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A new Bayesian approach for determining the

number of components in a finite mixture

June 16, 2015

Abstract

This article evaluates a new Bayesian approach to determining the
number of components in a finite mixture. We evaluate through simu-
lation studies mixtures of normals and latent class mixtures of Bernoulli
responses. For normal mixtures we use a “gold standard” set of population
models based on a well-known “testbed” data set – the galaxy recession
velocity data set of Roeder (1990). For Bernoulli latent class mixtures
we consider models for psychiatric diagnosis (Berkhof, van Mechelen and
Gelman 2003).

The new approach is based on comparing models with different num-
bers of components through their posterior deviance distributions, based
on non-informative or diffuse priors.

Simulations show that even large numbers of closely spaced normal
components can be identified with sufficiently large samples, while for
latent classes with Bernoulli responses identification is more complex,
though it again improves with increasing sample size.

1 Background: the number of components prob-

lem

Finite mixture models are now in widespread use: McLachlan and Peel (2000)
give a detailed and authoritative review. Computational methods for maxi-
mum likelihood and Bayesian analyses through the EM algorithm and Markov
chain Monte Carlo analyses are routinely used and are well-documented. An
outstanding remaining problem is the number of components which can be iden-
tified in a finite mixture. Chapter 6 of McLachlan and Peel discusses this at
length and reports some simulation results for mixtures of multivariate normals
with moderately large samples. A more recent study by Nylund, Asparouhov
and Muthen (2007) considers latent class models and growth mixture models,
with simulations again from moderate to large samples. An issue not addressed
in these simulations is the performance of procedures in small samples, where
power may be low, especially for latent class models with Bernoulli responses.

Aitkin (2001) reviewed at length Bayesian analyses of mixtures of normals
for the galaxy data of Roeder (1990) and found wide variations in the number of
components identified, through comparisons of their integrated likelihoods, by
different analysts. These analyses required the specification of (hyper) parame-
ters used in the proper priors for the integrated likelihoods. Different specifica-
tions of these parameters, and/or the priors, led to different conclusions about
the number of components. No “default” analysis with non- or minimally-
informative priors was possible. No simulations were reported for any of the
analyses, leaving open the performance of these and any other procedures.
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Aitkin (1997, 2010) extended Dempster’s (1997) treatment, of the posterior
distribution of the likelihood for testing simple null hypotheses, to the com-
parison of arbitrary models, proposed a new Bayesian analysis based on the
comparison of deviance distributions under each model, and applied it to the
galaxy data in Aitkin (2010, 2011). Again no simulations were reported, so the
difference in his conclusions from those based on integrated likelhoods did not
lead to a clarification.

The present paper investigates the properties of the deviance distribution
approach to Bayesian model comparisons in finite mixtures. We first set out in
Section 2 the properties of the frequentist and Bayesian analyses of finite mix-
tures, illustrated by mixtures of normals and latent class mixtures of Bernoullis.
We describe the inferential difficulties of both frequentist and current Bayesian
methods for determining the number of components in the mixture. We then
give the new approach based on the posterior distribution of the deviance.

Section 3 discusses the galaxy data which illustrates the normal mixture
problem, and provides a simulation study of the performance of the deviance
distribution approach on galaxy-like data sets, compared with the DIC approach
of Spiegelhalter et al (2002).

Section 4 discusses the psychiatric symptom data which illustrates the la-
tent class problem, and provides a simulation study of the performance of the
deviance distribution approach on similar data sets.

Section 5 gives conclusions.

2 Models and methods

2.1 The normal mixture model

The general model for a K-component normal mixture for a response variable
Y has different means µk and variances σ2

k in each component:

f(y) =

K
∑

k=1

πkf(y|µk, σk)

where

f(y|µk, σk) =
1√
2πσk

exp

{

− 1

2σ2
k

(y − µk)
2

}

and the σk and πk are positive with
∑K

k=1 πk = 1.
Given a sample y1, ..., yn from f(y), the likelihood is L(θ) =

∏n

i=1 f(yi),
where θ = (π1, ..., πK−1, µ1, ..., µK , σ1, ..., σK).

An important practical question is why we should assume that the com-
ponent distributions are normal. Efficient computation of maximum likelihood
estimates and posterior distributions can be achieved for a wide range of contin-
uous or discrete mixture distributions, not restricted to the exponential family.

One plausible reason is that mixtures of normal distributions can reproduce
a very wide range of distributional shapes. However if our substantive interest
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is in the component densities, then it does matter whether we use a mixture of
normal or, for example, t or lognormal distributions, which may need a different
number of components. We return to this question in the discussion of the
galaxy data in §3.

2.2 Bernoulli mixtures

We deal also with Bernoulli response data, and use the example discussed at
length in §4, of psychiatric patients with a number of symptoms of psychiatric
illness. We define yij = 1 if patient i has symptom j, and yij = 0 otherwise,
and write pij for the probability that patient i has symptom j. A simple un-
structured model for all of the the yij for patient i would be a product Bernoulli
model:

Pr[{yij} | i] =
r
∏

j=1

p
yij

ij (1− pij)
1−yij ,

in which symptoms are possessed independently within a patient. Assuming
independence also of the yij across patients, the likelihood of the observed data
would then be

Pr[{yij}] =
n
∏

i=1

r
∏

j=1

p
yij

ij (1− pij)
1−yij .

A simple specific model for the table is the Rasch model, in which

logit pij = log
pij

1− pij
= θi + φj ,

where θi is the patient propensity to have any symptom, and φj is the symptom

propensity for any patient. A simpler model is the Rasch “symptom only” model,
which omits the θi parameters. The assumption of complete independence of
symptom possession within a patient however appears unreasonable, especially
as we aim to identify subgroups of symptoms which tend to occur together
within classes, so are not independent.

2.2.1 The latent class model

We assume there are distinct sets of symptoms for (unobservable) classes of
psychiatric illness. These are specified by a latent class model, in which the
probability of symptom j is qjk, constant for patients in latent class k, but
varying among classes, and we assume the weaker conditional independence of
symptoms within classes. If the proportion of the psychiatric patient population
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in class k is πk, the probability of the observed data is given by

Pr[{yij} | k, i] =

r
∏

j=1

q
yij

jk (1 − qjk)
1−yij

Pr[{yij} | i] =

K
∑

k=1



πk

r
∏

j=1

q
yij

jk (1 − qjk)
1−yij





Pr[{yij}] =

n
∏

1=1







K
∑

k=1



πk

r
∏

j=1

q
yij

jk (1− qjk)
1−yij











.

2.3 Fitting the model

The EM algorithm is the standard frequentist tool for fitting finite mixtures,
and is discussed at length in McLachlan and Peel (2000), who give the galaxy
data as one of their examples (pp 104-5, 194-6). Unobserved indicator variables
Zik, which are 1 if observation i belongs to component k, and zero otherwise,
provide the “missing data” aspect of the EM algorithm. In the E step of the
algorithm the unobserved indicators in the complete data log-likelihood are re-
placed by their conditional expectations given the observed data and the current
parameter estimates; in the M step the expected complete data log-likelihood
is maximized to give new parameter estimates.

A major difficulty with mixture models is the occurrence of local maxima
of the likelihood in addition to the global maximum. The usual advice for this
problem (for example McLachlan and Peel 2000 p. 55) is to use many random
starting points for the EM algorithm, either as random parameter values for
the first E step or probabilistic assignments of observations to components for
the first M step. The number of random starting points might be set at 100,
1000, 5000 or more – we examine these choices for the galaxy data in §3. As
the number of model components increases, we should increase the number of
random starting points as there are approximately nK possible random assign-
ments of observations to components, and a fixed number of starting points will
sample more and more sparsely from the possible configurations as K increases.
We can expect the number of local maxima to increase as well, for example
from slightly different posterior probabilities of assignment of observations to
components.

If a local maximum is close in likelihood to the global maximum, but has dif-
ferent assignments of observations to components, it will clearly not be possible
to interpret the component assignment posterior probabilities from the global
maximum as soundly based; these are in any case usually based on plug-in ML
estimates for the model parameters, and so they overstate the precision of the
probability of component assignment.

Bayesian “fitting” is also straightforward using the DA (Data Augmentation)
algorithm (Tanner and Wong 1987), a special case of Markov Chain Monte Carlo
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in which the unobserved indicators and the parameters are drawn alternately:
the indicators from their conditional distribution given the observed data and
the current parameter draws, and the parameters from their conditional distri-
bution given the observed data and the current indicator draws.

2.4 The number of components – frequentist methods

As is well known, the likelihood ratio test statistic does not have the usual
asymptotic χ2 distribution for nested models when comparing models with dif-
ferent numbers of components. Alternative frequentist decision criteria include
AIC and BIC, and bootstrapping the likelihood ratio test statistic from a se-
quence of fitted models of components. Frequentist and Bayesian analyses are
conceptually straightforward using the EM algorithm and Gibbs sampling re-
spectively, provided that for the normal mixture model the component standard
deviations are bounded below in some way to prevent single or multiple iden-
tical observations defining components with variances converging to zero. Such
“singleton” components are outside the model specification (since we specify
σk > 0) and may represent recording errors. They are irrelevant in the con-
text of clumping of galaxies – a clump for a single galaxy does not add to our
understanding of galaxy clustering.

An alternative is to bound the ratio of largest to smallest component vari-
ance. This approach and its generalisation to mixtures of multivariate normals
is discussed in Garcia-Escudero, Gordaliza, Matran and Mayo-Iscar (2015).

For the Bayesian analysis, local modes which are far away (in likelihood)
from the global model can be ignored, since the posterior probability of the
parameter set for such a mode is very low.

2.5 The number of components – Bayesian methods

Bayesian methods for determining the number of components are convention-
ally based on the integrated likelihoods L̄k(φk) =

∫

Lk(θk)πk(θk | φk)dθk for
each model k, integrated with respect to the prior distribution πk(θk | φk) of
the unspecified model parameters θk with specified φk. The ratio of two such
integrated likelihoods is called the Bayes factor for their comparison, and is inter-
preted as though it were the likelihood ratio for two completely specified models
(Kass and Raftery 1995). However the integrated likelihood is not uniquely, or
even conventionally, defined by the likelihood, as it depends on the specification
of the prior πk(θk | φk) and its parameters φk – conventional improper diffuse
priors cannot be used.

This can lead to very different integrated likelihoods for different proper prior
specifications for the same model and data, and these differences are inherent in
the definition of the integrated likelhoods, and do not disappear with increasing
sample size (Aitkin 2001). An alternative (Dempster 1997, Aitkin 1997, 2010) is
to use the posterior distributions of the likelihoods, by substituting M (typically

10,000) random draws θ
[m]
k of the parameters θk from their posterior into the
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likelihoods Lk(θk), giving M corresponding random draws L
[m]
k = Lk(θ

[m]
k ) from

the posterior distributions of the likelihoods.
Because of the scale of likelihoods, as in the frequentist analysis we use

deviances Dk(θk) = −2 logLk(θk) rather than likelihoods L. Models are then
compared for the stochastic ordering of their posterior deviance distributions,

initially by graphing the cdfs of the deviance draws D
[m]
k = Dk(θ

[m]
k ) for each

number of components.
The DIC of Spiegelhalter et al (2002) also uses these deviance draws, but

only to compute the mean deviance across the draws. The DIC, like AIC and
BIC and some other decision criteria, requires a penalty (in this case using the
effective number of parameters) on the mean deviance to account for model
complexity.

This is not needed for the comparison of deviance distributions: models with
increasing numbers of components are effectively penalized for their increasing
parametrization, as they have increasingly diffuse deviance distributions because
of the decreasing data information about each component. The practical use of
deviance distributions is illustrated in the following sections.

3 The galaxy data

The galaxy data published by Roeder (1990) are the recession velocities, in units
of 103 km/sec, of 82 galaxies from six well-separated conic sections of space; the
tabled velocities are said by astronomers to be in error by less than 0.05 units.
Roeder noted that the distribution of velocities is important, as it bears on
the question of “clumping” of galaxies: if galaxies are clumped by gravitational
attraction, the distribution of velocities would be multi-modal; conversely, if
there is no clumping effect, the distribution would increase initially and then
gradually tail off.

We do not analyse separately the data from the six regions, following all
authors including the astronomers Postman et al. (1986) who gave the full data
by region. The individual regions have very small data sets, from which not
much can be learned about clustering among or within regions. The data are
reproduced below, ordered from smallest to largest and scaled by a factor of 1000
as in Roeder (1990) and Richardson and Green (1997). The empirical cdf of the
velocities is shown in Figure 1, together with the fitted normal distribution cdf.
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Recession velocities (/1000) of 82 galaxies

9.172 9.350 9.483 9.558 9.775 10.227 10.406 16.084

16.170 18.419 18.552 18.600 18.927 19.052 19.070 19.330

19.343 19.343 19.440 19.473 19.529 19.541 19.547 19.663

19.846 19.856 19.863 19.914 19.918 19.973 19.989 20.166

20.175 20.179 20.196 20.215 20.221 20.415 20.629 20.795

20.821 20.846 20.875 20.986 21.137 21.492 21.701 21.814

21.921 21.960 22.185 22.209 22.242 22.249 22.314 22.374

22.495 22.746 22.747 22.888 22.914 23.206 23.241 23.263

23.484 23.538 23.542 23.666 23.706 23.711 24.129 24.285

24.289 24.366 24.717 24.990 25.633 26.960 26.995 32.065

32.789 34.279
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0.9
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Figure 1: Empirical cdf (o) and fitted normal cdf (–) for the galaxy data

It is immediately clear that the normal distribution does not fit, with a gap
or jump between the seven smallest observations around 10 and the large central
body of observations between 16 and 26, and another gap between 27 and 32,
for the three largest observations. Following many other authors, we assume
that the mixture of normal distributions is appropriate: we give some support
for this below.

Maximum likelihood estimates for the galaxy data can be found in Aitkin
(2001, 2010), and in many other references. Using the probit vertical scale
clarifies the improvement in fit with increasing numbers of components, from 1
to 4, shown in Figures 2–5.
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Figure 2: K=1
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Figure 3: K=2
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Figure 4: K=3
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Figure 5: K=4
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The two-component model does not give a good fit to the extreme observa-
tions on both sides. The three-component model gives a close fit except in the
velocity interval 18-22, where it seems to have slightly the wrong slope. The
four-component model gives a very close fit, with slightly different standard
deviations for the two central components (0.45 and 2.27). The probit scale
shows that the component velocity distributions are nearly linear on this scale,
supporting the normal distribution assumption within component.

3.1 How many components?

3.1.1 Frequentist methods

Frequentist deviances, AICs and BICs are given for each number of components
up to 6 in Table 1 (adapted from Aitkin 2010). The number of model parameters
is p = 3K − 1.

K p deviance AIC BIC
1 2 480.83 482.83 485.24
2 5 413.78 423.78 435.82
3 8 406.96 422.96 437.83
4 11 395.43 417.43 443.94
5 14 392.27 420.27 454.01
6 17 365.15 399.15 440.12

Table 1: Deviance, AIC and BIC for K components

AIC selects K = 6 and BIC selects K = 2. The bootstrap likelihood ratio
test was used by McLachlan and Peel (2000, p. 196) for the galaxy data in 100
bootstrap replications for K = 1, ..., 6, and gave bootstrap p-values, for testing
K components against K+1, of 0.01, 0.01, 0.01, 0.04, 0.02 and 0.22, suggesting
K = 6.

The BIC choice of K = 2 does not seem well-supported by the cdf plot, with
departures in both tails. Given the close fit of the observed data cdf to that for
the 3- and 4-component mixtures, where does the evidence for six components
come from in the AIC/bootstrap conclusions? This is provided by the two
sets of closely-paired observations (16.084, 16.170) and (26.960, 26.995), which
define components with extremely small variances, giving a large reduction in
deviance. The 3- and 4-component cdf plots show that these points are very
close to the fitted cdf in both plots – there is little evidence of the need for two
additional small components.

There seem to be some conflicts in the frequentist conclusions, both among
methods and with the cdf plots.

3.1.2 Bayesian methods

The galaxy data have been analysed many times by Bayesian methods, mostly
using the integrated likelihood. Detailed discussions of these analyses can be
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found in Aitkin (2001, 2010, 2011). The DA algorithm was used in most anal-
yses, with proper priors on the component means, variances and proportions.
The integrated likelihoods were then converted to posterior model probabilities
through Bayes’s theorem, with either a flat prior distribution on the number
of components or an informative proper prior (a truncated Poisson distribution
was a common choice). It is difficult to compare the posteriors for the number
of components when the priors are different.

A quite different form of posterior analysis – RJMCMC (reversible jump
MCMC) – was used by Richardson and Green (1997) in which the number of
components was included as a discrete parameter in the joint parameter space,
and MCMC analysis included this parameter, “jumping” across the different
parameter spaces for different numbers of components. This gave a direct com-
putation of the posterior for the number of components, without requiring the
computation of integrated likelihoods, but at the cost of very heavy and complex
MCMC computations.

Here we reproduce from Aitkin (2011) the posterior distributions for the
number of components using the analysts’ priors, and their conversion to the
equivalent posteriors for a flat prior. For the rescaled analyses by Escobar and
West, Phillips and Smith, and Stephens, the posterior probabilities for extreme
values of K could not be computed from the limited precision given in the
available results, and are represented by question marks. All these posterior
distributions were decreasing beyond the last value given, and we assume they
continue to do so with increasingK. The unknown tail values have been ignored
in rescaling the posteriors to sum to 1. The initials refer to:

• EW: Escobar and West (1995)

• PS: Phillips and Smith (1996)

• S: Stephens (2000)

• RW: Roeder and Wasserman (1997)

• RG: Richardson and Green (1997).

K 1 2 3 4 5 6 7 8 9 10

EW .01 .06 .14 .21 .21 .17 .11 .06 .02
PS .16 .24 .24 .18 .10 .05 .02 .01
S .58 .29 .10 .02 .004 .001 - - -

RW .10 .10 .10 .10 .10 .10 .10 .10 .10 .10
RG .03 .03 .03 .03 .03 .03 .03 .03 .03 .03...

Table 2: Prior distributions for K
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K 3 4 5 6 7 8 9 10 11 12 13

EW - .03 .11 .22 .26 .20 .11 .05 .02 - -
PS - - - .03 .39 .32 .22 .04 - - -
S .55 .34 .09 .01 - - - - - - -

RW .999 .00 - - - - - - - - -
RG .06 .13 .18 .20 .16 .11 .07 .04 .02 .01 .01

Table 3: Posterior distributions for K

K 3 4 5 6 7 8 9 10 11 12 13

EW .01 .03 .07 .13 .18 .30 .28 ? ? ?
PS .00 .10 .21 .43 .26 ? ? ?
S .10 .25 .35 .29 ? ? ? ? ? ? ?

RW >.999 <.001
RG .06 .13 .18 .20 .16 .11 .07 .04 .02 .01 .01

Table 4: Posterior distributions for K (flat prior)

It is immediately striking that the posteriors for the EW and PS analyses
have modes at K = 9, with high probability also for K = 10, while that for RG
has its mode at 6, is very diffuse, and does not rule out K = 9, or K = 3 or 4.
The posterior for S has a mode at K = 5 and a slightly lower value at K = 6.
The RW distribution is almost a spike at K = 3. The PS posterior rules out
K ≤ 6.

It is hard to imagine a more diverse, and inconsistent, set of posterior con-
clusions about a parameter across these five papers. In the discussion of Aitkin
(2001), and in Stephens (2000), this difference is obscured by the strongly in-
formative priors for K used by EW, PS and S, which almost eliminate the
possibility of K ≥ 9. If we have no prior view about the number of mixture
components, which conclusions are believable?

There is an obvious difficulty with the EW and PS conclusions, and that is
the sample size relative to the number of model parameters. With seven com-
ponents in the mixture, the average sample size per parameter is only four. For
K ≥ 9, the two extreme groups are further split into subgroups with single ob-
servations, for which standard deviations cannot be estimated – the ML analysis
of the model breaks down at this point. It seems therefore unbelievable that
the Bayesian analysis can give nine or 10 components with high probability.

Aitkin (2001, 2011) gave a discussion of the priors and their specified pa-
rameter values used in these analyses. Here we refer only to the point made
above: that when integrated likelihoods are used for Bayesian model compar-
isons, their values depend explicitly on both the priors used and the settings of
their parameters. So no conclusions can be drawn from these analyses about
the number of components in the mixture.
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3.1.3 Posterior deviance analysis

For the posterior deviance analysis by the Data Augmenation algorithm in a
computational framework like BUGS (Gibbs sampling in this application), we
need proper priors. These are proper but diffuse: a diffuse Dirichlet prior (with
indices 1,...,1) on the component proportions πk, diffuse conjugate priors on the
means µk – normal priors with zero means and variances 100 – and diffuse,
again with large variances, conjugate priors on the inverse variances σ−2

k .
The galaxy data were analysed in this framework by Celeux et al (2006). We

summarise1 their analysis. After convergence of the Gibbs sampler, 10,000 val-
ues were sampled from the thinned posterior distributions and theK-component
mixture deviances computed for each parameter set. These were kindly supplied
by Gilles Celeux.

We show in Figure 6 the deviance distributions for K = 1, ..., 7 on the same
scale (more detailed Figures are given in Aitkin 2011).

420 440 460 480 500
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0.7

0.8

0.9

1.0

deviance

cd
f

123 4 5 6 7

Figure 6: Deviances for 1-7 components

The interpretation of this figure can be simply summarised:

• The deviance distribution for K = 2 greatly improves on that for the
single normal K = 1.

• The improvement continues for K = 3.

• As the number of components increases from 3 to 7 the deviance dis-
tributions move steadily to the right, to larger deviance values (lower
likelihoods).

1Full details can be found in their paper.
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• They also become more diffuse, with increasing slope.

3.1.4 Stochastic ordering

A real random variableX is less than another real random variable Y in stochas-

tic order if
Pr(X > a) ≤ Pr(Y > a) ∀a ∈ (−∞,∞),

with a strict inequality for at least one a. If so, we say that X is stochastically
strictly less than Y , and X and Y are stochastically ordered. This is equivalent
to the inequality FX(a) ≥ FY (a), with the cdf of X strictly greater than that of
Y at some point a. (We need to allow for the fact that the cdfs will be identical
at ±∞.)

We apply this concept to the model deviance distributions.

If the cdf of the deviance distribution for model k is stochastically
less than that of model k′, we say that model k fits the data better

than model k′, or that model k is preferred to model k′.

The extent of the preference is assessed by the posterior distribution of the
probability of model k. If this preference is only slight, then we are unable to
choose confidently between the models.

So the deviance distributions for K = 3 to 7 are stochastically ordered,
with K = 3 fitting the data best (of the normal mixture distributions): these
distributions do not cross because of their steady movement to the right and
the increasing slopes of the cdfs with increasing parametrization. All these
distributions are stochastically ordered with respect to that for K = 1. The
distribution for K = 2 is not stochastically ordered with respect to those for
K = 4 − 7 as it crosses them. The distributions for K = 2 and 3 converge at
about the 99th percentile. We conclude from the stochastic orderings that the
best model has K = 3.

This conclusion agrees with that of Roeder and Wasserman, and the Celeux
et al analyses, but is inconsistent with the other Bayesian analyses. Since none

of the existing Bayesian analyses have been supported by simulations, we inves-
tigate how well our criteria perform in simulations from galaxy-like data sets
generated from known mixture models. We note first however that in this ex-
ample the membership of each galaxy in the three (or more) components is not
an issue of particular interest, and we do not comment on it here. In the next
example however this is a very important issue, and we discuss it in detail there.

It may happen (and does in simulations) that the deviance distributions
for the competing models are not stochastically ordered because the best two or
more deviance distributions cross. In this case we need to consider more carefully
the comparison of the deviance draws. At the m-th deviance draw from each

model we have deviances D
[m]
k . For each k and m we define indicator variables

W
[m]
k = 1 if D

[m]
k is the smallest of the K deviances, W

[m]
k = 0 otherwise. We
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aggregate over the draws, to give:

W+
k =

M
∑

m=1

W
[m]
k .

We assessed two possible criteria for “best model”:

• the model with the lowest median deviance (this is similar to one of the
versions of the DIC with the median deviance replacing the mean deviance,
but without the penalty);

• the model with the largest W+
k – the model “most often best” across the

draws.

3.2 Simulation studies

In the first study, we generated data sets of size n = 82 from normal mix-
ture distributions with K = 1 to 7 components, with 100 data sets from each,
with parameters given by the ML estimates from the galaxy data (given in
Aitkin 2010 p. 213) with the corresponding number of mixture components.
The number of observations from each component was conditioned to give each
component its mixture proportion multipled by the sample size and rounded,
so that the structure of the galaxy data set was closely approximated.

For each generated data set, we fitted (Bayesianly) from 1-7 normal mixture
components, and obtained the posterior distribution of the deviance for each
number of components. These seven deviance distributions were then compared,
and the best chosen by the smallest median deviance and the most often best
criteria. The DIC was also computed for each K, and the value of K with the
smallest DIC was taken as the “best” in the DIC comparison framework.

For each K, we give in Table 5 the percentage of correct identifications in
the 100 data sets by both the DIC and the most often best (“mob”) criterion
(the smallest median deviance criterion was consistently inferior to the most
often best, and is not reported). Model identification was very successful for
small K, but fell off dramatically beyond K = 3.

True K DIC mob
1 100 100
2 85 98
3 51 99
4 3 9
5 0 18
6 2 9
7 0 1

Table 5: Model identification n = 82
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In the second study, we successively doubled the 100 sample sizes to n = 164,
328 and 656, with parameters as before. Table 6 gives the percentages of correct
identification using the DIC and the most often best criterion.

n 82 164 328 656
K DIC mob DIC mob DIC mob DIC mob
1 100 100 100 99 100 100 100 100
2 85 98 100 100 100 100 100 97
3 51 99 98 99 100 99 100 99
4 3 9 11 67 30 99 17 99
5 0 18 0 9 0 37 1 89
6 2 9 0 10 56 100 78 100
7 0 1 0 15 4 3 4 32

Table 6: Percentages of correct model identification in 100 data sets of size n

using DIC and most often best posterior deviance

The deviance distribution criterion was consistently more accurate than the
DIC, which had difficulty with more than three components in all the sample
sizes considered. As n increased, so did the successful identification of the
correct model. With a sufficiently large sample, even the 6-component model
could be correctly identified by the posterior deviance. The 7-component model
required a larger sample size.

The occasional non-monotonicity of the identification proportion with both
K and n is due partly to the structure of the galaxy data (for example the
components are better separated in the 6-component than in the 5-component
model) and partly to the small simulation size.

4 The psychiatric symptom data

The data set used by Berkhof, van Mechelen and Gelman (BMG) came from
a previous study by van Mechelen and De Boeck (1989), which assessed the
presence or absence of r = 23 possible binary symptoms in n = 30 psychiatric
patients. Their approach aimed to assess the identification of different classes
of psychiatric illness in subgoups of patients. The data are shown in Table 7
(where x indicates symptom present, . indicates symptom absent).
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-------------------------------------------------------------------

1 disorientation ...........................x..

2 obsession/compulsion ...x..........................

3 memory impairment ..................x........x..

4 lack of emotion .............x...............x

5 antisocial impulses or acts ....x.............xx..........

6 speech disorganization .......................x...x.x

7 overt anger .....x.........x.........x....

8 grandiosity ...........x..x.....x..x......

9 drug abuse x...x..........x..........x...

10 alcohol abuse .....x............xx.....x.x..

11 retardation ..................x..xx....x.x

12 belligerence/negativism ............x.....xxx.....x...

13 somatic concerns ..x......xx.....x.........x.xx

14 suspicion/ideas of persecution .............xxx.......xx...xx

15 hallucinations/delusions .............xxx.......xx...xx

16 agitation/excitement .....x......x.xx.......xxx..x.

17 suicide .x....xxx..xx...xx...xx.....xx

18 anxiety .xxx..xxxxxx...x.x..xxx.xxx..x

19 social isolation x......xx.xxxx..xx.xxxx.x.xxxx

20 inappropriate affect or behaviour ...xx.x..x....xxxx.xxxxxxxxxxx

21 depression xxx...xxxxxxxx..xx.xxxx..xx.xx

22 leisure time impairment ..xxxxxxxxxxxxx.xxxxxxxxxxxx.x

23 daily routine impairment ..xxxxxxxxxxxxx.xxxxxxxxxxxxxx

-------------------------------------------------------------------

Table 7 - symptom data in 30 patients

We define yij = 1 if patient i has symptom j, and yij = 0 otherwise, and write
pij for the probability that patient i has symptom j. As described in §2.2, we
use the latent class model to represent the unobserved classes of psychiatric
illness.

4.1 Frequentist analysis of the symptom data

We extend the Rasch model to the latent class models. We summarise in Table
8 the frequentist deviances, number of model parameters, AIC and BIC for the
null, Rasch and latent class models with up to four classes.
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Model deviance # params AIC BIC
Null 844.68 1 846.68 848.08
Rasch 571.96 52 675.96 748.82
K = 1 606.54 23 652.54 684.74
K = 2 534.30 47 628.30 694.10
K = 3 473.04 71 615.04 714.44
K = 4 439.03 95 629.03 762.03

Table 8: Frequentist deviances, symptom data

AIC chooses the 3-class model, BIC the 1-class model. The deviance changes
from 1-2, 2-3 and 3-4 classes are respectively 72.21, 61.26 and 34.01, all with
24 degrees of freedom, and corresponding naive p-values of 10−6, 4 × 10−4 and
.084. It appears from the likelihood ratio test (naively interpreted) that three
classes are necessary.

4.2 Bayesian analysis

4.2.1 Priors

BMG used a diffuse Dirichlet (1,...,1) prior for the class mixture probabilities πk,
and independent Beta(α, α) priors for the class-specific symptom probabilities
qjk. They ran MCMC to obtain posterior distributions for the model parame-
ters θ (the sets of πk and qjk) and the class membership indicators Zik in the
complete data representation used for MCMC:

Pr[{yij} | {Zik}] =
n
∏

i=1

K
∏

k=1

r
∏

j=1

[

πkq
yij

jk (1− qjk)
(1−yij)

]Zik

.

4.2.2 Model comparison through integrated likelihoods

BMG compared models with 1,...,5 classes through their integrated likelihoods.
They set the α parameter of the common Beta priors for the qjk equal to 0.5, 1
and 2, and compared the models with K = 1,..,5 classes at each α. When the
models were compared at

• α = 2 (an informative quadratic prior), there was a preference for the one
class model;

• α = 1 (the uniform prior), there was equal preference for the two- and
three-class models;

• α = 0.5 (the Jeffreys prior), there was a preference for the three-class
model.

It is clear that the preferred number of classes (in terms of the largest inte-
grated likelihood) is a direct function of α, with the preferred number of classes
increasing with decreasing α. Since both the uniform and the Jeffreys priors are
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widely used as “reference” or “minimally informative” priors, this form of prior
specification does not lead to a clear preference for the number of classes.

4.2.3 Varying the prior

In an expanded sensitivity analysis, BMG changed the common prior for the
symptom probabilities qjk to Beta(α, β), with α and β being determined by the
data in an empirical Bayes approach. They used a diffuse hyperprior density

for (α, β), uniform on

(

α
α+β

, 1

(α+β)
1

2

)

, in the range

α

α+ β
∈ (0, 1),

1

(α + β)
1

2

∈ (0, c), c > 0,

and then estimated α and β from the posterior mode ᾱ, β̄. The log integrated
likelihoods using this approach for K = 1,...,5 classes were −346.9, −340.8,
−335.8, −335.7 and −335.8. So three, four and five classes were almost equally
well-supported, with very weak support for two classes and no support for one
class. They conjectured that the very small differences in the integrated likeli-
hoods for three, four and five classes were because the number of patients was
too small to be able to draw a distinction between them.

BMG discussed the further need to determine whether the priors are reason-
able for these data in terms of the prior predictive distribution, by generating
random parameter draws from the priors, and generating random data sets from
the models, given the values of the model parameters.

They compared properties of the simulated data sets with those of the real
data set, to assess which priors were consistent with the data. They concluded
that the symmetric Beta(α, α) priors were not consistent with the data, while
the asymmetric Beta(ᾱ, β̄) prior was consistent.

So BMG’s conclusion, after considerable further effort which we do not give
here, was that the number of classes was probably three.

4.3 The role of the prior

A serious concern for the analyst following this approach is the need to check the

prior against the data – since the conclusions are strongly affected by variations
in the priors, it seems obvious that the priors themselves should be checked for
reasonableness – they become part of the model structure.

This however conflicts with a fundamental principle of Bayesian analysis:
that priors are specified before the data are observed – they should not be tuned

to the data after observing them. Updating the prior based on the observed data
– the likelihood – gives the posterior, not a “reasonable” prior consistent with
the data. The need for this “consistency” arises only because of the integration
of the likelihood over the prior used for the comparison of models.
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4.4 Bayesian model comparison through posterior deviances

We now apply the posterior deviance analysis to the psychiatric symptom data.
Models with different numbers of latent classes are compared in the same way
as for the galaxy data.

With diffuse or reference priors π(θk) on the model parameters θk for model

k, we make M independent draws θ
[m]
k from the parameter posterior π(θk | y),

substitute them into the model deviance Dk(θk) = −2 logLk(θk), and compare

across k the cumulative distributions of the deviances D
[m]
k = Dk(θ

[m]
k ) for

stochastic ordering.
Three other models act as reference models for the latent class model:

• The null model, with a single common symptom frequency parameter for
all patients;

• the Rasch model, an additive model in patient and symptom on the logit
scale; it is the simplest logit model reproducing the row and column
marginal totals of the data array;

• the saturated model has a different set of Bernoulli symptom parameters
for each patient – each patient is a “separate class”.

The posterior deviance distributions for the latent class models from M =
10, 000 draws with up to three classes, and for the Rasch and saturated models,
are shown in Figure 7. The saturated model deviance is very diffuse, and is
well to the right of those for the latent class models. It has so many parame-
ters that each is very poorly defined. (The null model deviance, not shown, is
much the worst: it increases from its minimum of 844.68 to 850, off the scale
of the Figure.) Figure 8 shows, on a larger scale, the distributions for one to
five classes. In interpreting the Figures, the leftmost distribution, if it does not
cross any another, is stochastically smallest and identifies the preferred model.
If two deviance distributions cross, the strength of preference for one over the
other is determined by the percentile at which they cross.
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Figure 7: Psychiatric symptom deviance distributions, K=1-3, Rasch and sat-
urated models
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Figure 8: Psychiatric symptom deviance distributions, K=1-5
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4.5 Conclusions from the posterior deviance model com-

parison

The results from the posterior deviance cdfs displayed in Figures 7 and 8 can
be summarized as follows:

• The saturated model deviance is the worst of those shown (each Bernoulli
parameter has just one observation, of 0 or 1).2

• The Rasch model is a poor fit – the latent class distributions improve on
it substantially.

• The class deviance distributions shift substantially to the left from K =
1 to 2, and by a further 10 (at the median) from K = 2 to 3.

• The distributions for K = 3, 4 and 5 overlap very closely, and intersect.

• For K increasing beyond 5, the distributions move slowly to the right (not
shown, but they are computed for up to 15 classes).

So three classes are clearly identified, but the evidence for more than three is
confusing. Figure 8 explains the strange similarity of the 3-, 4- and 5-class inte-
grated likelihoods: the spacing between these deviance distributions is so small
that a one-point integrated summary gives very close integrated likelihoods.

Without clear stochastic ordering for the 3-, 4- and 5-class models, we com-
pared the models for K = 1-5 through the median and most often best criteria
as for the galaxy example. The 4-class model was the best by both criteria.

The comparison of median deviances shows the same features as the inte-
grated likelihoods. We compare them in Table 9, converting the integrated
likelihoods L̄k to the deviance scale of −2 log L̄k:

K 1 2 3 4 5
median dev. 628.57 593.44 578.66 578.50 579.43
int.-lik.-dev. 693.8 681.6 671.6 671.4 671.6

Table 9: Median and integrated-likelihood-based deviances for the symptom
data

The deviances from the integrated likelihoods are substantially larger than
the median deviances, and are off the scale of Figure 8. They correspond to
parameter sets with very low likelihood. This is a well-known feature of inte-
grated likelihoods, which tend to zero with increasing diffuseness of the priors,
leading to Lindley’s paradox (Bartlett 1957, Lindley 1957, Kass and Raftery
1995). The slow deterioration of model fit with increasing K and the extent of

2This may seem counter-intuitive, since the ML estimate of the saturated model always has

the smallest frequentist deviance. The single observation in each “class” however gives a very

diffuse likelihood for each pij and this leads to a very diffuse and large deviance distribution.
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overlap appear to be characteristic of Bernoulli latent class models, and to be
more severe than for mixtures of normals.

Because of the small sample size of patients, and the absence of psychi-
atric opinion on the existence and relevance of sub-classes of patients, we do
not discuss these in detail here. However, though three classes appear to be
established, one of these is very small, and even the 2-class model gives class
differences on only four of the symptoms.

4.6 Simulation studies

In the first study, we generated 100 data sets of size n = 30 from from latent
class models with K = 1,...,5 classes, with parameters given by the MLEs from
the symptom data. For each generated data set, we fitted (Bayesianly) 1-5
classes, and obtained the posterior distribution of the deviance for each number
of classes. The five deviance distributions were then compared, and the“best”
chosen by the smallest median deviance and by the most often best (mob)
criteria (Table 10). The DIC was not used in this part of the study.

True K median mob
1 79 76
2 79 80
3 58 55
4 27 33
5 19 21

Table 10: Model identification n = 30

Four or five classes are unlikely to be identified in the sample size we have
and with population parameters equal to the sample MLEs, and the chance of
identifying three classes is only around 50%. In the second study, we succes-
sively doubled the sample size to n = 60 and 120, with parameters as before
(duplicating the patient parameters). Table 11 gives the percentages of correct
identification using the mob criterion.

K\n 30 60 120
1 76 100 100
2 80 91 100
3 55 100 99
4 33 82 100
5 21 15 51

Table 11: Model identification n = 30, 60, 120

Again with a larger sample of 120 we are able to identify correctly 4 classes, but
the 5-class model appears to require more data.
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5 Conclusion

The comparison of competing mixture models through their posterior deviance
distributions worked successfully in simulations, given a sufficiently large sam-
ple. Unsurprisingly, more classes have more parameters and need larger samples.

The three components identified for the galaxy data are obvious to the eye,
and are as much as could be expected from the sample size and the pattern of
generating parameter values. The small sample size and overlap of the deviance
distributions for the symptom data make inference about the number of classes
particularly difficult.

It would be a question for the psychiatrist whose patients form the data
set to comment on whether these differences do establish a clear sub-class of
symptoms identifying distinct sub-categories of psychiatric illness.

The focus on categories of illness is a consequence of working with the latent
class model, but it is not the only possible model: a latent variable model with
a normal “propensity to have symptoms” could also be considered. The Rasch
model considered above is one such, which gives equal weight to each symptom;
it gave a much worse deviance distribution than the 2-class model. Weighting
the symptoms differentially leads to the 2PL (two-parameter logit) model widely
used in psychometrics. We investigated this model also: its deviance distribu-
tion was between those of the 2-class and 3-class models. It therefore seems
possible that for these 30 patients the model of categories of psychiatric illness
is inappropriate, and the varying frequencies of symptoms could be consistent
with a single continuous factor of symptom propensity. Again this is an issue
for the patients’ psychiatrist, rather than a firm statistical model conclusion.

From a theoretical perspective, the approach to model comparison through
deviance distributions has a number of advantages over other model comparison
methods:

• It does not require proper informative priors: improper non-informative
priors are sufficient, and we recommend their use provided the posteriors
are proper.

• Previous work has shown that varying the priors has little effect on the
model comparison, if the likelihoods dominate the priors.

• The computation of the deviance distributions even in complex models
requires only the standard MCMC output of the posterior distribution of
each model’s parameters: no integration over the prior is involved.

• The deviance distribution approach performed better than the DIC (in
the galaxy simulations): it appears than the DIC loses information in
summarising the deviance draws by their mean.

These advantages come with what may be regarded as a disadvantage: of the
comparison of deviance distributions rather than of single-number integrated or
penalized likelihoods. However this is more in accord with the general Bayesian
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principle that the post-data information about any function of the model pa-
rameters and the data should be through its posterior distribution.

A natural question about the asymptotic properties of our approach, in iden-
tifying the correct model, is not dealt with in this study. Our concern has been to
demonstrate the performance of the procedure in the finite (small-to-moderate)
samples with which we work. Monte Carlo error affects the probabilities of
correct identification, but this is small (from the 1,000 draws) compared to the
variability from the 100 samples, and the two are confounded. With increas-
ing sample size the probability of correct identification goes to 1 or very close
to it, in both the examples. We feel that this is the appropriate measure of
effectiveness. We leave the asymptotic performance for further investigation.

It may seem disappointing also that our study does not compare our ap-
proach with the “standard” Bayes factor approach. The reason is simple: there
is no standard Bayes factor approach: as in the galaxy example, the different
specifications of priors and their parameters makes it impossible to define a stan-
dard approach, quite apart from the formidable difficulties of the computation
of the integrated likelihoods.
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