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Abstract

We use a cross-section of economic survey forecasts to predict the distribution of US macro
variables in real time. This generalizes the existing literature, which uses disagreement (i.e., the
cross-sectional variance of survey forecasts) to predict uncertainty (i.e., the conditional variance
of future macroeconomic quantities). Our results show that cross-sectional information can be
helpful for distribution forecasting, but this information needs to be modeled in a statistically
efficient way in order to avoid overfitting. A simple one-parameter model which exploits time
variation in the cross-section of survey point forecasts is found to perform well in practice.
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1 Introduction

Survey forecasts of macroeconomic and financial variables are available more timely and more easily
than “hard” official data, and have thus become a popular source of information for forecasting
(e.g. Banbura, Giannone, Modugno, and Reichlin, 2013). Several surveys collect forecasts at the
level of individual experts. The Survey of Professional Forecasters (SPF) – which we focus on
in this paper – covers macroeconomic variables, as do the Bank of England’s Survey of External
Forecasters (SEF), the ECB’s survey of professional forecasters (ECB-SPF), as well as a range of
other public and commercial sources around the globe. In addition, sources like the Institutional
Brokers Estimate System (I/B/E/S) cover forecasts of financial analysts about quantities like stock
prices and earning per share (see e.g. Sadka and Scherbina, 2007; Nolte, Nolte, and Vasios, 2014).

Individual survey forecasts often disagree with each other by substantial amounts. The present
paper analyzes whether this disagreement (and, more broadly, the entire distribution of survey
forecasts) can be used to predict the distribution of US macro and finance variables. As discussed be-
low, this question generalizes an earlier literature on the interpretation of survey disagreement. We
present detailed empirical evidence on our research question, and propose a simple one-parameter
method in order to exploit time variation in the cross-section of survey point forecasts.

To illustrate disagreement among SPF participants, Figure 1 summarizes 37 T-bill rate forecasts
from the 2011Q1 edition of the SPF. At the time of the survey, the three-month US government
bonds (“T-bill”) rate stood at 0.13, but there was considerable discussion on the future stance of US
monetary policy, in particular on how long the Fed would be willing to apply Quantitative Easing
(The Economist, 2011). The figure displays estimates of the distribution of forecasts, separated
across five target dates. As shown by the red curve, forecasters agree that the interest rate will
remain on its low level in the current quarter (2011Q1; individual forecasts range from 0.05 to
0.33). For subsequent quarters, the average SPF forecast increases over time – this would reflect
increasingly hawkish monetary policy. However, this view is quite controversial among panelists.
As the target date moves farther into the future, there is more and more disagreement among pan-
elists, finally leading to the diffuse orange distribution at the last target date (2012Q1; forecasts
range from 0.15 to 2.5).

In macroeconomics, cross-sections of forecasts have been of interest for two main reasons. A first
branch of the literature, including studies such as Lahiri and Sheng (2008), Patton and Timmer-
mann (2010) and Coibion and Gorodnichenko (2012), aims to discern between various sources of
disagreement. For example, disagreement may be generated by differential prior expectations, dif-
ferential information sets, as well as different ways of interpreting a given piece of information.
Distinguishing between these sources of disagreement is useful to test and improve theories of ex-
pectation formation (see Pesaran and Weale, 2006, for a review). A second branch of the literature
asks the practical question whether disagreement is useful to construct measures of forecast uncer-
tainty. In an early study, Zarnowitz and Lambros (1987) note that disagreement in the cross-section
of forecasters does not necessarily imply that the future is particularly uncertain. For example,
each forecaster may be convinced that her point prediction would materialize with probability one.
Conversely, all forecasters may agree on a particular mean forecast, but also agree that there is
considerable uncertainty around this prediction. This point is lucidly summarized in the following
quote:
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Figure 1: T-bill rate forecasts from the 2011Q1 edition of the SPF, separated across different target
dates (kernel density estimates based on 37 individual forecasts).

When the standard deviation of a set of corresponding predictions by different individuals
is taken to indicate uncertainty, the underlying assumption is that this interpersonal
dispersion measure is an acceptable proxy for the dispersion of intrapersonal predictive
probabilities [...]. The validity of this assumption can by no means be taken for granted;
it is an empirical question that is best answered by direct measurement and testing. –
Zarnowitz and Lambros (1987, p. 593)

Following this suggestion, many authors analyze the empirical relationship between cross sectional
forecast disagreement and (various measures of) uncertainty. Using data from the Livingston
Survey, Bomberger (1996) presents evidence that disagreement (measured as the cross-sectional
variance of forecasts) predicts the square of subsequent forecasting errors. This suggests that
disagreement may be a useful regressor in modeling conditional heteroscedasticity. Alternatively,
studies such as Giordani and Söderlind (2003), Boero, Smith, and Wallis (2008) and Lahiri and
Sheng (2010) compare disagreement to variance measures constructed from histogram type survey
forecasts. The latter are covered by the SPF and the SEF; they contain individual level probability
forecasts for several ranges of the outcome variable. While the histograms provide rich information
in principle, several conceptual and practical issues must be solved before one obtains an estimate
of their implied forecast uncertainty, see Giordani and Söderlind (2003) and Engelberg, Manski,
and Williams (2009) for careful discussions. All in all, the caveats mentioned therein make it hard
to accept histogram based uncertainty measures as a “gold standard” by which the role of disagree-
ment could be judged.

To summarize, the existing literature focuses on one cross-sectional measure (disagreement) and one
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notion of predictive uncertainty (variance). Here we generalize this perspective and ask whether
the cross-section of point forecasts is useful to construct forecast distributions of US macroeco-
nomic variables. That is, rather than using one variable to predict another variable, we use one
distribution to predict another distribution. Our motivation is twofold. First, while variance is a
natural starting point for characterizing uncertainty, the T-bill example above illustrates that other
aspects like skewness or tail risk (as embodied in low quantiles) matter as well. It is thus instruc-
tive to ask whether surveys help to model forecast distributions, which by construction comprise
all possible notions of uncertainty that may be of interest to a forecast user. Second, by using
statistical performance measures for distributions, we are able to evaluate the predictive content
of surveys more rigorously than studies which focus on second moments only. As detailed below,
we achieve this by drawing upon a highly developed statistical literature concerned with eval-
uating distribution forecasts (Gneiting and Raftery, 2007). In particular, our analysis avoids the
construction of a proxy for forecast variance, which has been the subject of much debate in the past.

Apart from this specific motivation, distribution forecasts have recently attracted much attention
in many areas of economics and finance (e.g. Geweke and Amisano, 2011; Maheu and McCurdy,
2011). The key attraction over more traditional mean and variance forecasts is that distribution
forecasts provide a full informational basis for a decision maker with arbitrary utility function. Spe-
cific examples include the distribution of product sales that is relevant to a firm, the distribution of
financial returns for portfolio management, and the distribution of household income for consump-
tion and savings decisions. In each of these examples, the econometric task is to accurately predict
a probability distribution, which – together with the decision maker’s utility function – prescribes
an optimal decision (see Geweke, 2005, Section 2.4, for a formal discussion).

In our empirical analysis, we consider predicting the US T-bill rate, unemployment, GDP growth
and inflation, using quarterly data between 1968 and 2013. Our results are based on recursive
(out of sample) estimates of various forecasting models based on survey forecasts from the SPF.
For GDP and inflation, which are considerably revised over time, we use macroeconomic real time
data provided by the Federal Reserve Bank of Philadelphia. All of this embeds our analysis into a
practically relevant forecasting scenario. This contrasts with much of the earlier literature, which
considers the in sample relationship between disagreement and proxies of forecast variance. In
order to harness information from the cross-section of SPF forecasts, we consider two distinct ap-
proaches. First, a novel “micro–level” approach uses past data and parametric assumptions to
estimate the subjective forecast distribution of each individual SPF participant. We then combine
all individual–level distributions to obtain a single forecast distribution. Based on just one pa-
rameter, the micro–level approach avoids overfitting, is trivial to implement and yet theoretically
appealing. A second (“aggregate–level”) approach rests on the opposite idea of fixing a parametric
form for the predictive distribution, and feeding it with summary information from the cross-section
of SPF forecasts.

The outline of the paper is as follows. Section 2 takes a more formal look at our problem, and
illustrates the nexus between disagreement and uncertainty in an idealized setting. We then provide
empirical evidence on our research question. To this end, Section 3 introduces the data and forecast
evaluation methods, and Section 4 presents the two SPF-based models mentioned above. Section
5 considers forecast combinations in order to analyze whether surveys add information beyond
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state of the art time series models, rather than merely being a substitute. Section 6 provides some
comparisons to histogram forecasts, and Section 7 concludes.

2 Formal Motivation

This section presents a more formal motivation of disagreement under specific assumptions. Con-
sider a group of forecasters i = 1, . . . , n, and suppose that the predictive density ft,i of forecaster i
at time t has mean µt,i and variance σ2t,i.

1 Suppose further that, in order to aggregate the n fore-

cast densities, a researcher uses the linear density combination ft,a ≡ 1
n

∑n
i=1 ft,i. The assumption

of equal weights
(
1
n

)
across forecasters is made purely for notational simplicity but can easily be

relaxed. Well-known results for mixture distributions imply that ft,a has variance

σ2t,a = EX∼ft,a
[
(X − µt,a)2

]
=

1

n

n∑
i=1

(µt,i − µt,a)2︸ ︷︷ ︸
Disagreement Dt

+
1

n

n∑
i=1

σ2t,i︸ ︷︷ ︸
Average Variance AVt

, (1)

where µt,a = 1
n

∑n
i=1 µt,i is the average mean forecast, and X ∼ ft,a indicates that X is distributed

according to ft,a.

The “Dt” term in (1) is readily available from sources such as the SPF, which publishes point
forecasts at the level of individual participants, for dozens of variables and at five different forecast
horizons. By contrast, the “AVt” term in (1) is hard to estimate from surveys. While some surveys
(such as SPF and SEF) cover distributional forecasts in the form of histograms, these histograms
are restricted to narrow subsets of variables, time periods and forecast horizons, and require addi-
tional assumptions before yielding estimates of {σ2t,i} (see Engelberg, Manski, and Williams, 2009,
as well as Section 6 below).

Given the difficulty to estimate AVt, it is not surprising that many authors have analyzed whether
Dt alone is a useful proxy for predictive variance, see the references in the introduction. Based on
(1), the role of disagreement is twofold: First, being the first summand it accounts for a certain
share of predictive variance by construction. Second, Dt and AVt may be correlated over time, in
which case the former can be used as a predictor of the latter.

Interestingly, the above line of reasoning can be extended to moments beyond the second one. Stan-
dard results (e.g. Frühwirth-Schnatter, 2006, Chapter 1.2.4) imply that the third central moment

1In practice, the number of forecasters may differ across time periods, so that n becomes nt. Furthermore, survey
forecasts are specific to a certain horizon (time between forecast and realization, say, h). For simplicity, we suppress
these dependencies for the moment; we use a more detailed notation when describing the models in Section 4.
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of a linearly combined forecast distribution is given by

λt,a = EX∼ft,a
[
(X − µt,a)3

]
=

1

n

n∑
i=1

(µt,i − µt,a)3︸ ︷︷ ︸
Cross-sectional skewness CSSt

+

weighted Average Variance wAVt︷ ︸︸ ︷
1

n

n∑
i=1

3 (µt,i − µt,a) σ2t,i

+
1

n

n∑
i=1

λt,i︸ ︷︷ ︸
Average Skewness ASt

, (2)

where λt,i = EX∼ft,i
[
(X − µt,i)3

]
is the third central moment implied by the distribution of fore-

caster i. Note that the cross-sectional skewness (CSS) accounts for a portion of the skewness of the
mixture distribution; this situation is analogous to the case of σ2t,a above. Extending the analogy,
CSSt is the only term in λt,a that can be empirically observed from survey data, and might be
correlated with the other summands in (2). This motivates the idea to use CSSt as a proxy for
the skewness λt,a of a forecasting distribution. This procedure could be similarly extended beyond
the third moment. However, given the moderate sample size of n ≈ 40 in the SPF, these moments
of the cross sectional forecast distribution are hard to estimate in practice, and we do not consider
them here.

To summarize, the cross-sectional distribution of forecasts can help to infer properties of the linear
mixture ft,a - the latter is usually unavailable, because surveys rarely contain forecast information
beyond the first moment. Of course, this motivation of disagreement hinges on the notion that the
linear density combination ft,a is an appropriate way to aggregate individual density forecasts {ft,i}
in the first place. If this assumption holds, the empirical challenge is to find a functional form which
best exploits the role of disagreement. For example, consider the case of the predictive variance
in Equation (1). If AVt is (approximately) a linear function of Dt, for example, then σ2t,a is also
a linear function of Dt.

2 This functional form assumption has been considered by Bomberger (1996).

There may be situations in which nonlinear combinations of individual densities are a more accurate
description of reality than linear ones, so that interest lies on density combinations other than ft,a.
In these cases, the role of the cross-sectional forecast distribution is less clear. For example, Krüger
(2014b) points out that in the case of logarithmic density combinations, the combined variance
is a harmonic average of all individual variances, with disagreement not entering the equation.
Even in this example, however, disagreement might be useful through its potential correlation
with the (harmonic) average variance. Similar considerations apply to more complex nonlinear
density combinations like the ones considered by Gneiting and Ranjan (2013). Finally, we note that
histogram forecasts covered by the SPF aim to elicit probability assessments directly. In Section 6,
we compare histograms to our proposed approach of reconstructing probability distributions from
sets of point forecasts.

2In formulas, if AVt = a+ b Dt for two constants a, b, then σ2
t,a = a+ (b+ 1)Dt.
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3 Data and Evaluation Methods

3.1 Data

As mentioned in the introduction, we consider forecasting four quarterly US macro variables: GDP
growth (annualized log growth rate of real GDP), inflation (annualized log growth rate of the GDP
deflator), the unemployment rate (quarterly average rate), and the T-bill rate (yield to three-month
US government bonds; quarterly average rate). The GDP growth and inflation series are revised
over time, which should be accounted for when designing a realistic forecasting experiment (e.g.
Croushore, 2006). Whenever we estimate a model for one of the two variables, we thus employ the
most recent data vintage available at that time, using real time data provided by Federal Reserve
Bank of Philadelphia (2014a). For unemployment and the T-bill rate, data revisions are commonly
considered too small to be of practical relevance (see e.g. Clark and Ravazzolo, 2013). For these
series, we therefore use the latest data vintage as provided by Federal Reserve Bank of St. Louis
(2014). Figure 2 presents time series graphs for all series.

In order to compute features of the cross-sectional SPF forecast distribution, we use the micro level
data published by Federal Reserve Bank of Philadelphia (2014b). The data contains individual–
level forecasts for GDP, inflation and unemployment from 1968:Q4 onwards, whereas coverage of
the T-Bill rate starts only in 1981:Q3. The survey was initially administered by the American Sta-
tistical Association, and taken over by the Philadelphia Fed in 1990:Q2. As illustrated by Figure 3,
the number of participants varies quite substantially over time, and currently stands at around 40.
The SPF survey is conducted in the middle of each quarter, which implies that the participants do
not yet know the current quarter’s realization. We hence refer to the current quarter forecast as
horizon h = 1, and to the one-year ahead forecast as horizon h = 5 in the following.

For all models presented below, we perform parameter estimation in a rolling window fashion, with
a window length of 40 quarters. The first forecast we make (= start of evaluation sample) refers to
the target date 1983:Q2 for GDP, inflation, and unemployment, and to 1994:Q4 for T-Bill. These
dates are chosen such that the available set of evaluation dates is the same for each forecast horizon.
In order to account for possible effects of the recent crisis, we consider two evaluation samples, one
ending in 2007:Q4 (“pre crisis”), and one ending in 2013:Q2 (“complete”).

3.2 Evaluation methods

We consider predicting the distribution of a random variable Yt+h, which denotes the stationary
transform of a macro variable of interest. The forecast is based on information Ft available at
date t, and is represented here by the probability density function ft(Yt+h) or, equivalently, by the
cumulative distribution function Ft(Yt+h). We next require a loss function to evaluate the quality of
Ft, given a realizing outcome yt+h. Throughout this paper, we interpret loss functions as penalties
– the smaller, the better. A wide range of loss functions have been suggested in the literature;
see e.g. Gneiting and Raftery (2007). We use the Continuous Ranked Probability Score (CRPS;
Matheson and Winkler, 1976) given by

CRPS(Ft, yt+h) =

∫
R

[Ft(z)− 1(z ≥ yt+h)]2 dz, (3)
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Figure 2: Time series of the variables considered in the empirical analysis. For GDP and inflation,
real time data vintages used for model estimation are plotted in light gray. In each panel, the
leftmost vertical line marks the first observation of the evaluation sample. The other vertical lines
mark 2007Q4 and 2013Q2, the endpoints of the two evaluation samples we consider.
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Figure 3: Number of SPF participants (= number of forecaster IDs in the data set) over time.
The numbers refer to current-quarter forecasts of inflation, but are very similar for other forecast
horizons and variables.

which integrates the squared distance between Ft(z) and a step function 1(·) that jumps from zero
to one at z = yt+h. It can be shown that the CRPS sets the incentive for a forecaster to reveal
his true expectations about Yt+h – that is, given Ft, the expected score is minimized by stating
the true conditional distribution.3 Thus, the CRPS is what the literature calls a “strictly proper”
loss function, and thereby qualifies as a suitable performance criterion in our context. The CRPS
possesses a number of other attractive conceptual features, and has been found to be reliable in
practice (cf. Gneiting and Raftery, 2007, Sections 4.2 and 8.2).

As is common in the forecasting literature, our main interest lies in comparing alternative forecast-
ing methods (say, A and B) for Yt+h. Following the classical framework of Diebold and Mariano
(1995), this amounts to testing the null hypothesis that A and B attain the same expected CRPS
(where the expectation is unconditional over time). The null hypothesis can be tested by computing
the loss difference

dt+h = CRPS(FAt , yt+h)− CRPS(FBt , yt+h)

for a range of (quarterly) evaluation dates t = 1, . . . , T , and computing the statistic

d̄

V̂ (d̄)
, (4)

where d̄ = T−1
∑T

t=1 dt is the average CRPS difference over time, and V̂ denotes a (heteroscedas-
ticity and autocorrelation) robust estimator of its variance. Below we compare forecasts in various
scenarios, including comparisons of both nested and nonnested models. For simplicity, and moti-
vated by simulation evidence in Clark and McCracken (2013), we consistently use a rectangular
kernel with truncation lag h− 1 for the variance estimator in (4), and compare the test statistic to

3This statement does not contradict the fact that, after yt+h has realized, (3) implies that it would have been
optimal to state Ft = 1(z ≥ yt+h).
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standard normal critical values.4

4 Forecasting Models based on the SPF Cross-Section

This section first introduces two distinct forecasting approaches based on the cross-section of SPF
point forecasts, and then presents empirical out-of-sample results.

4.1 Micro–level approach

Consider the cross-section of point forecasts made at date t, with target date t + h: {µt+h|t,i}nt
i=1.

The size of the SPF cross-section, nt, may fluctuate over time as mentioned above. We propose the
following simple forecast distribution:

ft(Yt+h) =
1

nt

nt∑
i=1

N (µt+h|t,i, σ
2), (5)

whereN denotes the normal distribution and σ2 > 0 is a single parameter to be estimated. From the
discussion in Section 2, it is clear that the forecast distribution in (5) has the following properties:

• Its mean is equal to the average mean across SPF panelists, µt+h|t,a = 1
nt

∑nt
i=1 µt+h|t,i

• By Equation (1), its variance is given by σ2t+h|t,a =
1

nt

nt∑
i=1

(µt+h|t,i − µt+h|t,a)2︸ ︷︷ ︸
≡Dt+h|t

+ σ2.

• By Equation (2), its skewness is given by 1
nt

∑nt
i=1(µt+h|t,i − µt+h|t,a)3 ≡ CSSt+h|t.

The estimator is a simple (one-parameter) way of “scaling up” the cross-section of point forecasts
to attain a justifiable forecast distribution. Specifically, the distribution in (5) inherits its first and
third moments from the original cross-section of forecasts. However, and crucially, it increases the
variance of the latter. The magnitude of the increase is determined empirically, by minimizing
the model’s training-sample CRPS with respect to σ2 > 0. For this purpose, we use the general
formula for the CRPS of a mixture of normals (Grimit, Gneiting, Berrocal, and Johnson, 2006).
We also use this formula to compute the out-of-sample CRPS of the fitted model, see Appendix B
for implementation details.

From an economic perspective, the model is based on the notion that all forecasters share the same
degree of uncertainty (σ2) around their prediction, and are equally informative (equal weights).
While this assumption is restrictive, it simplifies the model in a number of ways. First, it makes
the forecast distribution invariant to “who says what” (i.e., invariant under permutations of the
ID indices i ∈ {1, . . . , nt}). This is an important practical advantage: The SPF data is a panel
of changing composition, with frequent entry and exit of individual forecasters (Capistrán and

4In the rare cases that the estimated variance is negative, we resort to a Newey and West (1987) variance estimator
using Bartlett weights, together with the Newey and West (1994) method for bandwidth selection, see Zeileis (2004)
for implementation details in the R package “sandwich”.
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Timmermann, 2009; Engelberg, Manski, and Williams, 2011; D’Agostino, McQuinn, and Whelan,
2012). This renders estimating individual specific forecast variances or combination weights from
past data very difficult. Second, the Philadelphia Fed does not guarantee the correctness of the IDs
prior to 1990s, which would render individual-specific combination problematic even with complete
data. Third, the assumption makes the model trivial to implement, requiring the user to estimate
only a single parameter.

From a statistical perspective, the distribution in (5) corresponds to a kernel density estimate of the
cross-sectional distribution of point forecasts, based on a Gaussian kernel and bandwidth parameter
σ. Importantly, however, we choose σ in order to maximize the density forecasting performance of
our model, which is distinct from the usual approaches toward bandwidth choice in nonparametric
estimation. This difference arises because we use the cross-section of point forecasts to construct an
accurate density forecast, rather than estimating the cross-sectional distribution of point forecasts
itself. The latter would be the standard case of kernel density estimation. Furthermore, the ap-
proach in (5) can be seen as a variant of Bayesian Model Averaging used to postprocess ensembles
of meteorological point forecasts (Raftery, Gneiting, Balabdaoui, and Polakowski, 2005). However,
the present model is simpler in that the combination weights and variances are assumed equal
across mixture components. Thus, we treat the SPF as what is called an “exchangeable ensemble”
in meteorology. See Gneiting and Thorarinsdottir (2010) for further discussion on forecast ensem-
bles in meteorology versus economics.

To illustrate the micro–level method in practice, consider current-quarter T-Bill forecasts in 2011:Q1.
Here the in–sample CRPS is minimized by setting σ2 in Equation (5) to a very small value
(≈ 4.68× 10−5), thus the predictive variance σ2t+h|t,a is dominated by the disagreement component

(Dt+h|t ≈ 2.4 × 10−3). The top left panel of Figure 4 presents the resulting forecast distribution
for the T-Bill rate (bold line) which is an average over nt = 40 Gaussians representing the individ-
ual SPF panelists (light gray). As another example, the top right panel of Figure 4 presents the
forecast distribution for the same origin date, but referring to inflation, one year ahead. Here we
estimate σ2 as approximately 1.39, which is clearly larger than disagreement (Dt+h|t ≈ 0.78) and
thus accounts for almost two thirds of the predictive variance σ2t+h|t,a.

4.2 Aggregate–level approach

In the micro–level approach, the form of the forecast distribution is not controlled directly, but is
the result of aggregating over nt individual–level distributions. The opposite approach is to assume
a parametric form for the forecast distribution, and incorporate information from the SPF cross-
section via appropriate regressors. Here we consider this idea, whereby the regressors are summary
statistics which represent the first three moments of the SPF cross-section for a given date, variable
and forecast horizon. We use the following functional form for the h step ahead forecast density
ft(Yt+h):

ft(Yt+h) =
1

σt+h|t
f

(
Yt+h − µt+h|t

σt+h|t
; η, λt+h|t

)
, (6)

where
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Figure 4: Illustrative forecast distributions (origin date: 2011:Q1). Realizing value of the predictand
is illustrated by a dashed vertical line. Top row: Micro–level approach, with thick line representing
the mixture distribution and thin lines representing components. Bottom row: Aggregate–level
approach, with solid line representing specification #2 and dotted line representing specification
#3.
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• f(X; η, λt+h|t) is the probability density function (p.d.f.) of the Hansen (1994) skewed t
distribution with η > 2 degrees of freedom and skewness parameter λt+h|t ∈ (−1, 1). See
Appendix A for the formula of the p.d.f.

• µt+h|t and σ2t+h|t are the conditional mean and variance of the forecast.

Importantly, note that f(X; η, λt+h|t) implies a mean of zero and variance of one regardless of the
value for η and λt+h|t. Thus, the Hansen (1994) distribution provides a clean channel to model the
forecast variance without affecting other moments of the distribution. For this reason, and because
of the flexibility it provides, the distribution is our preferred choice to tackle the problem at hand.5

In all of the following, we fix η at a value of 20 to ease estimation; however, our results are qual-
itatively very robust to other plausible choice of η. As summarized in Table 1, we consider three
different specifications for the remaining parameters of the distribution. Importantly, all of these
forecast distributions share the same mean µt+h|t (that of the SPF forecasts) and tail thickness
(η = 20). This allows us to isolate differences in forecast performance which are due to the models’
predictive variance and skewness.

Specifications #1 to #3 all include survey disagreement Dt+h|t into the variance, with the additive
functional form motivated by the discussion in Section 2, in particular Equation (1). In addition to
that, Specification #3 uses a measure of cross-sectional skewness to model the predictive skewness
parameter λt+h|t. Our preferred measure of cross-sectional skewness is given by

skt+h|t =
µt+h|t −mediant+h|t√

Dt+h|t
, (7)

where mediant+h|t is the cross-sectional median of the point forecasts. This skewness measure is
standard and is used, e.g., by the Bank of England to communicate skewness in their forecast
distributions for output growth and inflation (see Wallis, 2004). It appears to be more robust than
using CSSt+h|t (see Equation 2) directly, because the latter involves estimating the third moment
from a small sample of around 40 SPF point forecasts. Since λt+h|t must be bounded between
(−1, 1), we model it as λt+h|t = Ψ(β skt+h|t), where β ∈ R is a parameter to be estimated, and

Ψ(z) = exp(2z)−1
exp(2z)+1 is the inverse Fisher transformation.

We estimate all specifications using maximum likelihood. For out-of-sample evaluation, we com-
pute the CRPS of the fitted distribution by numerically calculating the integral in Equation (3),
see Appendix B for details.

The bottom row of Figure 4 illustrates specifications #2 (solid curve) and #3 (dotted) of the aggre-
gate approach, for the same two forecast scenarios as in the figure’s top row. The two specifications
yield fairly similar results for inflation (right panel), with specification #2 showing slightly more
skewness. The picture is different for the T-Bill example (left panel): While specification #3 picks

5Focusing on US CPI inflation, Gneiting and Thorarinsdottir (2010, Section 3.1) consider an idea that is similar
to our “aggregate–level” approach. However, they use a two-piece normal distribution, rather than skewed t, and
focus on the first two cross-sectional survey moments.
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Specification # σ2t+h|t λt+h|t

1 α+ Dt+h|t 0

2 α+ Dt+h|t [constant]

3 α+ Dt+h|t Ψ(β skt+h|t)

Table 1: Alternative parametrizations of the density in Equation (6). All specifications set the mean equal
to the SPF mean, and fix the degrees of freedom parameter at 20. α and β denote parameters to be estimated
(α is forced to be strictly positive throughout). Dt+h|t and skt+h|t have been introduced in Section 4.1 and
Equation (7), respectively. Ψ(·) denotes the inverse Fisher transformation.

up the pronounced skewness of the cross-sectional forecast distribution, specification #2 – which
models skewness as a fixed parameter – is very close to being symmetric.

4.3 Benchmark method

In order to evaluate the micro–level and aggregate–level approaches, we require a benchmark
method. For this purpose, we choose the functional form in Equation (6), with mean equal to
the SPF mean, variance estimated over a rolling window of 40 observations, zero skewness, and 20
degrees of freedom as above. This benchmark makes only minimal use of the SPF cross-section, in
that it incorporates the mean forecast but no other cross-sectional features like variance or skew-
ness. It thus corresponds to a skeptical attitude towards the SPF cross-section, as expressed by
some authors which emphasize conceptual differences between disagreement and uncertainty (cf.
the discussion in the introduction). Note that the benchmark’s rolling window based variance esti-
mate is a simple way to approximate volatility clustering in macroeconomic variables. We consider
more elaborate time series methods in Section 5 below.

4.4 Out-of-sample results in terms of CRPS

Table 2 presents the out-of-sample results. It suggests the following main points which are broadly
consistent across both sample periods (two panels of the table).

• The micro–level (“M–L”) method performs very well on the whole, and often yields significant
improvements over the benchmark method at the 5% significance level; this is indicated by
light gray cell coloring in Table 2. In contrast, the benchmark provides significant improve-
ments over M–L only in one situation (inflation, h = 5).

• A–L #1 (disagreement-based variance, zero skewness) is the toughest overall competitor of
M–L. It performs slightly better than M–L for GDP, slightly worse than M–L for T-Bill, and
both methods perform very similarly for unemployment and inflation.

• A–L #1 consistently attains a smaller CRPS than the benchmark for all variables except
inflation, suggesting that disagreement can be helpful in modeling the conditional variance of
macro variables. Interestingly, the existing literature has mainly focused on disagreement in
inflation forecasts.6 Our results imply that this focus draws an overly negative picture about

6From an economic perspective, this focus is natural given the prominent role of expectations for inflation, see
e.g. Mankiw, Reis, and Wolfers (2003) and Pesaran and Weale (2006).
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Figure 5: Time series of predictive standard deviations (left) and skewness (right) for GDP, h = 4.
Skewness is measured as (mean-median)/standard deviation. The solid line represents the M–L
approach; the dotted line represents A–L #3.

the usefulness of disagreement in macroeconomic forecasting.

• The A–L methods involving two parameters (#2 and 3) tend to perform poorly overall, sug-
gesting that incorporating skewness is not helpful in the context of the A–L methods. This
statement holds for both constant skewness (#2), and skewness modeled as a function of the
SPF cross-section (#3). The poor performance of these methods may be due to the fact
that the parameter estimators of these methods have to discriminate between variance and
skewness of the predictive distribution. Disentangling the two may be difficult in small sam-
ples, possibly leading to estimation noise which could explain the methods’ poor forecasting
performance.

On the whole, we view these results as supporting the M–L approach. While A–L #1 performs
similarly well empirically, it is based on the ad–hoc restriction of zero skewness which we think is
conceptually undesirable. In contrast, M–L flexibly adopts to possible skewness (and other cross-
sectional features). This is achieved at the small cost of fitting a single parameter, which makes
the method less susceptible to overfitting than the aggregate–level methods which model skewness.
To illustrate this point, the left panel of Figure 5 plots the predictive standard deviations of the
M–L and A–L #3 approaches over time, for the case of GDP and horizon h = 4. The standard
deviations are highly correlated across the two methods. The right panel of Figure 5 considers
predictive skewness, defined as the difference between mean and median, divided by the predictive
standard deviation. For M–L, skewness is very moderate. In contrast, the pronounced levels and
abrupt changes of skewness in the case of A-L #3 point to possible overfitting, which may explain
why the method tends to perform worse than M–L in our out-of-sample comparison.
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4.5 Out-of-sample results in terms of calibration and sharpness

As pointed out by Gneiting and Katzfuss (2014), the goal of probabilistic forecasting is to produce
distributions that are as sharp as possible, subject to being calibrated (i.e., in line with reality).
Scoring rules like the CRPS can be seen as summary measures of both calibration and sharpness.
We next illustrate how the M–L approach does a satisfactory job in terms of both aspects. To that
end, consider the central 80 percent prediction interval, defined as the range between the 10 and
90 percent quantiles of the forecast distribution. Calibration demands that it this interval cover
the actual realization with probability 0.8, whereas sharpness requires the interval to be as short
as possible.

Table 3 shows that both the benchmark and M–L achieve empirical coverage rates that are fairly
close to the nominal target level of 80 percent (ranging from 74 to 89 percent). The table also
shows that for GDP, Unemployment and T-Bill, the M–L approach leads to shorter prediction
intervals than the benchmark. For example, in the case of GDP and h = 5, the average length of
the intervals is 7.34 for the benchmark, compared to 6.43 for M–L. Inflation is the only variable
for which M–L produces slightly longer prediction intervals than the benchmark. These findings
are well consistent with the results in Table 2 in terms of CRPS, in that M–L outperforms the
benchmark for all variables except inflation.

5 Combination with Time Series Forecasts

In our models based on the SPF cross-section, time-varying heteroscedasticity is generated via
disagreement. We next compare these models to a flexible time series model with time varying
variances, and ask whether the survey-based models contain relevant information beyond the latter.
For this purpose, we consider a Bayesian Vector Autoregressive (BVAR) model with time-varying
parameters and stochastic volatility, as proposed by Primiceri (2005). We then consider combining
the BVAR distribution with the survey based ones, in order to analyze whether surveys can add
information beyond the BVAR.

5.1 Description of the BVAR model

The BVAR postulates that the four variables of interest (say, Zt) follow a vector autoregressive
process with time-varying parameters and stochastic volatility, such that

Zt = θtXt + εt (8)

θt = θt−1 + νt (9)

εt
iid∼ N (0,Ωt) (10)

AtΩtA
′
t = ΣtΣ

′
t (11)

vech(At) = vech(At−1) + ηt (12)

log diag(Σt) = log diag(Σt−1) + εt, (13)

where Zt is a (4×1) vector stacking the four variables at a given date, Xt =
[
1[1×4], Z ′t−1, Z ′t−2

]′
, θt

is a parameter vector conforming to Xt, Ωt is the (4× 4) variance-covariance matrix of εt, At is a
lower triangular matrix, Σt is a diagonal matrix with strictly positive elements, and {νt, ηt, εt} are
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Complete (≤ 13Q2) Pre Crisis (≤ 07Q4)
Forecast Horizon 1 2 3 4 5 1 2 3 4 5

GDP

Benchmark 0.998 1.164 1.237 1.300 1.311 1.008 1.139 1.185 1.224 1.226

A–L #1 0.975 1.116 1.203 1.256 1.284 0.980 1.087 1.146 1.171 1.192
A–L #2 0.993 1.177 1.279 1.383 1.443 1.002 1.160 1.238 1.280 1.313
A–L #3 1.100 1.452 1.189 1.438 1.320 1.118 1.459 1.133 1.365 1.197
M–L 0.982 1.127 1.202 1.259 1.275 0.994 1.105 1.152 1.185 1.188

Unemployment

Benchmark 0.088 0.180 0.268 0.365 0.462 0.078 0.155 0.225 0.301 0.371

A–L #1 0.087 0.178 0.264 0.361 0.458 0.078 0.154 0.223 0.298 0.368
A–L #2 0.103 0.221 0.352 0.576 0.829 0.098 0.198 0.298 0.490 0.728
A–L #3 0.104 0.195 0.286 0.373 0.466 0.099 0.175 0.253 0.313 0.383
M–L 0.086 0.179 0.265 0.360 0.455 0.077 0.155 0.225 0.301 0.371

Inflation

Benchmark 0.485 0.541 0.591 0.636 0.681 0.476 0.542 0.594 0.645 0.693

A–L #1 0.485 0.543 0.602 0.636 0.687 0.476 0.545 0.606 0.644 0.702
A–L #2 0.561 0.577 1.111 0.866 1.053 0.568 0.585 1.225 0.924 1.144
A–L #3 0.510 0.632 0.811 0.750 1.046 0.505 0.654 0.861 0.770 1.138
M–L 0.477 0.537 0.595 0.638 0.696 0.467 0.539 0.601 0.648 0.710

T-Bill

Benchmark 0.080 0.249 0.435 0.629 0.820 0.080 0.239 0.402 0.576 0.737

A–L #1 0.074 0.247 0.432 0.628 0.819 0.079 0.239 0.400 0.575 0.736
A–L #2 0.112 0.247 0.434 0.629 0.875 0.132 0.240 0.439 0.644 0.835
A–L #3 0.092 0.245 0.462 0.685 0.846 0.100 0.237 0.424 0.654 0.752
M–L 0.069 0.233 0.424 0.626 0.822 0.074 0.235 0.399 0.574 0.736

Table 2: Average CRPS scores, evaluation sample starting in 1983Q2 (1994Q4 for T-Bill). Specifi-
cations described in Table 1. All models estimated on rolling windows with 40 observations (= 10
years of data). Dark gray coloring indicates that a method performs significantly worse than the
benchmark method, whereas light gray coloring indicates significantly better performance. We use
two-sided Diebold and Mariano (1995) type tests for equal CRPS and a 5% significance level; see
Section 3.2 for implementation details.
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Forecast Horizon 1 2 3 4 5

GDP

Coverage (Benchmark) 0.86 0.86 0.86 0.87 0.87
Coverage (M-L) 0.83 0.87 0.86 0.84 0.83
Length (Benchmark) 5.46 6.59 6.93 7.26 7.34
Length (M-L) 5.12 6.12 6.33 6.43 6.43

Unemployment

Coverage (Benchmark) 0.79 0.85 0.89 0.89 0.88
Coverage (M-L) 0.74 0.83 0.83 0.87 0.88
Length (Benchmark) 0.39 0.85 1.28 1.71 2.09
Length (M-L) 0.36 0.82 1.22 1.61 1.96

Inflation

Coverage (Benchmark) 0.83 0.85 0.83 0.83 0.83
Coverage (M-L) 0.85 0.84 0.83 0.82 0.84
Length (Benchmark) 2.28 2.7 2.98 3.33 3.72
Length (M-L) 2.39 2.7 3.03 3.37 3.81

T-Bill

Coverage (Benchmark) 0.8 0.88 0.85 0.81 0.81
Coverage (M-L) 0.79 0.81 0.85 0.81 0.81
Length (Benchmark) 0.33 1.16 2.07 2.96 3.78
Length (M-L) 0.3 0.84 1.89 2.91 3.8

Table 3: Coverage is defined as the share of observations that fall within the prediction intervals
(the nominal target level is 80 %). Length is the average length of the prediction intervals. All
numbers refer to the complete sample period defined below Table 2.

20



mean zero, homoscedastic Gaussian disturbance vectors of appropriate dimensions.

Formally, the model is a nonlinear state space model, with unobserved states {θt, At,Σt}. Following
Primiceri (2005), we use Bayesian methods for estimation and forecasting. A first motivation for
this choice is simplicity: Since the model’s likelihood function is a high dimensional integral, fre-
quentist analysis (filtering of the unobserved states, maximization of the log likelihood function) is
numerically challenging and requires highly specialized methods. Bayesian estimation using Markov
Chain Monte Carlo (MCMC) seems more convenient (see e.g. Koop and Korobilis, 2010). A second
motivation for Bayesian estimation is that informative prior distributions provide a clean channel
to impose structure on the model quantities, e.g. in order to limit time variation in θt. This seems
necessary to avoid overfitting.

We estimate the model using MCMC methods, closely following the implementation in Primiceri
(2005), except for the correction by Del Negro and Primiceri (2014). Our prior distributions are
chosen exactly as in the original source, which entails auxiliary least squares regressions for some
of the parameters. We refer the reader to the original articles for details. To estimate the model,
we use the R package bvarsv (Krüger, 2014a), which provides an R/C++ implementation. Distri-
bution forecasts from the model in Equations (8) to (13) come in the form of a simulated MCMC
sample. We employ kernel density estimation to construct a forecast density, see Appendix B for
details.

Importantly, our real-time approach implies that forecasts with origin date t do not incorporate
the vector Zt, but only last quarter’s vector Zt−1. This puts the BVAR at a disadvantage relative
to the SPF participants, who have access to timely intra-quarterly information at that time (e.g.
industrial production indexes as a first proxy for GDP, consumer price inflation as a proxy for GDP
deflator inflation, the first monthly unemployment rate, daily T-Bill rates for the first half of the
month). However, precise modeling of the SPF information set requires one to deal with issues like
the timing of data releases or index construction by official agencies, and has become the focus of a
specialized literature (cf. Faust and Wright, 2013, Section 2.7.3). This is well beyond the scope of
the current paper, so we focus on the quarterly BVAR as a (data–wise) simpler time series model.

5.2 Forecast combinations

Below we analyze combined distribution forecasts of the form

1

3

(
fM−Lt (Yt+h) + fA−Lt (Yt+h) + fBV ARt (Yt+h)

)
,

which corresponds to an equally weighted linear combination of the individual models’ forecast
densities (Stone, 1961). Throughout this section, “A–L” denotes the “A–L #1” specification studied
in Section 4. We also consider two-model pools of the form

1

2

(
fM−Lt (Yt+h) + fA−Lt (Yt+h)

)
.
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Our motivation for focusing on equal weights is that we aim to assess the impact of including a
given model into a model. This impact appears easiest to see with equal weights.7

Our focus on combining probabilistic survey versus time series forecasts is different from earlier
studies which consider various types of point forecast combinations involving survey and time
series components (e.g. Elliott and Timmermann, 2005; Faust and Wright, 2009; Wright, 2013;
Frey and Mokinski, 2014). In terms of methodology, our approach is related to studies such as Hall
and Mitchell (2007), Geweke and Amisano (2011) and Krüger (2014b) which analyze combinations
of distribution forecasts in economic contexts.

5.3 Results

The results in Table 4 can be summarized as follows.

• For all four variables, the BVAR performs clearly worse than the SPF based methods at
short horizons; this is not surprising given its smaller information set as described above. At
longer horizons, the BVAR still performs somewhat worse than the survey methods, but the
differences are much smaller.

• The equally weighted pool of all three models (“BVAR/M–L/A–L”) clearly outperforms the
BVAR. At horizons h = 1, the SPF based methods attain smaller (i.e., better) CRPS numbers
than the pool, with differences being significant at the 5% level in some instances (light gray
coloring in Table 4). At horizons h ≥ 2, both M–L and A–L perform similarly to the equally
weighted pool of all three methods. Hence, although the BVAR performs slightly worse than
the survey methods when taken on its own, there is no penalty to including it in a model pool.
This finding is typical of the combination literature; Krüger (2014b) proposes an explanation
in terms of the concavity of scoring rules like the CRPS.

• Among the two-model pools, the pool of the SPF based methods clearly performs best. The
two pools which mix the BVAR with either M–L or A–L perform worse than the pool of all
three methods, especially at short horizons.

Overall, the results in Table 4 imply that “adding” the SPF based distributions clearly improves
the BVAR forecasts, whereas adding the BVAR forecast does not improve the SPF forecasting
distributions. Hence the cross-section of survey forecasts is informative even when compared to (or
combined with) fairly sophisticated time series forecasting models like the BVAR.

7With estimated weights (e.g. Geweke and Amisano, 2011), a model could be nominally included but actually
receive very little weight.
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Complete (≤ 13Q2) Pre Crisis (≤ 07Q4)
Forecast Horizon 1 2 3 4 5 1 2 3 4 5

GDP

BVAR/M–L/A–L 0.995 1.128 1.197 1.263 1.281 0.985 1.077 1.121 1.166 1.176

BVAR 1.237 1.289 1.316 1.369 1.387 1.153 1.165 1.173 1.222 1.244
M–L 0.982 1.127 1.202 1.259 1.275 0.994 1.105 1.152 1.185 1.188
A–L 0.975 1.116 1.203 1.256 1.284 0.980 1.087 1.146 1.171 1.192
BVAR/M–L 1.034 1.153 1.209 1.272 1.291 1.012 1.090 1.121 1.167 1.180
BVAR/A–L 1.026 1.147 1.212 1.280 1.301 1.000 1.078 1.120 1.169 1.184
M–L/A–L 0.977 1.121 1.204 1.264 1.279 0.985 1.094 1.152 1.185 1.189

Unemployment

BVAR/M–L/A–L 0.089 0.181 0.271 0.367 0.462 0.078 0.154 0.224 0.297 0.362

BVAR 0.118 0.217 0.321 0.428 0.529 0.097 0.173 0.247 0.319 0.382
M–L 0.086 0.179 0.265 0.360 0.455 0.077 0.155 0.225 0.301 0.371
A–L 0.087 0.178 0.264 0.361 0.458 0.078 0.154 0.223 0.298 0.368
BVAR/M–L 0.093 0.186 0.278 0.375 0.470 0.080 0.156 0.227 0.299 0.363
BVAR/A–L 0.094 0.186 0.279 0.377 0.475 0.081 0.156 0.227 0.299 0.363
M–L/A–L 0.087 0.179 0.266 0.360 0.457 0.077 0.155 0.225 0.300 0.370

Inflation

BVAR/M–L/A–L 0.494 0.545 0.586 0.623 0.679 0.485 0.547 0.587 0.626 0.686

BVAR 0.577 0.596 0.605 0.643 0.701 0.568 0.601 0.602 0.638 0.696
M–L 0.477 0.537 0.595 0.638 0.696 0.467 0.539 0.601 0.648 0.710
A–L 0.485 0.543 0.602 0.636 0.687 0.476 0.545 0.606 0.644 0.702
BVAR/M–L 0.507 0.551 0.585 0.625 0.681 0.497 0.554 0.585 0.626 0.684
BVAR/A–L 0.510 0.555 0.587 0.621 0.678 0.501 0.556 0.586 0.620 0.680
M–L/A–L 0.481 0.541 0.598 0.635 0.691 0.471 0.542 0.603 0.644 0.706

T-Bill

BVAR/M–L/A–L 0.085 0.251 0.439 0.636 0.820 0.088 0.245 0.411 0.580 0.730

BVAR 0.174 0.344 0.526 0.711 0.879 0.170 0.327 0.495 0.648 0.780
M–L 0.069 0.233 0.424 0.626 0.822 0.074 0.235 0.399 0.574 0.736
A–L 0.074 0.247 0.432 0.628 0.819 0.079 0.239 0.400 0.575 0.736
BVAR/M–L 0.097 0.260 0.450 0.647 0.829 0.099 0.255 0.423 0.589 0.736
BVAR/A–L 0.102 0.274 0.457 0.649 0.826 0.104 0.260 0.425 0.591 0.734
M–L/A–L 0.071 0.238 0.427 0.628 0.819 0.076 0.236 0.399 0.576 0.735

Table 4: Average CRPS scores, evaluation sample starting in 1983Q2 (1994Q4 for T-Bill). “X/Y/Z”
denotes an equally weighted linear density combination of models X, Y and Z. Dark gray color-
ing indicates that a method performs significantly worse than the benchmark (equally weighted
combination of BVAR, M–L and A–L), whereas light gray coloring indicates significantly better
performance. We use two-sided Diebold and Mariano (1995) type tests for equal CRPS and a 5%
significance level; see Section 3.2 for implementation details.
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6 Comparisons to SPF Histograms

We next compare the forecasting performance of the M–L approach (which stands out among the
methods considered so far) to histogram forecasts provided by the SPF. Whereas M–L imposes
parametric assumptions in order to construct density forecasts, the histograms aim to be direct
measures of the SPF panelists’ expectations. The present comparison provides further insights as
to whether the simplifying assumptions made by M–L are justified from a forecasting perspective.

As mentioned in the introduction, the availability of the SPF histograms is limited to a specific
“annual average” definition of the predictand, and to GDP and inflation (histogram questions for
other variables have been introduced in recent years, but the available time series are very short
as of now). For the period where both point forecasts and histograms are available we carry out
the following analysis. Denote by Ỹa the average of the annualized log growth rates of GDP or
inflation in year a. The SPF contains histogram forecasts of Ỹa for various forecast horizons. To
retain compatibility with the point forecast setup, we focus on one-step ahead histogram forecasts,
made in the middle of the last quarter of year a. That is, standing in the fourth quarter (indexed
by t) of year a, panelists are asked to forecast

Ỹa =
1

4
(Yt−3 + Yt−2 + Yt−1)︸ ︷︷ ︸

≡αt

+
1

4
Yt,

where, as before, Yt is the annualized log growth rate of GDP (or inflation) in quarter t. Since
1990, the timing of the SPF is such that preliminary releases of the summands in αt are known,
and the last summand Yt needs to be predicted.8 We can hence use the M–L approach to construct
a one-step ahead forecast of Ya, by adding αt to the individual point forecasts and scaling the
variance parameter appropriately.9

We follow studies such as Giordani and Söderlind (2003) and Clements and Galvão (2014) in fit-
ting a normal distribution to the histograms, whereby the normal parameters are chosen such as
to minimize the squared distance to the histogram’s cumulative distribution function.10 Figure 6
compares the SPF histograms and the M–L approach for two illustrative dates (1992 and 2011),
for both GDP and inflation. Except in one of the panels (GDP in 1992), the histogram and M–L
distributions have a very similar location. Furthermore, the spread (standard deviation) of the
histogram distributions exceeds that of the M–L approach for the two inflation examples (bottom
panels). Figure 7 presents a broader view on these issues, by plotting the means and standard
deviations over time. The figures confirm the impression gained from the illustrations, in that the
means of the histogram- versus M–L approaches are very similar, and the standard deviations of
the histograms are larger than those of the M–L approach, especially for inflation. Table 5 presents

8As described in the documentation by Federal Reserve Bank of Philadelphia (2014c), the exact timing of the SPF
prior to 1990:Q3 is less clear. We hence omit observations prior to this date from the present comparison.

9The variance is simply divided by 16 to reflect the fact that 1
4
Yt (rather than Yt, as in the M–L approach) needs

to be predicted.
10We also experimented with treating the histograms as a discrete distribution with Jt outcomes, where outcome

j ∈ {1, . . . , Jt} represents the midpoint of the j−th histogram bin. This approximation yielded worse results (in
terms of the histograms’ forecasting performance, see below), and is hence omitted for brevity.
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SPF histograms M–L

GDP 0.632 0.343
Inflation 0.226 0.173

Table 5: Mean CRPS scores over time, based on observations from 1990 to 2012. The difference in
mean scores is significant at the five percent level for GDP, and at the ten percent level for inflation.

CRPS scores for the histograms and the M–L approach, over the period 1990–2012 (23 observa-
tions). The M–L approach clearly outperforms the histograms for both variables.

Our reading of these results is as follows. First, the M–L approach does not necessarily provide
a literal representation of the SPF panelists’ probabilistic expectations. Second, this discrepancy
seems desirable in the sense of leading to more accurate forecasts. These interpretations are in
line with results by Clements (2014) and Clements and Galvão (2014) who document differences
between subjective uncertainty measures implied by SPF histograms and ex-post measures based
on realized data.

7 Conclusion

The present paper takes a new look at cross-sections of point forecasts, which arise in many sur-
veys including the SPF that we focus on here. We propose to judge these cross-sections by their
ability to fit distribution forecasts of macroeconomic variables, and motivate this proposal on both
substantial (economic) and formal (statistical) grounds.

We find that a simple “micro–level” forecasting method based on the individual SPF point forecasts
performs well in practice. This method is conceptually attractive, and can be seen as a modified
version of kernel density estimation, tailored to the present goal of distribution forecasting. It is
also trivial to implement, as it is based on a single parameter.

Our preferred specification assumes that survey disagreement is a useful component of overall
predictive variance (see Section 4.1); this view is consistent with the model analyzed by Lahiri and
Sheng (2010). In order to measure the usefulness of survey cross-sections, we analyze whether they
help to improve distribution forecasts, as measured by statistical scoring rules. This performance
metric is different from studies such as Boero, Smith, and Wallis (2008) which judge cross-sectional
survey measures by their ability to track histogram based measures of uncertainty. Our analysis
in Section 6 suggests that, if the focus is on forecasting performance, matching the histogram
measures may not be desirable. Of course, insofar as the histograms represent panelists’ perceived
uncertainty, they are relevant in their own right.
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Figure 6: Example comparisons of SPF histograms and the M–L approach. The dotted line is a
normal distribution fitted to the histograms as described in the text; the solid line represents the
M–L approach.
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2012. The dotted line represents a normal distribution fitted to the SPF histograms; the solid line
is the M–L approach.
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Appendix

A The Hansen (1994) Skewed t Distribution

The probability density function of the distribution is given by

f(X; η, λ) =


bc

(
1 + 1

η−2

[
bX+a
1−λ

]2)−0.5 (η+1)

X < −a/b

bc

(
1 + 1

η−2

[
bX+a
1+λ

]2)−0.5 (η+1)

X ≥ −a/b,
(14)

where

a = 4λc

(
η − 2

η − 1

)
,

b2 = 1 + 3 λ2 − a2,

c =
Γ(0.5× (η + 1))√
(π(η − 2) Γ(0.5 η)

.
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B Computation of the CRPS

B.1 Micro–level (M–L) method

For the M–L method, the predictive distribution is a mixture of Gaussians. Grimit, Gneiting,
Berrocal, and Johnson (2006) derive an analytical expression for the CRPS in this case. Suppose
the components are n Gaussians with means {µi}, variances {σ2i } and weights {ωi}, and an outcome
y realizes. Then, the CRPS is given by

CRPS(F, y) =
n∑
i=1

ωiA(y − µi, σ2i )−
1

2

n∑
i=1

n∑
j=1

ωiωjA(µi − µj , σ2i + σ2j ), (15)

with A(µ, σ2) = 2σφ
(µ
σ

)
+ µ

(
2Φ
(µ
σ

)
− 1
)
, where φ and Φ denote the p.d.f. and c.d.f. of the

standard normal distribution.

B.2 Aggregate–level (A–L) method

Here the forecast distribution is skewed t, and we are not aware of a useful closed form expression for
the integral in (3). We therefore approximate the integral numerically, using the integrate function
from the R software package (R Development Core Team, 2014).

B.3 BVAR

In the case of the BVAR, the forecast distribution (at a representative time point and forecast
horizon) takes the form of a simulated MCMC sample of size 1, 000, i.e. S ≡ {ŷi}1,000i=1 . We obtain
this sample by running 50, 000 MCMC iterations and retaining every 50th draw to reduce the
autocorrelation in the sequence of draws. We then run a kernel smoother on the draws in S,
using a Gaussian kernel and the Sheather and Jones (1991) bandwidth choice method. This yields
a forecast distribution that again takes the form of a mixture of normals, thus allowing to use
Equation (15) in order to compute the CRPS.

B.4 Forecast combinations

In order to compute the CRPS of combined forecast distributions, we first approximate the A–L
forecast distribution by a mixture of normals. This is done by simulating 1, 000 draws from the
original (skewed t) distribution and running a kernel smoother, using the same procedure as for
the BVAR. After this step, all three component distributions (M–L, A–L and BVAR) are mixtures
of normals, and their equally weighted combination is again a mixture of normals, of the form

1

3
×

(
1

nt

nt∑
i=1

N (µM−Li , σ2M−L) +
1

1000

1000∑
i=1

N (µA−Li , σ2A−L) +
1

1000

1000∑
i=1

N (µBV ARi , σ2BV AR)

)
;

mixtures of two of the components can be constructed in a similar way. Thus, we can again exploit
the formula in (15) to compute the CRPS.
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