Electrical properties of GaSb/InAsSb core/shell nanowires

Ganjipour, Bahram and Sepehri, Sobhan and Dey, Anil W. and Tizno, Ofogh and Borg, B. Mattias and Dick, Kimberly A. and Samuelson, Lars and Wernersson, Lars-Erik and Thelander, Claes (2014) Electrical properties of GaSb/InAsSb core/shell nanowires. Nanotechnology, 25 (42). ISSN 0957-4484

Full text not available from this repository.

Abstract

Temperature dependent electronic properties of GaSb/InAsSb core/shell and GaSb nanowires have been studied. Results from two-probe and four-probe measurements are compared to distinguish between extrinsic (contact-related) and intrinsic (nanowire) properties. It is found that a thin (2–3 nm) InAsSb shell allows low barrier charge carrier injection to the GaSb core, and that the presence of the shell also improves intrinsic nanowire mobility and conductance in comparison to bare GaSb nanowires. Maximum intrinsic field effect mobilities of 200 and 42 cm2 Vs−1 were extracted for the GaSb/InAsSb core/shell and bare-GaSb NWs at room temperature, respectively. The temperature-dependence of the mobility suggests that ionized impurity scattering is the dominant scattering mechanism in bare GaSb while phonon scattering dominates in core/shell nanowires. Top-gated field effect transistors were fabricated based on radial GaSb/InAsSb heterostructure nanowires with shell thicknesses in the range 5–7 nm. The fabricated devices exhibited ambipolar conduction, where the output current was studied as a function of AC gate voltage and frequency. Frequency doubling was experimentally demonstrated up to 20 kHz. The maximum operating frequency was limited by parasitic capacitance associated with the measurement chip geometry.

Item Type:
Journal Article
Journal or Publication Title:
Nanotechnology
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2200/2208
Subjects:
?? SHELL NANOWIREBIOENGINEERINGMECHANICS OF MATERIALSMATERIALS SCIENCE(ALL)CHEMISTRY(ALL)MECHANICAL ENGINEERINGELECTRICAL AND ELECTRONIC ENGINEERING ??
ID Code:
74044
Deposited By:
Deposited On:
18 Jun 2015 06:00
Refereed?:
Yes
Published?:
Published
Last Modified:
21 Sep 2023 01:51