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Abstract 

Exposure to chemicals such as benzo[a]pyrene (B[a]P) can generate intracellular toxic 
mechanisms. Fourier-transform infrared (FTIR) spectroscopy is a novel approach that allows 
the non-destructive analysis of underlying chemical bond alterations in patho-physiological 
processes. This study set out to examine whether B[a]P-induced whole cell alterations could 
be distinguished from effects on nuclei of exposed cells. Using attenuated total reflection 
FTIR (ATR-FTIR) spectroscopy, alterations in nuclei isolated from B[a]P-treated MCF-7 
cells concentrated either in G0/G1- or S-phase were observed. B[a]P-induced effects in 
whole-cells included alterations to lipids, DNA and protein spectral regions. Absorbance 
areas for protein and DNA/RNA regions in B[a]P-treated whole cells differed significantly (P 
<0.0001) from vehicle controls and these observations correlated with alterations noted in 
isolated nuclei. Our findings provide evidence that FTIR spectroscopy has the ability to 
identify specific chemical-induced alterations. 

 

Keywords: ATR-FTIR spectroscopy; Benzo[a]pyrene; DNA damage; MCF-7 cells; nucleus 
isolation; Polycyclic aromatic hydrocarbon
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1. Introduction 

Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon (PAH), capable of inducing 

genotoxic events in biological organisms. In mammalian cells, B[a]P is effectively 

metabolised (Arlt et al., 2008), a process which facilitates B[a]P-induced toxicity in cells 

through: 1) DNA modification via covalent binding of reactive metabolites [BaP-7,8-diol-

9,10-epoxide (BPDE)] to bases, e.g., guanine or adenine (Phillips, 1983); and, 2) binding to 

aryl hydrocarbon (AHR) receptor. The AHR is a cytosolic ligand-activated transcription 

factor responsible for sensing extracellular signals and environmental stresses affecting cell 

growth and development (Hamouchene et al., 2011). Thus, high-affinity AHR ligands, e.g., 

B[a]P and other PAHs, are capable of altering cell cycle processes including G0/G1-phase 

arrest or its evasion (Khan and Dipple, 2000). Cells at various stages in their cycle have been 

shown to respond differently to chemical exposures, especially to B[a]P (Hamouchene et al., 

2011; Pang et al., 2012). These observations are significant towards understanding changes 

occurring in specific cell populations (e.g., neurons vs epithelial cells). 

Infrared (IR) spectroscopy, including techniques such as Fourier-transform IR (FTIR) 

spectroscopy, has enhanced the study of cells and cell cycle processes, including observations 

at subcellular levels (Hammiche et al., 2005; Pang et al., 2012; Pijanka et al., 2009). Such 

biospectroscopy techniques provide a rapid, as well as a direct, alternative approach for 

analysing the cell, and a sensitive, reagent-free method for detecting intracellular changes, 

including within its subcellular components (Lipiec et al., 2014). The ability to detect slight 

changes in the IR spectra of samples at wavenumbers representative of biomolecules, e.g., 

symmetric (1088 cm-1) and asymmetric (1234 cm-1) PO-
2 bands, which typically can be 

associated with nucleic acids, are significant for understanding the differences between 

normal and malignant conditions (Lasch et al., 2002). More importantly, the potential to 

rapidly study isolated cell components, e.g., nucleus (Holton et al., 2011; Lasch et al., 2002; 
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Lipiec et al., 2014; Pijanka et al., 2009), and the primary contents of the nucleus in biological 

cells (DNA or RNA) (Banyay et al., 2003; Dovbeshko et al., 2000) is a significant advantage. 

Using this technique, it is possible to derive a chemical signature of a disease process by 

directly comparing acquired spectroscopic data from differing biological states because, IR 

spectra are a holistic reflection of the chemical composition of interrogated samples (Holton 

et al., 2011). The optimization of biospectroscopy protocols greatly increases the sensitivity 

and resolution of IR spectroscopy and expands its application (Baker et al., 2014; Obinaju 

and Martin, 2013; Obinaju et al., 2014). 

Using FTIR coupled to an attenuated total reflection (ATR) attachment, this study 

investigated the human mammary carcinoma (MCF-7) cell line in quiescent (G0/G1-phase) 

and exponential (S-phase) growth phases of the cell cycle, comparing induced alterations in 

whole cells and isolated nuclei of B[a]P-treated cells. The rationale of the study was to 

determine whether biospectroscopy approaches can identify underlying sub-cellular 

alterations even within the milieu of the whole cell. 

2. Materials and Methods 

2.1 Cell culture 

The MCF-7 cell line was grown in Dulbecco’s modified essential medium (DMEM) 

supplemented with 10% heat-inactivated foetal calf serum, 100 U/ml penicillin and 100 

µg/ml streptomycin. MCF-7 cells were cultured routinely in 75 cm2 flasks at 5% CO2 in air 

and 37oC in a humidified atmosphere and sub-cultured (1:10 v/v) twice weekly. Prior to 

incorporation into experiments, cultured cells were disaggregated using 5 ml of a 0.05% 

trypsin solution for 5 min, to form single cell suspensions. Trypsin was inactivated using 5 ml 

of complete DMEM and cells were centrifuged at 120 g for 5 min. Cell pellets were re-

suspended in 10 ml of complete DMEM and 1 ml cell aliquots were seeded into 25 cm2 
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flasks. The cells were concentrated in G0/G1-phase (96-h incubation) or S-phase (24-h 

incubation) growth phase, as previously described (Jiao et al., 2007). Cells were treated with 

10-9 or 10-6 M B[a]P using dimethyl sulfoxide (DMSO) as vehicle control (≤1% v/v). Growth 

medium was replaced with fresh DMEM for G0/G1-phase cells, 5 h prior to treatment with 

test agent. Treatments were for 24 h, after which cells were trypsin-disaggregated and single 

cell suspensions were fixed in 70% ethanol, pipetted onto IR-reflective Low-E glass slides 

(Kevley Technologies, Chesterland, OH, USA), air-dried, desiccated and interrogated using 

ATR-FTIR spectroscopy. All experiments were conducted in triplicate and data presented 

was obtained from three independent experiments. 

2.2 Nuclei Isolation 

MCF-7 cell nuclei were isolated using the Nuclei EZ prep nuclei isolation kit (Sigma, UK) 

protocol for suspension cell lines. Briefly, following 24-h treatment with test agent, cells 

were trypsin-disaggregated and washed in ice-cold phosphate buffered saline (PBS). Cells 

were completely lysed in 2 ml ice-cold Nuclei EZ lysis buffer by vortexing briefly at high 

speed and set on ice for 45 min, then vortexing every 10 min. Isolated nuclei pellets were 

collected by centrifugation at 500 g for 5 min at 4oC. Nuclei purification was done by 

washing pellets in 2 ml of ice-cold Nuclei EZ lysis buffer, vortexing briefly at high speed and 

placing on ice for 5 min. Purified nuclei pellets were collected by centrifugation (500 g for 5 

min at 4oC), fixed in 70% ethanol, pipetted onto IR-reflective Low-E slides and desiccated. 

2.3 Scanning electron microscopy (SEM) 

Ethanol-fixed MCF-7 cells or isolated nuclei pellets were mounted on aluminium specimen 

stubs, air-dried and sputter-coated with gold (Au) using an Edwards S150A sputter coater and 

examined on a JEOL J.S.M 5600 scanning electron microscope. 
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2.4 Data acquisition and spectra processing 

Spectra was acquired using a Bruker TENSOR 27 FTIR spectrometer with Helios ATR 

attachment (Bruker Optics Ltd., Coventry, UK) containing a diamond crystal (~250 µm × 

250 µm sampling area). For each experimental condition (i.e., sample slide), 10 spectra were 

acquired randomly from 10 independent areas of the slide [total 540 spectra = 10 spectra × 3 

slides per treatment/experiment × 3 treatments × 3 experiments × 2 observations (intact cell 

vs. nuclei)]. The ATR crystal was cleaned with dH2O, dried thoroughly and a new 

background spectrum taken prior to the interrogation of each sample slide. Raw spectra 

acquired in the 4000 cm-1 - 400 cm-1 range (3.84 cm-1 spectral resolution with 32 co-

additions) from the interrogated samples were pre-processed prior to computational analysis. 

Spectra were cut to the region of interest (biochemical cell fingerprint: 1800 cm-1 - 900 cm-1), 

baseline-corrected and normalized to the Amide I peak (1650 cm-1). Normalized spectra were 

mean-centred prior to the application of multivariate analysis [principal component analysis 

and linear discriminant analysis (PCA-LDA)], where PCA was used for preliminary data 

reduction and LDA derived vectors from principal components (PCs), minimizing intra-

category variance and maximizing inter- category variance (Martin et al., 2007). Multivariate 

analysis results were viewed either as scores plots or cluster vectors plots. For each cluster 

vectors plot generated, the toolbox used was set to identify the top six wavenumbers 

responsible for the variance between the treatment categories (Trevisan et al., 2010). Pre-

processing and computational analysis were performed in MATLAB R2011b (The 

Mathworks Inc., USA), using an in-house developed IRTools toolbox available at 

http://trevisanj.github.io/irootlab/ (Trevisan et al., 2013). 
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2.5 Statistical analysis 

The Mann-Whitney U-test, one-way analysis of variance (ANOVA) and the Dunnett’s 

multiple comparison tests were used to determine statistical significance between treated-cell 

populations and corresponding controls. Linear regression and Pearson correlations were 

used to determine relationships between variables. 

3. Results 

3.1 SEM 

Photomicrographs show the presence of nuclei in control MCF-7 cells (Fig. 1A). Upon 

isolation, nuclei from both the vehicle control fraction (Fig. 1B) and the 10-9 M B[a]P-treated 

nuclei fraction (Fig. 1C) appeared similar and of a relatively consistent structure, although the 

latter appear mildly distorted. However, 10-6 M B[a]P-treated nuclei showed signs of 

deformity, even after just 24-h exposure (Fig. 1D). 

3.2 Multivariate analysis 

In a PCA-LDA scores plot [see Electronic Supplementary Information (ESI) Fig. S1], treated 

whole-cell or isolated nuclei MCF-7 cell populations in G0/G1-phase exhibit a dose-related 

response and a positive index along the first linear discriminant (LD1) space. In S-phase, high 

concentrations of B[a]P (10-6 M) generated a negative index in LD1 for both whole-cell and 

isolated nuclei. The observed MCF-7 cell responses to B[a]P treatment were significantly (P 

<0.0001) different from each other as determined using ANOVA and treated-cell populations 

were significantly different from control as determined using Dunnett’s multiple comparison 

tests (P <0.05). Distinguishing wavenumbers for intact cell and isolated nuclei for G0/G1- 

(Table 1) and S-phase (Table 2) show the spectral biomarkers following exposure. 
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PCA-LDA derived cluster vectors plots comparing treated-cell populations to vehicle 

control (Figs. 2 and 3) in whole cells and isolated nuclei, show B[a]P-induced alterations 

associated with distinguishing wavenumbers. Wavenumbers distinguishing whole cells from 

nuclei included 1207 cm-1 and 964 cm-1 (G0/G1-phase) and 1647 cm-1 (S-phase). Nuclei were 

distinguished from whole cells by wavenumbers 1713 cm-1 and 964 cm-1 in vehicle control 

cells, irrespective of G0/G1- or S-phase. Results show that B[a]P induced marked dose-related 

alterations in the DNA/RNA (~1260 cm-1 - 990 cm-1) region of the biochemical-cell 

fingerprint in whole-cell populations in both phases of the cell cycle; 10-6 M B[a]P induced 

changes to the lipid region (1744 cm-1, 1740 cm-1) in isolated nuclei (Fig 2). 

Using the mean absorbance band areas for nucleic acids (1000 - 1140 cm-1), Amide II 

(1478 - 1580 cm-1), protein phosphorylation (980 - 780 cm-1) and lipids (2923 - 2852 cm-1), 

the nucleic acid-to-protein ratio, lipid-to-phosphorylated protein ratio and the lipid-to-nucleic 

acid ratio were calculated for cells in both cell cycle phases (Fig. 4), as a possible measure of 

apoptosis signalling in response to B[a]P-induced DNA damage in MCF-7 cells (Gasparri 

and Muzio, 2003; Liu et al., 2001). Results show an inverse relationship between nucleic 

acid/protein and treatment concentrations (Figs. 4 and 5). To assess the relationship between 

B[a]P-induced alterations in whole cell to the alterations within the nucleus, the mean peak 

areas of absorbance corresponding to Amide I (1704 - 1589 cm-1), Amide II (1580 - 1478 cm-

1), RNA/DNA (1140 - 1000 cm-1) and protein phosphorylation (980 - 780 cm-1) in isolated 

nuclei and whole cells were plotted against each other (Fig. 5). A significant (P <0.0001) and 

strong positive correlation was observed in G0/G1-phase (r2 =0.991) and S-phase (r2 =0.992). 

At 10-6 M B[a]P concentrations a significant decrease in concentrations of nucleic acids (P 

<0.0001) was induced, with a significant increase in proteins (P <0.05) in both growth phases 

of the cell cycle and a significant increase in lipids (P <0.001)  in S-phase (see ESI Table S1). 
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Fig. 1 SEM photomicrographs of (A) Intact and untreated MCF-7 cells compared to isolated 

nuclei pellets from: (B) DMSO-treated (vehicle control); (C) 10-9 M B[a]P-treated; and, (D) 

10-6 M B[a]P-treated MCF-7 cells. Note the 10-6 M B[a]P-treated cells (D) are heavily 

distorted compared to the control (B) whilst the 10-9 M B[a]P-treated cells (C) show evidence 

of a small amount of distortion. Scale bars = 5 microns 
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Fig. 2 Cluster vectors plots comparing vehicle control (line at origin), 10-9 M (solid lines) and 

10-6 M (broken lines) of B[a]P-treated MCF-7 cells concentrated in G0/G1-phase (A) or S-

phase (B): whole-cells (top panels) or isolated nuclei (lower panels). Spectra were cut 

between 1800 - 900 cm-1, baseline-corrected and normalized to the Amide I peak (1650 cm-1). 

Normalized spectra were mean-centred prior to PCA-LDA. Plots were generated following 

PCA-LDA and show top six discriminating wavenumbers.	
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Fig. 3 Cluster vectors plots comparing various categories of whole-cell (broken lines) and 

isolated nuclei (solid lines) of G0/G1-phase (A) or S-phase (B) B[a]P-treated MCF-7 cells; 

vehicle control (left column); 10-9 M (middle column) and 10-6 M (right column). Spectra 

were cut between 1800 - 900 cm-1, baseline-corrected and normalized to the Amide I peak 

(1650 cm-1). Normalized spectra were mean-centred; plots were obtained following PCA-

LDA and show top six discriminating wavenumbers. 
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Fig. 4 Nucleic acid-to-protein ratio (A & B) and lipid-to-phosphorylated protein ratio (C & 

D) for benzo[a]pyrene (B[a]P)-treated MCF-7 cells in G0/G1- (A & C) or S-phase (B & D). 

The values are mean ± SEM peak areas for absorbance at Amide II (1580 - 1478 cm-1), 

nucleic acid (1140 - 1000 cm-1), lipids (2932 - 2852 cm-1) and protein phosphorylation (980 - 

780 cm-1) in infrared spectra acquired from three independent experiments. 
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Fig. 5 Linear relationship between alterations in whole cells to alterations in isolated nuclei 

(A & B) and the lipid-to-nucleic acid ratio (C & D) for benzo[a]pyrene (B[a]P)-treated 

MCF-7 cells in G0/G1- (A & C) or S-phase (B & D) of the cell cycle. Values are the mean (A 

&B) or mean ± SEM (C & D) peak areas for absorbance at Amide I (1704 - 1589 cm-1), 

Amide II (1580 - 1478 cm-1), nucleic acids (1140 - 1000 cm-1) and protein phosphorylation 

(980 - 780 cm-1) in (A & B) and lipids (2932 - 2852 cm-1) / nucleic acids (1140 - 1000 cm-1) 

in (C & D). Infrared spectra were acquired from three independent experiments. 
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Table 1 Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy distinguishing 
wavenumbers as shown in cluster vectors plots and corresponding tentative chemical assignments: 
wavenumbers responsible for variance between vehicle control and treatment groups in whole cells and 
isolated nuclei of benzo[a]pyrene-treated MCF-7 cells in G0/G1-phase. 
 

Sample Treatment 
Distinguishing 
wavenumbers 

(cm-1) 
Tentative assignments References 

Whole cell 

 10-9 M B[a]P 

1705 Fatty acid esters 1 

1616 
Amide I (Carbonyl stretching 

vibrations in side chains of amino 
acids) 

3 

1462   
1150 C-O stretching of carbohydrates 1 

1065 C-O stretching of phosphodiester 
bonds and ribose 1 

991 C-O stretching in ribose 1 
    

10-6 M B[a]P 

1659 Amide I 1 

1616 
Amide I (Carbonyl stretching 

vibrations in side chains of amino 
acids) 

3 

1462 CH2 bending of lipids 3 
1300 Amide III 1 

1219 PO2
- asymmetric stretching vibrations 

of nucleic acids 1 

1065 C-O stretching of phosphodiester 
bonds and ribose 1 

     

Isolated 
Nuclei 

10-9 M B[a]P 

1682 C=O guanine deformation 1 
1520 Purinic and Pyrimidinic vibrations 2 

1300 Vibrational coupling between a base 
and a sugar 2 

1207 PO2
- asymmetric (Phosphate I) 
stretching vibrations 1 

1007 C-O stretching in deoxyribose 1 
961 C-O deoxyribose 1 

    

10-6 M B[a]P 

1744 Lipids (possibly nuclear lipids)  
1682 C=O guanine deformation 1 
1504 Purinic and Pyrimidinic vibrations 2 

1219 
PO2

- asymmetric stretching vibrations 
of nucleic acid when highly hydrogen 

bonded; RNA C-H ring bending 
1, 2 

1153 Stretching vibrations of hydrogen 
bonding in C-OH groups 1 

1061 

C-O stretching in deoxyribose / one of 
the triad peaks of nucleic acid (along 

with 1031 and 1081 cm-1); Ribose C-O 
stretching 

1, 2 

• References: (1) Movasaghi et al. (2008); (2) Stuart (2005); (3) Obinaju et al. (2014) 
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Table 2 Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy 
distinguishing wavenumbers as shown in cluster vectors plots and corresponding tentative 
chemical assignments: wavenumbers responsible for variance between vehicle control and 
treatment groups in whole cells and isolated nuclei of benzo[a]pyrene-treated MCF-7 cells in 
S-phase. 
 

Sample Treatment 
Distinguishing 
wavenumbers 

(cm-1) 
Tentative assignments References 

Intact cell 

10-9 M B[a]P 

1740 C=O stretching (Lipids) 1 

1682 Unordered random coils and turns of 
Amide I 1 

1647 Amide I 1 

1562 CO stretching predominantly α-sheet of 
Amide II 1,3 

1076 Symmetric phosphate stretching 
vibrations  

984 OCH3 (polysaccharides - cellulose)  
    

10-6 M B[a]P 

1740 C=O stretching (Lipids) 1 

1697 A high frequency vibration of an 
antiparallel β-sheet of Amide I 1 

1655 Amide I (of proteins in α-helix 
conformation), 1, 3 

1612 Amide I (Carbonyl stretching vibrations 
in side chains of amino acids) 3 

1215 Amide III 3 
1057 Stretching C-O deoxyribose 1 

     

Isolated 
Nuclei 

10-9 M B[a]P 

1620 
Peak of nucleic acids due to base 

carbonyl stretching and ring breathing 
mode 

1 

1516 Purinic and Pyrimidinic vibrations 2 

1393 Vibrational coupling between a base and 
a sugar 2 

1214 PO2
- asymmetric (Phosphate I) 
stretching vibrations 1 

1126 Sugar - phosphate chain vibrations 2 
961 C-O deoxyribose 1 

    

10-6 M B[a]P 

1740 Lipids (possibly nuclear lipids)  

1616 
Purinic and Pyrimidinic vibrations, 

DNA C=O stretching; N–H bending; 
RNA C=O stretching 

2 

1539 Purinic and Pyrimidinic vibrations 2 
1216 RNA C–H ring bending 2 
1123 RNA ribose C–O stretching 2 
957 sugar/sugar - phosphate vibrations 1 

• References: (1) Movasaghi et al. (2008); (2) Stuart (2005); (3) Obinaju et al. (2014) 
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4. Discussion 

PAHs, such as B[a]P, are metabolically biotransformed in organisms. This metabolic process 

can generate reactive intermediates, which alter the structure of DNA molecules by covalent 

binding (Malins et al., 2006). This might explain the deformity of isolated nuclei at the 

highest dose of B[a]P used in this study (Fig. 1D). For instance, induction of apoptosis 

following exposure to toxic chemicals could explain such nuclei deformity (nuclear and 

cytoplasmic shrinkage, chromatin condensation, inter-nucleosomal DNA cleavage and 

plasma membrane blebbing) (Zelig et al., 2009). 

Cellular responses to B[a]P exposure is time, concentration and cell type dependent 

(Hockley et al., 2006; Pang et al., 2012). A positive trend observed in treated cells (see ESI 

Fig. S1) suggests an increase in total biomolecules (Llabjani et al., 2014). The positive index 

observed in treated cells may well be a result of B[a]P-induced cell proliferation. B[a]P, as 

well as its metabolites, has been shown to be mitogenic in human mammary epithelial cell 

cultures (Tannheimer et al., 1997;  1998), possibly by activating the epidermal growth factor 

receptor (EGFR) signalling pathway in the cells and altering cell cycle processes, such as 

G0/G1-phase arrest (Khan and Dipple, 2000). 

Wavenumbers within the biochemical-cell fingerprint (1800 - 900 cm-1) provide 

information on particular molecules, e.g., lipids (~1750 cm-1). The intensity, area and 

centroid position of the absorption bands are dependent on the concentration and structure of 

the absorbing molecule (Cakmak et al., 2006; Obinaju et al., 2015; Severcan et al., 2005). 

Thus, it is possible to detect treatment-altered biomolecules based on increased/decreased 

intensity levels, changes to area of absorption bands, and shifts in the centroid position of 

absorption bands. The marked changes to B[a]P-treated cells, especially changes within the 

DNA/RNA region comprising Amide III (~1260 cm-1), asymmetric phosphate stretching 
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vibrations (νasPO2
-; ~1225 cm-1), carbohydrate (~1155 cm-1), symmetric phosphate stretching 

vibrations (νsPO2
-; ~1080 cm-1), glycogen (~1030 cm-1) and phosphorylated protein (~970 

cm-1) peaks is expected. This observation is in agreement with documented observations in 

quiescent vs. exponential growth phase MCF-7 cells (Pang et al., 2012). 

Base pairing between complementary strands and stacking between adjacent bases are 

the two factors mainly responsible for the stability of the DNA double helix (Yakovchuk et 

al., 2006). Within the nucleus, bands between 1800 cm-1 and 1500 cm-1 are considered 

sensitive markers for base pairing and base stacking effects in nucleic acids and originate 

from nucleobase vibrations (Banyay et al., 2003; Stuart, 2005). As observed in isolated 

nuclei, the band at 1713 cm-1 is the C=O stretching mode caused by base paring in nucleic 

acids (Lipiec et al., 2014). The IR band at 964 cm-1 is due to C–C, C–O stretching of 

deoxyribose in the DNA backbone (Banyay et al., 2003; Movasaghi et al., 2008) and that at 

1647 cm-1 is assigned to single-stranded cytosine in nucleic acids (Banyay et al., 2003). 

B[a]P-induced alterations in nuclei of G0/G1- and S-phase cells occurring within 1800 - 1500 

cm-1 region (Fig. 2), are possibly changes to DNA structural conformation due to covalent 

binding to nucleic acid bases, i.e., guanine or disruption of base paring and base stacking 

interactions. Alterations to phosphate groups (νasPO2
-, Phosphate I and νasPO2

-, Phosphate II) 

(Tables 1 & 2) are possibly connected with spatial changes in the position of phosphate 

groups of nucleic acids (Dovbeshko et al., 2000). 

The nucleus of eukaryotic cells is known to contain lipids, specifically phospholipids 

such as phosphatidylcholine (Irvine, 2003). These are thought to play a role in proliferation, 

differentiation and apoptotic processes (Ledeen and Wu, 2006). Alterations associated with 

1744 cm-1 and 1740 cm-1 in isolated nuclei induced at the highest B[a]P concentration, may 

be indicative of induction of the apoptotic pathway, i.e., the externalization of 
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phosphatidylserine (Balasubramanian et al., 2007). Compared to control cell populations, 

changes to nuclei lipids in the biofingerprint spectral region may be an IR biomarker of 

chemical-induced necrosis and apoptosis in cells (Lin and Yang, 2008). 

The apoptotic pathways rely on signal-transduction systems using membrane-derived 

phospholipid precursors as second messengers. Thus, an important marker of apoptotic 

signalling in cells is the changes to cellular lipid which are mostly represented by absorbance 

at wavenumbers in the range 2800 - 3000 cm-1 in the IR spectrum of the cell (Liu et al., 2001; 

Zelig et al., 2009). De novo protein synthesis, the modification of existing proteins and the 

phosphorylation/activation of specific proteins, e.g., p53, are important attributes of apoptosis 

and the cellular response of cells following exposure to DNA-damaging compounds 

(Hockley et al., 2007). Based on these, increased lipid absorbance, decreased DNA 

absorbance and an increase in the β-secondary structure of total cellular protein in the IR 

spectra could be regarded as biomarkers for apoptosis in cells. In this study, the high B[a]P 

concentration induced significant increases in proteins/lipids and decreased nucleic acids as 

well as phosphorylated protein. Furthermore, the relationship between lipids, proteins, 

nucleic acids and phosphorylated protein (Figs. 4 & 5) suggests the possible signalling of 

apoptosis in treated cells. Finally, significant correlation between the peak areas for intact 

cells and isolated nuclei may imply that the protein/DNA regions, as well as alterations to 

these regions in IR spectra of whole cells, may be a reflection of alterations in its nucleus. 

5. Conclusion 

There is much information in an IR spectrum of a biological sample (Trevisan et al., 2012). 

More interestingly, this information can be obtained almost reagent-free and with a relatively 

small amount of sample (Baker et al., 2014). Using ATR-FTIR spectroscopy, this study 

observed B[a]P-induced responses in whole cells and isolated nuclei of MCF-7 cells 
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concentrated in G0/G1- and S-phases. B[a]P induced dose-related responses and marked 

alterations within the DNA/RNA region of the biochemical cell fingerprint. Based on 

wavenumbers distinguishing isolated nuclei in treated cells from those of control cell 

populations, these changes are possibly due to alterations to nucleic acid bases and the 

possible disruption of base-paring/stacking interactions in the nucleus. 

B[a]P induced an increase in the total biomolecules in G0/G1-phase cell populations, 

indicating the possible activation of growth factor receptor signalling. Increased lipids, 

increased protein and decreased DNA, as well as changes to nuclear lipids indicate the 

possibility of apoptosis signalling in treated cells. Our results show that IR spectroscopy is 

able to distinguish between treated cell populations at subcellular levels, in this case the 

nucleus. The technique is sensitive to slight changes in the biological molecules of cells 

including changes induced by exposure to low chemical doses. It is possible to derive 

mechanistic insights based on alterations to various regions of the biochemical-cell 

fingerprint. It provides further evidence supporting the application of IR spectroscopy to 

easily identify cellular/subcellular responses to chemical insults. 
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