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ABSTRACT 
Performance of soil application of Azadirachtin products with entomopathogens was 

evaluated as single treatments, in multiple combinations and in different concentrations 

against the soil stages of Western Flower Thrips, Frankliniella occidentalis (Pergande) in 

French beans Phaseolus vulgaris L. Treatments consisted of Neem Azal-T solution, Neem 

pellets, Steinernema carpocapsae (Weiser) Nemastar®, isolates of Metarhizium anisopliae 

(Metschnikoff) Sorokin (IPP 2539 & ICIPE-69) and Beauveria bassiana (Balsamo) -

Naturalis®. All treatments were analysed for number of emerging adults, while emerged 

adults in fungi based treatments were analysed additionally for retarded development of 

mycosis as a possible cause of secondary mortality. Possible interactive effects in combined 

treatments were analyzed using a generalised linear model (GLM) approach, and three levels 

of dose response combinations of the selected treatments were further tested. Bioassay results 

of the single treatments indicated between 43% and 60% reduction in adult emergence with 

NeemAzal-T solution thus proving to be the most efficient. However, most cadavers with 

Entomopathogenic Fungi (EPF) treatments showed development of mycosis. Therefore, the 

reduction in adult emergence attributed to the EPF was altogether > 87%. Combined 
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treatments with Steinernema, Metarhizium (ICIPE), NeemAzal-T and Pellets resulted in total 

reduction in adult emergence of 95-97% when late mortality by mycosis was considered. Out 

of the treatment combinations two showed synergistic, four additive and one an antagonistic 

response. Combining low concentration of EPN (100 IJ/cm2) with NeemAzal-T resulted in 

satisfactory control compared to the operational dose of EPN while the highest concentration 

of M. anisopliae (108 conidia) combined with Steinernema showed the best performance with 

74% reduction in adult emergence. In summary the combined use of Neem Azal-T with the 

entomopathogens may offer a promising solution by increasing the efficacy and reliability of 

biocontrol against WFT. 
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INTRODUCTION 
Western Flower thrips (WFT) is a polyphagous pest, with over 250 different host plants from 

more than 60 plant families (Morse and Hoddle, 2006).  Direct plant damage results in major 

yield losses (Shipp et al., 2000). WFT is also the key vector of several destructive plant 

viruses from the genus Tospovirus (Bunyaviridae) (Boonham et al., 2002; Pappu et al., 2009; 

Webster et al., 2011) such as Tomato Spotted Wilt Virus (TSWV) (Reitz, 2009) and the 

Impatiens Necrotic Spot Virus (INSV) (Riley and Pappu, 2004).  

Because of the severe threat posed by WFT, there has been a heavy reliance on insecticides 

for its management. This intensive use of insecticides led to development of resistance of 

WFT against various insecticides (pyrethroids, organophosphates and carbamates) (Gao et al., 

2012), WFT have even become resistant to new pesticides such as Spinosad, one of the most 

effective and Integrated Pest Management (IPM) compatible insecticides (Shan et al., 2012). 

Resistance in WFT has been reported in Australia (Herron and James, 2005) and south- 

eastern Spain (Bielza et al., 2007). Most troubling to resistance management are recent 

findings that resistance to insecticides like Acrinathrin and Spinosad does not occur  with a 

fitness cost (Bielza et al., 2008). 

Due to increasing concern about the overuse of pesticides, farmers are seeking more 

environmentally benign methods for controlling arthropod pests and biological control has 
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received more attention in the recent past. However, there is no satisfactory and reliable single 

biological control technique that can effectively control WFT, particularly on high value 

crops, because of their low damage threshold levels (DeCourcy Williams, 2001; Herrin and 

Warnock, 2002). Therefore, using a suite of natural enemies or entomopathogens (Arthurs 

and Heinz, 2006; Brownbridge et al., 2013), which could have additive or synergistic effects, 

improving the efficacy and reliability of single antagonistic species as well as including low-

risk pesticides with selective application seems to offer a sustainable control strategy. 

 

The WFT life cycle includes the foliar-feeding (adult, first- and second-instars) and soil-

dwelling developmental stages (late second-instars, prepupae, and pupae). Most larvae leave 

plants as late second instars going to the soil to enter into non-feeding prepupa and pupal 

stages, with up to 98% of thrips preferring to pupate in the soil environment (Berndt et al., 

2004). An ideal biological control strategy would therefore target both the foliar-feeding and 

soil-dwelling development stages of the pest (Ansari et al., 2008a). Attention has largely 

focused on the control of adults and larvae in the crop canopy while few attempts have been 

made to control soil-dwelling stages of the pest (Berndt et al., 2003; Belay et al., 2005; Ansari 

et al., 2008a), which constitute significant reservoirs for re-infestation. However given the 

amount of time spent in the soil, these stages make ideal targets for soil-dwelling antagonists 

or soil applicable entomopathogens, preferably when they are used as part of an integrated 

pest-management strategy. The pupal stage in the soil is protected from insecticides sprayed 

on leaves and stems of the plant, and there are currently no pesticides labelled as drenches to 

kill pupae in the soil (Ansari et al., 2008a; Cloyd, 2009). Contrastingly, these immobile soil 

dwelling phases are vulnerable to soil-dwelling predators and pathogens (Ansari et al., 2008a; 

Steiner et al., 2011; Holmes et al., 2012). 

A biorational pesticide potentially suited for an integrated approach to control WFT soil 

stages is the biopesticide Neem. Soil applied Neem has been shown to be effective against 

Meloidogyne incognita (Lee et al., 2010), Liriomyza sativae (Hossain et al., 2007), 

Ceratothripoides claratris (Thoeming and  Poehling, 2006) and  WFT (Thoeming et al., 

2006; Cloyd, 2009). The active ingredient of Neem products, Azadirachtin (AZA), can affect 

the behavior and physiology of different target insects (Mitchel et al., 2004; Islam et al., 

2010). It is registered as an IPM conforming pesticide, with different commercial products 

available. It has a low risk of pest resistance due to its complex mode of action, and can show 

low detrimental side effects to a broad range of non-target organisms if properly applied. It is 

biodegradable in nature (Schmutterer, 1997). However pests with cryptic feeding behavior 
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such as thrips are often poorly controlled by foliar application of Neem extracts, because of 

incomplete contamination. At the same time intensive foliar spraying can increase the risk of 

toxicity for natural enemies foraging in the crop canopy thus limiting the potential 

combination of Neem extracts and beneficials in IPM. Soil application can avoid this risk 

because the systemic properties still affect plant sucking life stages of WFT as well as soil 

dwelling pupal stages directly (Thoeming et al., 2003). 

Over the last two to three decades, EPNs have become increasingly popular as biocontrol 

agents, especially against soil inhabiting pests (Berndt, 2003). They have a wide host range, 

and are able to efficiently locate their victims either actively seeking them out or by 

ambushing and rapidly killing the host. They are safe to vertebrates and bear a low risk of 

affecting non- target organisms (Shapiro-Ilan et al., 2012). In particular, many products 

containing S. carpocapsae, are available in the market and their basic potential to control 

WFT soil stages has already been shown (Premachandra et al., 2003b; Berndt, 2003). 

EPFs are most often studied and used to control foliar pests by applying spore solutions to the 

crop canopy. However, they offer an interesting additional option for controlling soil dwelling 

pest stages, since the soil is a convenient microclimatic environment for fungal infection. 

Studies by Ansari et al., (2007; 2008a) have already shown the high susceptibility of thrips 

pupae to infection by M. anisopliae in various media. Therefore, advances have been made to 

improve their quality, performance and make them more cost-competitive with chemical 

pesticides (Lacey et al., 2001). 

An option for improving WFT control efficacy on a biorational basis is the combined 

application of biological agents.  Several studies have demonstrated the high efficacy of a 

combined use of various entomopathogens with Neem products. For example, NeemAzal-

formulations have been combined with Amblyseius cucumeris and Hypoaspis aculeifer 

(Thoeming, 2005; Thoeming and Poehling, 2006), Eretmocerus warrae (Kumar et al., 2010), 

and EPNs (Krishnayya and Grewal, 2002; Meyer et al., 2012). However, the use of different 

predators and pathogens in combinations requires detailed knowledge about possible 

interactions to avoid inter- and intra-guild effects while achieving synergism. Different 

authors have reported various interactive effects. For example, synergistic/additive effects 

were obtained with combined use of S. feltiae and a Neem seed kernel extract, NeemAzal-T 

(Neemix) (MahMoud, 2007); M. anisopliae and S. kraussei (Georgis, 1997); B. bassiana and 

S. carpocarpsae (Williams et al., 2013) and M. anisopliae with four EPN species (Ansari et 

al. 2008b). No study has so far assessed the efficacy of combining EPFs and EPN by soil 
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application with specifically designed Neem formulations in controlling the soil stages of 

WFT. 

 

MATERIALS AND METHODS 
Bean plants and Western Flower Thrips: Dwarf French Beans (Phaseolus vulgaris (L.) var. 

‘Speedy’ (Fabaceae) were pre-germinated for three days before transplanting into plastic 

seedling trays (50 × 30 × 6.5 cm) at a seeding rate of 50 seeds per tray. A commercial 

substrate (CS) Frühstorfer Erde, type P (Archut GmbH, Lauterbach-Wallenrod, Germany) 

was used. The seedlings were left to grow for 6 days until the primary leaf stage under 

greenhouse conditions of 22 ± 2 °C temperature, and 65-75% relative humidity with a 16:8 h 

light: dark photoperiod. The seedlings were then individually transplanted into 16 cm 

diameter plastic pots filled with 600 g of CS and left to grow for another 6 days in the same 

greenhouse conditions. 

To obtain uniformly aged thrips for the experiments, synchronized rearing of WFT was done 

on pods of organically grown French Beans in 0.75 L glass jars (Leifheit, Nassau, Germany) 

in a climate chamber 23 ± 2°C, 50-60% (RH) and 16:8 h (L:D) photoperiod. The rearing 

procedure was based on the original protocol by Berndt et al. (2004). 

 
Biopesticide Neem: Two formulations were used. Neem Azal-T solution (1% Azadirachtin 

A), mostly suited for hydroponics and soil applications and Neem Azal granules (7 % 

Azadirachtin) containing the active ingredient in an inert carrier material (slow release 

formulation). Both products were obtained from Trifolio-M GmbH and dosed to achieve a 

basic concentration of 10 mg Azadirachtin/kg soil. 

 

Entomopathogenic Fungi: We tested three isolates of EPFs. M. anisopliae 2539 IPP (access 

no DSM_Nr 100117), ICIPE-69 (commercialized strain by International Centre of Insect 

Physiology and Ecology (icipe), for identification characteristics see  Niassy et al., 2012b) 

and B. bassiana (Naturalis®-commercial product, BioGard, Grassobbio, Italy). The latter is 

an emulsifiable suspension (ES) containing 2.3 x 107 conidia/ml. The liquid culture of M. 

anisopliae 2539 IPP was stored in sealed vials at -20°C, while the ICIPE 69 culture obtained 

as dry conidia from ICIPE, was stored at 4°C. 

For the experiments, both M. anisopliae strains were reactivated on adult WFT to recover the 

pathogenic characteristics for WFT (Goettel and Inglis, 1997). Conidia from infected 

cadavers were isolated onto potato dextrose agar media (PDA), supplemented with peptone 
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and yeast extract. This media ensured fast growth and sporulation of the fungi. The petri 

dishes were then stored in an incubator at 25°C. Fungal cultures not older than two weeks and 

grown on artificial media less than three times after isolation from WFT were used for the 

experiments.  

The aqueous suspension of M. anisopliae conidia was prepared by scraping off dried conidia 

from the PDA plates into 15 ml test tubes using a sterile spatula. To determine the number of 

conidia/g of dry powder, a 0.1g sample was aseptically mixed with 100 ml sterile 0.05 % 

Tween 80 (AppliChem GmbH, Darmstadt, Germany). The solution was vortexed for 5 

minutes to break chains or aggregates of conidia to achieve a homogenous suspension. The 

conidia suspension was adjusted to a final concentration of 107 conidia using a 

Haemocytometer (Fuchs Rosenthal Counting Chamber by Marienfeld, Lauda_Königshofen, 

Germany) (Goettel and Inglis, 1997). To determine conidia germination five aliquots of a 

conidia solution diluted to 106 conidia/ ml were added to a Petri dish filled with agar, which 

was incubated at 25°C for 24 hours in darkness. Lacto-phenol cotton blue was used to stop 

conidial growth and to stain the fungal conidia. Germinated and non-germinated conidia were 

counted by placing agar cubes under a compound microscope (x400 magnification) and 

evaluating 100 conidia. Conidium was considered germinated if the germ tube was twice the 

length of the conidia. Assessing conidia viability before the experiments was useful for 

adjusting the desired concentration of viable conidia /ml for every bioassay. 

 

Entomopathogenic Nematodes: The S. carpocapsae Nemastar® was obtained as a clay 

formulation from E-nema GmbH (Raisdorf, Germany) and stored for less than two weeks at 

4°C until used. Before the experiments, the cold stored nematodes were allowed to acclimatize 

at ambient room temperature for at least four hours before exposure to WFT. A gram of the 

product was dissolved in 50 ml de-ionized water and 1 ml of the suspension was mounted on 

a microscope slide for counting the nematodes. A final concentration of 80,435 infective 

juveniles in 25 ml of distilled water was prepared by quantification and dilution (Kaya and 

Stock, 1997; Premachandra et al., 2003b). 

 

Experimental setup (Microcosm): The potted bean plants were separately enclosed in 

acrylic glass tubes (diameter 10 cm, length 30 cm) (AK Kunststoff Technik GmbH, 

Isernhagen, Germany) serving as microcosm. For ventilation, the open end at the top and four 

additional holes (diameter 3 cm) at the side of the cylinder were closed with thrips proof 
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nylon gauze (pore size 64 μm; Heidland, Gütersloh, Germany). The microcosms were kept in 

a climate chamber at 23 ± 2°C, RH 50-60 % and 16:8 - L: D photoperiod. 

A cohort of one week old adult WFT from synchronised rearing was anesthetized with a low 

dosage of carbon dioxide for easy handling. 10 females and 2 males were transferred into a 

clean Eppendorf tube (2 ml) using a fine hairbrush and sealed. The Eppendorf tube was then 

hung on the petiole of the bean plant and opened to allow the adults to crawl/fly out of the 

tube and infest the plant. The edge between cylinder and pot was sealed with parafilm to 

prevent thrips from escaping. Thrips were allowed to feed and to lay eggs on the plants for 

three days. Thereafter, the adults were removed from the cylinders by shaking the plant on a 

white sheet of paper and by using an aspirator. Eight days after introduction of the adults 

when the larval stage (L2) should have been descending to the soil for pupation (Berndt et al., 

2004), the substrate was treated. 

 

Treatments: 

Single compound treatments: All dosages used in the treatments are listed in a supplemental 

table (S1).  For application of NeemAzal-T 0.6 ml of the basic solution containing 1% AZA 

was diluted in 100 ml distilled water and drenched while Neem pellets (90 mg) were mixed 

with the soil then gently watered. For the EPN, 80,435 IJs suspended in 25 ml of distilled 

water were drenched evenly on top of the soil by using a Pasteur pipette (Premachandra et 

al., 2003b) giving an amount of 400 IJ/cm2. Afterwards the soil surface was further irrigated 

with 25 ml of distilled water five minutes after the EPN application to percolate the EPN into 

the soil layers where the WFT prefer to pupate. To avoid water logging and enhance 

percolation, plants were not irrigated two days before the EPN application. 

For both Metarhizium isolates and for B. bassiana conidia solutions containing 107 conidia 

suspended in 100 ml of Tween 0.05% were applied to each pot to ensure a total wetting to 

field capacity of the upper soil layer which should be passed by the descending larvae. During 

application to the soil, the plant was protected by tissue paper to avoid any contamination. A 

blank treatment with sterile distilled water only was set up as a control since pre-tests with a 

set of blanks (0.05% Tween – EPFs; Blank Neem Azal T; sterile distilled water – EPN) 

showed no significant differences between the blanks of the compounds used and the water 

control. 

Twelve days after the introduction of adults, the cylinders were removed and the bean plants 

cut off. Adult emergence rate from the soil was measured as the main parameter for efficacy 

of the treatments. Based on the photosensitivity of the emerging adults, an emergence 
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apparatus called Photoeclector was used. This consisted of an inverted pot of the same 

dimensions as those used in the experiment. A hole was drilled in its base and a 10ml Pipette 

tip inserted tightly fitting. A 2 ml Eppendorf tube was placed on top of the pipette tip to 

capture the emerging adults. For ventilation, four holes, each 2 cm in diameter were drilled 

on the sides of the pot and covered with thrips proof nylon screen (64 µm pore size). The two 

pots were sealed with parafilm to prevent the emerging thrips from escaping. 

Daily counts of adults emerging from each pot were recorded for 7 days. Adults from 

treatments with EPFs (most of which died 2 days later) were incubated at 25°C in 55 mm 

diameter Petri dishes filled with 5mm plaster of Paris-charcoal (9:1) layer and a Whatman 

filter paper of the same diameter; 1.5 ml of sterile water was added to maintain humidity. 

The cadavers of these specimens were later examined under a binocular microscope for 

spores and hyphae on the surface of the insects to confirm mycosis as the cause of death. A 

completely randomized design with fifteen replicates per treatment was used. 

 

Combined treatments: For combined treatments we selected the EPF with highest 

performance M. anisopliae-ICIPE 69, S. carpocapsae (EPN) and both Neem formulations, 

Neem Azal-T solution and Neem Pellets. Double combinations consisted of treatments with 

EPF/Neem pellets, EPF/NeemAzal-T, EPN/EPF, EPN/Neem pellets and EPN/NeemAzal-T 

while triple combinations were composed of EPN/Neem pellets/EPF and EPN/NeemAzal-

T/EPF. The experimental design and procedure was the same as for the single treatments. 

The mixing ratios of the combinations are described in Table S1. 

Moreover, we tested dose response reactions with three concentration levels for M. 

anisopliae (106, 107 and 108 conidia/100ml), S. carpocapsae (100, 400 and 800 IJ/cm2) and 

NeemAzal-T (basic solution 0.25%, 0.5% and 1% AZA) applied with the same amounts of 

drenching water as described with the single treatments above. 

 

Statistical analyses: The total numbers of emerging thrips per pot were analysed using 

Poisson generalised linear models (GLMs) with logarithmic link function and overdispersion 

(“quasi-Poisson”) and as explanatory variable the treatment (McCullagh and Nelder, 1989). 

Means of emergences for single and combined treatments were separated by pairwise 

comparisons of Poisson means (Tukey test) at a multiple type I error level of 5%.  This test 

was also used to separate means in the dose response experiment.  

As a consequence of the experimental setup, it was not possible to determine the numbers of 

thrips that were actually exposed to the treatments in the soil. Hence to assess interactions of 
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treatments when applied in combinations, again a quasi-Poisson GLM was fit to the counts of 

emerging adults. The GLM included as explanatory variables the treatment and the date (to 

acknowledge that the single and combination experiments were run consecutively). 

Formal inference about treatment interactions was achieved by testing linear combinations of 

GLM parameter estimates, using their associated standard errors from the model. The linear 

combinations were chosen such that they reflected the mixing ratios (Table S1), thereby 

adopting a straightforward notion of additivity: the expected number of emergences (on the 

log scale) under additivity was calculated as the sum of fractions of log-emergences in the 

involved single-treatment groups, where the fractions corresponded to the mixing ratios. 

Subtracting the observed from the expected log-emergences and then exponentiation of the 

difference yielded the combination’s estimated percentage deviation from additivity. 

Whenever a test for a combination produced a p-value below 0.05, the null hypothesis of 

additivity was rejected and the interaction was deemed synergistic or antagonistic, depending 

on the direction of deviation from additivity. For p-values greater than 0.05 the null 

hypothesis of additivity was retained. All computations were performed in R version 3.1.1 (R 

Core Team, 2014). 

 

RESULTS 
Single Treatment: All treatments resulted in considerably fewer thrips emergences compared 

to the control. However, no significant difference in % reduction in adult emergence among 

the single treatments was recorded (p≥0.084,). The bioassay results indicated between 43% 

and 60% reduction in adult emergence, with NeemAzal-T solution proving to be the most 

efficient (Fig. 1, left). The daily trend indicated that the treatments particularly reduced the 

peak of the emergence course, between days 3 and 4, afterwards the numbers of emerged 

adults were very similar in the control and treatments (Fig.1, right). The daily trend also 

showed that NeemAzal-T outperformed other treatments having the least number of daily 

survivals of WFT adults. However, when the mean percentages of individuals being killed 

after emergence by retarded mycosis were considered, the total survivals from the EPF 

treatments reduced considerably to 12% (M. anisopliae-IPP), 11 % (B. bassiana) and 6% (M. 

anisopliae-ICIPE) (Fig. 3, left).  

 

Treatment combinations: Based on the results above, S. carpocapsae, M. anisopliae ICIPE 

69, NeemAzal-T and Neem pellets were further used in various combinations (Table S1). In 

most cases the combinations of NeemAzal-T and Entomopathogens, or both 
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Entomopathogens, resulted in few emergences compared to single treatments, except in 

combinations with Neem pellets (Fig. 2, left). The course of emergence also showed that 

combinations with NeemAzal-T solution steadily reduced the WFT population from the 

second day onwards in contrast to combinations with Neem pellets that took longer to achieve 

similar reductions in adult emergence (Fig. 2, right). 

The combined application of EPN + EPF + NeemAzal-T (65% mean emergence) (Fig. 2, left) 

was more effective as compared to treatment with EPN + EPF + Neem Pellet (p=0.007 from 

Tukey’s test) but not significantly different from combined application of EPN + NeemAzal-

T (p=0.998), EPN + EPF (p=0.996) and Neem Azal-T + EPF (p=0.463). The combined 

application of Neem Pellets + EPF or EPN were significantly different from combined 

application of EPN + EPF, NeemAzal-T + EPN and EPN + EPF + NeemAzal-T (p<0.001).  

In EPF combinations, total survivals were again considerably reduced by the late mycosis 

effect in all the relevant treatments to between 10% and 14% in combinations with Neem 

pellets while NeemAzal-T resulted in 3- 5% adult survivals (Fig. 3, right). 

 

Interaction Effects: When the interaction effects were determined, most combined 

treatments resulted in additive effects (Table 1). However, the double (EPN + EPF) and the 

triple combinations (EPN + NeemAzal-T +EPF) resulted in synergistic responses. On the 

other hand, combined application of EPN + Neem pellets showed additivity towards 

antagonism and EPF + Neem pellets gave a less than additive or an antagonistic response 

(Table 1). 

 

Dose response: For EPF, a clear dose response relation could be observed for all 

combinations with Neem Azal-T and the EPN (Fig. 4 - left). The highest concentration of 108 

conidia/100ml combined with Steinernema showed the best performance with 74% reduction 

in adult emergence. Significant differences were recorded between EPF 108 conidia/100ml + 

EPN and combinations with the lowest concentration (p<0.001). 

All treatments with NeemAzal-T applied with 0.25 and 0.5 mg/kg and combined either with 

EPN or EPF had no significant differences in thrips emergence with a mean reduction of 

approximately 65%. However, when the dosage was increased to 1 mg/kg with both 

Entomopathogens, there were significant differences between NeemAzal-T 1mg/kg + EPN 

and NeemAzal-T 0.5 mg/kg +EPF (p=0.0111) and NeemAzal-T 0.25 mg/kg +EPF 

(p=0.0043). Meanwhile NeemAzal-T 1mg/kg + EPF differed significantly from NeemAzal-T 
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0.5 mg/kg +EPF (p=0.0181) and NeemAzal-T 0.25 mg/kg +EPF (p=0.0073).  (Fig. 4 - 

middle). 

Dose - response evaluation of EPN with 100, 400 and 800 IJ/cm2 and combinations with EPF 

and Neem Azal-T did not show a consistent and significant tendency. Except between 100 

IJ/cm2+EPF and 800IJ/cm2+NeemAzal-T (p=0.0219). (Fig. 4 - right). 

 

DISCUSSION 
This is the first study combining entomopathogenic nematodes and fungi by soil application 

with specific Neem formulations for controlling the soil stages of WFT in greenhouse 

conditions. Neem-Azal formulations and the other antagonists were applied when late L2 

were descending to the soil to pupate, mimicking the natural conditions where thrips larvae 

leave the plants to pupate in the soil (Premachandra et al., 2003b). 

Regarding the effect of single compound treatments on F. occidentalis, NeemAzal-T was 

most efficient. The high efficacy of Neem solutions was also shown by the triple treatment 

combination; it caused the highest % reduction in adult emergence. This effect was only 

exceeded when secondary mortality effects of the EPF based treatments were considered. 

Contrastingly, the nematodes gave low efficacy despite their active host-finding of infective 

juveniles being presumed better suited for infecting the cryptic pupal stage of WFT in the soil 

as opposed to the conidia of EPF which depend on contact by chance either from thrips 

movement or passive distribution with water in the soil  (Williams et al., 2013). 

Despite having the same active ingredients and concentrations, NeemAzal-T outperformed 

Neem pellets. The better performance of AZA applied as solutions in contrast to the 

formulation in the pellet carrier material could be explained by the specific release 

characteristics of the Neem pellets, which are formulated for a slow and continuous release of 

AZA in the rhizosphere for systemic translocation in the plant but yielding too low 

concentrations in soil for effective contamination of thrips stages. A short-term influence but 

with high concentration, as achieved by the NeemAzal-T solution, should be more effective. 

It is possible that the efficacy of the pellets could be enhanced by strongly increasing the 

pellet concentration in the soil.  

Among the three EPFs, B. bassiana was out-performed by the two M. anisopliae strains both 

in reducing adult emergence and in the late mycosis effect. A poor performance by B. 

bassiana was reported by Skinner et al. (2012) where BotaniGard (a commercial product of 

B. bassiana) resulted in only 15% thrips control. In addition, drenching M. anisopliae strain 

V275 yielded higher mortality (84-93%) than B. bassiana (54-84%) (Ansari et al., 2008a). 
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Jacobson et al. (2001) used B. bassiana as a foliar spray and could reduce thrips population 

by 65% to 87%. The commercial product, Naturalis, we used is designated for foliar spray 

applications and not for soil treatments. Therefore it could be that an insufficient number of 

conidia reached and adhered to the soil stages of WFT.  

Between the two strains of M. anisopliae, the ICIPE-69 strain was more efficacious. This 

could be related to the higher viability of conidia the ICIPE strain consistently showing a 

viability of 96% of the conidia compared to only 88% of the IPP strain. The high efficacy of 

ICIPE-69 strain to 2nd larval instars of WFT was previously reported by Niassy et al. (2012b), 

who compared 10 isolates of M. anisopliae, 8 isolates of B. bassiana, and the ICIPE-69 strain 

which produced the most conidia and therefore proved to be especially virulent.  

The soil stages of WFT are most vulnerable for the soil dwelling nematodes (Buitenhuis and 

Shipp, 2005). We selected S. carpocapsae for the studies even though according to 

Premachandra et al., (2003b), S. feltiae proved more virulent than S. carpocapsae. The latter 

is an ambush forager which remains near the point of application and searches for its host 

mostly on the surface while the former combines both ambush and cruiser (actively searching 

for the hosts in the soil) modes of hunting. 

The highest efficacy with EPN could be obtained, if the nematodes are present in the soil 

when the L2 is moving into the soil to pupate (Premachandra et al. 2003b). This increases the 

chances of the infective juveniles coming into contact with the thrips, as the nematodes need 

some time to locate the thrips and the encounter rates are higher when the thrips are still 

moving in the soil. The commercial strain of S. carpocapsae (Nemastar) caused only 43% 

reduction in thrips emergence with the applied dose rate of 400 IJ/cm2. This result is 

comparable to findings by Premachandra et al. (2003b) who achieved 40-45% using the same 

strain at a dose rate of 300 IJ/cm2 of soil. Further studies (see for instance Premachandra et 

al., 2003b; Ebssa et al., 2004) clearly showed  that the strain, times of application as well as 

the concentration of the nematodes are key determinants of efficacy of the EPNs. The 400 

IJ/cm2 application rate used here, has been shown to be the most effective dose rate (Ebssa et 

al., 2001). 

The aim of combining different control agents was either to achieve higher efficacies or an 

increase in reliability. Two control agents applied together may act independently and be 

directed at different targets in a given host; hence, their effect would be simply additive. 

However, they may also complementarily improve sensitivity of the target organism and 

ideally interact synergistically. On the other hand, other competitive interactions are possible 

leading to antagonistic effects. Our findings showed that combined application of NeemAzal- 
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T enhances the efficacy of Entomopathogens. The combined treatments revealed that the 

double combinations of the two Entomopathogens (EPF + EPN) and the triple combinations 

of the two Entomopathogens with NeemAzal-T (EPF +EPN +Neem Azal T) were the most 

efficient with synergistic effects. We hypothesize that Neem weakened the WFT by being a 

physiological stressor or behavioural modifier, thereby predisposing them to the microbes or 

reducing the defense response of the thrips making them an easier target for nematode 

penetration and more susceptible to the fungi. Akbar et al. (2005) also hypothesised that the 

prolonged intermoult period of insect larvae by the growth regulating action of azadirachtin 

may give time for the establishment and penetration of fungal conidia through the insect’s 

cuticle. 

Evidence for the synergistic interaction of Neem with B. bassiana against Army worms, 

Spodoptera litura (Fabricius) has been shown by Mohan et al. (2007). Islam et al. (2010) 

observed that combined use of 0.05% Neem and 107 conidia/ml B. bassiana resulted in 97.2% 

nymphal mortality of B. tabaci (Gennadius). This caused 20.5% more nymphal mortality than 

individual treatments. Nymphal mortality of 90% of whitefly Bemisia argentifolii (Bellows & 

Perring) was obtained when Paecilomyces fumosoroseus (Wize) and azadirachtin were 

combined (James, 2003). Also, out of 25 treatment combination between NeemAzal-T 5% 

and S. carpocapsae by MahMoud, (2007) the responses were 19 synergistic, 1 additive, none 

antagonistic and 5 without response. In this study, combined treatments resulted not only in 

increased mortality, but also a faster onset of thrips mortality. The number of cadavers that 

showed mycosis also increased as compared to treatments with single EPF isolates. The 

larvae migrating in to the soil might have acquired the inoculum but were more vulnerable to 

the fungi by the additional stress factor. Alternatively, immature stages might have acquired 

in the combined treatments relatively few conidia but since mortality is dose related, infection 

took longer to develop, therefore more individuals survived through to adult stages but 

succumbed thereafter (Ansari et al., 2008a). Speculating about long-term effects in natural 

populations conidia from infected thrips could serve as source of secondary inoculum for the 

spread of fungal infection in the insect population (Mohan et al., 2007). Adding the late effect 

of the fungi, the double (EPF and EPN) and the triple (EPF, NeemAzal-T and EPF) 

combinations reduced survivals to 3%. Since the triple combination did not give an 

extraordinary performance, taking costs into account, the use of EPN and EPF would be 

preferred. 

With respect to nematode-fungi interaction the special mutualistic association of the EPN 

with bacteria of the genus Xenorhabdus for Steinernematidae, should be considered. The 
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symbionts inhibit host immune reactions and kill the host rapidly (Lacey et al. 2001). 

Successful EPF infection needs a sequence of steps: attachment to the host cuticle, 

germination, penetration, growth and reproduction of the fungus. It kills the host by depletion 

of nutrients, digestion of tissue or release of toxins. Thrips already infested by the quick 

acting nematodes is less mobile and because of the mentioned symbiotic activity more 

susceptible to the fungi and likewise thrips infected by the fungi should be  a weak and easy 

target for the nematodes  thus  explaining synergism. 

Regarding the dose-response experiments first, a clear relation between dose and efficacy was 

seen for the EPF, hence increasing the conidia concentration of EPF in the soil would be one 

option for optimization of efficacy. Moreover, it was obvious that at every dose the 

combination with EPN consistently performed better than its counterpart with Neem. For 

instance, a more noticeable significant difference was recorded between the highest EPF 

concentration (108conidia) + EPN and the lowest (106 conidia) + EPN (p<0.001) than its 

counterpart 108conidia + NeemAzal-T and 106 conidia + EPN (p<0.025) and 106 conidia + 

NeemAzal-T (p<0.005). While many authors have reported positive interaction between the 

two entomopathogens (Georgis, 1997; Ansari et al. 2008b; Williams et al., 2013). Mohan et 

al. (2007) reported that Neem oil caused general delay in conidial growth of B. bassiana. In 

addition, in neem sensitive isolates, the growth of B. bassiana was decreased but not totaly 

inhibited resulting in an antagonistic effect. The highest nymph mortality of B. tabaci was 

recorded when B. bassiana was topically applied with drenching application of neem (Islam 

et al. 2011). Also Niassey et al. (2012a) reported that Azadirachtin in high dosage could have 

negative effect on sporulation and vegetative growth of  M. anisopliae-ICIPE 69. However 

this could also be due to overestimation of toxicity of pesticides usually a phenomenone 

observed when pesticides are sprayed on rather inert material than on plant substrate. Plants 

enzymes can detoxify the pesticide or sequestor it in its waxy leaf cuticle making it less 

available to natural enemies (Desneux et al. 2005; 2006a). 

Our findings provide evidence of interaction between Azadirachtin based insecticides and the 

Entomopathogens, which allows use of NeemAzal-T with reduced rates, hence also 

improving the economic trade-off. However we must admit that a detailed economic 

valuation was not the aim of this study.  Reduction of the operational dose of NeemAzal-T to 

0.25% or 0.5 % with EPN may be equally effective or even better than a full recommended 

dose. Surprisingly the dose response for EPN unlike in NeemAzal-T and EPF was not clear. 

The simultaneous application of the EPF and NeemAzal-T might have had an effect on the 

nematodes such that an increase in concentration didn’t cause a corresponding decrease in 
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adult emergence. Although reports about compatibility between Neem formulations and EPNs 

have been recorded, Meyer et al., (2012) reported subtle effects of NeemAzal-U on the plant 

parasitic nematode M. incognita. Also a soap surfactant used for application of neem oil 

caused 23-25% mortality of S. feltiae (Krishnayya and Grewal, 2002). 

Conversely, combining very low concentrations of EPN (100 IJ/cm2) with NeemAzal-T 

resulted in satisfactory control compared to the operational dose of EPN. Practically, EPNs 

are used against soil-dwelling stages of WFT, and the dose rates presently needed for 

sufficient control are not economical (Premachandra et al., 2003a). Therefore, this study 

provides further validation that low doses of EPN can be used in combination with other 

Biocontrols to offer more satisfactory results.. 

 

 

CONCLUSIONS 
The combined use of the soil applied azadirachtin formulations NeemAzal-T and Neem 

pellets with the EPN S. carpocapsae (commercial product Nemastar®), and EPF (non 

commercial isolate of M. anisopliae ICIPE-69) substantially improved efficacy of controlling 

the soil dwelling stages of WFT in comparison to the use of the individual components. In all 

the EPF based combinations survivals ranged between 14% to 3% when considering 

secondary mortality due to mycosis of the emerged adults. However our results, obtained in 

microcosm in a controlled environment with artificially synchronized thrips cohorts, need to 

be confirmed under greenhouse or field conditions with naturally established and growing 

thrips populations over longer time intervals. If the additive and synergistic effects of Neem 

and entomopathogens can be confirmed in the more realistic culture situations, this 

combination may offer a powerful and reliable tool for thrips control. In addition to combined 

treatments, sequential treatments and split application of the Entomopathogens may also be an 

interesting option. That is, if thrips are detected early, neem may provide initial population 

reduction followed by split application of the Entomopathogens which can offer a long term 

control of the pupal stage of WFT. More investigation is needed to establish the effect of 

neem on virulence of entomopathogens since different compatibility studies show some 

conflicting results. Also studying on the molecular background of innate defence response in 

WFT after the combined application of neem and the entomopathogens would be interesting. 
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Legend of Figures 

 

Fig. 1 Left - 
Emergence of western flower thrips (mean +/- SD) in single treatments of Neem Azal-T solution (1% 

Azadirachtin A) and Neem pellets (7 % Azadirachtin); Beauveria bassiana, Metarhizium anisopliae 

(IPP 2539 & ICIPE-69) and Steinernema carpocapsae. 

Same letters indicate significant differences at a multiple type I error level of 5% (Tukey’s test). 

Right- Trend lines showing daily emergence of western flower thrips within the seven- day period 

Black arrow- Peak of adult emergence course beyond which emergence steadily reduced. 

 

Fig. 2 Left - 

Emergence of western flower thrips (mean +/- SD) in combined  treatments  amongst Neem Azal-

T solution (1% Azadirachtin A); Neem pellets (7 % Azadirachtin; Metarhizium anisopliae 

ICIPE-69 (EPF) and Steinernema carpocapsae (EPN). 

Treatments with different letters are significantly different at a multiple type I error level of 5% 

(Tukey’s test). 

Right- Trend lines showing daily emergence of western flower thrips within the seven day period 

Black arrow- Peak of adult emergence course beyond which emergence steadily reduced. 

 

Fig. 3  

Emergence and survivors of western flower thrips (mean +/- SD) in EPF based single and 

combined treatments (Beauveria bassiana, Metarhizium anisopliae (IPP 2539 & ICIPE-69). 

Number of adults is given as total number of emergences (light gray) and number of survivors 

taking late mortality by mycosis into account (dark gray).  
Different letters indicate significant differences at a multiple type I error level of 5% (Tukey’s test). 

 

Fig. 4  
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Emergence of western flower thrips (mean +/- SD) in combinations of three level doses of Neem 

Azal-T solution (1% Azadirachtin A); Metarhizium anisopliae (ICIPE-69) and   Steinernema 

carpocapsae 
Different letters indicate significant differences at a multiple type I error level of 5% (Tukey’s test). 
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Table S1: Applied doses of M. anisopliae-ICIPE, Neem Azal-T, Neem pellets, and S. 

carpocapsae for the single treatments and combinations, given as amount of active 

compounds/pot (600g of soil) and percentages (relative to the single treatment doses). 

A Treatment(s) M. anisopliae-
ICIPE (EPF) 

NeemAzal-T Neem pellets S. carpocapsae 
(EPN) 

Single treatments     
M. anisopliae-ICIPE (EPF)  107 conidia  - - - 
NeemAzal-T - 6 mg  

Azadirachtin A 
- - 

Neem pellets - - 6 mg 
Azadirachtin A 

- 

S. carpocapsae (EPN) - - - 80435 IJ 
(400IJ/ cm2) 

 Double combinations % of single treatment used-See A 
B EPF + NeemAzal-T (40%) (60%) - - 

EPF + Neem pellets (50%) - (50%) - 
EPF  + EPN (67%) - - (33%) 
NeemAzal-T + EPN - (75%) - (25%) 
Neem pellets + EPN - - (67%) (33%) 

 Triple combination % of single treatment used-See A 
C EPF + NeemAzal-T + EPN (33%) (50%) - (17%) 

 EPF + Neem pellets + EPN (40%) - (40%) (20%) 
 

 
 

Table 1: Evaluation of treatment combinations: estimated percent deviations from additivity 

with 95 % confidence intervals, p-values, and conclusions about interactions based on quasi-

Poisson GLM analysis. 

Treatment 
combination 

Estimated % deviation 
from additivity 

95% confidence 
interval 

p-
value 

Interaction 

EPF + NeemAzal-T -0.9% -24.4% ; +30.0% 0.949 additive 
EPF + Neem pellets -25.0% -41.3% ; -4.2% 0.022 antagonistic 
EPF  + EPN +40.4% +6.4% ; +85.2% 0.016 synergistic 
NeemAzal-T + EPN +14.8% -14.0% ; +53.2% 0.351 additive 
Neem pellets + EPN -19.6% -37.4% ; +3.3% 0.088 additive 
EPF + NeemAzal-T + 
EPN 

+32.7% +0.4% ; +75.5% 0.047 synergistic 

EPF + Neem pellets + 
EPN 

-3.5% -24.8% ; +23.7% 0.776 additive 
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