temperature range of 400-435oC 

and its subsequent decline for GT > 435oC. The strong temperature dependence of InAs NWs 

on graphite in comparison to Si could possibly be related to the high thermal conductivity of 

graphite (19.1 W/cm/K at 300 K)[271] which enhances adatom mobility. Turning to the 

influence of AsFx/InFx flux ratio, although the evolution from the islands morphology to NWs 

structures was realized on both substrates at a relatively high AsFx/InFx ratio (51), the nucleation 

of NWs on Si is more strongly influenced by the AsFx/InFx ratio (Figure 7.14b). For instance, 

an As-rich condition (AsFx/InFx ratio = 51) yielded a dense array (4.23 x 109 cm−2) of NWs on 

Si, whereas a sparse distribution of NWs (2.55 x 107 cm−2) was obtained on graphite. Similarly, 

a higher yield of NWs was obtained on Si when compared to the NWs on graphite for AsFx/InFx 

ratio of 55. Although, axial NWs growth on both substrates is enhanced by As-rich condition 
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(Figure 7.13c), as expected there was a decrease in NWs diameter on graphite in favour of axial 

growth due to enhanced adatom mobility in excess As-flux ( >50). Conversely, the insignificant 

increase in NWs diameter observed on Si is possibly due to insufficient As-flux which limits 

adatoms diffusion to the growth front. The opposite trend observed on both substrates (graphite 

and Si) reflects the differences in NWs sensitivity to changes in As/In flux ratio as a function 

of substrate type.  Finally, it is clear from (Figure 7.14c), that NWs nucleation on Si is 

suppressed at relatively high growth rate, in sharp contrast, there was a monotonic increase in 

areal density of NWs on graphite leading to the realization of a high yield of vertically-aligned 

NWs at a growth rate of 0.3µm/hr which is possibly associated with the higher adatom mobility 

on graphite (Figure 7.13a) favouring an increase in NWs density.  In addition, the large lattice 

mismatch between Si and InAs (>11%) promotes the growth of InAs Islands consequently, the 

use of higher growth rate favours an increase in Islands growth which mitigates adatom 

diffusion leading to a suppression of NWs density. Conversely, the absence of dangling bonds 

on the graphitic substrate minimizes the influence of strain and results in the growth of less 

dense and smaller InAs Islands which promotes a high yield of NWs. This indicates the 

graphitic thin films present enormous promise for the fabrication of cost-effective nanodevices 

because it enables NWs growth at high growth rate. In addition, the NWs deposited on graphite 

as a function of growth rate exhibited longer LNW in comparison to the NWs/Si for all 

investigated samples. This further indicates that InAs NWs have longer diffusion length on 

graphite compared to Si.  
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7.2.6 Influence of the Graphitic Substrate on the Structural property of InAs Nanowires  

 

In order to elucidate the influence of the graphitic substrate on the defect density, a structural 

analysis of the HRTEM image of as-grown InAs NWs on graphite was conducted in 

comparison to a reference InAs NWs grown on Si (111) under identical growth conditions [In 

flux - 1.75 x 10-7 mbar, As flux – (8.0x10-6 – 2x10-5) mbar) and growth temperature in the range 

of 440 - 500 °C]. A representative HRTEM image of optimal InAs NWs/graphite depicted in 

Figure 7.15a shows the NWs exhibits a mixture of ZB/WZ crystal phases. An enlarged segment 

of the HRTEM image (Figure 7.15b) clearly demonstrates the transition between the ZB and 

WZ phases with SFs present. The typical HRTEM image of the InAs NWs/Si shown in Figure 

7.16(a-b) indicates a very high density of SFs along with RTs. The HRTEM images of both 

NWs samples were then analysed for defects distribution, particularly SFs and RTs. 

 

Figure 7.15 Typical HR-TEM image of InAs nanowires grown on graphite (a); an 

enlarged section of the HRTEM image highlighting the ZB/WZ mixture in the nanowires 

(b). 
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As illustrated in Figure 7.17, the InAs/graphite NWs exhibit a SF population of 225.35 ± 56.34 

per µm which is significantly lower than the InAs/Si value (321.42±53.58 per µm) in addition 

Figure 7.16 Typical HR-TEM image of InAs nanowires grown on Si (111) (a); an enlarged section of 

the HRTEM image highlighting the high density of SFs and the ZB/WZ mixture in the nanowires (b). 

 

Figure 7.17 Comparison of the stacking faults and rotational twins’ density 

in InAs nanowires deposited on silicon and graphitic substrates. 
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to the displayed low RTs distribution in comparison to that of NWs on Si. Although self-

catalyzed NWs usually display a high defects density in addition to a high tendency to exhibit 

polytypism, this observation suggests the use of graphitic substrates could                                                                                                       

potentially improve the structural property of NWs. This exceptional crystal quality of the 

NWs/graphite is attributed to the non-covalent van der Waals epitaxy (VDWE) growth 

technique employed. The mechanism driving NWs growth on graphite is largely diverse from 

that of NWs deposited on conventional substrates such as Si owing to the absence of surface 

dangling bonds on graphitic substrates [164-166, 269]. One of the key advantages of VDWE 

is the absence of strain and defects [103, 272] owing to the fact that lattice matching 

requirements are unnecessary given its distinct bonding mechanism compared to conventional 

heteroepitaxy which is enabled  by strong chemical bonding[104]. VDWE has shown the 

capacity to readily relieve interfacial strain [103, 105, 106] in addition to promoting the 

formation of high-quality heterojunctions between highly mismatch materials. Recently, 

Utama et al[273] demonstrated that VDWE enables a nearly complete lattice relaxation at the 

NWs-substrate heterointerface leading to the growth of defect-free NWs. The seedless and 

catalyst-free growth of nearly defect-free ZnO NWs on phlogopite mica has  recently been 

reported[274]. This demonstrates that VDWE could be potentially exploited for the growth of 

structurally superior III-V semiconductor NWs while circumventing lattice matching 

restrictions between the NWs material and its substrate.  
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7.3 MBE Growth and Characterization of InAsSb Nanowires on Graphite 

 

7.3.1 Growth of InAsSb on Graphite by Droplet Epitaxy  

 

Aiming to elucidate the conditions for realizing high aspect ratio (AR) NWs, a series of InAsSb 

NWs samples (M8.33G, M1.26G, M12.46G) and H4.8G were grown on graphite by MBE under 

moderately As-rich (MAR) condition [(7.5±2.2) x 10-6 mbar] and highly As-rich (HAR) 

condition (~1.4 x 10-5 mbar) respectively. The graphitic films were mechanically exfoliated 

from HOPG and transferred unto Si (111) substrates and subsequently loaded into the system 

and thermally outgassed. As described before, the In droplet-assisted growth technique was 

employed for the preferential nucleation of NWs. The growth of InAs1-xSbx NWs was initiated  

                                     

 

Figure 7.18 X-ray diffraction patterns of InAs1−xSbx nanowires grown on graphite at a 

constant growth temperature and varied Sb fractional flux (FFsb).  
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by the simultaneous introduction of all growth precursors at a fixed In beam equivalent pressure 

(BEP) and growth temperature of 420-470oC for a total growth duration of ~2 hours. The Sb 

incorporation in the NWs was controlled by varying the Sb fractional flux (FFsb) in the range 

of 1.64 – 4.68%. Where (FFsb) is the Sb fractional flux representing the ratio of Sb flux (ψSb) 

to the combined group V (As + Sb) precursor fluxes (ψv) as previously expressed in equation 

5.1. The Sb composition (xm) in as-grown NWs was estimated from XRD and SEM-EDX 

measurements and further confirmed by TEM-EDX. The morphology was investigated by 

SEM. Figure 7.18 is the XRD spectra of InAsSb NWs along with a reference InAs spectrum 

(xm = 0). The (111) ZB InAs diffraction peak was used as reference for the determination of 

xm. The two diffraction peaks present in all samples positioned at ~ 25° and 26.5o are indexed 

to the (111) ZB InAsSb and graphite (002) respectively. Compared to the InAs ZB (111) 

peak[185] at 25.4° from the reference InAs, the InAs1-xSbx NWs (111) peaks shifts to lower 

angles with increasing Sb content. The Sb incorporation in the NWs was  deduced from the 

diffraction angles with an assumption of Vegard’s law[222] and full relaxation (to be confirmed 

by EDX measurements).  For the samples grown within the MAR regime, the EDX spectra 

(Figure 7.19) gave Sb composition of 8.33%, 1.26% and 12.46% corresponding to samples  

 

    

 

 

 

 

 

 

Figure 7.19 EDX spectrum of InAsSb nanowires grown on 

graphitic thin films with varying Sb fractional fluxes (FFsb) at  

moderately As-rich (a-c) and highly As-rich (d) conditions 

respectively. Each sample display signals characteristic of As, In, 

and Sb. 
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M8.33G, M1.26G and M12.46SG grown with FFsb of 1.64, 2.93 and 4.68 respectively. 4.8% Sb was 

incorporated in sample H4.8G. These xm values which closely correlate with the results of XRD 

measurements indicate the NWs are fully relaxed without any strain. In order to further verify 

 the presence of Sb as well as ensure consistency of Sb content along the length of individual 

NWs, TEM-EDX measurements were taken at different positions (ranging from the top, middle 

to bottom) on sampled NWs as shown in Figure 7.20. It shows the Sb composition is consistent 

at different positions of the NWs. The average Sb content in these NWs samples is comparable 

to the SEM-EDX derived values which demonstrates the reproducibility of Sb incorporation in  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.20 TEM-EDX measurements shows comparable Sb content along the length 

of individual nanowires. 
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the NWs. Representative low and high magnification SEM images of as-grown MAR InAs1-

xSbx NWs are shown in Figure 7.21(a-c). The NWs exhibits a 6-fold symmetry (inset of Figures 

7.21b and 7.21c) of the side facets characteristic of NWs growing along the ⟨111⟩B direction. 

Analysis of the SEM images revealed the NWs are ~71 - 356 nm in diameter and ~1.7-2.3 µm 

in length. No In droplet is present at the wire tip possibly due to their consumption under excess 

As flux. Aiming to investigate the influence of high (excess) As-flux on axial NWs growth and 

AR, sample H4.8G was grown within the HAR regime by slightly increasing the As-flux, with 

the In BEP fixed while utilizing similar FFsb (1.82%) to that of sample M8.33G. Figure 7.21d 

shows a high yield (1.46 x 108 cm-2) of NWs arrays with a typical length of 4.70 ± 0.89µm and 

diameter of 45.97± 6.94nm were realized. Worthy of note is the high density of vertically well-

aligned and non-tapered (highly uniform diameter along the entire length) NWs. The side-view  

                            

 

               

               

Figure 7.21 45o tilted low and high magnification SEM images of as-grown InAs1-xSbx nanowires on 

graphite with Sb compositions of (a) 8.33% (b) 1.26% (c) 12.46% for the moderately As-rich 

samples and 4.80% for the highly As-rich sample (d). 



 

 

134 

 

close-up image of a typical NW (inset of Figure 7.21d) indicates there was no diameter 

broadening or wire bending along the entire length despite the high AR which are distinct 

signatures of morphologically superior NWs.                

The plot of the NWs length (LNW) and diameter (DNW) as a function of xm is depicted in Figure 

7.22a. It reveals a strong dependence of NWs geometry on xm for the samples grown under 

MAR conditions (M8.33G, M1.26G and M12.46G). The monotonic decrease in LNW and expansion 

in DNW with increasing Sb content clearly indicates a suppression of axial NWs growth with a 

corresponding enhancement in radial growth which is attributable to Sb surfactant effect [30, 

143, 240].  In sharp contrast, axial NWs growth is promoted by the HAR condition evidenced 

by the large LNW and small DNW exhibited by sample H4.8G. The observed trend is more evident 

in figure 7.22b which shows a strong dependence of NWs AR on xm. As can be seen, the MAR 

samples show a monotonic decrease in AR (maximum AR of ~32) while the HAR sample 

(H4.8G) exhibits an exceptionally high AR of ~102 (over 3x the maximum AR of the MAR 

samples). Specifically, increased Sb incorporation in the range of 8.33 - 12.46% resulted in a 

sharp fall in AR from ~16 (sample M8.33G) to ~1 (sample M12.46G) while sample M1.26G with 

only trace Sb content (1.26%) exhibited a small AR of ~32 (LNW = 2.33±0.54 µm, DNW =  

 

 

 
Figure 7.22 Measured InAs1-xSbx nanowire (a) length (LNW) & diameter (DNW) and (b) aspect ratio  

 as a  function of Sb content (xm) for  moderately As rich  (MAR) and highly As rich (HAR) samples. 
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71.79±13.27 nm). Such behaviour is attributed to the Sb-induced modifications in 

thermodynamic and kinetic processes[240]. Intriguingly, despite the relatively high Sb content 

(4.80%) in sample H4.8G, a marked surge in AR to a maximum of ~102 (LNW = 4.70±0.89 µm, 

DNW = 45.97±6.94 nm) was observed. Minute Sb concentrations has been previously reported 

to significantly induce an increase in lateral growth with a corresponding suppression in axial 

growth [143, 275] leading to the growth of short and thick NWs. As discussed earlier 

(subsection 6.3), the introduction of small (4.3%) amount of Sb induces a significant increase 

in lateral growth. Also, previous investigations (subsections 5.4.3. 7.2.3 and 7.2.5) revealed the 

axial growth of In-assisted NWs are strongly dependent on As-flux. Consequently, the 

exceptional morphology (high AR) observed in sample H4.8G is attributed to an enhancement 

in axial growth and a suppression of lateral growth owing to the significantly high As-rich 

conditions employed for the growth. This indicates that an As-rich condition is highly crucial 

for the suppression of the commonly observed Sb-induced lateral NWs expansion and axial 

growth shrinkage. At moderate As-flux, axial NWs growth is suppressed due to the Sb 

surfactant effect resulting in NWs diameter expansion with reduced AR however, at 

significantly high As-flux the Sb surfactant effect is inhibited leading to the suppression of 

lateral growth while at the same time favouring an increase in AR.  

 

7.3.2 Comparison between InAsSb Nanowires Growth on Si (111) and Graphite 

 

In order to investigate the influence of the graphitic substrate on NWs growth, a set  of InAsSb 

NWs samples (hence forth referred to as M1.63S, M7.28S  and H3.88S) were grown on Si (111) 

substrates at identical conditions to the InAsSb samples M1.26G , M12.46G and H4.8G (grown with 

FFsb of 2.93 4.68 and 1.82% respectively on graphite). Prior to commencement of growth, the  
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Si substrates were cleaned as described previously. Figure 7.23(a-c) depicts the SEM images 

of as-grown InAsSb NWs samples M1.63S, M7.28S and H3.88S on Si. Table 7.2 shows the growth 

parameters and Sb content of the InAsSb NWs grown on graphite and Si with identical 

conditions. EDX analysis (Figure 7.24) revealed Sb incorporation of 1.63%, 7.28% and 3.88%, 

for samples M1.63S, M7.28S and H3.88S respectively. Intriguingly, the Sb incorporation in the 

InAsSb/GS samples M12.46G and H4.8G are higher than the corresponding InAsSb/Si samples 

M7.28S, and H3.88S respectively, while samples M1.26G and M1.63S have comparable Sb content.  

         

                 Table 7.2 Growth Parameters and Sb content of InAs1−xSbx Nanowires grown on Graphite and Silicon 

  

 

 

 

 

 

 

 

Substrate Sample Growth time 

(min) 

Sb fractional flux 

(FFsb) 

Sb content 

[χm](%) 

Graphite M8.33G      120 1.64 8.33 

Graphite M1.26G 120 2.93 1.26 

Graphite M12.46G 120 4.68 12.46 

Graphite H4.8G 120 1.82 4.80 

Silicon M1.63S 120 2.93 1.63 

Silicon M7.28S 120 4.68 7.28 

Silicon H3.88S 120 1.82 3.88          

Figure 7.23 45o tilted low and high magnification SEM images of as-grown InAs1-xSbx nanowires on Si (111) as a function of 

Sb fractional fluxes (FFsb). 
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This suggests the graphitic substrates promote Sb incorporation in InAsSb NWs possibly due 

to differences in adatom migration length and the absence of surface dangling bonds. However, 

it can be observed in Figure 7.25a that xm scales inversely with FFsb (for FFsb ≤ 2.93). 

Incidentally, this corresponds to the region within which dominant NWs growth was realized 

and can be associated with the increased segregation and surfactant effect of Sb[240] which is 

more pronounced in the NWs structures owing to their high surface to volume ratio.  

 

 

Figure 7.25 Plot of Sb fractional flux (FFsb) as a function of Sb content (a) and number density (b) of InAsSb nanowires grown on 

graphite and Si (111). 
 

Figure 7.24 EDX spectra of InAsSb nanowires grown on Si (111) with varying Sb fractional fluxes (FFsb) and  moderately As-

rich (a-b) and highly As-rich (c) conditions respectively . Each sample display signals characteristic of As, In, and Sb. 
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A disproportionate Sb incorporation has previously been demonstrated[223] in InAsSb NWs. 

Conversely, for higher FFsb the samples on both substrates show maximum Sb incorporation 

accompanied by a morphological evolution from the NWs morphology to a dominant 2 

dimensional (2D) films growth. This can be explained by the Sb induced kinetically inhibited 

In adatom mobility[240]. Surfactant Sb is known to delay 2D→3D growth mode transition 

while promoting layer by layer growth[246]. A plot of FFsb as a function of the number density 

of InAsSb NWs grown on graphite and Si (111) is depicted in Figure 7.25b. It indicates the 

density of NWs increases with FFsb (for FFsb ≤ 2.93%) which is understandable given the 

decline in Sb incorporation with FFsb in NWs grown within this regime. Increased Sb content 

has been shown to quench the yield of vertically-aligned NWs in favour of cluster growth[143]. 

More interestingly, Figure 7.25b shows a relatively high yield of NWs on graphite compared 

to the NWs grown on Si. Sample H4.8G on graphite yielded a high NWs density of 1.46 x 108 

cm-2, while only a sparse distribution of NWs (9.36 x 106 cm-2) was obtained on Si (sample 

H3.88S) despite being grown with identical conditions (FFsb = 1.82). In addition, NWs growth 

was completely suppressed in sample M7.28S deposited on Si while sample M12.46G   yielded a 

sparse NWs distribution (7.67 x 106 cm-2) on graphite. Due to the relatively high Sb content in 

most InAsSb NWs/graphite, a low yield of NWs was anticipated[143] in comparison to the 

corresponding NWs on Si (Table 7.2). However, the NWs density on graphite was higher than 

that on Si despite the relatively high Sb content. This suggests the graphitic thin films are more 

favourable for InAsSb NWs growth which is highly promising for Sb-based flexible 

optoelectronic device applications. This could be associated with differences in the interfacial 

surface energy between the droplet and the substrates which in turn results in variations in the 

extent of Sb-induced suppression of  NWs nucleation[240].  

Finally, the high magnification SEM images (Figure 7.21b) reveals sample M1.26G yielded a 

relatively high percentage of vertically less-aligned NWs in comparison to the other InAs1-xSbx 
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NWs/graphite samples. In order to clarify the effect of the graphitic substrate on the vertical 

directionality of the NWs, the morphology of sample M grown on Si (111) with identical 

growth condition was further analysed. The SEM image (Figure 7.23a) revealed the NWs show 

a high yield (~95%) of vertically well-aligned NWs arrays which suggests the observed high 

density of randomly aligned NWs in M1.26G could be attributed to the influence of the graphitic 

substrate. A close evaluation of the SEM image of  the sample indicates the unaligned NWs 

grew on the Islands (clusters) which were grown alongside the NWs as signified by arrows 

(Figure 7.21b). A similar behaviour was reported by Mohseni et al[168] . The growth of non-

vertical NWs on islands which themselves preferentially grew along graphene line defects was 

observed. It is likely that the rough sections of the graphite promotes the formation of large and 

dense InAs island which in turn mitigates the epitaxial growth of NWs in agreement with 

previous report[165].   
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Chapter 8  

Growth of InN Nanostructures on Bare Si (111) 

 

 

This chapter explicates the droplet epitaxy growth procedure for InN nanostructures and 

growth temperature effects on the morphology of the nanostructures. 

8.1 Growth procedure of InN Nanostructures by Droplet Epitaxy 

 

InN samples were grown on Si (111) substrates by plasma-assisted molecular beam epitaxy 

(VG-V80H MBE) equipped with an Oxford Applied Research HD25 radio-frequency nitrogen 

plasma source. The substrates were cleaned chemically using 10% hydrofluoric acid solution 

to remove the surface native oxide then quickly loaded into the MBE system to avoid re-

oxidation. The substrates were then out-gassed at temperature of 550 – 7000C for at least one 

hour prior to growth  initiation. The nitrogen plasma power, Nitrogen (N) and In BEP were set 

at 270W, 7.010-5 and 2.3 x10-7 mbar respectively. The substrates were first activated by In 

droplets followed by the growth of InN films by simultaneously opening the shutters for In and 

nitrogen plasma. All the InN samples were grown with similar N/In BEP ratio (≈300) but at 

different growth time and substrate temperatures (GT). The surface morphology of the resulting 

samples was determined by a Sirion field emission scanning electron microscope (FESEM). 

X-ray diffraction (XRD) was employed to investigate the crystalline quality. 

Photoluminescence (PL) measurements were used to investigate the optical properties of the 

InN nanocolumns in comparison to a 2D  InN  thin film reference sample using an Ar+ ion 

laser (514 nm) with a cooled InSb detector.  
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8.2 Effect of Temperature on InN nanostructure growth on Silicon 

 

The surface morphologies of as-grown nanostructures along with growth parameters are 

summarised in Table 8.1. The morphological evolution of the 3D InN films grown with GT 

ranging from 490 to 6300C is depicted in Figures 8.1(a-e). The morphology of InN films 

exhibits 3D features varying from nanometre to micron size structures of various shapes 

ranging from columnar, lightly faceted to deeply faceted microislands, indented hemispheres 

and smooth hemispherical microislands. Figure 8.1(a) shows the FESEM image of InN thin 

film grown at 4900C which has protruding 3-dimensional (3D) nano column (NC) structure.  

Some of the NCs are c-axis oriented and non-tapered while others are tilted with respect to the 

substrate normal. The inset of Figure 8.1(a) highlights the NCs which are oriented normal to 

the substrate, non-tapered (NT) and aligned along the [0001] direction. Detailed examination 

of the NCs (GT = 4900C) reveal the initial stages of longer InN NCs reported in literature[276].  

As highlighted in Figure 8.2, the tilted NCs have different angles of inclination (denoted as Ɵ1 

and Ɵ2 in the inset) with respect to the Si (111) substrate. Thus on the basis of inclination they 

are categorized as left-tapered (LT), right-tapered (RT), fully-tapered (FT) and pyramidal 

(PM). The identified crystal planes of the NCs side facets correspond to hexagonal InN as 

summarized in Table 8.2.  

 

                   Table 8.1 Growth parameters and morphologies of the investigated samples 

Sample Growth Temp 

(oC) 

Growth Time 

(hrs) 

Morphology Distinctive features 

A 490 3.18 NanoColumns Untapered, Tapered and Pyramidal 

B 520 0.87 Microislands Lightly faceted (LF) 

C 540 2.48 Microislands Deeply faceted (DF) 

D 560 3.02 Microislands Indented hemispheres (IH) 

E 630 4.23 Microislands Smooth hemispheres (SH) 
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Figure 8.1 Typical FESEM images of InN NCs deposited at a temperature of 490℃ (a); and microislands grown at (b) 

520℃, (c) 540℃ , (d) 560℃ and (e) 630℃. The insets show the high magnification images of the representative 

features 

Figure 8.2 SEM micrograph showing the NCs structures with different orientations to 

the Si (111) substrate  
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            Table 8.2 Morphologies and crystal planes of InN Nanocolumns grown at 4900C 

 

 

The observed NCs morphologies could be associated with kinetic processes governing the 

initial InN NWs growth phase of tapered and non-tapered structures. In adatom diffusion from 

the substrate to the NCs sidewall and from the sidewall to the tip is crucially important for the 

growth of non-tapered NCs, as a result, the tapering and random alignment of the NCs relative 

to the substrate could be associated with the non-uniform availability of In adatoms at the NCs 

base, sidewalls and tip during nucleation and the early stage of NCs growth. 3D InN 

microislands grown at temperatures above 490oC exhibits various morphologies. The inset of 

Figure 8.1(b) shows the high magnification image of emerging lightly faceted (LF) 

microislands observed in the InN film grown at 5200C. It appears to be the commencement of 

faceted islands growth with less conspicuous cusp. These islands evolve into deeply faceted 

(DF) 3D island with more pronounced, distinct and outwardly bulging cusps with an increase 

in GT to 540oC (higher magnification image shown in the inset of Figure 7.1 (c)). The evolution 

of these DF films can be explained using the wulff construction[277]  which is illustrated in 

Figure 8.3. It has been demonstrated that wurtzite InN microstructures grow along the [0001] 

direction under high N/III flux while low N/III flux leads to growth along <10-10> 

directions[278]. Although a high N/III flux ratio was initially supplied during growth, the high 

growth temperature increases N desorption leading to an indium rich condition, which results 

in a preferential adsorption of In atoms. Consequently, the <10-10> direction possesses the  

Typical 

NC 

Morphology 

of NCs 

Angle of inclination  

to Si (111) substrate 

(θ1)(degrees) 

Crystal 

plane 

Angle of inclination  

to Si (111) substrate 

(θ2)(degrees) 

Crystal 

Plane 

A Non-tapered 90 (10-10) 90 (10-10) 

B Left-tapered 58 (30-34) 75 (20-21) 

C Right-tapered 58 (30-34) 75 (20-21) 
D Fully-tapered 61 (10-11) 61 (10-11) 
E Pyramidal 79 (30-31) 72 (50-53) 
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lower surface energy in comparison to the [0001]. The slower growth rate along the m-direction 

<1-100> leads to concave facets and relative faster growth along “a” direction <11-20> thereby 

tending toward convex facets. This imbalance in growth rate along m and a direction creates 

six cusps along the closed curve, which can be observed if the cross-section of these 

microstructures can be seen. These exterior facets are distinctive of the early stage of island 

development. With an increase in GT to 560 ℃, the microislands morphology transforms to 

indented hemispherical  (IH) structures  (shown in the inset of Figure 8.1d) with a typical 

contact angle of 430 and shallow pits (as denoted by the pink arrow) which eventually 

disappeared as GT was further increased to 630 ℃. Extremely high growth temperature led to 

the formation of spherical hemispherical (SH) islands with a contact angle of 480. These SH 

were very smooth with hemispherical shape (Figure 8.1e). Both IH and SH microislands are 

morphologically different to the LF and DF samples with no observable facets.  

Figure 8.3 Schematic of hexagonal lattice showing c-plane and m-plane InN surfaces 
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The unique features of the InN microislands prompted further investigations by XRD and 

optical microscopy in order to better understand the formation of the films. Figure 8.4 shows 

the XRD pattern of InN NCs at 490 0C and microislands (520 – 630 0C). The relative intensities 

of the diffraction peaks are plotted against the growth temperature (Figure 7.5) to identify the 

dominant diffraction peak and crystal orientations of the grown samples. Depicted in the inset 

of Figure 8.5 is the schematic of (0002) and (10-11) InN crystal planes for the observed 

reflections from the samples.  Analysis of the XRD result suggests that the InN NCs formed at 

4900C have single crystalline wurtzite structure, aligned along the [0001] direction. The 

presence of the reflection from (10-11) s-plane is due to the preferential growth of some 

nanocrystals along the s-direction [10-11]. 

 

            

Figure 8.4 X-ray diffraction patterns of InN nanocolumns and  

microislands  grown at 4900C and  (5200C- 6300C) respectively 
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The InN microislands grown at 5200C exhibit similar preferences, moreover, the presence of 

other reflections suggests the formations of In adlayer on the surface between the microislands. 

Although the InN microislands deposited at 540 0C  are single crystalline and wurtzite, the 

presence of strong (10-11) reflection suggests the microislands grew with (10-11) s-plane 

parallel to the substrate or the single crystalline In adlayer grew alongside. The XRD patterns 

of films grown at 560 ℃ and 630 0C clearly show that none of the reflections matches that of 

wurtzite InN. This indicates there was no formation of wurtzite InN, instead In adlayer was 

deposited. Under optical microscope the sample grown at 490 0C has a dark surface. Whereas 

the samples grown at 520 0C and 540 0C are grey in appearance, the samples grown at 560 ℃ 

and 630 ℃ are shiny. Based on these investigations, it can be concluded that no In adlayer is 

present on the surface of the single crystalline InN NCs sample grown at 490℃.  Although the 

InN micrograins samples grown at 520 0C and 540 0C are both single crystalline aligned along 

the [0001] and [10-11] directions respectively, both had the presence of In adlayer on the 

Figure 8.5 Plot of X-ray diffraction peak intensities of InN nanostructures as a function of growth 

temperature. The inset is the schematic of the (0002) and (10-11) InN crystal planes  
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sample surface grown alongside the InN. The appearance of films grown at 560-630 0C 

suggests the possibility of amorphous InN or In film [279].  

  

8.3 Optical characterization of InN Nano Columns 

 

Low temperature PL investigation was performed on the InN NCs. The 4K PL spectrum 

compared to that of a 2D thin film is depicted in Figure 8.6. The bright emissions at ~ 0.75 eV 

is attributed to the band to band InN NCs emission consistent with previous report[280].  

                

                             

 

 

 

 

 

 

                   

    

The slight blue shift with respect to the InN thin film emission is associated with the Burstein- 

Moss[281] shift resulting from the pinning of the fermi level in the conduction band due to the 

presence of excess electrons in degenerate InN. This effect is particularly pronounced in the 

Figure 8.6 4K Photoluminescence spectra of InN nanocolumns compared with InN 

                Thin film 
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NWs structures characterized by very large surface to volume ratio. The low energy shoulder 

is attributed to the Urbach tail populated by the transition of degenerate electrons to the shallow 

acceptor states[282, 283].  Finally, the NCs exhibit a narrower full width at half maximum 

(FWHM) of 50meV which is much narrower than that of the thin film (105meV) indicating its 

considerably high optical property. 
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         Chapter 9 
 

 Conclusion 

 

 

9.1 Conclusion 

 

Semiconducting nanowire (NWs) are potential building blocks for novel, high performance 

optoelectronic devices. In particular, narrow band gap semiconductors NWs have attracted 

enormous research interest due to their unique band gap and exceptional properties. In this 

thesis, fundamental studies on the droplet epitaxy growth of InAs(Sb) alloys and InN NWs 

have been performed on Si and graphite substrates.  

Although the Ga-assisted growth of GaAs NWs has been well-established, the In- assisted 

growth of NWs remains underexplored, particularly InAs NWs on Si. In this study the optimal 

growth conditions for In droplets suitable for the preferential nucleation and growth of NWs 

has been identified. Optimal In droplets were utilized for the nucleation and growth of all NWs 

without the use of foreign catalysts such as Au to avoid unwanted introduction of impurities. 

Vertically-aligned and non-tapered InAs NWs were then realized on bare Si (111). High-

resolution TEM reveals the NWs present the zinc-blende structure with a high density of 

stacking faults and twin boundaries. The NWs exhibit a dominant PL peak associated with the 

band to band (BtB) emission in addition to a distinct BtB temperature dependent red-shift, 

strong emission efficiency (up to 2500C) and record narrow spectral linewidth of ~20 meV (at 

10K) which is relatively smaller than the commonly reported values. This demonstrates the 

high optical properties of the droplet epitaxy grown InAs NWs. 

InAsSb NWs are highly challenging to nucleate directly on planar substrates (as all Sb-based 

NWs) as a result they are mostly grown on NWs stems to facilitate nucleation and growth. The 
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growth of vertically-aligned and non-tapered InAs1-xSbx NWs is demonstrated directly on bare 

Si without the commonly used NWs stems. The effect of Sb addition on the morphology of 

self-catalyzed InAsSb NWs was systematically investigated. It is shown that InAs NWs 

morphology can be manipulated with the addition of surfactant Sb. The injection of Sb even at 

very low concentrations produces a significant increase in the lateral growth rate with a 

suppression of axial growth rate. This is attributed to the surfactant effect of Sb which results 

in modifications to the kinetic and thermodynamic processes. By tuning the composition of 

antimony, the complete control of the crystal structure of InAs1-xSbx NWs grown directly on 

Si substrates is elucidated for the first time. This is substantiated by high-resolution 

transmission electron microscopy (HRTEM) combined with selected area electron diffraction 

(SAED) and photoluminescence spectroscopy investigations. Generally, pure InAs NWs show 

a mixture of Wurtzite (WZ) and Zinc-Blende (ZB) phases, however InAs crystal structure 

evolved to a quasi-pure WZ phase with the addition of ~2 to 4% Sb. A further increase (~10%) 

in Sb content resulted in a quasi-pure ZB InAsSb NWs. This is evidenced by 

photoluminescence (PL) measurements, where a dominant emission related to the WZ/ZB 

phase mixtures was observed in the pure InAs reference NWs but absent in the InAs0.96Sb0.04 

NWs which instead show the band-to-band emission. It is also revealed that Sb addition 

significantly reduced the stacking fault density in the NWs.  

This study also provides new insights on the optimized growth conditions for the growth of 

InAs NWs on graphite. By tuning basic growth parameters the optimal growth conditions for 

realizing morphologically and structurally superior InAs NWs on graphitic substrates has been 

established. Vertically well-aligned and thin InAs NWs were obtained in a narrow growth 

window of 420-450oC along with the realization of a high yield of NWs within a restricted 

domain of growth rate and V/III flux ratio. In addition, the dependence of NWs morphology 

on growth parameters was investigated on Si and Graphite. It is shown that axial InAs NWs 
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growth is more strongly influenced by growth duration for the NWs/graphite compared to the 

NWs/Si. The NWs on graphite exhibits a longer adatom diffusion length than that on Si. This 

has huge benefits for time-saving NWs synthesis and fabrication of cost-effective devices. 

Furthermore, the InAs NWs/graphite exhibit stronger temperature dependence in comparision 

to the InAs NWs/Si. This is evidenced by the significant enhancement in axial growth with a 

slight increase in growth temperature. A relatively high yield of NWs was obtained on graphite 

in comparison to Si for the investigated temperature range of 400 - 475oC. Although axial NWs 

growth on both substrates is favourable at As-rich conditions, NWs nucleation on Si shows a 

stronger dependence on the V/III flux ratio. In addition, NWs nucleation on Si is suppressed at 

relatively high growth rate while the graphitic substrates favour NWs growth at high growth 

rate. This indicates the graphitic thin films are highly promising for the fabrication of cost-

effective nanodevices since it enables growth at high growth rate.  

The monolithic integration of semiconductor NWs such as InAs1-xSbx on graphitic substrates 

holds enormous promise for high-performance, cost-effective and flexible optoelectronic 

devices and high-speed electronics. High aspect ratio nanowires are essential for functional 

device applications however, the growth of thin InAs1-xSbx NWs is extremely challenging 

owing to Sb-induced radial growth. For the first time, the self-catalyzed growth of vertically 

well-aligned, non-tapered and ultra-high aspect ratio (>100:1) InAs1-xSbx nanowires (0 ≤ x ≤ 

0.12) is demonstrated on graphitic substrates at highly As-rich conditions by molecular beam 

epitaxy. This opens up a promising route towards the fabrication of InAs1-xSbx NWs/graphite 

hybrid structures for ultra-sensitive, eco-friendly and wearable gas sensing technology as well 

as flexible and cost-effective thermo photovoltaics. Compared to Si substrates, the graphitic 

thin films promote Sb incorporation and are more favourable for InAsSb NWs growth which 

is highly promising for Sb-based flexible optoelectronic device applications.  
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Finally, the In-assisted growth of InN NCs and microislands on bare Si (111) is explicated. A 

morphological evolution from NCs to three dimensional (3D) islands was observed with 

increasing growth temperature which is attributable to lowered surface free energy of the 

growing crystals with disproportionate growth velocities along different growth fronts. A 

strong correlation between the morphological and structural properties of the 3D films is 

established. XRD studies reveal that the NCs and the faceted microislands are single crystalline 

whereas the hemispherical microislands grown at extremely high growth temperature contain 

In adlayers. Finally, photoluminescent emissions were observed at ~ 0.75 eV from the InN 

NCs. 

 

9.2 Outlook and future directions 

 

Although significant contributions have been made to understand the droplet epitaxy growth 

of InAs NWs on Si, the NWs show a high density of stacking faults and twin boundaries 

consistent with previous reports of self-catalyzed growth, further research effort is needed to 

fully understand this phenomenon and improve the crystal structure without the addition of 

foreign elements such as Sb. In order to allow for the modulation of electrical properties as 

well as investigate the influence of dopants on the optical and electronic properties of InAs 

NWs, it will be interesting to fabricate doped InAs NWs; although it is especially challenging 

to make p-type InAs NWs because of Fermi level pinning around 0.1 eV above the conduction 

band. InAs Islands were observed to grow alongside the NWs; further research strategies are 

needed to provide new insights on strategies for the suppression of such clusters. 

The growth of InAsSb NWs directly on Si and graphite has been demonstrated, however, 

further investigations such as tuning the growth parameters are required to further increase the 

Sb content beyond 10% to extend the band gap to the lower energies to enable applications 
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beyond the mid infrared range. More studies focused on the TEM and PL investigation of 

InAsSb NWs is crucial for device applications. Furthermore, the fabrication of InAsSb NWs 

based optoelectronic devices including infra-red detectors will be highly interesting.  

Finally, the growth of InN NCs has been highly challenging. After an enormous amount of 

time (about two years) and research effort aimed at obtaining InN NWCs only the growth of 

large InN NCs and Islands were realized. It was observed that InN NCs growth is highly 

sensitive to surface treatments.  
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