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A GAP THEOREM FOR THE ZL-AMENABILITY CONSTANT OF A FINITE
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Abstract. It was shown in [2] that the ZL-amenability constant of a finite group is always at least 1,

with equality if and only if the group is abelian. It was also shown in [2] that for any finite non-abelian

group this invariant is at least 301/300, but the proof relies crucially on a deep result of D. A. Rider

on norms of central idempotents in group algebras.

Here we show that if G is finite and non-abelian then its ZL-amenability constant is at least 7/4,

which is known to be best possible. We avoid use of Rider’s reslt, by analyzing the cases where G is

just non-abelian, using calculations from [1], and establishing a new estimate for groups with trivial

centre.

1. Introduction

Given a finite group G, consider its complex group algebra CG, and recall that the centre ZCG is

isomorphic to
⊕

pCp where the sum is over all minimal idempotents in ZCG. Now consider

(1.1) ∆Z(G) =
∑
p

p⊗ p ∈ ZCG⊗ ZCG .

ZCG ⊗ ZCG sits naturally inside CG ⊗ CG ≡ C(G × G), and there is a natural `1-norm ‖·‖1 that

we can put on C(G × G). We define the ZL-amenability constant of G, denoted by AMZ(G), to be

‖∆Z(G)‖1. The original reasons for studying AMZ(G) arose in connection with Banach algebras and

(non-abelian) Fourier analysis; however, the problem which we address in this paper can be stated

purely in terms of finite groups and the behaviour of their irreducible characters.

AMZ(G) seems to have first been studied explicitly in work of A. Azimifard, E. Samei and N. Spronk,

although they used different terminology and notation. One of their observations, paraphrased into

our notation, is that AMZ(G) ≥ 1 with equality if and only if G is abelian; this is proved using the

Schur orthogonality relations and a clever use of an “associated minorant” ass(G). (See Example 2.7
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and Proposition 2.9 for further details.) The same paper also contains the following “gap” result,

which lies significantly deeper.

Theorem A (Azimifard–Samei–Spronk, [2]). There exists δ > 0 such that AMZ(G) ≥ 1 + δ for every

finite non-abelian group G.

The purpose of the present paper is to determine exactly how big δ can be.

Remark 1.1. To provide background context, let us briefly mention why the authors of [2] wished

to have this gap result. If G is a compact group its convolution algebra L1(G) is an example of an

amenable Banach algebra; in contrast, it is shown in [2] that for many choices of compact group G,

the centre of L1(G) is not amenable.1 One source of such examples is given by G =
∏∞
n=1Gn where

each Gn is a finite non-abelian group, and this works by combining Theorem A with a tensor product

argument to show that AMZ(
∏n
i=1Gi) ≥ (1 + δ)n for each n. Thus results for finite groups are used

to provide compact groups that generate interesting examples of Banach algebras.

Now let us return to Theorem A. Examining the original proof given in [2], one sees that it relies

crucially on the following hard result of D. A. Rider.

Theorem B (Rider; see [10, Lemma 5.2]). Let K be a compact non-abelian group, equipped with a

choice2 of Haar measure λ. Let f be a finite linear combination of irreducible characters of K,

regarded as an element of the convolution algebra L1(K,λ). Let ‖f‖1 :=
∫
K |f(x)| dλ(x). If f is an

idempotent in L1(K,λ), then either ‖f‖1 = 1 or ‖f‖1 > 1 + 1/300.

Theorem A, with δ = 1/300, follows from Theorem B by takingK = G×G, λ to be counting measure

and f = ∆Z(G) ∈ `1(K). Nevertheless, one would hope for a more direct proof of Theorem A, or a

better value of δ. Rider notes that the value 1/300 in Theorem B could be improved, but his method

does not give any indication of the likely order of magnitude of the optimal constant.3 Furthermore,

this existing proof of Theorem A ignores the fact that AMZ(G) is the norm of a very special element

of ZC(G×G).

In some recent work of the present author with M. Alaghmandan and E. Samei [1], the exact ZL-

amenability constants were calculated for several families of finite groups. In that work, the smallest

value obtained was 7/4, achieved by the dihedral group of order 8, and no smaller value could be

found. This demonstrated a large gap between the value of δ provided by Theorem B, and what one

observed in practice.

In this paper we show that the inequality AMZ(G) ≥ 1 + 1/300 is a severe underestimate. Specifi-

cally, we prove the following new bound.

1We shall not discuss amenability of Banach algebras in this article, but it has proved to be a fundamental and fruitful

notion in certain areas of functional analysis; it may be viewed as a weakened version of “homological dimension zero”,

suitably interpreted.
2Strictly speaking, Rider only states and proves this when λ(K) = 1. However, the more general version stated here

follows easily from the case λ(K) = 1 by a rescaling argument.
3In some private calculations the present author has been able to get up to 1/80, but not up to 1/10.
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Theorem 1.2. Let G be a finite, non-abelian group. Then AMZ(G) ≥ 7/4.

Remark 1.3. As previously noted, the ZL-amenability constant of the dihedral group of order 8

is exactly 7/4. So the bound in Theorem 1.2 is best possible. Furthermore, we will see later in

Example 4.11 that there is an infinite sequence (Gn) of finite 2-groups, each one indecomposable as a

direct product of smaller factors, such that AMZ(Gn) = 7/4 for all n.

We wish to immediately highlight two features of our approach to Theorem 1.2. Firstly, we com-

pletely bypass Rider’s result; and secondly, we avoid any difficult structure theory for finite groups.

In fact, all the group theory and character theory we need can be found in introductory texts. We

need some results from [1], but the same comments apply there.

Structure and style of the paper. In Section 2 we give a rapid definition of AMZ(G) and establish

some basic properties that will be needed. These properties were already established in [2], using a

Banach-algebraic perspective; here we shall give complete proofs that only need Schur orthogonality

for finite groups, so that the reader does not need to take results from [2] on trust.

Also, following an idea used by Azimifard, Samei and Spronk in their proof of Theorem A, we

introduce an auxiliary invariant ass(G) which is a lower bound for AMZ(G) and is easier to estimate

from below. In Section 3 we obtain a new lower bound on ass(G) for all groups with trivial centre

(excluding the degenerate case of the 1-element group). This is perhaps the main conceptually new

idea in this paper that was missing from [1] and [2]. Nevertheless, to get from here to the optimal

constant in Theorem 1.2 requires another ingredient, and that is to reduce the problem to the case

of finite groups that are “just non-abelian”. The precise statement is Theorem 4.3: the necessary

definitions, and the proof of that theorem, take up all of Section 4. We also need two technical results

on just non-abelian groups (Lemma 4.4 and Theorem 4.5): both can be extracted from the existing

literature, but for the reader’s convenience we provide full proofs in the appendix.

These sections, together with the Appendix, provide a complete proof of Theorem 1.2. Figure 1

shows how the key results are assembled in this proof. For sake of completeness and interest: in

Corollary 2.4(ii)

Theorem 3.1

Theorem 4.5

Lemma 4.4

 =⇒ Theorem 4.3


=⇒ Theorem 1.2

Figure 1. Results needed to prove the main result

Section 5 we use similar but easier ideas to those of Section 3 to obtain a lower bound on ass(G) for

all perfect groups G; and in Section 6 we list several natural questions that we have not yet resolved,

concerning the set of possible values of AMZ(·).
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The style of this paper is intended to be somewhat expository. The aim, both here and in the earlier

paper [1], has been to make the proofs accessible to researchers in abstract harmonic analysis who are

interested in amenability constants of various Banach algebras, but who may not have much exposure

to structure theory for finite groups. Therefore, the proofs are spelled out in some detail, and we

have avoided more specialized results or techniques from finite group theory. On the other hand, this

paper does not presume any knowledge of (or interest in) abstract harmonic analysis; so finite group

theorists may find Theorem 1.2 and its proof of some interest, and perhaps take the results obtained

en route as a challenge to find sharper versions or better estimates.

2. Preliminaries

2.1. Notation and terminology. We assume familiarity with basic character theory of finite groups

over the complex field C, up to the Schur orthogonality relations. All of this can be found in Isaacs’s

book [6]; alternatively, see [4, Chapter 7] or [7].

Given a finite group G, we denote by Conj(G) the set of conjugacy classes of G, and we write Irr(G)

for the set of irreducible characters of G (working over C). The degree of a character φ is just φ(e)

(which equals the dimension of any representation affording that character) and we say that φ is linear

if φ(e) = 1. If C ∈ Conj(G) and φ is a character on G, we write φ(C) for the value of φ on any element

of C; thus |φ(C)| ≤ φ(e).

The element ∆Z(G) mentioned in the introduction is the diagonal element or separability idempotent

for the commutative C-algebra Z(CG). For the definition of these terms for general algebras over a

field, see e.g. [5, Section 6.7]; further explanation in the special case of the centre of a group algebra,

and discussion of the connection with amenability for Banach algebras, can be found in [1, Section 2.1].

To keep our presentation self-contained, we will not use general properties of separability idempo-

tents, and instead adopt a “hands-on” definition. First some terminology: if I is a non-empty finite

indexing set, then by the “natural” `1-norm on the vector space CI we simply mean ‖a‖1 ≡ ‖a‖`1(I) :=∑
i∈I |ai|.

Definition 2.1. Let G be a finite group. If φ ∈ Irr(G), we may regard φ⊗φ as an element of C(G×G)

(since the underlying vector space of C(G×G) is CG×G). Let

∆Z(G) :=
∑

φ∈Irr(G)

φ(e)

|G|
φ⊗ φ(e)

|G|
φ ∈ C(G×G) .

Then, equipping CG×G with its natural `1-norm, define the ZL-amenability constant of G to be the

`1-norm of ∆Z(G).

We could of course define AMZ(G) without explicitly naming ∆Z(G), but some hereditary properties

of AMZ with respect to taking products and quotients of groups are best understood in terms of

corresponding properties of ∆Z. This will be done in the next section.
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2.2. Hereditary properties of the ZL-amenability constant. The next two lemmas are known

results, if one uses the definition of ∆Z(G) that is given in [2] and [1]. We shall give character-theoretic

proofs that just use Definition 2.1.

Lemma 2.2. Let G and H be finite groups. If we identify C(G×H×G×H) with C(G×G)⊗C(H×H)

in the natural way, then ∆Z(G×H) is identified with ∆Z(G)⊗∆Z(H).

Proof. This is a straightforward calculation using Irr(G×H) = {φ⊗ψ : φ ∈ Irr(G), ψ ∈ Irr(H)} and

(φ⊗ ψ)(eG×H) = φ(eG)ψ(eH). �

Lemma 2.3. Let G and H be finite groups, and suppose q : G → H is a surjective group ho-

momorphism. Extend q to an algebra homomorphism Q : CG → CH in the natural way. Then

(Q⊗Q)(∆Z(G)) = ∆Z(H).

Proof. The map φ 7→ φ ◦ q defines an injection q∗ : Irr(H) ↪→ Irr(G). Now

Q

∑
y∈H

∑
x∈q−1(y)

axδx

 =
∑
y∈H

 ∑
x∈q−1(y)

ax

 δy (a ∈ CG).

In particular, for each φ ∈ Irr(H),

Q

(
q∗(φ)(eG)

|G|
q∗(φ)

)
=
φ(eH)

|G|
| ker(q)|φ =

φ(eH)

|H|
φ .

Let R denote the set Irr(G) \ q∗(Irr(H)). Then

Q

 ∑
ψ∈Irr(G)\R

ψ(eG)

|G|
ψ ⊗ ψ(eG)

|G|
ψ

 = ∆Z(H) ;

so to complete the proof, it suffices to show that R ⊆ ker(Q).

Our argument is indirect. Given f ∈ ZCG, for each y ∈ H we pick x ∈ q−1(y) and note that

δy ∗Q(f) = Q(δx ∗ f) = Q(f ∗ δx) = Q(f) ∗ δy .

Hence Q(ZCG) ⊆ ZCH. Since Irr(H) spans ZCH, it now suffices to prove that∑
y∈H

Q(θ)(y) φ(y) = 0 for all θ ∈ R and all φ ∈ Irr(H).

Equivalently, it suffices to prove that for each θ ∈ R and each φ ∈ Irr(H),

0 =
∑
y∈H

 ∑
x∈q−1(y)

θ(x)

φ(y) =
∑
x∈G

θ(x)(φ ◦ q)(x) .

But this is immediate from Schur orthogonality for Irr(G). �

Corollary 2.4 (ZL-amenability constants of products and quotients).

(i) Let G1 and G2 be finite groups. Then AMZ(G1 ×G2) = AMZ(G1) AMZ(G2).

(ii) Let G be a finite group and let N EG. Then AMZ(G/N) ≤ AMZ(G).
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Proof. For any finite indexing sets I and J, the `1-norm has the following property: for each a ∈ CI

and b ∈ CJ, we have ‖a⊗ b‖`1(I×J) = ‖a‖`1(I)‖b‖`1(J). Now, using Lemma 2.2, part (i) follows.

To prove part (ii), note that Q : CG → CH does not increase the `1-norm of elements. The same

is true for Q⊗Q : C(G×G)→ C(H ×H). Therefore ‖(Q⊗Q)(∆Z(G))‖1 ≤ ‖∆Z(G)‖1, and applying

Lemma 2.3 does the rest. �

Remark 2.5. Both parts of Corollary 2.4 were already proved in [2, §1], using the abstract character-

ization of ∆Z(G) as the unique “diagonal element” or “separability idempotent” for the algebra ZCG.

Our approach has the benefit of just using Definition 2.1 and Schur orthogonality for finite groups,

but the approach in [2] works in a somewhat broader context.

2.3. An explicit formula and some comments. In [2, Theorem 1.8] the authors give the following

concrete formula for the ZL-amenability constant of a finite group:

(2.1) AMZ(G) =
1

|G|2
∑

C∈Conj(G)

∑
D∈Conj(G)

|C||D|

∣∣∣∣∣∣
∑

φ∈Irr(G)

φ(e)2φ(C)φ(D)

∣∣∣∣∣∣ .
We could have taken this as the definition of AMZ(G), if we wished to avoid discussing ∆Z(G) and

`1-norms, but then the proof of Corollary 2.4 would become even more opaque.

Remark 2.6. The presence of complex conjugates in Equation (2.1) may need some explanation.

First, note that the same expression without any complex conjugates follows immediately from Defi-

nition 2.1 and the definition of the `1-norm on C(G × G). Then observe that there is a bijection on

Conj(G) which exchanges the conjugacy class of x with that of x−1; and if we denote this bijection by

D ←→ D−1, then |D−1|φ(D−1) = |D|φ(D) for each D ∈ Conj(G) and each character φ.

Example 2.7 (ZL-amenability constants of finite abelian groups). Let G be a finite abelian group. It

was noted in [2] that in this case ∆Z(G) = |G|−1
∑

x∈G δx⊗ δx−1 , which clearly has `1-norm exactly 1.

(See the remarks in [1, Section 2.1] for further explanation of this identity.) Here we give a more direct

proof. By Equation (2.1)

AMZ(G) =
1

|G|2
∑
x,y∈G

∣∣∣∣∣∣
∑
φ∈Ĝ

φ(x)φ(y)

∣∣∣∣∣∣ .
By Schur (column) orthogonality, most terms in this sum vanish and summing the remaining ones

gives

AMZ(G) = |G|−2
∑
x∈G

∑
φ∈Ĝ

1 = 1,

as required.

In general it seems hard to get good lower bounds on the expression in (2.1), since there could be

considerable cancellation when we sum over φ, as in Example 2.7. A key idea in [2] is to introduce

a minorant for AMZ(G) that is easier to estimate well from below. The authors of [2] do not give

this invariant a name, but since it is the main object of study in Section 3 it deserves some ad hoc

notation.



Int. J. Group Theory x no. x (201x) xx-xx Yemon Choi 7

Definition 2.8 (An auxiliary minorant). For G a finite group, we define

(2.2) ass(G) =
1

|G|2
∑

C∈Conj(G)

∑
φ∈Irr(G)

|C|2|φ(C)|2φ(e)2 .

Proposition 2.9 (Azimifard–Samei–Spronk, [2]). AMZ(G) ≥ ass(G) ≥ 1 for every finite group G.

Moreover, if G is non-abelian then ass(G) > 1.

Proof. This is demonstrated in the proof of Theorem 1.8 and Corollary 1.9 in [2], but for sake of

completeness we include the argument here. Note that ass(G) is obtained by considering the right-

hand side of (2.1) and only summing over the terms indexed by {(C,C) : C ∈ Conj(G)} ⊂ Conj(G)×
Conj(G). Thus AMZ(G) ≥ ass(G). Moreover, since |C|2 ≥ |C|, we have

ass(G) ≥ |G|−2
∑

C∈Conj(G)

∑
φ∈Irr(G)

|C||φ(C)|2φ(e)2

=
1

|G|
∑

φ∈Irr(G)

φ(e)2
∑

C∈Conj(G)

|C|
|G|
|φ(C)|2 = 1 ,

where the final equality follows from the Schur orthogonality relations (row and column). Finally, if

G is non-abelian, then there is at least one C ∈ Conj(G) and φ ∈ Irr(G) such that |C|2|φ(C)|2 >
|C||φ(C)|2, so that running the argument above we see that the inequality is strict. �

Remark 2.10. Combining Proposition 2.9 with Rider’s hard result (Theorem B) one sees that if G

is non-abelian then AMZ(G) ≥ 1 + 1/300, i.e. we get a proof of Theorem A. However, it is important

to note that this does not tell us anything about

inf{ass(G) : G is finite and non-abelian}.

Indeed, the present paper is unable to determine if this infimum is strictly greater than 1.

A closer inspection of the proof of Proposition 2.9 yields the inequality

ass(G)− 1 ≥ s(G)2 − s(G)

|G|
where s(G) = min{|C| : C ∈ Conj(G), |C| > 1}. However, in cases where Z(G) = {e}, we can do

much better. This will be the topic of the next section.

3. Bounds on ass for groups with trivial centre

In this section we obtain a new lower bound for ass(G) when G has trivial centre. This is the key

idea needed for a new proof of Theorem A with a much better constant than that of [2].

Theorem 3.1 (Lower bound on ass(G) when Z(G) = {e}). Let G be a finite group with trivial centre,

and let s be the smallest size of its non-trivial conjugacy classes. Then

ass(G)− 1 ≥ s− 1

s+ 1
· 2s

s+ 1
≥ 4

9
.

Remark 3.2. The author has not found any groups with trivial centre for which ass(G) = 13/9.

Probably one can improve on this lower bound by investigating the examples with s = 2 more closely.
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The proof of Theorem 3.1 will occupy the rest of this section. To streamline some of the formulas

which follow, we introduce the matrix A : Irr(G)× Conj(G)→ [0, 1] defined by

(3.1) Aφ,C = |G|−1|C| |φ(C)|2 (φ ∈ Irr(G), C ∈ Conj(G)).

Note that rows and columns of A add up to 1. We define

µ := max
φ∈Irr(G)

Aφ,e = max
φ∈Irr(G)

|G|−1φ(e)2 ∈ (0, 1).

Proposition 3.3. Let G be a finite group with trivial centre, and let s = s(G) be as defined in the

statement of Theorem 3.1. Then

(3.2)
ass(G)− 1

s− 1
≥

∑
φ∈Irr(G)

Aφ,e(1−Aφ,e) ≥ max(2µ, 1)(1− µ).

Proof. We have

ass(G) =
∑

φ∈Irr(G)

∑
C∈Conj(G)

|C|Aφ,CAφ,e

≥
∑

φ∈Irr(G)

A2
φ,e +

∑
C∈Conj(G)\{e}

sAφ,CAφ,e

 (definition of s)

= (1− s)
∑

φ∈Irr(G)

A2
φ,e + s

∑
φ∈Irr(G)

∑
C∈Conj(G)

Aφ,CAφ,e

= (1− s)
∑

φ∈Irr(G)

A2
φ,e + s

∑
φ∈Irr(G)

Aφ,e (rows of A sum to 1)

= (s− 1)
∑

φ∈Irr(G)

Aφ,e (1−Aφ,e) +
∑

φ∈Irr(G)

Aφ,e .

Since columns of A sum to 1, we obtain the first inequality in (3.2).

To get the second inequality: fix ψ ∈ Irr(G) with Aψ,e = µ = maxφ∈Irr(G)Aφ,e. For each φ ∈
Irr(G) \ {ψ} we have 1−Aφ,e ≥ 1− µ; also, since columns of A sum to 1,

1−Aφ,e =
∑

γ∈Irr(G)\{φ}

Aγ,e ≥ Aψ,e = µ .

Hence ∑
φ∈Irr(G)

Aφ,e (1−Aφ,e) = µ(1− µ) +
∑

φ∈Irr(G)\{ψ}

Aφ,e (1−Aφ,e)

≥ µ(1− µ) +
∑

φ∈Irr(G)\{ψ}

Aφ,e max(µ, 1− µ)

= µ(1− µ) + max(µ, 1− µ)(1− µ) (rows of A sum to 1)

= (1− µ) max(2µ, 1),

as required. �
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Example 3.4. Let q be a prime power ≥ 3 and consider G = Aff(Fq), the affine group of the finite field

with q elements. The character theory of this group is well known, and gives µ = |G|−1(q−1)2 = 1−q−1.
For this group s = q − 1, so that

(3.3) ass(Aff(Fq))− 1 ≥ (s− 1)(1− µ) max(2µ, 1) = (q − 2) · 1

q
· 2
(

1− 1

q

)
;

and the right-hand side of (3.3), being a monotone increasing function of q, is minimized when q = 3

(with minimum value 4/3). In fact an explicit but tedious calculation shows that ass(Aff(Fq)) =

3− 4q−1, so that our lower bound is a slight underestimate.

Example 3.4 shows that even within the class of groups with trivial centre, 1− µ can be arbitrarily

small. However, note that in this example, when 1− µ is small s is large. The following result shows

that this happens more generally.

Lemma 3.5. Let G be a finite group. Then 1 ≤ (1 + s)(1− µ).

Proof. Choose ψ with Aψ,e = µ and choose C with |C| = s. Then Aψ,C ≤ 1− µ (since rows of A sum

to 1), while

Aφ,C =
s

|G|
|φ(C)|2 ≤ s

|G|
φ(e)2 = sAφ,e for all φ ∈ Irr(G).

Since the columns of A sum to 1, this gives

1 = Aψ,C +
∑
φ 6=ψ

Aφ,C ≤ (1− µ) + s
∑
φ 6=ψ

Aφ,e = (1− µ) + s(1− µ)

as required. �

Remark 3.6.

(i) The idea behind the proof of Lemma 3.5 comes from considering cases such as Example 3.4,

where the ratio µ is large in the sense of being close to 1. Picking φ ∈ Irr(G) with Aφ,e = µ

and C ∈ Conj(G) with |C| = s, one reasons as follows:

• since the column labelled by e adds up to 1, Aφ,e must be small for every φ ∈ Irr(G)\{ψ};
• since the row labelled by ψ adds up to 1, Aψ,C has to be small;

• in turn, this forces Aφ,C to be large for every φ ∈ Irr(G) \ {ψ}.
(ii) There are groups for which equality is achieved in Lemma 3.5. For instance, if G is the dihedral

group of order 6, we have s = 2, µ = 22/6 = 2/3, (s+ 1)(1− µ) = 1.

(iii) Lemma 3.5 implies that if a finite group has an irreducible character with “relatively high

degree”, not only must the group have trivial centre, but all conjugacy classes other than the

identity have to be “quite large”. Such observations are probably not new, but we are unaware

of any references in the literature which provide such inequalities.

Proof of Theorem 3.1. Let h : [0, 1] → [0,∞) be the function h(t) = (1 − t) max(2t, 1). This is a

continuous, decreasing function. By Proposition 3.3 and Lemma 3.5,

ass(A)− 1 ≥ (s− 1)h(µ) ≥ (s− 1)h

(
s

s+ 1

)
.
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Now since s/(s+ 1) ≥ 2/3 > 1/2,

(s− 1)h

(
s

s+ 1

)
=
s− 1

s+ 1
· 2s

s+ 1
;

and the right hand side is minimized when we take s− 2, with value 4/9. �

Remark 3.7. We could have tried the same approach for a non-abelian finite group G with non-trivial

centre. The proof of Proposition 3.3 goes through much as before4, but this time we merely obtain

ass(G)− 1 ≥ (s− 1)
∑

φ∈Irr(G)

φ(e)2

|G|

(
1− |Z(G)|φ(e)2

|G|

)
.

Now if we define µ = maxφ∈Irr(G) |G|−1φ(e)2 as before, then |Z(G)|µ ≤ 1, but this time we can have

equality, which means that some of the terms in the sum above will be zero. It is not clear how to

obtain good lower bounds on the remaining contributions to the sum.

4. Bounds on AMZ for just non-abelian groups

4.1. JNA groups: definitions and two results. Throughout, we denote the derived subgroup (or

commutator subgroup) of G by [G,G] rather than G′.

Definition 4.1. We say that a quotient of a group G is proper if it is not equal to G itself. A group

G is just non-abelian (JNA for short) if it is non-abelian yet all its proper quotients are abelian.

Remark 4.2. Since every homomorphism from G to an abelian group factors through the quotient

homomorphism G → G/[G,G], a group G is JNA if and only if all its non-trivial normal subgroups

contain [G,G]. In alternative terminology: if G is JNA then [G,G] is the minimal non-trivial normal

subgroup of G.

Recall that by Corollary 2.4(ii), if H is a quotient of G then AMZ(G) ≥ AMZ(H). Now if G is a

finite, non-abelian group, there exists a quotient of G which is JNA. (The proof is a routine induction

which we omit.) Hence

inf{AMZ(G) : G is finite and non-abelian} = inf{AMZ(G) : G is finite and JNA}.

Therefore Theorem 1.2 will follow from the following special case.

Theorem 4.3. Let G be a finite JNA group. Then AMZ(G) ≥ 7/4.

Our proof of Theorem 4.3 works by looking at various cases. The main point is that if G is finite

JNA and has non-trivial centre, then it can be handled by the main result of [1]. For this we use the

following lemma, which is a simpler (but weaker) version of [6, Lemma 12.3].

Lemma 4.4. Let G be a finite JNA group with non-trivial centre. Then every non-linear φ ∈ Irr(G)

either has degree 1 (i.e. is linear) or has degree |G : Z(G)|1/2. Moreover, there is a prime p such that

|G| is a power of p; |[G,G]| = p; and every conjugacy class has size 1 or size p.

4We need to know that |φ(x)| = φ(e) for all x ∈ Z(G) and all φ ∈ Irr(G). This is an easy consequence of Schur’s

lemma, see e.g. [6, Lemma 2.25].
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We will also need the following result, which the author was unable to find stated explicitly in the

literature.

Theorem 4.5 (Folklore?). Let G be a finite JNA group which has trivial centre and has a conjugacy

class of size 2. Then G is isomorphic to the dihedral group of order 2p, for some odd prime p.

To keep this article as self-contained as possible, the Appendix includes elementary proofs of

Lemma 4.4 and Theorem 4.5. In the rest of this subsection we offer some remarks on just non-abelian

groups to provide extra context for the reader, and to acknowledge the sources for the ideas behind

Lemma 4.4 and Theorem 4.5. The reader who just wants to get on with the proof of Theorem 4.3 can

skip to Section 4.2.

Remark 4.6 (JN2 groups and JM groups). If G is a JNA group with non-trivial centre, then {e} (
[G,G] ⊆ Z(G), so that G is 2-step nilpotent. Finite nilpotent JNA groups were classified by M. F.

Newman [9], who christened them finite JN2 groups; notable examples are the extra-special p-groups

for any given prime p. His earlier paper [8] gives a classification of finite solvable JNA groups with

trivial centre, calling them finite JM groups; examples include the affine groups of finite fields (cf.

Example 3.4). In general, every finite JM group is necessarily of the form FoD for some finite field F

and some subgroup D ≤ F×. This is a necessary condition and not a sufficient one: see [8, Theorem

6.4] for the full classification.

Remark 4.7 (Looking for a proof of Theorem 4.5). If we knew the hypotheses of Theorem 4.5 force

G to be solvable, we could extract this result from Newman’s classification of JM groups. However,

doing so is somewhat cumbersome: one has to analyze the conjugacy classes in F o D to show that

|D| = 2, explain why |F| is an odd prime, and so on. Alternatively, once we know G is solvable,

we could appeal to the results of Isaacs and Passman that were mentioned earlier; but this seems to

require some form of Frobenius’s theorem on malnormal subgroups ([6, Theorem 7.2] or [4, Chapter 7,

Theorem 8.6]). In both cases, of course, we would still need a separate argument to explain why the

conditions in Theorem 4.5 imply that the group is solvable! This is one reason why we chose to give

a self-contained proof in the Appendix.

Remark 4.8 (Groups with two character degrees). The present paper also owes an indirect debt to

work of Isaacs and Passman on “groups with two character degrees”. Rather than try to pick out

those parts of the original papers which are relevant to the present article, the reader can find a good

exposition in Chapter 12 of [6]. In particular, the dichotomy theorem contained in [6, Lemma 12.3]

implies that every finite JM group is Frobenius with abelian complement and kernel, so that its ZL-

amenability constant can be calculated explicitly using the methods of [1, §3.2]. In fact, the idea of

looking at ZL-amenability constants of JNA groups arose from reading about this work in [6, Chapter

12], while seeking to extend the results of [1].

4.2. The ZL-amenability constant in the JNA cases. To fully exploit Lemma 4.4 and Theo-

rem 4.5, we will apply the main theorem of [1], stated below for clarity.
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Theorem 4.9 ([1, Theorem 2.4]). Let m be an integer greater than or equal to 2, and suppose G is a

finite non-abelian group such that φ(e) ∈ {1,m} for all φ ∈ Irr(G). Then

AMZ(G)− 1 = 2(m2 − 1)
∑

C∈Conj(G)

|C|
|G|

(
1− |C|
|[G,G]|

)
.

The following calculation was done in [1, Example 3.13] for extraspecial p-groups, but works in

greater generality. For convenience we give the proof.

Proposition 4.10. Let G be a finite JNA group with non-trivial centre. Then there is a prime p and

an integer k ≥ 1 such that

(4.1) AMZ(G)− 1 = 2

(
1− 1

p2k

)(
1− 1

p

)
.

In particular, AMZ(G) ≥ 7/4.

Proof. Let p be the prime from Lemma 4.4 and let k satisfy |G : Z(G)|1/2 = pk. By the lemma every

φ ∈ Irr(G) has degree 1 or pk, so k is a positive integer (strictly positive since G is non-abelian).

Moreover, Lemma 4.4 also implies

|C|
|[G,G]|

=

p−1 if C ∈ Z(G)

1 if C ∈ Conj(G) \ Z(G).

Applying Theorem 4.9 yields

AMZ(G)− 1 = 2(p2k − 1)
∑

C∈Conj(G)

|C|
|G|

(
1− |C|
|[G,G]|

)

= 2(p2k − 1)|Z(G)| · 1

|G|

(
1− 1

p

)
= 2

(p2k − 1)

|G : Z(G)|

(
1− 1

p

)
= 2

(
1− 1

p2k

)(
1− 1

p

)
.

To finish: note that the right-hand side of Equation (4.1) is an increasing function of k and of p.

Taking k = 1 and p = 2 gives the minimum value 3/4, as required. �

Example 4.11 (JNA groups achieving the minimal ZL-amenability constant). The calculations in [1,

Example 3.13] show that the only extraspecial p-groups with ZL-amenability constant equal to 7/4

are the dihedral and quaternion groups of order 8. However, for any n ∈ N the group denoted in [9]

by M(2n) is a JNA group of order 2n+2 whose centre has order 2n. The proof of Proposition 4.10 then

yields AMZ(M(2n)) = 7/4.

We now turn to JNA groups with trivial centre. If G is such a group and it has a conjugacy class

of size 2, then (Theorem 4.5) G is isomorphic to the dihedral group Cp o C2 for some odd prime p.
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As shown in [1, Section 3.1], Theorem 4.9 applies to Cp o C2 and straightforward calculations yield

(4.2) AMZ(Cp o C2) = 1 + 3

(
1− 1

p

)2

≥ 1 + 3

(
1− 1

3

)2

=
7

3
.

It remains to deal with JNA groups where every conjugacy class, except that of e, has size ≥ 3.

(Recall that this class includes all finite simple non-abelian groups!) Here, it is no longer clear that

we can exploit the results of [1], but instead we can turn to the results of Section 3.

Proposition 4.12. Let G be a finite group with at least two elements and trivial centre. Suppose that

G has no conjugacy classes of size 2. Then AMZ(G) ≥ ass(G) ≥ 7/4.

Proof. Let s = min{|C| : C ∈ Conj(G) \ {e}}. The conditions put on our group ensure that s ≥ 3.

Then, by Theorem 3.1,

ass(G)− 1 ≥ s− 1

s+ 1

2s

s+ 1

= 2

(
1− 2

s+ 1

)(
1− 1

s+ 1

)
≥ 2

(
1− 2

4

)(
1− 1

4

)
=

3

4
,

as claimed. �

Proof of Theorem 4.3. Combine Proposition 4.10, Proposition 4.12 and the inequality (4.2). �

Remark 4.13. When G has trivial centre and has a conjugacy class of size 2, the direct application

of Theorem 3.1 merely gives AMZ(G) ≥ ass(G) ≥ 13/9, which is not good enough. This is why

we had to deal with such cases separately (and also use the JNA condition, which is not used in

Proposition 4.12).

5. A lower bound for perfect groups

Since every non-abelian simple group is JNA, and since we proved Theorem 1.2 by passing from

the given non-abelian finite group to some JNA quotient, it is natural to wonder what can be said

about the ZL-amenability constant of a finite simple group. In this section we obtain a lower bound

that is far better than what we obtain from Theorem 3.1, although it is probably far short of the true

infimum. In fact, our bound holds for all finite perfect groups, and our approach does not require any

structure theory.

Proposition 5.1 (An alternative bound for ass). Let G be a finite group, and let m = min{φ(e) : φ ∈
Irr(G) and φ(e) > 1}. Then

ass(G)− 1 ≥ (m2 − 1)
∑

C∈Conj(G)

|C|
|G|

(
1− |C|
|[G,G]|

)
.

Equality holds if every non-linear irreducible character of G has degree m.
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Proof. This is like the proof of [1, Theorem 2.4], only simpler; in some sense it is dual to the argument

used in the proof of Proposition 3.3.

As in Equation 3.1, let Aφ,C := |G|−1|C||φ(C)|2. Let ε denote the trivial character of G, sometimes

called the augmentation character , which takes the value 1 on every conjugacy class. Then

ass(G) =
∑

C∈Conj(G)

Aε,C
∑

φ∈Irr(G)

φ(e)2Aφ,C .

Let L = {φ ∈ Irr(G) : φ(e) = 1}. Then for each C ∈ Conj(G),∑
φ∈Irr(G)

φ(e)2Aφ,C ≥
∑
φ∈L

Aφ,C +m2
∑

φ∈Irr(G)\L

Aφ,C (definition of m)

= (1−m2)
∑
φ∈L

Aφ,C +m2
∑

φ∈Irr(G)

Aφ,C

= (1−m2)
∑
φ∈L

Aφ,C +m2 (columns of A sum to 1)

= (1−m2)|L|Aε,C +m2 (definition of L).

Multiplying this inequality by Aε,C and summing over all C,

ass(G) ≥
∑

C∈Conj(G)

Aε,C + (m2 − 1)
∑

C∈Conj(G)

Aε,C(1− |L|Aε,C).

Since rows of A sum to 1, and |L| equals the order of the quotient groupG/[G,G], the result follows. �

The following result is surely folklore, but we include a proof since it is straightforward.

Lemma 5.2. Let G be a finite group. Suppose it has a conjugacy class C of size |G|/2. Then K = G\C
is an index 2 subgroup of G. In particular, G is not perfect.

Proof. We divide the proof into several steps.

Step 1. Let t ∈ C. Then its centralizer ZG(t) has order |G|/|C| = 2. Since 〈t〉 ⊆ ZG(T ), t is an

involution and ZG(t) = {1, t}.
Step 2. If x ∈ G is an involution, and y ∈ C and xy is an involution, then x = e or x = y.

[Proof : we have xy = (xy)−1 = y−1x−1 = yx, so x ∈ ZG(y); now use Step 1.]

Step 3. Let x, y ∈ C. Then xy ∈ K.

[Proof : if x = y then xy = e; while if x and y are distinct elements of C, then by Step 2, xy cannot

be an involution, so in particular xy /∈ C.]

Step 4. Let t ∈ C. Then the functions Lt, Rt : G → G defined by Lt(x) = tx and Rt(x) = xt are

involutive bijections C ↔ K.

[Proof : by Step 3, Lt(C) ⊆ K; and since t is an involution, Lt is injective. So |Lt(C)| ≤ K. But

|K| = |G \ C| = |C|, hence Lt : C → K is surjective. The argument for Rt is similar.]

Step 5. K is closed under multiplication.

[Proof : let a, b ∈ K. Pick t ∈ C; by Step 4, at, tb ∈ C. Since t is an involution, ab = (at)(tb) ∈ C ·C ⊆
K by Step 3.]
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Final step. Since C is the conjugacy class of an involution, it is closed under inversion. Hence

K = G \ C is also closed under inversion. Combined with Step 5, this shows K is a subgroup of G;

and since K is the union of conjugacy classes, it is normal. Finally, since G/K is abelian of order 2,

G is not perfect. �

Remark 5.3. In Step 1 of the proof we showed, in effect, that C consists of self-centralizing involutions.

So if t ∈ C then 〈t〉 is malnormal in G, hence by Frobenius’s theorem ([6, Theorem 7.2] or [4, Chapter 7,

Theorem 8.6]) it admits a complement, and Lemma 5.2 follows. However, Frobenius’s theorem remains

quite a deep result and seems excessive in this instance.

Theorem 5.4. Let G be a finite perfect group. Then ass(G) ≥ 3.

Proof. If C ∈ Conj(G) then |C| ≤ |G|/3 (since |C| is a proper factor of |G|, and it cannot be |G|/2 by

Lemma 5.2). Applying Proposition 5.1 and using [G,G] = G yields

ass(G)− 1 ≥ (m2 − 1)
∑

C∈Conj(G)

|C|
|G|

(
1− 1

3

)
=

2(m2 − 1)

3
.

Since m ≥ 2 the result follows. �

Remark 5.5. If G is simple one can improve this lower bound. A finite simple group has no irreducible

2-dimensional representations over C (see e.g. [7, Corollary 22.13]); hence m ≥ 3 when m is as defined

in Proposition 5.1. Running the argument in the proof of Theorem 5.4 then yields ass(G) ≥ 19/3.

Moreover: since quotients of perfect groups are perfect, every finite perfect group G has a quotient

group K which is non-abelian and simple. It follows that if G is a finite perfect group,

AMZ(G) ≥ AMZ(K) ≥ ass(K) ≥ 19

3
.

While this argument does not imply ass(G) ≥ 19/3 for all finite perfect groups, we know of no finite

perfect group whose associated minorant is less than 19/3.

6. Questions for future investigation

Our first two questions concern the associated minorant ass(G). Although it is technically easier

to deal with than AMZ(G) for particular groups, we do not know if it has the same good hereditary

properties.

Question 1. Is there a finite group G and N CG such that ass(G) < ass(G/N)?

If the answer is negative, then we can obtain lower bounds on ass(G) by passing to JNA quotients,

and hence the next question would have a positive answer.

Question 2. Is inf{ass(G) : G non-abelian and finite} strictly greater than 1?

To motivate the next two questions, we present a small consequence of our earlier work on the JN2

cases.

Theorem 6.1. Let G be a finite nilpotent group. If AMZ(G) < 59/27 then G is the product of a

2-group with an abelian group.
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Proof. Since G is nilpotent it factorizes as a direct product of finite p-groups, say G = H1× · · ·×Hm.

(More precisely, it is the direct product of its Sylow p-subgroups; see e.g. [3, Section 9.8, Theorem 5].)

Suppose at least one of these groups, say H1, is a non-abelian p-group where p ≥ 3. Then Hk

admits a JNA quotient K, and K must also be a p-group; the proof of Proposition 4.10 then implies

that

AMZ(K)− 1 ≥ 2(1− p−2)(1− p−1) ≥ 2

(
1− 1

9

)(
1− 1

3

)
=

32

27
.

But since AMZ(G) ≥ AMZ(H1) ≥ AMZ(K), this contradicts the assumption on AMZ(G). Thus each

of the groups H1, . . . ,Hm is either abelian or a 2-group, and the result follows. �

Question 3. Does Theorem 6.1 remain true if one drops the word “nilpotent”?

Note that a positive answer to Question 3 would yield a positive answer to the next question.

Question 4. Is inf{AMZ(G) : G a finite, non-nilpotent group} strictly greater than 7/4? Can we at

least show that a group with ZL-amenability constant 7/4 has to be nilpotent?

Remark 6.2. An explicit calculation shows that ass(C3 o C2) = 5/3. Therefore, with our current

methods we have no hope of proving results of the form “if G has trivial centre then AMZ(G) ≥ 2”,

because without the JNA condition the best we can do for groups with trivial centre is to use the

lower bound provided by ass(G).

Moving away from questions of lower bounds, we could look at the structure of the set

ZL = {AMZ(G) : G a finite group}.

of possible values for ZL-amenability constants.

Question 5. Is ZL closed? If not, does it contain any non-isolated points?

The results summarized in [1, Section 3.4] show that there exist strictly increasing sequences in ZL
which converge. The same results suggest that these limiting values are limit points of ZL, and hence

that ZL is not closed, but they are not conclusive.

Question 6. Does ZL contain any strictly decreasing sequences? That is, does there exist a sequence

(Gn) of finite groups such that AMZ(Gn+1) < AMZ(Gn) for all n?

Our final question connects the study of AMZ(G) back to the world of infinite-dimensional Banach

algebras.

Question 7. Consider an inverse system of finite groups

. . . G3 → G2 → G1 → G0

in which all connecting maps are surjective group homomorphisms. If supn AMZ(Gn) < ∞, is the

inverse limit lim←−nGn always virtually abelian?

If the answer is positive, then as noted in [2], we could prove the following: if G is a profinite group

which is not virtually abelian, then the centre of L1(G) is non-amenable.
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Appendix A. The proofs of Lemma 4.4 and Theorem 4.5

These proofs are included for the convenience of readers who are more familiar with harmonic

analysis and Banach algebras than finite group theory. To clarify the proof of Lemma 4.4, it is helpful

to divide the statement of the lemma into smaller pieces.

Restatement of Lemma 4.4. Let G be a finite JNA group which has non-trivial centre. Then there

is a prime p such that:

(i) |G| is a power of p;

(ii) |[G,G]| = p;

(iii) every conjugacy class has size 1 or size p;

(iv) every non-linear φ ∈ Irr(G) has degree |G : Z(G)|1/2.

Proof of (i). Since Z(G) is non-trivial, G/Z(G) is abelian. So G is 2-step nilpotent. Hence there

exist subgroups H1, . . . ,Hs which each have prime power order, such that G ∼= H1 × · · · ×Hs. (More

precisely, G factorizes as the direct product of Sylow subgroups, see e.g. [3, Section 9.8, Theorem 5].)

At least one of these subgroups, say H1, must be non-abelian; but then since G quotients onto H1,

the JNA condition forces G = H1.

Proof of (ii). By (i), G has order pN for some prime p and some N ≥ 2. So |Z(G)| = pm for some

1 ≤ m ≤ N − 1. By the JNA condition [G,G] is contained in every non-trivial subgroup of Z(G).

Hence [G,G] is an abelian p-group with no non-trivial proper subgroups, so it must be cyclic of order p.

Proof of (iii). Let C ∈ Conj(G) \ Z(G). Since |C| divides |G| it is a power of p. On the other hand,

there is an injection C → [G,G] (fix x ∈ C and consider the map C → [G,G], y 7→ yx−1). By part (ii),

|[G,G]| = p, and so |C| = 1 or |C| = p.

Proof of (iv). Let L denote the set of linear characters on G, and let C ∈ Conj(G) \ Z(G). By Schur

orthogonality (column sums)

|G|
|C|
−

∑
φ∈Irr(G)\L

|φ(C)|2 =
∑
ψ∈L
|ψ(C)|2 = |L| .
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On the other hand: since any finite abelian group has the same cardinality as its dual group,

|L| = |(G/[G,G])∧| = |G/[G,G]| = |G|
|[G,G]|

.

By (ii) and (iii), |C| = p = |[G,G]|. Combining this with the previous two identities forces∑
φ∈Irr(G)\L

|φ(C)|2 = 0,

which in turn forces φ(C) = 0 for all φ ∈ Irr(G) \ L.

Now let φ ∈ Irr(G) \ L. By the previous paragraph, φ(C) = 0 for all C ∈ Conj(G) \ Z(G). Hence,

by Schur orthogonality (row sums),

|G| =
∑

x∈Z(G)

|φ(x)|2 = |Z(G)|φ(e)2 .

Rearranging yields the desired identity, and the proof of the lemma is complete. �

Now we turn to Theorem 4.5, which we paraphrase as follows.

Theorem 4.5, paraphrased. Let G be a finite JNA group which has trivial centre and has a con-

jugacy class of size 2. Then G contains an involution t and an element r of odd prime order p, such

that |G| = 2p and rt = tr−1.

Originally the present author re-invented a proof of this result, but the argument which follows is

streamlined slightly using some ideas from Newman’s paper [8]. To illustrate where we use the various

hypotheses on G, the proof is broken up into several lemmas.

Lemma A.1. Let G be a finite group with a conjugacy class {a, a} of size 2. Then for each g ∈ G,

conjugation by g either fixes both a and a or it swaps them. In particular, a and a commute.

Proof. When a group acts on a set of size two, each element either acts trivially or swaps the two

points. This gives us the first claim in the lemma. The second claim follows by considering the

conjugation action of a on {a, a}. �

Lemma A.2. Let G be a finite JNA group with a conjugacy class {a, a} of size 2. Put r = aa−1 6= {e}.
Then [G,G] = 〈r〉, and the order of r is prime. Moreover, r has order 2 if and only if it is central.

Proof. Let g ∈ G. By Lemma A.1, either grg−1 = r or grg−1 = a(a)−1 = (a)−1a−1 = r−1. Thus

the conjugation map x 7→ gxg−1 sends r to r±1, and since r−1 ∈ 〈r〉 this shows 〈r〉 C G. So by

the JNA condition [G,G] ⊆ 〈r〉. On the other hand, let g ∈ G be such that gag−1 = a; then

r = gag−1a−1 ∈ [G,G]. Thus [G,G] = 〈r〉.
Let p be a prime which divides the order of r. Then 〈rp〉 < 〈r〉 = [G,G]. Moreover 〈rp〉CG, since

the only conjugates of rp are rp itself and r−p, which both belong to 〈rp〉. So by the JNA condition,

rp = e. Thus r has order p.

Finally: since the conjugacy class of r is {r±1}, r is central if and only if r = r−1, i.e. if and only if

r2 = e. �
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Choose some t ∈ G such that a = tat−1. Let H = ZG(a) = ZG(a): this has index 2 in G, so is

normal, and G = H tHt. Note that 〈r〉 ⊆ H, by another application of Lemma A.1.

Lemma A.3. Let G be as above, and suppose in addition that Z(G) = {e}. Then H = [G,G].

Proof. By our previous remarks, [G,G] = 〈r〉 ⊆ H. So it suffices to prove |H| ≤ |[G,G]|, and we can

do this by exhibiting an injection H → [G,G]. (Note that this injection will not be a left inverse to

the inclusion of sets [G,G] ↪→ H.)

Consider the function θ : H → [G,G] defined by θ(h) = tht−1h−1. Since [G,G] ⊆ ZG(H),

t(hk)t−1 = (tht−1)(tkt−1) = θ(h)hθ(k)k = θ(h)θ(k)hk for all h, k ∈ H.

Hence θ(hk) = θ(h)θ(k) for all h, k ∈ H, i.e. θ is a homomorphism. Now consider the subgroup

K = ker(θ) = {h ∈ H : ht = th} = H ∩ ZG(t).

Since K is the kernel of a homomorphism H → G, K E H, and so K C G since G = H ∪ Ht and

K ⊆ ZG(t). Suppose K 6= {e}. Then K ⊇ [G,G], by the JNA condition, and so r ∈ K by Lemma A.2.

But this would imply rt = tr, and since r ∈ ZG(H) it would follow from G = H ∪Ht that r ∈ Z(G),

contradicting the assumption that Z(G) = {e}. Thus K = {e}, so θ is injective, as required. �

Finishing the proof of Theorem 4.5. Let G be finite JNA with trivial centre and a conjugacy class of

size 2. Combining the previous lemmas, we obtain r, t ∈ G such that: trt−1 = r−1; r has odd prime

order; and G = 〈r, t〉 (this follows from Lemma A.3 and the fact H = 〈r〉). It only remains to show

that t2 = e. Since trt−1 = r−1, t2 commutes with r, and hence with everything in G = 〈r, t〉. So

t2 ∈ Z(G) = {e}, and the proof of Theorem 4.5 is complete. �
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